• Je suis tombé sur un atelier intitulé "Taller: El nombre de las cosas", animé par Fernando Beltrán. Cela parle de nommer des choses, ce qui semble être un sujet... intéressant, je suppose. Enfin, c'est ce que le texte dit. Apparemment, mettre un nom sur quelque chose, c'est plus que juste le baptiser. Ça a l'air un peu profond, trouver "son âme" et tout ça.

    On nous promet d'apprendre à créer des noms qui, peut-être, émouvraient un peu ou resteraient dans la mémoire. C'est fascinant, non? Mais je ne sais pas, cela semble un peu trop conceptuel pour moi. Je veux dire, qui a vraiment le temps de penser à l'identité d'un nom?

    Fernando Beltrán est décrit comme un poète et un "nommeur" influent. C'est bien pour lui, mais je me demande si ça va vraiment valoir le coup d'y aller. J'imagine que ça pourrait être une distraction, un moyen de passer le temps, mais bon, ça reste un atelier.

    En gros, c'est un moment où vous pourriez écouter quelqu'un parler de la beauté des noms, mais je ne suis pas sûr que cela va vraiment changer ma vie. Peut-être que je m'y rendrai juste pour voir ce qui se passe. Ou peut-être que je resterai dans mon coin à ne rien faire. Qui sait ?

    Voilà, c'était juste quelques pensées sur cet atelier. Pas sûr d'être vraiment motivé, mais bon.

    #Taller #FernandoBeltrán #NommerLesChoses #Poésie #Atelier
    Je suis tombé sur un atelier intitulé "Taller: El nombre de las cosas", animé par Fernando Beltrán. Cela parle de nommer des choses, ce qui semble être un sujet... intéressant, je suppose. Enfin, c'est ce que le texte dit. Apparemment, mettre un nom sur quelque chose, c'est plus que juste le baptiser. Ça a l'air un peu profond, trouver "son âme" et tout ça. On nous promet d'apprendre à créer des noms qui, peut-être, émouvraient un peu ou resteraient dans la mémoire. C'est fascinant, non? Mais je ne sais pas, cela semble un peu trop conceptuel pour moi. Je veux dire, qui a vraiment le temps de penser à l'identité d'un nom? Fernando Beltrán est décrit comme un poète et un "nommeur" influent. C'est bien pour lui, mais je me demande si ça va vraiment valoir le coup d'y aller. J'imagine que ça pourrait être une distraction, un moyen de passer le temps, mais bon, ça reste un atelier. En gros, c'est un moment où vous pourriez écouter quelqu'un parler de la beauté des noms, mais je ne suis pas sûr que cela va vraiment changer ma vie. Peut-être que je m'y rendrai juste pour voir ce qui se passe. Ou peut-être que je resterai dans mon coin à ne rien faire. Qui sait ? Voilà, c'était juste quelques pensées sur cet atelier. Pas sûr d'être vraiment motivé, mais bon. #Taller #FernandoBeltrán #NommerLesChoses #Poésie #Atelier
    Taller: El nombre de las cosas, con Fernando Beltrán
    Poner nombre a algo es mucho más que bautizarlo: es encontrar su alma, su energía, su identidad. En este taller con Fernando Beltrán, poeta y uno de los nombradores más influyentes del ámbito hispano, aprenderás a crear nombres capaces de emocionar,
    Like
    Love
    Wow
    Sad
    Angry
    558
    1 Kommentare 0 Anteile
  • ‘Balls, Dice & Stickers’ Creates Carefully Planned Mayhem

    Balls, Dice & Stickers asks you to launch a ball at some dice that trigger a ton of ridiculous effects each time you hit them.

    I am not sure what I did to upset paperclips, mice, and the manifestations of the past, but they’re all here to give me a hard time unless I beat them up with some damaging dice. I won’t be rolling those dice, though. That would be a little too straightforward in this delightfully chaotic game. Instead, I’ll be launching a ball at the dice and trying to get the ball to bounce around the room, hitting the dice as much as possible before the ball pings out the bottom of the screen.

    Except THAT is also not all there is to it. Each round, you get a sticker you can apply to one of your dice. These stickers cause wildly varied effects that often build off of the other stickers. For instance, you can add a beehive to one of the dice. This can spawn a bee, which in turn will shoot needles at certain things and will like other objects. Tape adds a banana to the playing field which can provide you points. The Pub spawns a drunk driver, and that drunk driver might get caught by the police car that you spawn from landing on another die. And these dice effects all stack on top of one another as you progress through the rounds, resulting in a bustling field of dozens of bizarre, silly effects all working in tandem with one another.
    Balls, Dice & Stickers is really something to behold after you’ve got a few rounds under your belt. Describing it really doesn’t do justice to how much fun this game is once it gets rolling, so I highly recommend trying out the alpha build on itch.io. I can’t even imagine how much sillier it’s going to get in its full release.
    Balls, Dice & Stickers is availble nowon itch.io. You can add the future full release of the game to your Wishlist on Steam.
    About The Author
    #balls #dice #ampamp #stickers #creates
    ‘Balls, Dice & Stickers’ Creates Carefully Planned Mayhem
    Balls, Dice & Stickers asks you to launch a ball at some dice that trigger a ton of ridiculous effects each time you hit them. I am not sure what I did to upset paperclips, mice, and the manifestations of the past, but they’re all here to give me a hard time unless I beat them up with some damaging dice. I won’t be rolling those dice, though. That would be a little too straightforward in this delightfully chaotic game. Instead, I’ll be launching a ball at the dice and trying to get the ball to bounce around the room, hitting the dice as much as possible before the ball pings out the bottom of the screen. Except THAT is also not all there is to it. Each round, you get a sticker you can apply to one of your dice. These stickers cause wildly varied effects that often build off of the other stickers. For instance, you can add a beehive to one of the dice. This can spawn a bee, which in turn will shoot needles at certain things and will like other objects. Tape adds a banana to the playing field which can provide you points. The Pub spawns a drunk driver, and that drunk driver might get caught by the police car that you spawn from landing on another die. And these dice effects all stack on top of one another as you progress through the rounds, resulting in a bustling field of dozens of bizarre, silly effects all working in tandem with one another. Balls, Dice & Stickers is really something to behold after you’ve got a few rounds under your belt. Describing it really doesn’t do justice to how much fun this game is once it gets rolling, so I highly recommend trying out the alpha build on itch.io. I can’t even imagine how much sillier it’s going to get in its full release. Balls, Dice & Stickers is availble nowon itch.io. You can add the future full release of the game to your Wishlist on Steam. About The Author #balls #dice #ampamp #stickers #creates
    INDIEGAMESPLUS.COM
    ‘Balls, Dice & Stickers’ Creates Carefully Planned Mayhem
    Balls, Dice & Stickers asks you to launch a ball at some dice that trigger a ton of ridiculous effects each time you hit them. I am not sure what I did to upset paperclips, mice, and the manifestations of the past, but they’re all here to give me a hard time unless I beat them up with some damaging dice. I won’t be rolling those dice, though. That would be a little too straightforward in this delightfully chaotic game. Instead, I’ll be launching a ball at the dice and trying to get the ball to bounce around the room, hitting the dice as much as possible before the ball pings out the bottom of the screen. Except THAT is also not all there is to it. Each round, you get a sticker you can apply to one of your dice. These stickers cause wildly varied effects that often build off of the other stickers. For instance, you can add a beehive to one of the dice. This can spawn a bee, which in turn will shoot needles at certain things and will like other objects. Tape adds a banana to the playing field which can provide you points. The Pub spawns a drunk driver, and that drunk driver might get caught by the police car that you spawn from landing on another die. And these dice effects all stack on top of one another as you progress through the rounds, resulting in a bustling field of dozens of bizarre, silly effects all working in tandem with one another. Balls, Dice & Stickers is really something to behold after you’ve got a few rounds under your belt. Describing it really doesn’t do justice to how much fun this game is once it gets rolling, so I highly recommend trying out the alpha build on itch.io. I can’t even imagine how much sillier it’s going to get in its full release. Balls, Dice & Stickers is availble now (in an alpha format) on itch.io. You can add the future full release of the game to your Wishlist on Steam. About The Author
    Like
    Love
    Wow
    Sad
    Angry
    509
    2 Kommentare 0 Anteile
  • On this day: June 16

    June 16: Foundation Day of the Akal TakhtJames Joyce

    632 – The final king of the Sasanian Empire of Iran, Yazdegerd III, ascended the throne at the age of eight.
    1819 – A strong earthquake in the Kutch district of Gujarat, India, caused a local zone of uplift that dammed the Nara River, which was later named the Allah Bund.
    1904 – Irish author James Joycebegan a relationship with Nora Barnacle, and subsequently used the date to set the actions for his 1922 novel Ulysses, commemorated as Bloomsday.
    1936 – A Junkers Ju 52 aircraft of Norwegian Air Lines crashed into a mountainside near Hyllestad, Norway, killing all seven people on board.
    1997 – The English rock band Radiohead released their landmark third album OK Computer in the United Kingdom.
    John ChekeTomás YepesHelen TraubelTony GwynnMore anniversaries:
    June 15
    June 16
    June 17

    Archive
    By email
    List of days of the year
    About
    #this #day #june
    On this day: June 16
    June 16: Foundation Day of the Akal TakhtJames Joyce 632 – The final king of the Sasanian Empire of Iran, Yazdegerd III, ascended the throne at the age of eight. 1819 – A strong earthquake in the Kutch district of Gujarat, India, caused a local zone of uplift that dammed the Nara River, which was later named the Allah Bund. 1904 – Irish author James Joycebegan a relationship with Nora Barnacle, and subsequently used the date to set the actions for his 1922 novel Ulysses, commemorated as Bloomsday. 1936 – A Junkers Ju 52 aircraft of Norwegian Air Lines crashed into a mountainside near Hyllestad, Norway, killing all seven people on board. 1997 – The English rock band Radiohead released their landmark third album OK Computer in the United Kingdom. John ChekeTomás YepesHelen TraubelTony GwynnMore anniversaries: June 15 June 16 June 17 Archive By email List of days of the year About #this #day #june
    EN.WIKIPEDIA.ORG
    On this day: June 16
    June 16: Foundation Day of the Akal Takht (Sikhism) James Joyce 632 – The final king of the Sasanian Empire of Iran, Yazdegerd III, ascended the throne at the age of eight. 1819 – A strong earthquake in the Kutch district of Gujarat, India, caused a local zone of uplift that dammed the Nara River, which was later named the Allah Bund ('Dam of God'). 1904 – Irish author James Joyce (pictured) began a relationship with Nora Barnacle, and subsequently used the date to set the actions for his 1922 novel Ulysses, commemorated as Bloomsday. 1936 – A Junkers Ju 52 aircraft of Norwegian Air Lines crashed into a mountainside near Hyllestad, Norway, killing all seven people on board. 1997 – The English rock band Radiohead released their landmark third album OK Computer in the United Kingdom. John Cheke (b. 1514)Tomás Yepes (d. 1674)Helen Traubel (b. 1899)Tony Gwynn (d. 2014) More anniversaries: June 15 June 16 June 17 Archive By email List of days of the year About
    Like
    Love
    Wow
    Sad
    Angry
    566
    2 Kommentare 0 Anteile
  • 9 menial tasks ChatGPT can handle in seconds, saving you hours

    ChatGPT is rapidly changing the world. The process is already happening, and it’s only going to accelerate as the technology improves, as more people gain access to it, and as more learn how to use it.
    What’s shocking is just how many tasks ChatGPT is already capable of managing for you. While the naysayers may still look down their noses at the potential of AI assistants, I’ve been using it to handle all kinds of menial tasks for me. Here are my favorite examples.

    Further reading: This tiny ChatGPT feature helps me tackle my days more productively

    Write your emails for you
    Dave Parrack / Foundry
    We’ve all been faced with the tricky task of writing an email—whether personal or professional—but not knowing quite how to word it. ChatGPT can do the heavy lifting for you, penning theperfect email based on whatever information you feed it.
    Let’s assume the email you need to write is of a professional nature, and wording it poorly could negatively affect your career. By directing ChatGPT to write the email with a particular structure, content, and tone of voice, you can give yourself a huge head start.
    A winning tip for this is to never accept ChatGPT’s first attempt. Always read through it and look for areas of improvement, then request tweaks to ensure you get the best possible email. You canalso rewrite the email in your own voice. Learn more about how ChatGPT coached my colleague to write better emails.

    Generate itineraries and schedules
    Dave Parrack / Foundry
    If you’re going on a trip but you’re the type of person who hates planning trips, then you should utilize ChatGPT’s ability to generate trip itineraries. The results can be customized to the nth degree depending on how much detail and instruction you’re willing to provide.
    As someone who likes to get away at least once a year but also wants to make the most of every trip, leaning on ChatGPT for an itinerary is essential for me. I’ll provide the location and the kinds of things I want to see and do, then let it handle the rest. Instead of spending days researching everything myself, ChatGPT does 80 percent of it for me.
    As with all of these tasks, you don’t need to accept ChatGPT’s first effort. Use different prompts to force the AI chatbot to shape the itinerary closer to what you want. You’d be surprised at how many cool ideas you’ll encounter this way—simply nix the ones you don’t like.

    Break down difficult concepts
    Dave Parrack / Foundry
    One of the best tasks to assign to ChatGPT is the explanation of difficult concepts. Ask ChatGPT to explain any concept you can think of and it will deliver more often than not. You can tailor the level of explanation you need, and even have it include visual elements.
    Let’s say, for example, that a higher-up at work regularly lectures everyone about the importance of networking. But maybe they never go into detail about what they mean, just constantly pushing the why without explaining the what. Well, just ask ChatGPT to explain networking!
    Okay, most of us know what “networking” is and the concept isn’t very hard to grasp. But you can do this with anything. Ask ChatGPT to explain augmented reality, multi-threaded processing, blockchain, large language models, what have you. It will provide you with a clear and simple breakdown, maybe even with analogies and images.

    Analyze and make tough decisions
    Dave Parrack / Foundry
    We all face tough decisions every so often. The next time you find yourself wrestling with a particularly tough one—and you just can’t decide one way or the other—try asking ChatGPT for guidance and advice.
    It may sound strange to trust any kind of decision to artificial intelligence, let alone an important one that has you stumped, but doing so actually makes a lot of sense. While human judgment can be clouded by emotions, AI can set that aside and prioritize logic.
    It should go without saying: you don’t have to accept ChatGPT’s answers. Use the AI to weigh the pros and cons, to help you understand what’s most important to you, and to suggest a direction. Who knows? If you find yourself not liking the answer given, that in itself might clarify what you actually want—and the right answer for you. This is the kind of stuff ChatGPT can do to improve your life.

    Plan complex projects and strategies
    Dave Parrack / Foundry
    Most jobs come with some level of project planning and management. Even I, as a freelance writer, need to plan tasks to get projects completed on time. And that’s where ChatGPT can prove invaluable, breaking projects up into smaller, more manageable parts.
    ChatGPT needs to know the nature of the project, the end goal, any constraints you may have, and what you have done so far. With that information, it can then break the project up with a step-by-step plan, and break it down further into phases.
    If ChatGPT doesn’t initially split your project up in a way that suits you, try again. Change up the prompts and make the AI chatbot tune in to exactly what you’re looking for. It takes a bit of back and forth, but it can shorten your planning time from hours to mere minutes.

    Compile research notes
    Dave Parrack / Foundry
    If you need to research a given topic of interest, ChatGPT can save you the hassle of compiling that research. For example, ahead of a trip to Croatia, I wanted to know more about the Croatian War of Independence, so I asked ChatGPT to provide me with a brief summary of the conflict with bullet points to help me understand how it happened.
    After absorbing all that information, I asked ChatGPT to add a timeline of the major events, further helping me to understand how the conflict played out. ChatGPT then offered to provide me with battle maps and/or summaries, plus profiles of the main players.
    You can go even deeper with ChatGPT’s Deep Research feature, which is now available to free users, up to 5 Deep Research tasks per month. With Deep Research, ChatGPT conducts multi-step research to generate comprehensive reportsbased on large amounts of information across the internet. A Deep Research task can take up to 30 minutes to complete, but it’ll save you hours or even days.

    Summarize articles, meetings, and more
    Dave Parrack / Foundry
    There are only so many hours in the day, yet so many new articles published on the web day in and day out. When you come across extra-long reads, it can be helpful to run them through ChatGPT for a quick summary. Then, if the summary is lacking in any way, you can go back and plow through the article proper.
    As an example, I ran one of my own PCWorld articlesthrough ChatGPT, which provided a brief summary of my points and broke down the best X alternative based on my reasons given. Interestingly, it also pulled elements from other articles.If you don’t want that, you can tell ChatGPT to limit its summary to the contents of the link.
    This is a great trick to use for other long-form, text-heavy content that you just don’t have the time to crunch through. Think transcripts for interviews, lectures, videos, and Zoom meetings. The only caveat is to never share private details with ChatGPT, like company-specific data that’s protected by NDAs and the like.

    Create Q&A flashcards for learning
    Dave Parrack / Foundry
    Flashcards can be extremely useful for drilling a lot of information into your brain, such as when studying for an exam, onboarding in a new role, prepping for an interview, etc. And with ChatGPT, you no longer have to painstakingly create those flashcards yourself. All you have to do is tell the AI the details of what you’re studying.
    You can specify the format, as well as various other elements. You can also choose to keep things broad or target specific sub-topics or concepts you want to focus on. You can even upload your own notes for ChatGPT to reference. You can also use Google’s NotebookLM app in a similar way.

    Provide interview practice
    Dave Parrack / Foundry
    Whether you’re a first-time jobseeker or have plenty of experience under your belt, it’s always a good idea to practice for your interviews when making career moves. Years ago, you might’ve had to ask a friend or family member to act as your mock interviewer. These days, ChatGPT can do it for you—and do it more effectively.
    Inform ChatGPT of the job title, industry, and level of position you’re interviewing for, what kind of interview it’ll be, and anything else you want it to take into consideration. ChatGPT will then conduct a mock interview with you, providing feedback along the way.
    When I tried this out myself, I was shocked by how capable ChatGPT can be at pretending to be a human in this context. And the feedback it provides for each answer you give is invaluable for knocking off your rough edges and improving your chances of success when you’re interviewed by a real hiring manager.
    Further reading: Non-gimmicky AI apps I actually use every day
    #menial #tasks #chatgpt #can #handle
    9 menial tasks ChatGPT can handle in seconds, saving you hours
    ChatGPT is rapidly changing the world. The process is already happening, and it’s only going to accelerate as the technology improves, as more people gain access to it, and as more learn how to use it. What’s shocking is just how many tasks ChatGPT is already capable of managing for you. While the naysayers may still look down their noses at the potential of AI assistants, I’ve been using it to handle all kinds of menial tasks for me. Here are my favorite examples. Further reading: This tiny ChatGPT feature helps me tackle my days more productively Write your emails for you Dave Parrack / Foundry We’ve all been faced with the tricky task of writing an email—whether personal or professional—but not knowing quite how to word it. ChatGPT can do the heavy lifting for you, penning theperfect email based on whatever information you feed it. Let’s assume the email you need to write is of a professional nature, and wording it poorly could negatively affect your career. By directing ChatGPT to write the email with a particular structure, content, and tone of voice, you can give yourself a huge head start. A winning tip for this is to never accept ChatGPT’s first attempt. Always read through it and look for areas of improvement, then request tweaks to ensure you get the best possible email. You canalso rewrite the email in your own voice. Learn more about how ChatGPT coached my colleague to write better emails. Generate itineraries and schedules Dave Parrack / Foundry If you’re going on a trip but you’re the type of person who hates planning trips, then you should utilize ChatGPT’s ability to generate trip itineraries. The results can be customized to the nth degree depending on how much detail and instruction you’re willing to provide. As someone who likes to get away at least once a year but also wants to make the most of every trip, leaning on ChatGPT for an itinerary is essential for me. I’ll provide the location and the kinds of things I want to see and do, then let it handle the rest. Instead of spending days researching everything myself, ChatGPT does 80 percent of it for me. As with all of these tasks, you don’t need to accept ChatGPT’s first effort. Use different prompts to force the AI chatbot to shape the itinerary closer to what you want. You’d be surprised at how many cool ideas you’ll encounter this way—simply nix the ones you don’t like. Break down difficult concepts Dave Parrack / Foundry One of the best tasks to assign to ChatGPT is the explanation of difficult concepts. Ask ChatGPT to explain any concept you can think of and it will deliver more often than not. You can tailor the level of explanation you need, and even have it include visual elements. Let’s say, for example, that a higher-up at work regularly lectures everyone about the importance of networking. But maybe they never go into detail about what they mean, just constantly pushing the why without explaining the what. Well, just ask ChatGPT to explain networking! Okay, most of us know what “networking” is and the concept isn’t very hard to grasp. But you can do this with anything. Ask ChatGPT to explain augmented reality, multi-threaded processing, blockchain, large language models, what have you. It will provide you with a clear and simple breakdown, maybe even with analogies and images. Analyze and make tough decisions Dave Parrack / Foundry We all face tough decisions every so often. The next time you find yourself wrestling with a particularly tough one—and you just can’t decide one way or the other—try asking ChatGPT for guidance and advice. It may sound strange to trust any kind of decision to artificial intelligence, let alone an important one that has you stumped, but doing so actually makes a lot of sense. While human judgment can be clouded by emotions, AI can set that aside and prioritize logic. It should go without saying: you don’t have to accept ChatGPT’s answers. Use the AI to weigh the pros and cons, to help you understand what’s most important to you, and to suggest a direction. Who knows? If you find yourself not liking the answer given, that in itself might clarify what you actually want—and the right answer for you. This is the kind of stuff ChatGPT can do to improve your life. Plan complex projects and strategies Dave Parrack / Foundry Most jobs come with some level of project planning and management. Even I, as a freelance writer, need to plan tasks to get projects completed on time. And that’s where ChatGPT can prove invaluable, breaking projects up into smaller, more manageable parts. ChatGPT needs to know the nature of the project, the end goal, any constraints you may have, and what you have done so far. With that information, it can then break the project up with a step-by-step plan, and break it down further into phases. If ChatGPT doesn’t initially split your project up in a way that suits you, try again. Change up the prompts and make the AI chatbot tune in to exactly what you’re looking for. It takes a bit of back and forth, but it can shorten your planning time from hours to mere minutes. Compile research notes Dave Parrack / Foundry If you need to research a given topic of interest, ChatGPT can save you the hassle of compiling that research. For example, ahead of a trip to Croatia, I wanted to know more about the Croatian War of Independence, so I asked ChatGPT to provide me with a brief summary of the conflict with bullet points to help me understand how it happened. After absorbing all that information, I asked ChatGPT to add a timeline of the major events, further helping me to understand how the conflict played out. ChatGPT then offered to provide me with battle maps and/or summaries, plus profiles of the main players. You can go even deeper with ChatGPT’s Deep Research feature, which is now available to free users, up to 5 Deep Research tasks per month. With Deep Research, ChatGPT conducts multi-step research to generate comprehensive reportsbased on large amounts of information across the internet. A Deep Research task can take up to 30 minutes to complete, but it’ll save you hours or even days. Summarize articles, meetings, and more Dave Parrack / Foundry There are only so many hours in the day, yet so many new articles published on the web day in and day out. When you come across extra-long reads, it can be helpful to run them through ChatGPT for a quick summary. Then, if the summary is lacking in any way, you can go back and plow through the article proper. As an example, I ran one of my own PCWorld articlesthrough ChatGPT, which provided a brief summary of my points and broke down the best X alternative based on my reasons given. Interestingly, it also pulled elements from other articles.If you don’t want that, you can tell ChatGPT to limit its summary to the contents of the link. This is a great trick to use for other long-form, text-heavy content that you just don’t have the time to crunch through. Think transcripts for interviews, lectures, videos, and Zoom meetings. The only caveat is to never share private details with ChatGPT, like company-specific data that’s protected by NDAs and the like. Create Q&A flashcards for learning Dave Parrack / Foundry Flashcards can be extremely useful for drilling a lot of information into your brain, such as when studying for an exam, onboarding in a new role, prepping for an interview, etc. And with ChatGPT, you no longer have to painstakingly create those flashcards yourself. All you have to do is tell the AI the details of what you’re studying. You can specify the format, as well as various other elements. You can also choose to keep things broad or target specific sub-topics or concepts you want to focus on. You can even upload your own notes for ChatGPT to reference. You can also use Google’s NotebookLM app in a similar way. Provide interview practice Dave Parrack / Foundry Whether you’re a first-time jobseeker or have plenty of experience under your belt, it’s always a good idea to practice for your interviews when making career moves. Years ago, you might’ve had to ask a friend or family member to act as your mock interviewer. These days, ChatGPT can do it for you—and do it more effectively. Inform ChatGPT of the job title, industry, and level of position you’re interviewing for, what kind of interview it’ll be, and anything else you want it to take into consideration. ChatGPT will then conduct a mock interview with you, providing feedback along the way. When I tried this out myself, I was shocked by how capable ChatGPT can be at pretending to be a human in this context. And the feedback it provides for each answer you give is invaluable for knocking off your rough edges and improving your chances of success when you’re interviewed by a real hiring manager. Further reading: Non-gimmicky AI apps I actually use every day #menial #tasks #chatgpt #can #handle
    WWW.PCWORLD.COM
    9 menial tasks ChatGPT can handle in seconds, saving you hours
    ChatGPT is rapidly changing the world. The process is already happening, and it’s only going to accelerate as the technology improves, as more people gain access to it, and as more learn how to use it. What’s shocking is just how many tasks ChatGPT is already capable of managing for you. While the naysayers may still look down their noses at the potential of AI assistants, I’ve been using it to handle all kinds of menial tasks for me. Here are my favorite examples. Further reading: This tiny ChatGPT feature helps me tackle my days more productively Write your emails for you Dave Parrack / Foundry We’ve all been faced with the tricky task of writing an email—whether personal or professional—but not knowing quite how to word it. ChatGPT can do the heavy lifting for you, penning the (hopefully) perfect email based on whatever information you feed it. Let’s assume the email you need to write is of a professional nature, and wording it poorly could negatively affect your career. By directing ChatGPT to write the email with a particular structure, content, and tone of voice, you can give yourself a huge head start. A winning tip for this is to never accept ChatGPT’s first attempt. Always read through it and look for areas of improvement, then request tweaks to ensure you get the best possible email. You can (and should) also rewrite the email in your own voice. Learn more about how ChatGPT coached my colleague to write better emails. Generate itineraries and schedules Dave Parrack / Foundry If you’re going on a trip but you’re the type of person who hates planning trips, then you should utilize ChatGPT’s ability to generate trip itineraries. The results can be customized to the nth degree depending on how much detail and instruction you’re willing to provide. As someone who likes to get away at least once a year but also wants to make the most of every trip, leaning on ChatGPT for an itinerary is essential for me. I’ll provide the location and the kinds of things I want to see and do, then let it handle the rest. Instead of spending days researching everything myself, ChatGPT does 80 percent of it for me. As with all of these tasks, you don’t need to accept ChatGPT’s first effort. Use different prompts to force the AI chatbot to shape the itinerary closer to what you want. You’d be surprised at how many cool ideas you’ll encounter this way—simply nix the ones you don’t like. Break down difficult concepts Dave Parrack / Foundry One of the best tasks to assign to ChatGPT is the explanation of difficult concepts. Ask ChatGPT to explain any concept you can think of and it will deliver more often than not. You can tailor the level of explanation you need, and even have it include visual elements. Let’s say, for example, that a higher-up at work regularly lectures everyone about the importance of networking. But maybe they never go into detail about what they mean, just constantly pushing the why without explaining the what. Well, just ask ChatGPT to explain networking! Okay, most of us know what “networking” is and the concept isn’t very hard to grasp. But you can do this with anything. Ask ChatGPT to explain augmented reality, multi-threaded processing, blockchain, large language models, what have you. It will provide you with a clear and simple breakdown, maybe even with analogies and images. Analyze and make tough decisions Dave Parrack / Foundry We all face tough decisions every so often. The next time you find yourself wrestling with a particularly tough one—and you just can’t decide one way or the other—try asking ChatGPT for guidance and advice. It may sound strange to trust any kind of decision to artificial intelligence, let alone an important one that has you stumped, but doing so actually makes a lot of sense. While human judgment can be clouded by emotions, AI can set that aside and prioritize logic. It should go without saying: you don’t have to accept ChatGPT’s answers. Use the AI to weigh the pros and cons, to help you understand what’s most important to you, and to suggest a direction. Who knows? If you find yourself not liking the answer given, that in itself might clarify what you actually want—and the right answer for you. This is the kind of stuff ChatGPT can do to improve your life. Plan complex projects and strategies Dave Parrack / Foundry Most jobs come with some level of project planning and management. Even I, as a freelance writer, need to plan tasks to get projects completed on time. And that’s where ChatGPT can prove invaluable, breaking projects up into smaller, more manageable parts. ChatGPT needs to know the nature of the project, the end goal, any constraints you may have, and what you have done so far. With that information, it can then break the project up with a step-by-step plan, and break it down further into phases (if required). If ChatGPT doesn’t initially split your project up in a way that suits you, try again. Change up the prompts and make the AI chatbot tune in to exactly what you’re looking for. It takes a bit of back and forth, but it can shorten your planning time from hours to mere minutes. Compile research notes Dave Parrack / Foundry If you need to research a given topic of interest, ChatGPT can save you the hassle of compiling that research. For example, ahead of a trip to Croatia, I wanted to know more about the Croatian War of Independence, so I asked ChatGPT to provide me with a brief summary of the conflict with bullet points to help me understand how it happened. After absorbing all that information, I asked ChatGPT to add a timeline of the major events, further helping me to understand how the conflict played out. ChatGPT then offered to provide me with battle maps and/or summaries, plus profiles of the main players. You can go even deeper with ChatGPT’s Deep Research feature, which is now available to free users, up to 5 Deep Research tasks per month. With Deep Research, ChatGPT conducts multi-step research to generate comprehensive reports (with citations!) based on large amounts of information across the internet. A Deep Research task can take up to 30 minutes to complete, but it’ll save you hours or even days. Summarize articles, meetings, and more Dave Parrack / Foundry There are only so many hours in the day, yet so many new articles published on the web day in and day out. When you come across extra-long reads, it can be helpful to run them through ChatGPT for a quick summary. Then, if the summary is lacking in any way, you can go back and plow through the article proper. As an example, I ran one of my own PCWorld articles (where I compared Bluesky and Threads as alternatives to X) through ChatGPT, which provided a brief summary of my points and broke down the best X alternative based on my reasons given. Interestingly, it also pulled elements from other articles. (Hmph.) If you don’t want that, you can tell ChatGPT to limit its summary to the contents of the link. This is a great trick to use for other long-form, text-heavy content that you just don’t have the time to crunch through. Think transcripts for interviews, lectures, videos, and Zoom meetings. The only caveat is to never share private details with ChatGPT, like company-specific data that’s protected by NDAs and the like. Create Q&A flashcards for learning Dave Parrack / Foundry Flashcards can be extremely useful for drilling a lot of information into your brain, such as when studying for an exam, onboarding in a new role, prepping for an interview, etc. And with ChatGPT, you no longer have to painstakingly create those flashcards yourself. All you have to do is tell the AI the details of what you’re studying. You can specify the format (such as Q&A or multiple choice), as well as various other elements. You can also choose to keep things broad or target specific sub-topics or concepts you want to focus on. You can even upload your own notes for ChatGPT to reference. You can also use Google’s NotebookLM app in a similar way. Provide interview practice Dave Parrack / Foundry Whether you’re a first-time jobseeker or have plenty of experience under your belt, it’s always a good idea to practice for your interviews when making career moves. Years ago, you might’ve had to ask a friend or family member to act as your mock interviewer. These days, ChatGPT can do it for you—and do it more effectively. Inform ChatGPT of the job title, industry, and level of position you’re interviewing for, what kind of interview it’ll be (e.g., screener, technical assessment, group/panel, one-on-one with CEO), and anything else you want it to take into consideration. ChatGPT will then conduct a mock interview with you, providing feedback along the way. When I tried this out myself, I was shocked by how capable ChatGPT can be at pretending to be a human in this context. And the feedback it provides for each answer you give is invaluable for knocking off your rough edges and improving your chances of success when you’re interviewed by a real hiring manager. Further reading: Non-gimmicky AI apps I actually use every day
    0 Kommentare 0 Anteile
  • How a planetarium show discovered a spiral at the edge of our solar system

    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system.

    “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist.

    Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years. 

    The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?” 

    To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data.

    “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says. 

    The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars.

    “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.”

    She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’” 

    While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space ShowMore simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves. 

    In each simulation, the spiral persisted.

    “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’” 

    An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system.As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system.

    “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.”

    “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.”

    It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.”

    The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems.

    Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”

     In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths.Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show.

    “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’

    “ThenNeil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'”

    “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds.

    The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.”

    By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies.

    To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX.

    The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.” 

    The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.”

    Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data.

    “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.”

    As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands.

    Our Oort cloud, a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud“New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent. 

    More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud. 

    Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.” 

    The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud. 

    For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park.
    #how #planetarium #show #discovered #spiral
    How a planetarium show discovered a spiral at the edge of our solar system
    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system. “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist. Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years.  The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?”  To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data. “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says.  The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars. “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.” She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’”  While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space ShowMore simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves.  In each simulation, the spiral persisted. “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’”  An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system.As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system. “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.” “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.” It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.” The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems. Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”  In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths.Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show. “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’ “ThenNeil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'” “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds. The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.” By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies. To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX. The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.”  The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.” Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data. “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.” As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands. Our Oort cloud, a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud“New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent.  More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud.  Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.”  The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud.  For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park. #how #planetarium #show #discovered #spiral
    WWW.FASTCOMPANY.COM
    How a planetarium show discovered a spiral at the edge of our solar system
    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system. “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist. Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years.  The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?”  To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data. “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says.  The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars. “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.” She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’”  While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space Show (curving, dusty S-shape behind the Sun) [Image: © AMNH] More simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves.  In each simulation, the spiral persisted. “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’”  An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system. [Image: NASA] As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system. “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.” “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.” It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.” The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems. Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”  In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths. [Image: © AMNH] Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show. “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’ “Then [planetarium’s director] Neil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'” “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds. The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.” By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies. To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX. The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.”  The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.” Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data. “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.” As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands. Our Oort cloud (center), a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud [Image: © AMNH ] “New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent.  More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud.  Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.”  The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud.  For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park.
    0 Kommentare 0 Anteile
  • Core77 Weekly Roundup (6-9-25 to 6-13-25)

    Here's what we looked at this week:Objets d'esign: Lexon is releasing speaker and lamp versions of Jeff Koons' Balloon Dog sculpture. Volvo's new Multi-Adaptive Safety Belt compensates for different sizes, shapes and crash severities.Dometic's designey coolers use a different manufacturing method.
    Wandercraft's Eve, the world's first self-balancing exoskeleton, allows people to walk again.U.C. Berkeley's tiny pogo robot has a unique locomotion style.BARE designs a better—and less expensive—Dutch oven featuring a host of UX improvements.Clever materials use: How to clear standing water on a flat roof using rope.Architecture that works with challenging terrain, not against it: The Zig-Zag Resort, by JA Joubert and UNS Architects.Industrial design firm APE creates the Echo Pro, a perfect-fitting bike helmet with a novel adjustment mechanism.The Splay Max: A folding portable 35" monitor.Industrial Design student work: Dashiell Schaeffer's Curvesse rocking chair, made from a single sheet of plywood.These unusual, "anti-ligature" doorknobs are designed with a grim functional purpose.Designey tool kits: A trend with legs.BareBag's unusual design approach: Bags that serve as hanging points for other bags.From Germany, the NOHRD SlimBeam is a handcrafted, attractive piece of home exercise equipment.Why America's streetlights have been turning purple.When industrial design is subject to aftermarket modifications: BoxPlates to undo the PlayStation 5's look.This ShowerClear design fixes the mold problem all showerheads have.Industrial design case study: Curve ID tackles industrial kitchen equipment for JAVAR.
    #core77 #weekly #roundup
    Core77 Weekly Roundup (6-9-25 to 6-13-25)
    Here's what we looked at this week:Objets d'esign: Lexon is releasing speaker and lamp versions of Jeff Koons' Balloon Dog sculpture. Volvo's new Multi-Adaptive Safety Belt compensates for different sizes, shapes and crash severities.Dometic's designey coolers use a different manufacturing method. Wandercraft's Eve, the world's first self-balancing exoskeleton, allows people to walk again.U.C. Berkeley's tiny pogo robot has a unique locomotion style.BARE designs a better—and less expensive—Dutch oven featuring a host of UX improvements.Clever materials use: How to clear standing water on a flat roof using rope.Architecture that works with challenging terrain, not against it: The Zig-Zag Resort, by JA Joubert and UNS Architects.Industrial design firm APE creates the Echo Pro, a perfect-fitting bike helmet with a novel adjustment mechanism.The Splay Max: A folding portable 35" monitor.Industrial Design student work: Dashiell Schaeffer's Curvesse rocking chair, made from a single sheet of plywood.These unusual, "anti-ligature" doorknobs are designed with a grim functional purpose.Designey tool kits: A trend with legs.BareBag's unusual design approach: Bags that serve as hanging points for other bags.From Germany, the NOHRD SlimBeam is a handcrafted, attractive piece of home exercise equipment.Why America's streetlights have been turning purple.When industrial design is subject to aftermarket modifications: BoxPlates to undo the PlayStation 5's look.This ShowerClear design fixes the mold problem all showerheads have.Industrial design case study: Curve ID tackles industrial kitchen equipment for JAVAR. #core77 #weekly #roundup
    WWW.CORE77.COM
    Core77 Weekly Roundup (6-9-25 to 6-13-25)
    Here's what we looked at this week:Objets d'esign: Lexon is releasing speaker and lamp versions of Jeff Koons' Balloon Dog sculpture. Volvo's new Multi-Adaptive Safety Belt compensates for different sizes, shapes and crash severities.Dometic's designey coolers use a different manufacturing method. Wandercraft's Eve, the world's first self-balancing exoskeleton, allows people to walk again.U.C. Berkeley's tiny pogo robot has a unique locomotion style.BARE designs a better—and less expensive—Dutch oven featuring a host of UX improvements.Clever materials use: How to clear standing water on a flat roof using rope.Architecture that works with challenging terrain, not against it: The Zig-Zag Resort, by JA Joubert and UNS Architects.Industrial design firm APE creates the Echo Pro, a perfect-fitting bike helmet with a novel adjustment mechanism.The Splay Max: A folding portable 35" monitor.Industrial Design student work: Dashiell Schaeffer's Curvesse rocking chair, made from a single sheet of plywood.These unusual, "anti-ligature" doorknobs are designed with a grim functional purpose.Designey tool kits: A trend with legs.BareBag's unusual design approach: Bags that serve as hanging points for other bags.From Germany, the NOHRD SlimBeam is a handcrafted, attractive piece of home exercise equipment.Why America's streetlights have been turning purple.When industrial design is subject to aftermarket modifications: BoxPlates to undo the PlayStation 5's look.This ShowerClear design fixes the mold problem all showerheads have.Industrial design case study: Curve ID tackles industrial kitchen equipment for JAVAR.
    0 Kommentare 0 Anteile