• NVIDIA TensorRT Boosts Stable Diffusion 3.5 Performance on NVIDIA GeForce RTX and RTX PRO GPUs

    Generative AI has reshaped how people create, imagine and interact with digital content.
    As AI models continue to grow in capability and complexity, they require more VRAM, or video random access memory. The base Stable Diffusion 3.5 Large model, for example, uses over 18GB of VRAM — limiting the number of systems that can run it well.
    By applying quantization to the model, noncritical layers can be removed or run with lower precision. NVIDIA GeForce RTX 40 Series and the Ada Lovelace generation of NVIDIA RTX PRO GPUs support FP8 quantization to help run these quantized models, and the latest-generation NVIDIA Blackwell GPUs also add support for FP4.
    NVIDIA collaborated with Stability AI to quantize its latest model, Stable Diffusion3.5 Large, to FP8 — reducing VRAM consumption by 40%. Further optimizations to SD3.5 Large and Medium with the NVIDIA TensorRT software development kitdouble performance.
    In addition, TensorRT has been reimagined for RTX AI PCs, combining its industry-leading performance with just-in-time, on-device engine building and an 8x smaller package size for seamless AI deployment to more than 100 million RTX AI PCs. TensorRT for RTX is now available as a standalone SDK for developers.
    RTX-Accelerated AI
    NVIDIA and Stability AI are boosting the performance and reducing the VRAM requirements of Stable Diffusion 3.5, one of the world’s most popular AI image models. With NVIDIA TensorRT acceleration and quantization, users can now generate and edit images faster and more efficiently on NVIDIA RTX GPUs.
    Stable Diffusion 3.5 quantized FP8generates images in half the time with similar quality as FP16. Prompt: A serene mountain lake at sunrise, crystal clear water reflecting snow-capped peaks, lush pine trees along the shore, soft morning mist, photorealistic, vibrant colors, high resolution.
    To address the VRAM limitations of SD3.5 Large, the model was quantized with TensorRT to FP8, reducing the VRAM requirement by 40% to 11GB. This means five GeForce RTX 50 Series GPUs can run the model from memory instead of just one.
    SD3.5 Large and Medium models were also optimized with TensorRT, an AI backend for taking full advantage of Tensor Cores. TensorRT optimizes a model’s weights and graph — the instructions on how to run a model — specifically for RTX GPUs.
    FP8 TensorRT boosts SD3.5 Large performance by 2.3x vs. BF16 PyTorch, with 40% less memory use. For SD3.5 Medium, BF16 TensorRT delivers a 1.7x speedup.
    Combined, FP8 TensorRT delivers a 2.3x performance boost on SD3.5 Large compared with running the original models in BF16 PyTorch, while using 40% less memory. And in SD3.5 Medium, BF16 TensorRT provides a 1.7x performance increase compared with BF16 PyTorch.
    The optimized models are now available on Stability AI’s Hugging Face page.
    NVIDIA and Stability AI are also collaborating to release SD3.5 as an NVIDIA NIM microservice, making it easier for creators and developers to access and deploy the model for a wide range of applications. The NIM microservice is expected to be released in July.
    TensorRT for RTX SDK Released
    Announced at Microsoft Build — and already available as part of the new Windows ML framework in preview — TensorRT for RTX is now available as a standalone SDK for developers.
    Previously, developers needed to pre-generate and package TensorRT engines for each class of GPU — a process that would yield GPU-specific optimizations but required significant time.
    With the new version of TensorRT, developers can create a generic TensorRT engine that’s optimized on device in seconds. This JIT compilation approach can be done in the background during installation or when they first use the feature.
    The easy-to-integrate SDK is now 8x smaller and can be invoked through Windows ML — Microsoft’s new AI inference backend in Windows. Developers can download the new standalone SDK from the NVIDIA Developer page or test it in the Windows ML preview.
    For more details, read this NVIDIA technical blog and this Microsoft Build recap.
    Join NVIDIA at GTC Paris
    At NVIDIA GTC Paris at VivaTech — Europe’s biggest startup and tech event — NVIDIA founder and CEO Jensen Huang yesterday delivered a keynote address on the latest breakthroughs in cloud AI infrastructure, agentic AI and physical AI. Watch a replay.
    GTC Paris runs through Thursday, June 12, with hands-on demos and sessions led by industry leaders. Whether attending in person or joining online, there’s still plenty to explore at the event.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #nvidia #tensorrt #boosts #stable #diffusion
    NVIDIA TensorRT Boosts Stable Diffusion 3.5 Performance on NVIDIA GeForce RTX and RTX PRO GPUs
    Generative AI has reshaped how people create, imagine and interact with digital content. As AI models continue to grow in capability and complexity, they require more VRAM, or video random access memory. The base Stable Diffusion 3.5 Large model, for example, uses over 18GB of VRAM — limiting the number of systems that can run it well. By applying quantization to the model, noncritical layers can be removed or run with lower precision. NVIDIA GeForce RTX 40 Series and the Ada Lovelace generation of NVIDIA RTX PRO GPUs support FP8 quantization to help run these quantized models, and the latest-generation NVIDIA Blackwell GPUs also add support for FP4. NVIDIA collaborated with Stability AI to quantize its latest model, Stable Diffusion3.5 Large, to FP8 — reducing VRAM consumption by 40%. Further optimizations to SD3.5 Large and Medium with the NVIDIA TensorRT software development kitdouble performance. In addition, TensorRT has been reimagined for RTX AI PCs, combining its industry-leading performance with just-in-time, on-device engine building and an 8x smaller package size for seamless AI deployment to more than 100 million RTX AI PCs. TensorRT for RTX is now available as a standalone SDK for developers. RTX-Accelerated AI NVIDIA and Stability AI are boosting the performance and reducing the VRAM requirements of Stable Diffusion 3.5, one of the world’s most popular AI image models. With NVIDIA TensorRT acceleration and quantization, users can now generate and edit images faster and more efficiently on NVIDIA RTX GPUs. Stable Diffusion 3.5 quantized FP8generates images in half the time with similar quality as FP16. Prompt: A serene mountain lake at sunrise, crystal clear water reflecting snow-capped peaks, lush pine trees along the shore, soft morning mist, photorealistic, vibrant colors, high resolution. To address the VRAM limitations of SD3.5 Large, the model was quantized with TensorRT to FP8, reducing the VRAM requirement by 40% to 11GB. This means five GeForce RTX 50 Series GPUs can run the model from memory instead of just one. SD3.5 Large and Medium models were also optimized with TensorRT, an AI backend for taking full advantage of Tensor Cores. TensorRT optimizes a model’s weights and graph — the instructions on how to run a model — specifically for RTX GPUs. FP8 TensorRT boosts SD3.5 Large performance by 2.3x vs. BF16 PyTorch, with 40% less memory use. For SD3.5 Medium, BF16 TensorRT delivers a 1.7x speedup. Combined, FP8 TensorRT delivers a 2.3x performance boost on SD3.5 Large compared with running the original models in BF16 PyTorch, while using 40% less memory. And in SD3.5 Medium, BF16 TensorRT provides a 1.7x performance increase compared with BF16 PyTorch. The optimized models are now available on Stability AI’s Hugging Face page. NVIDIA and Stability AI are also collaborating to release SD3.5 as an NVIDIA NIM microservice, making it easier for creators and developers to access and deploy the model for a wide range of applications. The NIM microservice is expected to be released in July. TensorRT for RTX SDK Released Announced at Microsoft Build — and already available as part of the new Windows ML framework in preview — TensorRT for RTX is now available as a standalone SDK for developers. Previously, developers needed to pre-generate and package TensorRT engines for each class of GPU — a process that would yield GPU-specific optimizations but required significant time. With the new version of TensorRT, developers can create a generic TensorRT engine that’s optimized on device in seconds. This JIT compilation approach can be done in the background during installation or when they first use the feature. The easy-to-integrate SDK is now 8x smaller and can be invoked through Windows ML — Microsoft’s new AI inference backend in Windows. Developers can download the new standalone SDK from the NVIDIA Developer page or test it in the Windows ML preview. For more details, read this NVIDIA technical blog and this Microsoft Build recap. Join NVIDIA at GTC Paris At NVIDIA GTC Paris at VivaTech — Europe’s biggest startup and tech event — NVIDIA founder and CEO Jensen Huang yesterday delivered a keynote address on the latest breakthroughs in cloud AI infrastructure, agentic AI and physical AI. Watch a replay. GTC Paris runs through Thursday, June 12, with hands-on demos and sessions led by industry leaders. Whether attending in person or joining online, there’s still plenty to explore at the event. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #nvidia #tensorrt #boosts #stable #diffusion
    BLOGS.NVIDIA.COM
    NVIDIA TensorRT Boosts Stable Diffusion 3.5 Performance on NVIDIA GeForce RTX and RTX PRO GPUs
    Generative AI has reshaped how people create, imagine and interact with digital content. As AI models continue to grow in capability and complexity, they require more VRAM, or video random access memory. The base Stable Diffusion 3.5 Large model, for example, uses over 18GB of VRAM — limiting the number of systems that can run it well. By applying quantization to the model, noncritical layers can be removed or run with lower precision. NVIDIA GeForce RTX 40 Series and the Ada Lovelace generation of NVIDIA RTX PRO GPUs support FP8 quantization to help run these quantized models, and the latest-generation NVIDIA Blackwell GPUs also add support for FP4. NVIDIA collaborated with Stability AI to quantize its latest model, Stable Diffusion (SD) 3.5 Large, to FP8 — reducing VRAM consumption by 40%. Further optimizations to SD3.5 Large and Medium with the NVIDIA TensorRT software development kit (SDK) double performance. In addition, TensorRT has been reimagined for RTX AI PCs, combining its industry-leading performance with just-in-time (JIT), on-device engine building and an 8x smaller package size for seamless AI deployment to more than 100 million RTX AI PCs. TensorRT for RTX is now available as a standalone SDK for developers. RTX-Accelerated AI NVIDIA and Stability AI are boosting the performance and reducing the VRAM requirements of Stable Diffusion 3.5, one of the world’s most popular AI image models. With NVIDIA TensorRT acceleration and quantization, users can now generate and edit images faster and more efficiently on NVIDIA RTX GPUs. Stable Diffusion 3.5 quantized FP8 (right) generates images in half the time with similar quality as FP16 (left). Prompt: A serene mountain lake at sunrise, crystal clear water reflecting snow-capped peaks, lush pine trees along the shore, soft morning mist, photorealistic, vibrant colors, high resolution. To address the VRAM limitations of SD3.5 Large, the model was quantized with TensorRT to FP8, reducing the VRAM requirement by 40% to 11GB. This means five GeForce RTX 50 Series GPUs can run the model from memory instead of just one. SD3.5 Large and Medium models were also optimized with TensorRT, an AI backend for taking full advantage of Tensor Cores. TensorRT optimizes a model’s weights and graph — the instructions on how to run a model — specifically for RTX GPUs. FP8 TensorRT boosts SD3.5 Large performance by 2.3x vs. BF16 PyTorch, with 40% less memory use. For SD3.5 Medium, BF16 TensorRT delivers a 1.7x speedup. Combined, FP8 TensorRT delivers a 2.3x performance boost on SD3.5 Large compared with running the original models in BF16 PyTorch, while using 40% less memory. And in SD3.5 Medium, BF16 TensorRT provides a 1.7x performance increase compared with BF16 PyTorch. The optimized models are now available on Stability AI’s Hugging Face page. NVIDIA and Stability AI are also collaborating to release SD3.5 as an NVIDIA NIM microservice, making it easier for creators and developers to access and deploy the model for a wide range of applications. The NIM microservice is expected to be released in July. TensorRT for RTX SDK Released Announced at Microsoft Build — and already available as part of the new Windows ML framework in preview — TensorRT for RTX is now available as a standalone SDK for developers. Previously, developers needed to pre-generate and package TensorRT engines for each class of GPU — a process that would yield GPU-specific optimizations but required significant time. With the new version of TensorRT, developers can create a generic TensorRT engine that’s optimized on device in seconds. This JIT compilation approach can be done in the background during installation or when they first use the feature. The easy-to-integrate SDK is now 8x smaller and can be invoked through Windows ML — Microsoft’s new AI inference backend in Windows. Developers can download the new standalone SDK from the NVIDIA Developer page or test it in the Windows ML preview. For more details, read this NVIDIA technical blog and this Microsoft Build recap. Join NVIDIA at GTC Paris At NVIDIA GTC Paris at VivaTech — Europe’s biggest startup and tech event — NVIDIA founder and CEO Jensen Huang yesterday delivered a keynote address on the latest breakthroughs in cloud AI infrastructure, agentic AI and physical AI. Watch a replay. GTC Paris runs through Thursday, June 12, with hands-on demos and sessions led by industry leaders. Whether attending in person or joining online, there’s still plenty to explore at the event. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    Like
    Love
    Wow
    Sad
    Angry
    482
    0 Comentários 0 Compartilhamentos 0 Anterior
  • Inside Mark Zuckerberg’s AI hiring spree

    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch, Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI. “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies. Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will needto approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More:
    #inside #mark #zuckerbergs #hiring #spree
    Inside Mark Zuckerberg’s AI hiring spree
    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch, Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI. “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies. Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will needto approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More: #inside #mark #zuckerbergs #hiring #spree
    WWW.THEVERGE.COM
    Inside Mark Zuckerberg’s AI hiring spree
    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch (amazingly, not all of them do), Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI (a deal Zuckerberg passed on). “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies (although that is highly unlikely to happen). Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s $14.3 billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will need (and want) to approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent $3 billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More:
    0 Comentários 0 Compartilhamentos 0 Anterior
  • Too big, fail too

    Inside Apple’s high-gloss standoff with AI ambition and the uncanny choreography of WWDC 2025There was a time when watching an Apple keynote — like Steve Jobs introducing the iPhone in 2007, the masterclass of all masterclasses in product launching — felt like watching a tightrope act. There was suspense. Live demos happened — sometimes they failed, and when they didn’t, the applause was real, not piped through a Dolby mix.These days, that tension is gone. Since 2020, in the wake of the pandemic, Apple events have become pre-recorded masterworks: drone shots sweeping over Apple Park, transitions smoother than a Pixar short, and executives delivering their lines like odd, IRL spatial personas. They move like human renderings: poised, confident, and just robotic enough to raise a brow. The kind of people who, if encountered in real life, would probably light up half a dozen red flags before a handshake is even offered. A case in point: the official “Liquid Glass” UI demo — it’s visually stunning, yes, but also uncanny, like a concept reel that forgot it needed to ship. that’s the paradox. Not only has Apple trimmed down the content of WWDC, it’s also polished the delivery into something almost inhumanly controlled. Every keynote beat feels engineered to avoid risk, reduce friction, and glide past doubt. But in doing so, something vital slips away: the tension, the spontaneity, the sense that the future is being made, not just performed.Just one year earlier, WWDC 2024 opened with a cinematic cold open “somewhere over California”: Schiller piloting an Apple-branded plane, iPod in hand, muttering “I’m getting too old for this stuff.” A perfect mix of Lethal Weapon camp and a winking message that yes, Classic-Apple was still at the controls — literally — flying its senior leadership straight toward Cupertino. Out the hatch, like high-altitude paratroopers of optimism, leapt the entire exec team, with Craig Federighi, always the go-to for Apple’s auto-ironic set pieces, leading the charge, donning a helmet literally resembling his own legendary mane. It was peak-bold, bizarre, and unmistakably Apple. That intro now reads like the final act of full-throttle confidence.This year’s WWDC offered a particularly crisp contrast. Aside from the new intro — which features Craig Federighi drifting an F1-style race car across the inner rooftop ring of Apple Park as a “therapy session”, a not-so-subtle nod to the upcoming Formula 1 blockbuster but also to the accountability for the failure to deliver the system-wide AI on time — WWDC 2025 pulled back dramatically. The new “Apple Intelligence” was introduced in a keynote with zero stumbles, zero awkward transitions, and visuals so pristine they could have been rendered on a Vision Pro. Not only had the scope of WWDC been trimmed down to safer talking points, but even the tone had shifted — less like a tech summit, more like a handsomely lit containment-mode seminar. And that, perhaps, was the problem. The presentation wasn’t a reveal — it was a performance. And performances can be edited in post. Demos can’t.So when Apple in march 2025 quietly admitted, for the first time, in a formal press release addressed to reporters like John Gruber, that the personalized Siri and system-wide AI features would be delayed — the reaction wasn’t outrage. It was something subtler: disillusionment. Gruber’s response cracked the façade wide open. His post opened a slow but persistent wave of unease, rippling through developer Slack channels and private comment threads alike. John Gruber’s reaction, published under the headline “Something is rotten in the State of Cupertino”, was devastating. His critique opened the floodgates to a wave of murmurs and public unease among developers and insiders, many of whom had begun to question what was really happening at the helm of key divisions central to Apple’s future.Many still believe Apple is the only company truly capable of pulling off hardware-software integrated AI at scale. But there’s a sense that the company is now operating in damage-control mode. The delay didn’t just push back a feature — it disrupted the entire strategic arc of WWDC 2025. What could have been a milestone in system-level AI became a cautious sidestep, repackaged through visual polish and feature tweaks. The result: a presentation focused on UI refinements and safe bets, far removed from the sweeping revolution that had been teased as the main selling point for promoting the iPhone 16 launch, “Built for Apple Intelligence”.That tension surfaced during Joanna Stern’s recent live interview with Craig Federighi and Greg Joswiak. These are two of Apple’s most media-savvy execs, and yet, in a setting where questions weren’t scripted, you could see the seams. Their usual fluency gave way to something stiffer. More careful. Less certain. And even the absences speak volumes: for the first time in a decade, no one from Apple’s top team joined John Gruber’s Talk Show at WWDC. It wasn’t a scheduling fluke — nor a petty retaliation for Gruber’s damning March article. It was a retreat — one that Stratechery’s Ben Thompson described as exactly that: a strategic fallback, not a brave reset.Meanwhile, the keynote narrative quietly shifted from AI ambition to UI innovation: new visual effects, tighter integration, call screening. Credit here goes to Alan Dye — Apple VP of Human Interface Design and one of the last remaining members of Jony Ive’s inner circle not yet absorbed into LoveFrom — whose long-arc work on interface aesthetics, from the early stages of the Dynamic Island onward, is finally starting to click into place. This is classic Apple: refinement as substance, design as coherence. But it was meant to be the cherry on top of a much deeper AI-system transformation — not the whole sundae. All useful. All safe. And yet, the thing that Apple could uniquely deliver — a seamless, deeply integrated, user-controlled and privacy-safe Apple Intelligence — is now the thing it seems most reluctant to show.There is no doubt the groundwork has been laid. And to Apple’s credit, Jason Snell notes that the company is shifting gears, scaling ambitions to something that feels more tangible. But in scaling back the risk, something else has been scaled back too: the willingness to look your audience of stakeholders, developers and users live, in the eye, and show the future for how you have carefully crafted it and how you can put it in the market immediately, or in mere weeks. Showing things as they are, or as they will be very soon. Rehearsed, yes, but never faked.Even James Dyson’s live demo of a new vacuum showed more courage. No camera cuts. No soft lighting. Just a human being, showing a thing. It might have sucked, literally or figuratively. But it didn’t. And it stuck. That’s what feels missing in Cupertino.Some have started using the term glasslighting — a coined pun blending Apple’s signature glassy aesthetics with the soft manipulations of marketing, like a gentle fog of polished perfection that leaves expectations quietly disoriented. It’s not deception. It’s damage control. But that instinct, understandable as it is, doesn’t build momentum. It builds inertia. And inertia doesn’t sell intelligence. It only delays the reckoning.Before the curtain falls, it’s hard not to revisit the uncanny polish of Apple’s speakers presence. One might start to wonder whether Apple is really late on AI — or whether it’s simply developed such a hyper-advanced internal model that its leadership team has been replaced by real-time human avatars, flawlessly animated, fed directly by the Neural Engine. Not the constrained humanity of two floating eyes behind an Apple Vision headset, but full-on flawless embodiment — if this is Apple’s augmented AI at work, it may be the only undisclosed and underpromised demo actually shipping.OS30 live demoMeanwhile, just as Apple was soft-pedaling its A.I. story with maximum visual polish, a very different tone landed from across the bay: Sam Altman and Jony Ive, sitting in a bar, talking about the future. stage. No teleprompter. No uncanny valley. Just two “old friends”, with one hell of a budget, quietly sketching the next era of computing. A vision Apple once claimed effortlessly.There’s still the question of whether Apple, as many hope, can reclaim — and lock down — that leadership for itself. A healthy dose of competition, at the very least, can only help.Too big, fail too was originally published in UX Collective on Medium, where people are continuing the conversation by highlighting and responding to this story.
    #too #big #fail
    Too big, fail too
    Inside Apple’s high-gloss standoff with AI ambition and the uncanny choreography of WWDC 2025There was a time when watching an Apple keynote — like Steve Jobs introducing the iPhone in 2007, the masterclass of all masterclasses in product launching — felt like watching a tightrope act. There was suspense. Live demos happened — sometimes they failed, and when they didn’t, the applause was real, not piped through a Dolby mix.These days, that tension is gone. Since 2020, in the wake of the pandemic, Apple events have become pre-recorded masterworks: drone shots sweeping over Apple Park, transitions smoother than a Pixar short, and executives delivering their lines like odd, IRL spatial personas. They move like human renderings: poised, confident, and just robotic enough to raise a brow. The kind of people who, if encountered in real life, would probably light up half a dozen red flags before a handshake is even offered. A case in point: the official “Liquid Glass” UI demo — it’s visually stunning, yes, but also uncanny, like a concept reel that forgot it needed to ship. that’s the paradox. Not only has Apple trimmed down the content of WWDC, it’s also polished the delivery into something almost inhumanly controlled. Every keynote beat feels engineered to avoid risk, reduce friction, and glide past doubt. But in doing so, something vital slips away: the tension, the spontaneity, the sense that the future is being made, not just performed.Just one year earlier, WWDC 2024 opened with a cinematic cold open “somewhere over California”: Schiller piloting an Apple-branded plane, iPod in hand, muttering “I’m getting too old for this stuff.” A perfect mix of Lethal Weapon camp and a winking message that yes, Classic-Apple was still at the controls — literally — flying its senior leadership straight toward Cupertino. Out the hatch, like high-altitude paratroopers of optimism, leapt the entire exec team, with Craig Federighi, always the go-to for Apple’s auto-ironic set pieces, leading the charge, donning a helmet literally resembling his own legendary mane. It was peak-bold, bizarre, and unmistakably Apple. That intro now reads like the final act of full-throttle confidence.This year’s WWDC offered a particularly crisp contrast. Aside from the new intro — which features Craig Federighi drifting an F1-style race car across the inner rooftop ring of Apple Park as a “therapy session”, a not-so-subtle nod to the upcoming Formula 1 blockbuster but also to the accountability for the failure to deliver the system-wide AI on time — WWDC 2025 pulled back dramatically. The new “Apple Intelligence” was introduced in a keynote with zero stumbles, zero awkward transitions, and visuals so pristine they could have been rendered on a Vision Pro. Not only had the scope of WWDC been trimmed down to safer talking points, but even the tone had shifted — less like a tech summit, more like a handsomely lit containment-mode seminar. And that, perhaps, was the problem. The presentation wasn’t a reveal — it was a performance. And performances can be edited in post. Demos can’t.So when Apple in march 2025 quietly admitted, for the first time, in a formal press release addressed to reporters like John Gruber, that the personalized Siri and system-wide AI features would be delayed — the reaction wasn’t outrage. It was something subtler: disillusionment. Gruber’s response cracked the façade wide open. His post opened a slow but persistent wave of unease, rippling through developer Slack channels and private comment threads alike. John Gruber’s reaction, published under the headline “Something is rotten in the State of Cupertino”, was devastating. His critique opened the floodgates to a wave of murmurs and public unease among developers and insiders, many of whom had begun to question what was really happening at the helm of key divisions central to Apple’s future.Many still believe Apple is the only company truly capable of pulling off hardware-software integrated AI at scale. But there’s a sense that the company is now operating in damage-control mode. The delay didn’t just push back a feature — it disrupted the entire strategic arc of WWDC 2025. What could have been a milestone in system-level AI became a cautious sidestep, repackaged through visual polish and feature tweaks. The result: a presentation focused on UI refinements and safe bets, far removed from the sweeping revolution that had been teased as the main selling point for promoting the iPhone 16 launch, “Built for Apple Intelligence”.That tension surfaced during Joanna Stern’s recent live interview with Craig Federighi and Greg Joswiak. These are two of Apple’s most media-savvy execs, and yet, in a setting where questions weren’t scripted, you could see the seams. Their usual fluency gave way to something stiffer. More careful. Less certain. And even the absences speak volumes: for the first time in a decade, no one from Apple’s top team joined John Gruber’s Talk Show at WWDC. It wasn’t a scheduling fluke — nor a petty retaliation for Gruber’s damning March article. It was a retreat — one that Stratechery’s Ben Thompson described as exactly that: a strategic fallback, not a brave reset.Meanwhile, the keynote narrative quietly shifted from AI ambition to UI innovation: new visual effects, tighter integration, call screening. Credit here goes to Alan Dye — Apple VP of Human Interface Design and one of the last remaining members of Jony Ive’s inner circle not yet absorbed into LoveFrom — whose long-arc work on interface aesthetics, from the early stages of the Dynamic Island onward, is finally starting to click into place. This is classic Apple: refinement as substance, design as coherence. But it was meant to be the cherry on top of a much deeper AI-system transformation — not the whole sundae. All useful. All safe. And yet, the thing that Apple could uniquely deliver — a seamless, deeply integrated, user-controlled and privacy-safe Apple Intelligence — is now the thing it seems most reluctant to show.There is no doubt the groundwork has been laid. And to Apple’s credit, Jason Snell notes that the company is shifting gears, scaling ambitions to something that feels more tangible. But in scaling back the risk, something else has been scaled back too: the willingness to look your audience of stakeholders, developers and users live, in the eye, and show the future for how you have carefully crafted it and how you can put it in the market immediately, or in mere weeks. Showing things as they are, or as they will be very soon. Rehearsed, yes, but never faked.Even James Dyson’s live demo of a new vacuum showed more courage. No camera cuts. No soft lighting. Just a human being, showing a thing. It might have sucked, literally or figuratively. But it didn’t. And it stuck. That’s what feels missing in Cupertino.Some have started using the term glasslighting — a coined pun blending Apple’s signature glassy aesthetics with the soft manipulations of marketing, like a gentle fog of polished perfection that leaves expectations quietly disoriented. It’s not deception. It’s damage control. But that instinct, understandable as it is, doesn’t build momentum. It builds inertia. And inertia doesn’t sell intelligence. It only delays the reckoning.Before the curtain falls, it’s hard not to revisit the uncanny polish of Apple’s speakers presence. One might start to wonder whether Apple is really late on AI — or whether it’s simply developed such a hyper-advanced internal model that its leadership team has been replaced by real-time human avatars, flawlessly animated, fed directly by the Neural Engine. Not the constrained humanity of two floating eyes behind an Apple Vision headset, but full-on flawless embodiment — if this is Apple’s augmented AI at work, it may be the only undisclosed and underpromised demo actually shipping.OS30 live demoMeanwhile, just as Apple was soft-pedaling its A.I. story with maximum visual polish, a very different tone landed from across the bay: Sam Altman and Jony Ive, sitting in a bar, talking about the future. stage. No teleprompter. No uncanny valley. Just two “old friends”, with one hell of a budget, quietly sketching the next era of computing. A vision Apple once claimed effortlessly.There’s still the question of whether Apple, as many hope, can reclaim — and lock down — that leadership for itself. A healthy dose of competition, at the very least, can only help.Too big, fail too was originally published in UX Collective on Medium, where people are continuing the conversation by highlighting and responding to this story. #too #big #fail
    UXDESIGN.CC
    Too big, fail too
    Inside Apple’s high-gloss standoff with AI ambition and the uncanny choreography of WWDC 2025There was a time when watching an Apple keynote — like Steve Jobs introducing the iPhone in 2007, the masterclass of all masterclasses in product launching — felt like watching a tightrope act. There was suspense. Live demos happened — sometimes they failed, and when they didn’t, the applause was real, not piped through a Dolby mix.These days, that tension is gone. Since 2020, in the wake of the pandemic, Apple events have become pre-recorded masterworks: drone shots sweeping over Apple Park, transitions smoother than a Pixar short, and executives delivering their lines like odd, IRL spatial personas. They move like human renderings: poised, confident, and just robotic enough to raise a brow. The kind of people who, if encountered in real life, would probably light up half a dozen red flags before a handshake is even offered. A case in point: the official “Liquid Glass” UI demo — it’s visually stunning, yes, but also uncanny, like a concept reel that forgot it needed to ship.https://medium.com/media/fcb3b16cc42621ba32153aff80ea1805/hrefAnd that’s the paradox. Not only has Apple trimmed down the content of WWDC, it’s also polished the delivery into something almost inhumanly controlled. Every keynote beat feels engineered to avoid risk, reduce friction, and glide past doubt. But in doing so, something vital slips away: the tension, the spontaneity, the sense that the future is being made, not just performed.Just one year earlier, WWDC 2024 opened with a cinematic cold open “somewhere over California”:https://medium.com/media/f97f45387353363264d99c341d4571b0/hrefPhil Schiller piloting an Apple-branded plane, iPod in hand, muttering “I’m getting too old for this stuff.” A perfect mix of Lethal Weapon camp and a winking message that yes, Classic-Apple was still at the controls — literally — flying its senior leadership straight toward Cupertino. Out the hatch, like high-altitude paratroopers of optimism, leapt the entire exec team, with Craig Federighi, always the go-to for Apple’s auto-ironic set pieces, leading the charge, donning a helmet literally resembling his own legendary mane. It was peak-bold, bizarre, and unmistakably Apple. That intro now reads like the final act of full-throttle confidence.This year’s WWDC offered a particularly crisp contrast. Aside from the new intro — which features Craig Federighi drifting an F1-style race car across the inner rooftop ring of Apple Park as a “therapy session”, a not-so-subtle nod to the upcoming Formula 1 blockbuster but also to the accountability for the failure to deliver the system-wide AI on time — WWDC 2025 pulled back dramatically. The new “Apple Intelligence” was introduced in a keynote with zero stumbles, zero awkward transitions, and visuals so pristine they could have been rendered on a Vision Pro. Not only had the scope of WWDC been trimmed down to safer talking points, but even the tone had shifted — less like a tech summit, more like a handsomely lit containment-mode seminar. And that, perhaps, was the problem. The presentation wasn’t a reveal — it was a performance. And performances can be edited in post. Demos can’t.So when Apple in march 2025 quietly admitted, for the first time, in a formal press release addressed to reporters like John Gruber, that the personalized Siri and system-wide AI features would be delayed — the reaction wasn’t outrage. It was something subtler: disillusionment. Gruber’s response cracked the façade wide open. His post opened a slow but persistent wave of unease, rippling through developer Slack channels and private comment threads alike. John Gruber’s reaction, published under the headline “Something is rotten in the State of Cupertino”, was devastating. His critique opened the floodgates to a wave of murmurs and public unease among developers and insiders, many of whom had begun to question what was really happening at the helm of key divisions central to Apple’s future.Many still believe Apple is the only company truly capable of pulling off hardware-software integrated AI at scale. But there’s a sense that the company is now operating in damage-control mode. The delay didn’t just push back a feature — it disrupted the entire strategic arc of WWDC 2025. What could have been a milestone in system-level AI became a cautious sidestep, repackaged through visual polish and feature tweaks. The result: a presentation focused on UI refinements and safe bets, far removed from the sweeping revolution that had been teased as the main selling point for promoting the iPhone 16 launch, “Built for Apple Intelligence”.That tension surfaced during Joanna Stern’s recent live interview with Craig Federighi and Greg Joswiak. These are two of Apple’s most media-savvy execs, and yet, in a setting where questions weren’t scripted, you could see the seams. Their usual fluency gave way to something stiffer. More careful. Less certain. And even the absences speak volumes: for the first time in a decade, no one from Apple’s top team joined John Gruber’s Talk Show at WWDC. It wasn’t a scheduling fluke — nor a petty retaliation for Gruber’s damning March article. It was a retreat — one that Stratechery’s Ben Thompson described as exactly that: a strategic fallback, not a brave reset.Meanwhile, the keynote narrative quietly shifted from AI ambition to UI innovation: new visual effects, tighter integration, call screening. Credit here goes to Alan Dye — Apple VP of Human Interface Design and one of the last remaining members of Jony Ive’s inner circle not yet absorbed into LoveFrom — whose long-arc work on interface aesthetics, from the early stages of the Dynamic Island onward, is finally starting to click into place. This is classic Apple: refinement as substance, design as coherence. But it was meant to be the cherry on top of a much deeper AI-system transformation — not the whole sundae. All useful. All safe. And yet, the thing that Apple could uniquely deliver — a seamless, deeply integrated, user-controlled and privacy-safe Apple Intelligence — is now the thing it seems most reluctant to show.There is no doubt the groundwork has been laid. And to Apple’s credit, Jason Snell notes that the company is shifting gears, scaling ambitions to something that feels more tangible. But in scaling back the risk, something else has been scaled back too: the willingness to look your audience of stakeholders, developers and users live, in the eye, and show the future for how you have carefully crafted it and how you can put it in the market immediately, or in mere weeks. Showing things as they are, or as they will be very soon. Rehearsed, yes, but never faked.Even James Dyson’s live demo of a new vacuum showed more courage. No camera cuts. No soft lighting. Just a human being, showing a thing. It might have sucked, literally or figuratively. But it didn’t. And it stuck. That’s what feels missing in Cupertino.Some have started using the term glasslighting — a coined pun blending Apple’s signature glassy aesthetics with the soft manipulations of marketing, like a gentle fog of polished perfection that leaves expectations quietly disoriented. It’s not deception. It’s damage control. But that instinct, understandable as it is, doesn’t build momentum. It builds inertia. And inertia doesn’t sell intelligence. It only delays the reckoning.Before the curtain falls, it’s hard not to revisit the uncanny polish of Apple’s speakers presence. One might start to wonder whether Apple is really late on AI — or whether it’s simply developed such a hyper-advanced internal model that its leadership team has been replaced by real-time human avatars, flawlessly animated, fed directly by the Neural Engine. Not the constrained humanity of two floating eyes behind an Apple Vision headset, but full-on flawless embodiment — if this is Apple’s augmented AI at work, it may be the only undisclosed and underpromised demo actually shipping.OS30 live demoMeanwhile, just as Apple was soft-pedaling its A.I. story with maximum visual polish, a very different tone landed from across the bay: Sam Altman and Jony Ive, sitting in a bar, talking about the future.https://medium.com/media/5cdea73d7fde0b538e038af1990afa44/hrefNo stage. No teleprompter. No uncanny valley. Just two “old friends”, with one hell of a budget, quietly sketching the next era of computing. A vision Apple once claimed effortlessly.There’s still the question of whether Apple, as many hope, can reclaim — and lock down — that leadership for itself. A healthy dose of competition, at the very least, can only help.Too big, fail too was originally published in UX Collective on Medium, where people are continuing the conversation by highlighting and responding to this story.
    0 Comentários 0 Compartilhamentos 0 Anterior
  • NVIDIA and Deutsche Telekom Partner to Advance Germany’s Sovereign AI

    Industrial AI isn’t slowing down. Germany is ready.
    Following London Tech Week and GTC Paris at VivaTech, NVIDIA founder and CEO Jensen Huang’s European tour continued with a stop in Germany to discuss with Chancellor Friedrich Merz — pictured above — new partnerships poised to bring breakthrough innovations on the world’s first industrial AI cloud.
    This AI factory, to be located in Germany and operated by Deutsche Telekom, will enable Europe’s industrial leaders to accelerate manufacturing applications including design, engineering, simulation, digital twins and robotics.
    “In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Jensen Huang, founder and CEO of NVIDIA. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.”
    “Europe’s technological future needs a sprint, not a stroll,” said Timotheus Höttges, CEO of Deutsche Telekom AG. “We must seize the opportunities of artificial intelligence now, revolutionize our industry and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.”
    This AI infrastructure — Germany’s single largest AI deployment — is an important leap for the nation in establishing its own sovereign AI infrastructure and providing a launchpad to accelerate AI development and adoption across industries. In its first phase, it’ll feature 10,000 NVIDIA Blackwell GPUs — spanning NVIDIA DGX B200 systems and NVIDIA RTX PRO Servers — as well as NVIDIA networking and AI software.
    NEURA Robotics’ training center for cognitive robots.
    NEURA Robotics, a Germany-based global pioneer in physical AI and cognitive robotics, will use the computing resources to power its state-of-the-art training centers for cognitive robots — a tangible example of how physical AI can evolve through powerful, connected infrastructure.
    At this work’s core is the Neuraverse, a seamlessly networked robot ecosystem that allows robots to learn from each other across a wide range of industrial and domestic applications. This platform creates an app-store-like hub for robotic intelligence — for tasks like welding and ironing — enabling continuous development and deployment of robotic skills in real-world environments.
    “Physical AI is the electricity of the future — it will power every machine on the planet,” said David Reger, founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.”
    Critical to Germany’s competitiveness is AI technology development, including the expansion of data center capacity, according to a Deloitte study. This is strategically important because demand for data center capacity is expected to triple over the next five years to 5 gigawatts.
    Driving Germany’s Industrial Ecosystem
    Deutsche Telekom will operate the AI factory and provide AI cloud computing resources to Europe’s industrial ecosystem.
    Customers will be able to run NVIDIA CUDA-X libraries, as well as NVIDIA RTX- and Omniverse-accelerated workloads from leading software providers such as Siemens, Ansys, Cadence and Rescale.
    Many more stand to benefit. From the country’s robust small- and medium-sized businesses, known as the Mittelstand, to academia, research and major enterprises — the AI factory offers strategic technology leaps.
    A Speedboat Toward AI Gigafactories
    The industrial AI cloud will accelerate AI development and adoption from European manufacturers, driving simulation-first, AI-driven manufacturing practices and helping prepare for the country’s transition to AI gigafactories, the next step in Germany’s sovereign AI infrastructure journey.
    The AI gigafactory initiative is a 100,000 GPU-powered program backed by the European Union, Germany and partners.
    Poised to go online in 2027, it’ll provide state-of-the-art AI infrastructure that gives enterprises, startups, researchers and universities access to accelerated computing through the establishment and expansion of high-performance computing centers.
    As of March, there are about 900 Germany-based members of the NVIDIA Inception program for cutting-edge startups, all of which will be eligible to access the AI resources.
    NVIDIA offers learning courses through its Deep Learning Institute to promote education and certification in AI across the globe, and those resources are broadly available across Germany’s computing ecosystem to offer upskilling opportunities.
    Additional European telcos are building AI infrastructure for regional enterprises to build and deploy agentic AI applications.
    Learn more about the latest AI advancements by watching Huang’s GTC Paris keynote in replay.
    #nvidia #deutsche #telekom #partner #advance
    NVIDIA and Deutsche Telekom Partner to Advance Germany’s Sovereign AI
    Industrial AI isn’t slowing down. Germany is ready. Following London Tech Week and GTC Paris at VivaTech, NVIDIA founder and CEO Jensen Huang’s European tour continued with a stop in Germany to discuss with Chancellor Friedrich Merz — pictured above — new partnerships poised to bring breakthrough innovations on the world’s first industrial AI cloud. This AI factory, to be located in Germany and operated by Deutsche Telekom, will enable Europe’s industrial leaders to accelerate manufacturing applications including design, engineering, simulation, digital twins and robotics. “In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Jensen Huang, founder and CEO of NVIDIA. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.” “Europe’s technological future needs a sprint, not a stroll,” said Timotheus Höttges, CEO of Deutsche Telekom AG. “We must seize the opportunities of artificial intelligence now, revolutionize our industry and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.” This AI infrastructure — Germany’s single largest AI deployment — is an important leap for the nation in establishing its own sovereign AI infrastructure and providing a launchpad to accelerate AI development and adoption across industries. In its first phase, it’ll feature 10,000 NVIDIA Blackwell GPUs — spanning NVIDIA DGX B200 systems and NVIDIA RTX PRO Servers — as well as NVIDIA networking and AI software. NEURA Robotics’ training center for cognitive robots. NEURA Robotics, a Germany-based global pioneer in physical AI and cognitive robotics, will use the computing resources to power its state-of-the-art training centers for cognitive robots — a tangible example of how physical AI can evolve through powerful, connected infrastructure. At this work’s core is the Neuraverse, a seamlessly networked robot ecosystem that allows robots to learn from each other across a wide range of industrial and domestic applications. This platform creates an app-store-like hub for robotic intelligence — for tasks like welding and ironing — enabling continuous development and deployment of robotic skills in real-world environments. “Physical AI is the electricity of the future — it will power every machine on the planet,” said David Reger, founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.” Critical to Germany’s competitiveness is AI technology development, including the expansion of data center capacity, according to a Deloitte study. This is strategically important because demand for data center capacity is expected to triple over the next five years to 5 gigawatts. Driving Germany’s Industrial Ecosystem Deutsche Telekom will operate the AI factory and provide AI cloud computing resources to Europe’s industrial ecosystem. Customers will be able to run NVIDIA CUDA-X libraries, as well as NVIDIA RTX- and Omniverse-accelerated workloads from leading software providers such as Siemens, Ansys, Cadence and Rescale. Many more stand to benefit. From the country’s robust small- and medium-sized businesses, known as the Mittelstand, to academia, research and major enterprises — the AI factory offers strategic technology leaps. A Speedboat Toward AI Gigafactories The industrial AI cloud will accelerate AI development and adoption from European manufacturers, driving simulation-first, AI-driven manufacturing practices and helping prepare for the country’s transition to AI gigafactories, the next step in Germany’s sovereign AI infrastructure journey. The AI gigafactory initiative is a 100,000 GPU-powered program backed by the European Union, Germany and partners. Poised to go online in 2027, it’ll provide state-of-the-art AI infrastructure that gives enterprises, startups, researchers and universities access to accelerated computing through the establishment and expansion of high-performance computing centers. As of March, there are about 900 Germany-based members of the NVIDIA Inception program for cutting-edge startups, all of which will be eligible to access the AI resources. NVIDIA offers learning courses through its Deep Learning Institute to promote education and certification in AI across the globe, and those resources are broadly available across Germany’s computing ecosystem to offer upskilling opportunities. Additional European telcos are building AI infrastructure for regional enterprises to build and deploy agentic AI applications. Learn more about the latest AI advancements by watching Huang’s GTC Paris keynote in replay. #nvidia #deutsche #telekom #partner #advance
    BLOGS.NVIDIA.COM
    NVIDIA and Deutsche Telekom Partner to Advance Germany’s Sovereign AI
    Industrial AI isn’t slowing down. Germany is ready. Following London Tech Week and GTC Paris at VivaTech, NVIDIA founder and CEO Jensen Huang’s European tour continued with a stop in Germany to discuss with Chancellor Friedrich Merz — pictured above — new partnerships poised to bring breakthrough innovations on the world’s first industrial AI cloud. This AI factory, to be located in Germany and operated by Deutsche Telekom, will enable Europe’s industrial leaders to accelerate manufacturing applications including design, engineering, simulation, digital twins and robotics. “In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Jensen Huang, founder and CEO of NVIDIA. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.” “Europe’s technological future needs a sprint, not a stroll,” said Timotheus Höttges, CEO of Deutsche Telekom AG. “We must seize the opportunities of artificial intelligence now, revolutionize our industry and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.” This AI infrastructure — Germany’s single largest AI deployment — is an important leap for the nation in establishing its own sovereign AI infrastructure and providing a launchpad to accelerate AI development and adoption across industries. In its first phase, it’ll feature 10,000 NVIDIA Blackwell GPUs — spanning NVIDIA DGX B200 systems and NVIDIA RTX PRO Servers — as well as NVIDIA networking and AI software. NEURA Robotics’ training center for cognitive robots. NEURA Robotics, a Germany-based global pioneer in physical AI and cognitive robotics, will use the computing resources to power its state-of-the-art training centers for cognitive robots — a tangible example of how physical AI can evolve through powerful, connected infrastructure. At this work’s core is the Neuraverse, a seamlessly networked robot ecosystem that allows robots to learn from each other across a wide range of industrial and domestic applications. This platform creates an app-store-like hub for robotic intelligence — for tasks like welding and ironing — enabling continuous development and deployment of robotic skills in real-world environments. “Physical AI is the electricity of the future — it will power every machine on the planet,” said David Reger, founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.” Critical to Germany’s competitiveness is AI technology development, including the expansion of data center capacity, according to a Deloitte study. This is strategically important because demand for data center capacity is expected to triple over the next five years to 5 gigawatts. Driving Germany’s Industrial Ecosystem Deutsche Telekom will operate the AI factory and provide AI cloud computing resources to Europe’s industrial ecosystem. Customers will be able to run NVIDIA CUDA-X libraries, as well as NVIDIA RTX- and Omniverse-accelerated workloads from leading software providers such as Siemens, Ansys, Cadence and Rescale. Many more stand to benefit. From the country’s robust small- and medium-sized businesses, known as the Mittelstand, to academia, research and major enterprises — the AI factory offers strategic technology leaps. A Speedboat Toward AI Gigafactories The industrial AI cloud will accelerate AI development and adoption from European manufacturers, driving simulation-first, AI-driven manufacturing practices and helping prepare for the country’s transition to AI gigafactories, the next step in Germany’s sovereign AI infrastructure journey. The AI gigafactory initiative is a 100,000 GPU-powered program backed by the European Union, Germany and partners. Poised to go online in 2027, it’ll provide state-of-the-art AI infrastructure that gives enterprises, startups, researchers and universities access to accelerated computing through the establishment and expansion of high-performance computing centers. As of March, there are about 900 Germany-based members of the NVIDIA Inception program for cutting-edge startups, all of which will be eligible to access the AI resources. NVIDIA offers learning courses through its Deep Learning Institute to promote education and certification in AI across the globe, and those resources are broadly available across Germany’s computing ecosystem to offer upskilling opportunities. Additional European telcos are building AI infrastructure for regional enterprises to build and deploy agentic AI applications. Learn more about the latest AI advancements by watching Huang’s GTC Paris keynote in replay.
    0 Comentários 0 Compartilhamentos 0 Anterior
CGShares https://cgshares.com