• MedTech AI, hardware, and clinical application programmes

    Modern healthcare innovations span AI, devices, software, images, and regulatory frameworks, all requiring stringent coordination. Generative AI arguably has the strongest transformative potential in healthcare technology programmes, with it already being applied across various domains, such as R&D, commercial operations, and supply chain management.Traditional models for medical appointments, like face-to-face appointments, and paper-based processes may not be sufficient to meet the fast-paced, data-driven medical landscape of today. Therefore, healthcare professionals and patients are seeking more convenient and efficient ways to access and share information, meeting the complex standards of modern medical science. According to McKinsey, Medtech companies are at the forefront of healthcare innovation, estimating they could capture between billion and billion annually in productivity gains. Through GenAI adoption, an additional billion plus in revenue is estimated from products and service innovations. A McKinsey 2024 survey revealed around two thirds of Medtech executives have already implemented Gen AI, with approximately 20% scaling their solutions up and reporting substantial benefits to productivity.  While advanced technology implementation is growing across the medical industry, challenges persist. Organisations face hurdles like data integration issues, decentralised strategies, and skill gaps. Together, these highlight a need for a more streamlined approach to Gen AI deployment. Of all the Medtech domains, R&D is leading the way in Gen AI adoption. Being the most comfortable with new technologies, R&D departments use Gen AI tools to streamline work processes, such as summarising research papers or scientific articles, highlighting a grassroots adoption trend. Individual researchers are using AI to enhance productivity, even when no formal company-wide strategies are in place.While AI tools automate and accelerate R&D tasks, human review is still required to ensure final submissions are correct and satisfactory. Gen AI is proving to reduce time spent on administrative tasks for teams and improve research accuracy and depth, with some companies experiencing 20% to 30% gains in research productivity. KPIs for success in healthcare product programmesMeasuring business performance is essential in the healthcare sector. The number one goal is, of course, to deliver high-quality care, yet simultaneously maintain efficient operations. By measuring and analysing KPIs, healthcare providers are in a better position to improve patient outcomes through their data-based considerations. KPIs can also improve resource allocation, and encourage continuous improvement in all areas of care. In terms of healthcare product programmes, these structured initiatives prioritise the development, delivery, and continual optimisation of medical products. But to be a success, they require cross-functional coordination of clinical, technical, regulatory, and business teams. Time to market is critical, ensuring a product moves from the concept stage to launch as quickly as possible.Of particular note is the emphasis needing to be placed on labelling and documentation. McKinsey notes that AI-assisted labelling has resulted in a 20%-30% improvement in operational efficiency. Resource utilisation rates are also important, showing how efficiently time, budget, and/or headcount are used during the developmental stage of products. In the healthcare sector, KPIs ought to focus on several factors, including operational efficiency, patient outcomes, financial health of the business, and patient satisfaction. To achieve a comprehensive view of performance, these can be categorised into financial, operational, clinical quality, and patient experience.Bridging user experience with technical precision – design awardsInnovation is no longer solely judged by technical performance with user experiencebeing equally important. Some of the latest innovations in healthcare are recognised at the UX Design Awards, products that exemplify the best in user experience as well as technical precision. Top products prioritise the needs and experiences of both patients and healthcare professionals, also ensuring each product meets the rigorous clinical and regulatory standards of the sector. One example is the CIARTIC Move by Siemens Healthineers, a self-driving 3D C-arm imaging system that lets surgeons operate, controlling the device wirelessly in a sterile field. Computer hardware company ASUS has also received accolades for its HealthConnect App and VivoWatch Series, showcasing the fusion of AIoT-driven smart healthcare solutions with user-friendly interfaces – sometimes in what are essentially consumer devices. This demonstrates how technical innovation is being made accessible and becoming increasingly intuitive as patients gain technical fluency.  Navigating regulatory and product development pathways simultaneously The establishing of clinical and regulatory paths is important, as this enables healthcare teams to feed a twin stream of findings back into development. Gen AI adoption has become a transformative approach, automating the production and refining of complex documents, mixed data sets, and structured and unstructured data. By integrating regulatory considerations early and adopting technologies like Gen AI as part of agile practices, healthcare product programmes help teams navigate a regulatory landscape that can often shift. Baking a regulatory mindset into a team early helps ensure compliance and continued innovation. Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here.
    #medtech #hardware #clinical #application #programmes
    MedTech AI, hardware, and clinical application programmes
    Modern healthcare innovations span AI, devices, software, images, and regulatory frameworks, all requiring stringent coordination. Generative AI arguably has the strongest transformative potential in healthcare technology programmes, with it already being applied across various domains, such as R&D, commercial operations, and supply chain management.Traditional models for medical appointments, like face-to-face appointments, and paper-based processes may not be sufficient to meet the fast-paced, data-driven medical landscape of today. Therefore, healthcare professionals and patients are seeking more convenient and efficient ways to access and share information, meeting the complex standards of modern medical science. According to McKinsey, Medtech companies are at the forefront of healthcare innovation, estimating they could capture between billion and billion annually in productivity gains. Through GenAI adoption, an additional billion plus in revenue is estimated from products and service innovations. A McKinsey 2024 survey revealed around two thirds of Medtech executives have already implemented Gen AI, with approximately 20% scaling their solutions up and reporting substantial benefits to productivity.  While advanced technology implementation is growing across the medical industry, challenges persist. Organisations face hurdles like data integration issues, decentralised strategies, and skill gaps. Together, these highlight a need for a more streamlined approach to Gen AI deployment. Of all the Medtech domains, R&D is leading the way in Gen AI adoption. Being the most comfortable with new technologies, R&D departments use Gen AI tools to streamline work processes, such as summarising research papers or scientific articles, highlighting a grassroots adoption trend. Individual researchers are using AI to enhance productivity, even when no formal company-wide strategies are in place.While AI tools automate and accelerate R&D tasks, human review is still required to ensure final submissions are correct and satisfactory. Gen AI is proving to reduce time spent on administrative tasks for teams and improve research accuracy and depth, with some companies experiencing 20% to 30% gains in research productivity. KPIs for success in healthcare product programmesMeasuring business performance is essential in the healthcare sector. The number one goal is, of course, to deliver high-quality care, yet simultaneously maintain efficient operations. By measuring and analysing KPIs, healthcare providers are in a better position to improve patient outcomes through their data-based considerations. KPIs can also improve resource allocation, and encourage continuous improvement in all areas of care. In terms of healthcare product programmes, these structured initiatives prioritise the development, delivery, and continual optimisation of medical products. But to be a success, they require cross-functional coordination of clinical, technical, regulatory, and business teams. Time to market is critical, ensuring a product moves from the concept stage to launch as quickly as possible.Of particular note is the emphasis needing to be placed on labelling and documentation. McKinsey notes that AI-assisted labelling has resulted in a 20%-30% improvement in operational efficiency. Resource utilisation rates are also important, showing how efficiently time, budget, and/or headcount are used during the developmental stage of products. In the healthcare sector, KPIs ought to focus on several factors, including operational efficiency, patient outcomes, financial health of the business, and patient satisfaction. To achieve a comprehensive view of performance, these can be categorised into financial, operational, clinical quality, and patient experience.Bridging user experience with technical precision – design awardsInnovation is no longer solely judged by technical performance with user experiencebeing equally important. Some of the latest innovations in healthcare are recognised at the UX Design Awards, products that exemplify the best in user experience as well as technical precision. Top products prioritise the needs and experiences of both patients and healthcare professionals, also ensuring each product meets the rigorous clinical and regulatory standards of the sector. One example is the CIARTIC Move by Siemens Healthineers, a self-driving 3D C-arm imaging system that lets surgeons operate, controlling the device wirelessly in a sterile field. Computer hardware company ASUS has also received accolades for its HealthConnect App and VivoWatch Series, showcasing the fusion of AIoT-driven smart healthcare solutions with user-friendly interfaces – sometimes in what are essentially consumer devices. This demonstrates how technical innovation is being made accessible and becoming increasingly intuitive as patients gain technical fluency.  Navigating regulatory and product development pathways simultaneously The establishing of clinical and regulatory paths is important, as this enables healthcare teams to feed a twin stream of findings back into development. Gen AI adoption has become a transformative approach, automating the production and refining of complex documents, mixed data sets, and structured and unstructured data. By integrating regulatory considerations early and adopting technologies like Gen AI as part of agile practices, healthcare product programmes help teams navigate a regulatory landscape that can often shift. Baking a regulatory mindset into a team early helps ensure compliance and continued innovation. Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here. #medtech #hardware #clinical #application #programmes
    WWW.ARTIFICIALINTELLIGENCE-NEWS.COM
    MedTech AI, hardware, and clinical application programmes
    Modern healthcare innovations span AI, devices, software, images, and regulatory frameworks, all requiring stringent coordination. Generative AI arguably has the strongest transformative potential in healthcare technology programmes, with it already being applied across various domains, such as R&D, commercial operations, and supply chain management.Traditional models for medical appointments, like face-to-face appointments, and paper-based processes may not be sufficient to meet the fast-paced, data-driven medical landscape of today. Therefore, healthcare professionals and patients are seeking more convenient and efficient ways to access and share information, meeting the complex standards of modern medical science. According to McKinsey, Medtech companies are at the forefront of healthcare innovation, estimating they could capture between $14 billion and $55 billion annually in productivity gains. Through GenAI adoption, an additional $50 billion plus in revenue is estimated from products and service innovations. A McKinsey 2024 survey revealed around two thirds of Medtech executives have already implemented Gen AI, with approximately 20% scaling their solutions up and reporting substantial benefits to productivity.  While advanced technology implementation is growing across the medical industry, challenges persist. Organisations face hurdles like data integration issues, decentralised strategies, and skill gaps. Together, these highlight a need for a more streamlined approach to Gen AI deployment. Of all the Medtech domains, R&D is leading the way in Gen AI adoption. Being the most comfortable with new technologies, R&D departments use Gen AI tools to streamline work processes, such as summarising research papers or scientific articles, highlighting a grassroots adoption trend. Individual researchers are using AI to enhance productivity, even when no formal company-wide strategies are in place.While AI tools automate and accelerate R&D tasks, human review is still required to ensure final submissions are correct and satisfactory. Gen AI is proving to reduce time spent on administrative tasks for teams and improve research accuracy and depth, with some companies experiencing 20% to 30% gains in research productivity. KPIs for success in healthcare product programmesMeasuring business performance is essential in the healthcare sector. The number one goal is, of course, to deliver high-quality care, yet simultaneously maintain efficient operations. By measuring and analysing KPIs, healthcare providers are in a better position to improve patient outcomes through their data-based considerations. KPIs can also improve resource allocation, and encourage continuous improvement in all areas of care. In terms of healthcare product programmes, these structured initiatives prioritise the development, delivery, and continual optimisation of medical products. But to be a success, they require cross-functional coordination of clinical, technical, regulatory, and business teams. Time to market is critical, ensuring a product moves from the concept stage to launch as quickly as possible.Of particular note is the emphasis needing to be placed on labelling and documentation. McKinsey notes that AI-assisted labelling has resulted in a 20%-30% improvement in operational efficiency. Resource utilisation rates are also important, showing how efficiently time, budget, and/or headcount are used during the developmental stage of products. In the healthcare sector, KPIs ought to focus on several factors, including operational efficiency, patient outcomes, financial health of the business, and patient satisfaction. To achieve a comprehensive view of performance, these can be categorised into financial, operational, clinical quality, and patient experience.Bridging user experience with technical precision – design awardsInnovation is no longer solely judged by technical performance with user experience (UX) being equally important. Some of the latest innovations in healthcare are recognised at the UX Design Awards, products that exemplify the best in user experience as well as technical precision. Top products prioritise the needs and experiences of both patients and healthcare professionals, also ensuring each product meets the rigorous clinical and regulatory standards of the sector. One example is the CIARTIC Move by Siemens Healthineers, a self-driving 3D C-arm imaging system that lets surgeons operate, controlling the device wirelessly in a sterile field. Computer hardware company ASUS has also received accolades for its HealthConnect App and VivoWatch Series, showcasing the fusion of AIoT-driven smart healthcare solutions with user-friendly interfaces – sometimes in what are essentially consumer devices. This demonstrates how technical innovation is being made accessible and becoming increasingly intuitive as patients gain technical fluency.  Navigating regulatory and product development pathways simultaneously The establishing of clinical and regulatory paths is important, as this enables healthcare teams to feed a twin stream of findings back into development. Gen AI adoption has become a transformative approach, automating the production and refining of complex documents, mixed data sets, and structured and unstructured data. By integrating regulatory considerations early and adopting technologies like Gen AI as part of agile practices, healthcare product programmes help teams navigate a regulatory landscape that can often shift. Baking a regulatory mindset into a team early helps ensure compliance and continued innovation. (Image source: “IBM Achieves New Deep Learning Breakthrough” by IBM Research is licensed under CC BY-ND 2.0.)Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here.
    0 Comentários 0 Compartilhamentos 0 Anterior
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Comentários 0 Compartilhamentos 0 Anterior
  • Sienna Net-Zero Home / billionBricks

    Sienna Net-Zero Home / billionBricksSave this picture!© Ron Mendoza , Mark Twain C , BB teamHouses, Sustainability•Quezon City, Philippines

    Architects:
    billionBricks
    Area
    Area of this architecture project

    Area: 
    45 m²

    Year
    Completion year of this architecture project

    Year: 

    2024

    Photographs

    Photographs:Ron Mendoza , Mark Twain C , BB teamMore SpecsLess Specs
    this picture!
    Text description provided by the architects. Built to address homelessness and climate change, the Sienna Net-Zero Home is a self-sustaining, solar-powered, cost-efficient, and compact housing solution. This climate-responsive and affordable home, located in Quezon City, Philippines, represents a revolutionary vision for social housing through its integration of thoughtful design, sustainability, and energy self-sufficiency.this picture!this picture!this picture!Designed with the unique tropical climate of the Philippines in mind, the Sienna Home prioritizes natural ventilation, passive cooling, and rainwater management to enhance indoor comfort and reduce reliance on artificial cooling systems. The compact 4.5m x 5.1m floor plan has been meticulously optimized for functionality, offering a flexible layout that grows and adapts to the families living in them.this picture!this picture!this picture!A key architectural feature is BillionBricks' innovative Powershade technology - an advanced solar roofing system that serves multiple purposes. Beyond generating clean, renewable energy, it acts as a protective heat barrier, reducing indoor temperatures and improving thermal comfort. Unlike conventional solar panels, Powershade seamlessly integrates with the home's structure, providing reliable energy generation while doubling as a durable roof. This makes the Sienna Home energy-positive, meaning it produces more electricity than it consumes, lowering utility costs and promoting long-term energy independence. Excess power can also be stored or sold back to the grid, creating an additional financial benefit for homeowners.this picture!When multiple Sienna Homes are built together, the innovative PowerShade roofing solution transcends its role as an individual energy source and transforms into a utility-scale solar rooftop farm, capable of powering essential community facilities and generating additional income. This shared energy infrastructure fosters a sense of collective empowerment, enabling residents to actively participate in a sustainable and financially rewarding energy ecosystem.this picture!this picture!The Sienna Home is built using lightweight prefabricated components, allowing for rapid on-site assembly while maintaining durability and structural integrity. This modular approach enables scalability, making it an ideal prototype for large-scale, cost-effective housing developments. The design also allows for future expansions, giving homeowners the flexibility to adapt their living spaces over time.this picture!Adhering to BP 220 social housing regulations, the unit features a 3-meter front setback and a 2-meter rear setback, ensuring proper ventilation, safety, and community-friendly spaces. Additionally, corner units include a 1.5-meter offset, enhancing privacy and accessibility within neighborhood layouts. Beyond providing a single-family residence, the Sienna House is designed to function within a larger sustainable community model, integrating shared green spaces, pedestrian pathways, and decentralized utilities. By promoting energy independence and environmental resilience, the project sets a new precedent for affordable yet high-quality housing solutions in rapidly urbanizing regions.this picture!The Sienna Home in Quezon City serves as a blueprint for future developments, proving that low-cost housing can be both architecturally compelling and socially transformative. By rethinking traditional housing models, BillionBricks is pioneering a future where affordability and sustainability are seamlessly integrated.

    Project gallerySee allShow less
    About this officebillionBricksOffice•••
    Published on June 15, 2025Cite: "Sienna Net-Zero Home / billionBricks" 14 Jun 2025. ArchDaily. Accessed . < ISSN 0719-8884Save世界上最受欢迎的建筑网站现已推出你的母语版本!想浏览ArchDaily中国吗?是否
    You've started following your first account!Did you know?You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.Go to my stream
    #sienna #netzero #home #billionbricks
    Sienna Net-Zero Home / billionBricks
    Sienna Net-Zero Home / billionBricksSave this picture!© Ron Mendoza , Mark Twain C , BB teamHouses, Sustainability•Quezon City, Philippines Architects: billionBricks Area Area of this architecture project Area:  45 m² Year Completion year of this architecture project Year:  2024 Photographs Photographs:Ron Mendoza , Mark Twain C , BB teamMore SpecsLess Specs this picture! Text description provided by the architects. Built to address homelessness and climate change, the Sienna Net-Zero Home is a self-sustaining, solar-powered, cost-efficient, and compact housing solution. This climate-responsive and affordable home, located in Quezon City, Philippines, represents a revolutionary vision for social housing through its integration of thoughtful design, sustainability, and energy self-sufficiency.this picture!this picture!this picture!Designed with the unique tropical climate of the Philippines in mind, the Sienna Home prioritizes natural ventilation, passive cooling, and rainwater management to enhance indoor comfort and reduce reliance on artificial cooling systems. The compact 4.5m x 5.1m floor plan has been meticulously optimized for functionality, offering a flexible layout that grows and adapts to the families living in them.this picture!this picture!this picture!A key architectural feature is BillionBricks' innovative Powershade technology - an advanced solar roofing system that serves multiple purposes. Beyond generating clean, renewable energy, it acts as a protective heat barrier, reducing indoor temperatures and improving thermal comfort. Unlike conventional solar panels, Powershade seamlessly integrates with the home's structure, providing reliable energy generation while doubling as a durable roof. This makes the Sienna Home energy-positive, meaning it produces more electricity than it consumes, lowering utility costs and promoting long-term energy independence. Excess power can also be stored or sold back to the grid, creating an additional financial benefit for homeowners.this picture!When multiple Sienna Homes are built together, the innovative PowerShade roofing solution transcends its role as an individual energy source and transforms into a utility-scale solar rooftop farm, capable of powering essential community facilities and generating additional income. This shared energy infrastructure fosters a sense of collective empowerment, enabling residents to actively participate in a sustainable and financially rewarding energy ecosystem.this picture!this picture!The Sienna Home is built using lightweight prefabricated components, allowing for rapid on-site assembly while maintaining durability and structural integrity. This modular approach enables scalability, making it an ideal prototype for large-scale, cost-effective housing developments. The design also allows for future expansions, giving homeowners the flexibility to adapt their living spaces over time.this picture!Adhering to BP 220 social housing regulations, the unit features a 3-meter front setback and a 2-meter rear setback, ensuring proper ventilation, safety, and community-friendly spaces. Additionally, corner units include a 1.5-meter offset, enhancing privacy and accessibility within neighborhood layouts. Beyond providing a single-family residence, the Sienna House is designed to function within a larger sustainable community model, integrating shared green spaces, pedestrian pathways, and decentralized utilities. By promoting energy independence and environmental resilience, the project sets a new precedent for affordable yet high-quality housing solutions in rapidly urbanizing regions.this picture!The Sienna Home in Quezon City serves as a blueprint for future developments, proving that low-cost housing can be both architecturally compelling and socially transformative. By rethinking traditional housing models, BillionBricks is pioneering a future where affordability and sustainability are seamlessly integrated. Project gallerySee allShow less About this officebillionBricksOffice••• Published on June 15, 2025Cite: "Sienna Net-Zero Home / billionBricks" 14 Jun 2025. ArchDaily. Accessed . < ISSN 0719-8884Save世界上最受欢迎的建筑网站现已推出你的母语版本!想浏览ArchDaily中国吗?是否 You've started following your first account!Did you know?You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.Go to my stream #sienna #netzero #home #billionbricks
    WWW.ARCHDAILY.COM
    Sienna Net-Zero Home / billionBricks
    Sienna Net-Zero Home / billionBricksSave this picture!© Ron Mendoza , Mark Twain C , BB teamHouses, Sustainability•Quezon City, Philippines Architects: billionBricks Area Area of this architecture project Area:  45 m² Year Completion year of this architecture project Year:  2024 Photographs Photographs:Ron Mendoza , Mark Twain C , BB teamMore SpecsLess Specs Save this picture! Text description provided by the architects. Built to address homelessness and climate change, the Sienna Net-Zero Home is a self-sustaining, solar-powered, cost-efficient, and compact housing solution. This climate-responsive and affordable home, located in Quezon City, Philippines, represents a revolutionary vision for social housing through its integration of thoughtful design, sustainability, and energy self-sufficiency.Save this picture!Save this picture!Save this picture!Designed with the unique tropical climate of the Philippines in mind, the Sienna Home prioritizes natural ventilation, passive cooling, and rainwater management to enhance indoor comfort and reduce reliance on artificial cooling systems. The compact 4.5m x 5.1m floor plan has been meticulously optimized for functionality, offering a flexible layout that grows and adapts to the families living in them.Save this picture!Save this picture!Save this picture!A key architectural feature is BillionBricks' innovative Powershade technology - an advanced solar roofing system that serves multiple purposes. Beyond generating clean, renewable energy, it acts as a protective heat barrier, reducing indoor temperatures and improving thermal comfort. Unlike conventional solar panels, Powershade seamlessly integrates with the home's structure, providing reliable energy generation while doubling as a durable roof. This makes the Sienna Home energy-positive, meaning it produces more electricity than it consumes, lowering utility costs and promoting long-term energy independence. Excess power can also be stored or sold back to the grid, creating an additional financial benefit for homeowners.Save this picture!When multiple Sienna Homes are built together, the innovative PowerShade roofing solution transcends its role as an individual energy source and transforms into a utility-scale solar rooftop farm, capable of powering essential community facilities and generating additional income. This shared energy infrastructure fosters a sense of collective empowerment, enabling residents to actively participate in a sustainable and financially rewarding energy ecosystem.Save this picture!Save this picture!The Sienna Home is built using lightweight prefabricated components, allowing for rapid on-site assembly while maintaining durability and structural integrity. This modular approach enables scalability, making it an ideal prototype for large-scale, cost-effective housing developments. The design also allows for future expansions, giving homeowners the flexibility to adapt their living spaces over time.Save this picture!Adhering to BP 220 social housing regulations, the unit features a 3-meter front setback and a 2-meter rear setback, ensuring proper ventilation, safety, and community-friendly spaces. Additionally, corner units include a 1.5-meter offset, enhancing privacy and accessibility within neighborhood layouts. Beyond providing a single-family residence, the Sienna House is designed to function within a larger sustainable community model, integrating shared green spaces, pedestrian pathways, and decentralized utilities. By promoting energy independence and environmental resilience, the project sets a new precedent for affordable yet high-quality housing solutions in rapidly urbanizing regions.Save this picture!The Sienna Home in Quezon City serves as a blueprint for future developments, proving that low-cost housing can be both architecturally compelling and socially transformative. By rethinking traditional housing models, BillionBricks is pioneering a future where affordability and sustainability are seamlessly integrated. Project gallerySee allShow less About this officebillionBricksOffice••• Published on June 15, 2025Cite: "Sienna Net-Zero Home / billionBricks" 14 Jun 2025. ArchDaily. Accessed . <https://www.archdaily.com/1031072/sienna-billionbricks&gt ISSN 0719-8884Save世界上最受欢迎的建筑网站现已推出你的母语版本!想浏览ArchDaily中国吗?是否 You've started following your first account!Did you know?You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.Go to my stream
    0 Comentários 0 Compartilhamentos 0 Anterior
  • Trump’s military parade is a warning

    Donald Trump’s military parade in Washington this weekend — a show of force in the capital that just happens to take place on the president’s birthday — smacks of authoritarian Dear Leader-style politics.Yet as disconcerting as the imagery of tanks rolling down Constitution Avenue will be, it’s not even close to Trump’s most insidious assault on the US military’s historic and democratically essential nonpartisan ethos.In fact, it’s not even the most worrying thing he’s done this week.On Tuesday, the president gave a speech at Fort Bragg, an Army base home to Special Operations Command. While presidential speeches to soldiers are not uncommon — rows of uniformed troops make a great backdrop for a foreign policy speech — they generally avoid overt partisan attacks and campaign-style rhetoric. The soldiers, for their part, are expected to be studiously neutral, laughing at jokes and such, but remaining fully impassive during any policy conversation.That’s not what happened at Fort Bragg. Trump’s speech was a partisan tirade that targeted “radical left” opponents ranging from Joe Biden to Los Angeles Mayor Karen Bass. He celebrated his deployment of Marines to Los Angeles, proposed jailing people for burning the American flag, and called on soldiers to be “aggressive” toward the protesters they encountered.The soldiers, for their part, cheered Trump and booed his enemies — as they were seemingly expected to. Reporters at Military.com, a military news service, uncovered internal communications from 82nd Airborne leadership suggesting that the crowd was screened for their political opinions.“If soldiers have political views that are in opposition to the current administration and they don’t want to be in the audience then they need to speak with their leadership and get swapped out,” one note read.To call this unusual is an understatement. I spoke with four different experts on civil-military relations, two of whom teach at the Naval War College, about the speech and its implications. To a person, they said it was a step towards politicizing the military with no real precedent in modern American history.“That is, I think, a really big red flag because it means the military’s professional ethic is breaking down internally,” says Risa Brooks, a professor at Marquette University. “Its capacity to maintain that firewall against civilian politicization may be faltering.”This may sound alarmist — like an overreading of a one-off incident — but it’s part of a bigger pattern. The totality of Trump administration policies, ranging from the parade in Washington to the LA troop deployment to Secretary of Defense Pete Hegseth’s firing of high-ranking women and officers of color, suggests a concerted effort to erode the military’s professional ethos and turn it into an institution subservient to the Trump administration’s whims. This is a signal policy aim of would-be dictators, who wish to head off the risk of a coup and ensure the armed forces’ political reliability if they are needed to repress dissent in a crisis.Steve Saideman, a professor at Carleton University, put together a list of eight different signs that a military is being politicized in this fashion. The Trump administration has exhibited six out of the eight.“The biggest theme is that we are seeing a number of checks on the executive fail at the same time — and that’s what’s making individual events seem more alarming than they might otherwise,” says Jessica Blankshain, a professor at the Naval War College.That Trump is trying to politicize the military does not mean he has succeeded. There are several signs, including Trump’s handpicked chair of the Joint Chiefs repudiating the president’s claims of a migrant invasion during congressional testimony, that the US military is resisting Trump’s politicization.But the events in Fort Bragg and Washington suggest that we are in the midst of a quiet crisis in civil-military relations in the United States — one whose implications for American democracy’s future could well be profound.The Trump crisis in civil-military relations, explainedA military is, by sheer fact of its existence, a threat to any civilian government. If you have an institution that controls the overwhelming bulk of weaponry in a society, it always has the physical capacity to seize control of the government at gunpoint. A key question for any government is how to convince the armed forces that they cannot or should not take power for themselves.Democracies typically do this through a process called “professionalization.” Soldiers are rigorously taught to think of themselves as a class of public servants, people trained to perform a specific job within defined parameters. Their ultimate loyalty is not to their generals or even individual presidents, but rather to the people and the constitutional order.Samuel Huntington, the late Harvard political scientist, is the canonical theorist of a professional military. In his book The Soldier and the State, he described optimal professionalization as a system of “objective control”: one in which the military retains autonomy in how they fight and plan for wars while deferring to politicians on whether and why to fight in the first place. In effect, they stay out of the politicians’ affairs while the politicians stay out of theirs.The idea of such a system is to emphasize to the military that they are professionals: Their responsibility isn’t deciding when to use force, but only to conduct operations as effectively as possible once ordered to engage in them. There is thus a strict firewall between military affairs, on the one hand, and policy-political affairs on the other.Typically, the chief worry is that the military breaches this bargain: that, for example, a general starts speaking out against elected officials’ policies in ways that undermine civilian control. This is not a hypothetical fear in the United States, with the most famous such example being Gen. Douglas MacArthur’s insubordination during the Korean War. Thankfully, not even MacArthur attempted the worst-case version of military overstep — a coup.But in backsliding democracies like the modern United States, where the chief executive is attempting an anti-democratic power grab, the military poses a very different kind of threat to democracy — in fact, something akin to the exact opposite of the typical scenario.In such cases, the issue isn’t the military inserting itself into politics but rather the civilians dragging them into it in ways that upset the democratic political order. The worst-case scenario is that the military acts on presidential directives to use force against domestic dissenters, destroying democracy not by ignoring civilian orders, but by following them.There are two ways to arrive at such a worst-case scenario, both of which are in evidence in the early days of Trump 2.0.First is politicization: an intentional attack on the constraints against partisan activity inside the professional ranks.Many of Pete Hegseth’s major moves as secretary of defense fit this bill, including his decisions to fire nonwhite and female generals seen as politically unreliable and his effort to undermine the independence of the military’s lawyers. The breaches in protocol at Fort Bragg are both consequences and causes of politicization: They could only happen in an environment of loosened constraint, and they might encourage more overt political action if gone unpunished.The second pathway to breakdown is the weaponization of professionalism against itself. Here, Trump exploits the military’s deference to politicians by ordering it to engage in undemocraticactivities. In practice, this looks a lot like the LA deployments, and, more specifically, the lack of any visible military pushback. While the military readily agreeing to deployments is normally a good sign — that civilian control is holding — these aren’t normal times. And this isn’t a normal deployment, but rather one that comes uncomfortably close to the military being ordered to assist in repressing overwhelmingly peaceful demonstrations against executive abuses of power.“It’s really been pretty uncommon to use the military for law enforcement,” says David Burbach, another Naval War College professor. “This is really bringing the military into frontline law enforcement when. … these are really not huge disturbances.”This, then, is the crisis: an incremental and slow-rolling effort by the Trump administration to erode the norms and procedures designed to prevent the military from being used as a tool of domestic repression. Is it time to panic?Among the experts I spoke with, there was consensus that the military’s professional and nonpartisan ethos was weakening. This isn’t just because of Trump, but his terms — the first to a degree, and now the second acutely — are major stressors.Yet there was no consensus on just how much military nonpartisanship has eroded — that is, how close we are to a moment when the US military might be willing to follow obviously authoritarian orders.For all its faults, the US military’s professional ethos is a really important part of its identity and self-conception. While few soldiers may actually read Sam Huntington or similar scholars, the general idea that they serve the people and the republic is a bedrock principle among the ranks. There is a reason why the United States has never, in over 250 years of governance, experienced a military coup — or even come particularly close to one.In theory, this ethos should also galvanize resistance to Trump’s efforts at politicization. Soldiers are not unthinking automatons: While they are trained to follow commands, they are explicitly obligated to refuse illegal orders, even coming from the president. The more aggressive Trump’s efforts to use the military as a tool of repression gets, the more likely there is to be resistance.Or, at least theoretically.The truth is that we don’t really know how the US military will respond to a situation like this. Like so many of Trump’s second-term policies, their efforts to bend the military to their will are unprecedented — actions with no real parallel in the modern history of the American military. Experts can only make informed guesses, based on their sense of US military culture as well as comparisons to historical and foreign cases.For this reason, there are probably only two things we can say with confidence.First, what we’ve seen so far is not yet sufficient evidence to declare that the military is in Trump’s thrall. The signs of decay are too limited to ground any conclusions that the longstanding professional norm is entirely gone.“We have seen a few things that are potentially alarming about erosion of the military’s non-partisan norm. But not in a way that’s definitive at this point,” Blankshain says.Second, the stressors on this tradition are going to keep piling on. Trump’s record makes it exceptionally clear that he wants the military to serve him personally — and that he, and Hegseth, will keep working to make it so. This means we really are in the midst of a quiet crisis, and will likely remain so for the foreseeable future.“The fact that he’s getting the troops to cheer for booing Democratic leaders at a time when there’s actuallya blue city and a blue state…he is ordering the troops to take a side,” Saideman says. “There may not be a coherent plan behind this. But there are a lot of things going on that are all in the same direction.”See More: Politics
    #trumpampamp8217s #military #parade #warning
    Trump’s military parade is a warning
    Donald Trump’s military parade in Washington this weekend — a show of force in the capital that just happens to take place on the president’s birthday — smacks of authoritarian Dear Leader-style politics.Yet as disconcerting as the imagery of tanks rolling down Constitution Avenue will be, it’s not even close to Trump’s most insidious assault on the US military’s historic and democratically essential nonpartisan ethos.In fact, it’s not even the most worrying thing he’s done this week.On Tuesday, the president gave a speech at Fort Bragg, an Army base home to Special Operations Command. While presidential speeches to soldiers are not uncommon — rows of uniformed troops make a great backdrop for a foreign policy speech — they generally avoid overt partisan attacks and campaign-style rhetoric. The soldiers, for their part, are expected to be studiously neutral, laughing at jokes and such, but remaining fully impassive during any policy conversation.That’s not what happened at Fort Bragg. Trump’s speech was a partisan tirade that targeted “radical left” opponents ranging from Joe Biden to Los Angeles Mayor Karen Bass. He celebrated his deployment of Marines to Los Angeles, proposed jailing people for burning the American flag, and called on soldiers to be “aggressive” toward the protesters they encountered.The soldiers, for their part, cheered Trump and booed his enemies — as they were seemingly expected to. Reporters at Military.com, a military news service, uncovered internal communications from 82nd Airborne leadership suggesting that the crowd was screened for their political opinions.“If soldiers have political views that are in opposition to the current administration and they don’t want to be in the audience then they need to speak with their leadership and get swapped out,” one note read.To call this unusual is an understatement. I spoke with four different experts on civil-military relations, two of whom teach at the Naval War College, about the speech and its implications. To a person, they said it was a step towards politicizing the military with no real precedent in modern American history.“That is, I think, a really big red flag because it means the military’s professional ethic is breaking down internally,” says Risa Brooks, a professor at Marquette University. “Its capacity to maintain that firewall against civilian politicization may be faltering.”This may sound alarmist — like an overreading of a one-off incident — but it’s part of a bigger pattern. The totality of Trump administration policies, ranging from the parade in Washington to the LA troop deployment to Secretary of Defense Pete Hegseth’s firing of high-ranking women and officers of color, suggests a concerted effort to erode the military’s professional ethos and turn it into an institution subservient to the Trump administration’s whims. This is a signal policy aim of would-be dictators, who wish to head off the risk of a coup and ensure the armed forces’ political reliability if they are needed to repress dissent in a crisis.Steve Saideman, a professor at Carleton University, put together a list of eight different signs that a military is being politicized in this fashion. The Trump administration has exhibited six out of the eight.“The biggest theme is that we are seeing a number of checks on the executive fail at the same time — and that’s what’s making individual events seem more alarming than they might otherwise,” says Jessica Blankshain, a professor at the Naval War College.That Trump is trying to politicize the military does not mean he has succeeded. There are several signs, including Trump’s handpicked chair of the Joint Chiefs repudiating the president’s claims of a migrant invasion during congressional testimony, that the US military is resisting Trump’s politicization.But the events in Fort Bragg and Washington suggest that we are in the midst of a quiet crisis in civil-military relations in the United States — one whose implications for American democracy’s future could well be profound.The Trump crisis in civil-military relations, explainedA military is, by sheer fact of its existence, a threat to any civilian government. If you have an institution that controls the overwhelming bulk of weaponry in a society, it always has the physical capacity to seize control of the government at gunpoint. A key question for any government is how to convince the armed forces that they cannot or should not take power for themselves.Democracies typically do this through a process called “professionalization.” Soldiers are rigorously taught to think of themselves as a class of public servants, people trained to perform a specific job within defined parameters. Their ultimate loyalty is not to their generals or even individual presidents, but rather to the people and the constitutional order.Samuel Huntington, the late Harvard political scientist, is the canonical theorist of a professional military. In his book The Soldier and the State, he described optimal professionalization as a system of “objective control”: one in which the military retains autonomy in how they fight and plan for wars while deferring to politicians on whether and why to fight in the first place. In effect, they stay out of the politicians’ affairs while the politicians stay out of theirs.The idea of such a system is to emphasize to the military that they are professionals: Their responsibility isn’t deciding when to use force, but only to conduct operations as effectively as possible once ordered to engage in them. There is thus a strict firewall between military affairs, on the one hand, and policy-political affairs on the other.Typically, the chief worry is that the military breaches this bargain: that, for example, a general starts speaking out against elected officials’ policies in ways that undermine civilian control. This is not a hypothetical fear in the United States, with the most famous such example being Gen. Douglas MacArthur’s insubordination during the Korean War. Thankfully, not even MacArthur attempted the worst-case version of military overstep — a coup.But in backsliding democracies like the modern United States, where the chief executive is attempting an anti-democratic power grab, the military poses a very different kind of threat to democracy — in fact, something akin to the exact opposite of the typical scenario.In such cases, the issue isn’t the military inserting itself into politics but rather the civilians dragging them into it in ways that upset the democratic political order. The worst-case scenario is that the military acts on presidential directives to use force against domestic dissenters, destroying democracy not by ignoring civilian orders, but by following them.There are two ways to arrive at such a worst-case scenario, both of which are in evidence in the early days of Trump 2.0.First is politicization: an intentional attack on the constraints against partisan activity inside the professional ranks.Many of Pete Hegseth’s major moves as secretary of defense fit this bill, including his decisions to fire nonwhite and female generals seen as politically unreliable and his effort to undermine the independence of the military’s lawyers. The breaches in protocol at Fort Bragg are both consequences and causes of politicization: They could only happen in an environment of loosened constraint, and they might encourage more overt political action if gone unpunished.The second pathway to breakdown is the weaponization of professionalism against itself. Here, Trump exploits the military’s deference to politicians by ordering it to engage in undemocraticactivities. In practice, this looks a lot like the LA deployments, and, more specifically, the lack of any visible military pushback. While the military readily agreeing to deployments is normally a good sign — that civilian control is holding — these aren’t normal times. And this isn’t a normal deployment, but rather one that comes uncomfortably close to the military being ordered to assist in repressing overwhelmingly peaceful demonstrations against executive abuses of power.“It’s really been pretty uncommon to use the military for law enforcement,” says David Burbach, another Naval War College professor. “This is really bringing the military into frontline law enforcement when. … these are really not huge disturbances.”This, then, is the crisis: an incremental and slow-rolling effort by the Trump administration to erode the norms and procedures designed to prevent the military from being used as a tool of domestic repression. Is it time to panic?Among the experts I spoke with, there was consensus that the military’s professional and nonpartisan ethos was weakening. This isn’t just because of Trump, but his terms — the first to a degree, and now the second acutely — are major stressors.Yet there was no consensus on just how much military nonpartisanship has eroded — that is, how close we are to a moment when the US military might be willing to follow obviously authoritarian orders.For all its faults, the US military’s professional ethos is a really important part of its identity and self-conception. While few soldiers may actually read Sam Huntington or similar scholars, the general idea that they serve the people and the republic is a bedrock principle among the ranks. There is a reason why the United States has never, in over 250 years of governance, experienced a military coup — or even come particularly close to one.In theory, this ethos should also galvanize resistance to Trump’s efforts at politicization. Soldiers are not unthinking automatons: While they are trained to follow commands, they are explicitly obligated to refuse illegal orders, even coming from the president. The more aggressive Trump’s efforts to use the military as a tool of repression gets, the more likely there is to be resistance.Or, at least theoretically.The truth is that we don’t really know how the US military will respond to a situation like this. Like so many of Trump’s second-term policies, their efforts to bend the military to their will are unprecedented — actions with no real parallel in the modern history of the American military. Experts can only make informed guesses, based on their sense of US military culture as well as comparisons to historical and foreign cases.For this reason, there are probably only two things we can say with confidence.First, what we’ve seen so far is not yet sufficient evidence to declare that the military is in Trump’s thrall. The signs of decay are too limited to ground any conclusions that the longstanding professional norm is entirely gone.“We have seen a few things that are potentially alarming about erosion of the military’s non-partisan norm. But not in a way that’s definitive at this point,” Blankshain says.Second, the stressors on this tradition are going to keep piling on. Trump’s record makes it exceptionally clear that he wants the military to serve him personally — and that he, and Hegseth, will keep working to make it so. This means we really are in the midst of a quiet crisis, and will likely remain so for the foreseeable future.“The fact that he’s getting the troops to cheer for booing Democratic leaders at a time when there’s actuallya blue city and a blue state…he is ordering the troops to take a side,” Saideman says. “There may not be a coherent plan behind this. But there are a lot of things going on that are all in the same direction.”See More: Politics #trumpampamp8217s #military #parade #warning
    WWW.VOX.COM
    Trump’s military parade is a warning
    Donald Trump’s military parade in Washington this weekend — a show of force in the capital that just happens to take place on the president’s birthday — smacks of authoritarian Dear Leader-style politics (even though Trump actually got the idea after attending the 2017 Bastille Day parade in Paris).Yet as disconcerting as the imagery of tanks rolling down Constitution Avenue will be, it’s not even close to Trump’s most insidious assault on the US military’s historic and democratically essential nonpartisan ethos.In fact, it’s not even the most worrying thing he’s done this week.On Tuesday, the president gave a speech at Fort Bragg, an Army base home to Special Operations Command. While presidential speeches to soldiers are not uncommon — rows of uniformed troops make a great backdrop for a foreign policy speech — they generally avoid overt partisan attacks and campaign-style rhetoric. The soldiers, for their part, are expected to be studiously neutral, laughing at jokes and such, but remaining fully impassive during any policy conversation.That’s not what happened at Fort Bragg. Trump’s speech was a partisan tirade that targeted “radical left” opponents ranging from Joe Biden to Los Angeles Mayor Karen Bass. He celebrated his deployment of Marines to Los Angeles, proposed jailing people for burning the American flag, and called on soldiers to be “aggressive” toward the protesters they encountered.The soldiers, for their part, cheered Trump and booed his enemies — as they were seemingly expected to. Reporters at Military.com, a military news service, uncovered internal communications from 82nd Airborne leadership suggesting that the crowd was screened for their political opinions.“If soldiers have political views that are in opposition to the current administration and they don’t want to be in the audience then they need to speak with their leadership and get swapped out,” one note read.To call this unusual is an understatement. I spoke with four different experts on civil-military relations, two of whom teach at the Naval War College, about the speech and its implications. To a person, they said it was a step towards politicizing the military with no real precedent in modern American history.“That is, I think, a really big red flag because it means the military’s professional ethic is breaking down internally,” says Risa Brooks, a professor at Marquette University. “Its capacity to maintain that firewall against civilian politicization may be faltering.”This may sound alarmist — like an overreading of a one-off incident — but it’s part of a bigger pattern. The totality of Trump administration policies, ranging from the parade in Washington to the LA troop deployment to Secretary of Defense Pete Hegseth’s firing of high-ranking women and officers of color, suggests a concerted effort to erode the military’s professional ethos and turn it into an institution subservient to the Trump administration’s whims. This is a signal policy aim of would-be dictators, who wish to head off the risk of a coup and ensure the armed forces’ political reliability if they are needed to repress dissent in a crisis.Steve Saideman, a professor at Carleton University, put together a list of eight different signs that a military is being politicized in this fashion. The Trump administration has exhibited six out of the eight.“The biggest theme is that we are seeing a number of checks on the executive fail at the same time — and that’s what’s making individual events seem more alarming than they might otherwise,” says Jessica Blankshain, a professor at the Naval War College (speaking not for the military but in a personal capacity).That Trump is trying to politicize the military does not mean he has succeeded. There are several signs, including Trump’s handpicked chair of the Joint Chiefs repudiating the president’s claims of a migrant invasion during congressional testimony, that the US military is resisting Trump’s politicization.But the events in Fort Bragg and Washington suggest that we are in the midst of a quiet crisis in civil-military relations in the United States — one whose implications for American democracy’s future could well be profound.The Trump crisis in civil-military relations, explainedA military is, by sheer fact of its existence, a threat to any civilian government. If you have an institution that controls the overwhelming bulk of weaponry in a society, it always has the physical capacity to seize control of the government at gunpoint. A key question for any government is how to convince the armed forces that they cannot or should not take power for themselves.Democracies typically do this through a process called “professionalization.” Soldiers are rigorously taught to think of themselves as a class of public servants, people trained to perform a specific job within defined parameters. Their ultimate loyalty is not to their generals or even individual presidents, but rather to the people and the constitutional order.Samuel Huntington, the late Harvard political scientist, is the canonical theorist of a professional military. In his book The Soldier and the State, he described optimal professionalization as a system of “objective control”: one in which the military retains autonomy in how they fight and plan for wars while deferring to politicians on whether and why to fight in the first place. In effect, they stay out of the politicians’ affairs while the politicians stay out of theirs.The idea of such a system is to emphasize to the military that they are professionals: Their responsibility isn’t deciding when to use force, but only to conduct operations as effectively as possible once ordered to engage in them. There is thus a strict firewall between military affairs, on the one hand, and policy-political affairs on the other.Typically, the chief worry is that the military breaches this bargain: that, for example, a general starts speaking out against elected officials’ policies in ways that undermine civilian control. This is not a hypothetical fear in the United States, with the most famous such example being Gen. Douglas MacArthur’s insubordination during the Korean War. Thankfully, not even MacArthur attempted the worst-case version of military overstep — a coup.But in backsliding democracies like the modern United States, where the chief executive is attempting an anti-democratic power grab, the military poses a very different kind of threat to democracy — in fact, something akin to the exact opposite of the typical scenario.In such cases, the issue isn’t the military inserting itself into politics but rather the civilians dragging them into it in ways that upset the democratic political order. The worst-case scenario is that the military acts on presidential directives to use force against domestic dissenters, destroying democracy not by ignoring civilian orders, but by following them.There are two ways to arrive at such a worst-case scenario, both of which are in evidence in the early days of Trump 2.0.First is politicization: an intentional attack on the constraints against partisan activity inside the professional ranks.Many of Pete Hegseth’s major moves as secretary of defense fit this bill, including his decisions to fire nonwhite and female generals seen as politically unreliable and his effort to undermine the independence of the military’s lawyers. The breaches in protocol at Fort Bragg are both consequences and causes of politicization: They could only happen in an environment of loosened constraint, and they might encourage more overt political action if gone unpunished.The second pathway to breakdown is the weaponization of professionalism against itself. Here, Trump exploits the military’s deference to politicians by ordering it to engage in undemocratic (and even questionably legal) activities. In practice, this looks a lot like the LA deployments, and, more specifically, the lack of any visible military pushback. While the military readily agreeing to deployments is normally a good sign — that civilian control is holding — these aren’t normal times. And this isn’t a normal deployment, but rather one that comes uncomfortably close to the military being ordered to assist in repressing overwhelmingly peaceful demonstrations against executive abuses of power.“It’s really been pretty uncommon to use the military for law enforcement,” says David Burbach, another Naval War College professor (also speaking personally). “This is really bringing the military into frontline law enforcement when. … these are really not huge disturbances.”This, then, is the crisis: an incremental and slow-rolling effort by the Trump administration to erode the norms and procedures designed to prevent the military from being used as a tool of domestic repression. Is it time to panic?Among the experts I spoke with, there was consensus that the military’s professional and nonpartisan ethos was weakening. This isn’t just because of Trump, but his terms — the first to a degree, and now the second acutely — are major stressors.Yet there was no consensus on just how much military nonpartisanship has eroded — that is, how close we are to a moment when the US military might be willing to follow obviously authoritarian orders.For all its faults, the US military’s professional ethos is a really important part of its identity and self-conception. While few soldiers may actually read Sam Huntington or similar scholars, the general idea that they serve the people and the republic is a bedrock principle among the ranks. There is a reason why the United States has never, in over 250 years of governance, experienced a military coup — or even come particularly close to one.In theory, this ethos should also galvanize resistance to Trump’s efforts at politicization. Soldiers are not unthinking automatons: While they are trained to follow commands, they are explicitly obligated to refuse illegal orders, even coming from the president. The more aggressive Trump’s efforts to use the military as a tool of repression gets, the more likely there is to be resistance.Or, at least theoretically.The truth is that we don’t really know how the US military will respond to a situation like this. Like so many of Trump’s second-term policies, their efforts to bend the military to their will are unprecedented — actions with no real parallel in the modern history of the American military. Experts can only make informed guesses, based on their sense of US military culture as well as comparisons to historical and foreign cases.For this reason, there are probably only two things we can say with confidence.First, what we’ve seen so far is not yet sufficient evidence to declare that the military is in Trump’s thrall. The signs of decay are too limited to ground any conclusions that the longstanding professional norm is entirely gone.“We have seen a few things that are potentially alarming about erosion of the military’s non-partisan norm. But not in a way that’s definitive at this point,” Blankshain says.Second, the stressors on this tradition are going to keep piling on. Trump’s record makes it exceptionally clear that he wants the military to serve him personally — and that he, and Hegseth, will keep working to make it so. This means we really are in the midst of a quiet crisis, and will likely remain so for the foreseeable future.“The fact that he’s getting the troops to cheer for booing Democratic leaders at a time when there’s actually [a deployment to] a blue city and a blue state…he is ordering the troops to take a side,” Saideman says. “There may not be a coherent plan behind this. But there are a lot of things going on that are all in the same direction.”See More: Politics
    0 Comentários 0 Compartilhamentos 0 Anterior
  • Rethinking AI: DeepSeek’s playbook shakes up the high-spend, high-compute paradigm

    Join the event trusted by enterprise leaders for nearly two decades. VB Transform brings together the people building real enterprise AI strategy. Learn more

    When DeepSeek released its R1 model this January, it wasn’t just another AI announcement. It was a watershed moment that sent shockwaves through the tech industry, forcing industry leaders to reconsider their fundamental approaches to AI development.
    What makes DeepSeek’s accomplishment remarkable isn’t that the company developed novel capabilities; rather, it was how it achieved comparable results to those delivered by tech heavyweights at a fraction of the cost. In reality, DeepSeek didn’t do anything that hadn’t been done before; its innovation stemmed from pursuing different priorities. As a result, we are now experiencing rapid-fire development along two parallel tracks: efficiency and compute. 
    As DeepSeek prepares to release its R2 model, and as it concurrently faces the potential of even greater chip restrictions from the U.S., it’s important to look at how it captured so much attention.
    Engineering around constraints
    DeepSeek’s arrival, as sudden and dramatic as it was, captivated us all because it showcased the capacity for innovation to thrive even under significant constraints. Faced with U.S. export controls limiting access to cutting-edge AI chips, DeepSeek was forced to find alternative pathways to AI advancement.
    While U.S. companies pursued performance gains through more powerful hardware, bigger models and better data, DeepSeek focused on optimizing what was available. It implemented known ideas with remarkable execution — and there is novelty in executing what’s known and doing it well.
    This efficiency-first mindset yielded incredibly impressive results. DeepSeek’s R1 model reportedly matches OpenAI’s capabilities at just 5 to 10% of the operating cost. According to reports, the final training run for DeepSeek’s V3 predecessor cost a mere million — which was described by former Tesla AI scientist Andrej Karpathy as “a joke of a budget” compared to the tens or hundreds of millions spent by U.S. competitors. More strikingly, while OpenAI reportedly spent million training its recent “Orion” model, DeepSeek achieved superior benchmark results for just million — less than 1.2% of OpenAI’s investment.
    If you get starry eyed believing these incredible results were achieved even as DeepSeek was at a severe disadvantage based on its inability to access advanced AI chips, I hate to tell you, but that narrative isn’t entirely accurate. Initial U.S. export controls focused primarily on compute capabilities, not on memory and networking — two crucial components for AI development.
    That means that the chips DeepSeek had access to were not poor quality chips; their networking and memory capabilities allowed DeepSeek to parallelize operations across many units, a key strategy for running their large model efficiently.
    This, combined with China’s national push toward controlling the entire vertical stack of AI infrastructure, resulted in accelerated innovation that many Western observers didn’t anticipate. DeepSeek’s advancements were an inevitable part of AI development, but they brought known advancements forward a few years earlier than would have been possible otherwise, and that’s pretty amazing.
    Pragmatism over process
    Beyond hardware optimization, DeepSeek’s approach to training data represents another departure from conventional Western practices. Rather than relying solely on web-scraped content, DeepSeek reportedly leveraged significant amounts of synthetic data and outputs from other proprietary models. This is a classic example of model distillation, or the ability to learn from really powerful models. Such an approach, however, raises questions about data privacy and governance that might concern Western enterprise customers. Still, it underscores DeepSeek’s overall pragmatic focus on results over process.
    The effective use of synthetic data is a key differentiator. Synthetic data can be very effective when it comes to training large models, but you have to be careful; some model architectures handle synthetic data better than others. For instance, transformer-based models with mixture of expertsarchitectures like DeepSeek’s tend to be more robust when incorporating synthetic data, while more traditional dense architectures like those used in early Llama models can experience performance degradation or even “model collapse” when trained on too much synthetic content.
    This architectural sensitivity matters because synthetic data introduces different patterns and distributions compared to real-world data. When a model architecture doesn’t handle synthetic data well, it may learn shortcuts or biases present in the synthetic data generation process rather than generalizable knowledge. This can lead to reduced performance on real-world tasks, increased hallucinations or brittleness when facing novel situations. 
    Still, DeepSeek’s engineering teams reportedly designed their model architecture specifically with synthetic data integration in mind from the earliest planning stages. This allowed the company to leverage the cost benefits of synthetic data without sacrificing performance.
    Market reverberations
    Why does all of this matter? Stock market aside, DeepSeek’s emergence has triggered substantive strategic shifts among industry leaders.
    Case in point: OpenAI. Sam Altman recently announced plans to release the company’s first “open-weight” language model since 2019. This is a pretty notable pivot for a company that built its business on proprietary systems. It seems DeepSeek’s rise, on top of Llama’s success, has hit OpenAI’s leader hard. Just a month after DeepSeek arrived on the scene, Altman admitted that OpenAI had been “on the wrong side of history” regarding open-source AI. 
    With OpenAI reportedly spending to 8 billion annually on operations, the economic pressure from efficient alternatives like DeepSeek has become impossible to ignore. As AI scholar Kai-Fu Lee bluntly put it: “You’re spending billion or billion a year, making a massive loss, and here you have a competitor coming in with an open-source model that’s for free.” This necessitates change.
    This economic reality prompted OpenAI to pursue a massive billion funding round that valued the company at an unprecedented billion. But even with a war chest of funds at its disposal, the fundamental challenge remains: OpenAI’s approach is dramatically more resource-intensive than DeepSeek’s.
    Beyond model training
    Another significant trend accelerated by DeepSeek is the shift toward “test-time compute”. As major AI labs have now trained their models on much of the available public data on the internet, data scarcity is slowing further improvements in pre-training.
    To get around this, DeepSeek announced a collaboration with Tsinghua University to enable “self-principled critique tuning”. This approach trains AI to develop its own rules for judging content and then uses those rules to provide detailed critiques. The system includes a built-in “judge” that evaluates the AI’s answers in real-time, comparing responses against core rules and quality standards.
    The development is part of a movement towards autonomous self-evaluation and improvement in AI systems in which models use inference time to improve results, rather than simply making models larger during training. DeepSeek calls its system “DeepSeek-GRM”. But, as with its model distillation approach, this could be considered a mix of promise and risk.
    For example, if the AI develops its own judging criteria, there’s a risk those principles diverge from human values, ethics or context. The rules could end up being overly rigid or biased, optimizing for style over substance, and/or reinforce incorrect assumptions or hallucinations. Additionally, without a human in the loop, issues could arise if the “judge” is flawed or misaligned. It’s a kind of AI talking to itself, without robust external grounding. On top of this, users and developers may not understand why the AI reached a certain conclusion — which feeds into a bigger concern: Should an AI be allowed to decide what is “good” or “correct” based solely on its own logic? These risks shouldn’t be discounted.
    At the same time, this approach is gaining traction, as again DeepSeek builds on the body of work of othersto create what is likely the first full-stack application of SPCT in a commercial effort.
    This could mark a powerful shift in AI autonomy, but there still is a need for rigorous auditing, transparency and safeguards. It’s not just about models getting smarter, but that they remain aligned, interpretable, and trustworthy as they begin critiquing themselves without human guardrails.
    Moving into the future
    So, taking all of this into account, the rise of DeepSeek signals a broader shift in the AI industry toward parallel innovation tracks. While companies continue building more powerful compute clusters for next-generation capabilities, there will also be intense focus on finding efficiency gains through software engineering and model architecture improvements to offset the challenges of AI energy consumption, which far outpaces power generation capacity. 
    Companies are taking note. Microsoft, for example, has halted data center development in multiple regions globally, recalibrating toward a more distributed, efficient infrastructure approach. While still planning to invest approximately billion in AI infrastructure this fiscal year, the company is reallocating resources in response to the efficiency gains DeepSeek introduced to the market.
    Meta has also responded,
    With so much movement in such a short time, it becomes somewhat ironic that the U.S. sanctions designed to maintain American AI dominance may have instead accelerated the very innovation they sought to contain. By constraining access to materials, DeepSeek was forced to blaze a new trail.
    Moving forward, as the industry continues to evolve globally, adaptability for all players will be key. Policies, people and market reactions will continue to shift the ground rules — whether it’s eliminating the AI diffusion rule, a new ban on technology purchases or something else entirely. It’s what we learn from one another and how we respond that will be worth watching.
    Jae Lee is CEO and co-founder of TwelveLabs.

    Daily insights on business use cases with VB Daily
    If you want to impress your boss, VB Daily has you covered. We give you the inside scoop on what companies are doing with generative AI, from regulatory shifts to practical deployments, so you can share insights for maximum ROI.
    Read our Privacy Policy

    Thanks for subscribing. Check out more VB newsletters here.

    An error occured.
    #rethinking #deepseeks #playbook #shakes #highspend
    Rethinking AI: DeepSeek’s playbook shakes up the high-spend, high-compute paradigm
    Join the event trusted by enterprise leaders for nearly two decades. VB Transform brings together the people building real enterprise AI strategy. Learn more When DeepSeek released its R1 model this January, it wasn’t just another AI announcement. It was a watershed moment that sent shockwaves through the tech industry, forcing industry leaders to reconsider their fundamental approaches to AI development. What makes DeepSeek’s accomplishment remarkable isn’t that the company developed novel capabilities; rather, it was how it achieved comparable results to those delivered by tech heavyweights at a fraction of the cost. In reality, DeepSeek didn’t do anything that hadn’t been done before; its innovation stemmed from pursuing different priorities. As a result, we are now experiencing rapid-fire development along two parallel tracks: efficiency and compute.  As DeepSeek prepares to release its R2 model, and as it concurrently faces the potential of even greater chip restrictions from the U.S., it’s important to look at how it captured so much attention. Engineering around constraints DeepSeek’s arrival, as sudden and dramatic as it was, captivated us all because it showcased the capacity for innovation to thrive even under significant constraints. Faced with U.S. export controls limiting access to cutting-edge AI chips, DeepSeek was forced to find alternative pathways to AI advancement. While U.S. companies pursued performance gains through more powerful hardware, bigger models and better data, DeepSeek focused on optimizing what was available. It implemented known ideas with remarkable execution — and there is novelty in executing what’s known and doing it well. This efficiency-first mindset yielded incredibly impressive results. DeepSeek’s R1 model reportedly matches OpenAI’s capabilities at just 5 to 10% of the operating cost. According to reports, the final training run for DeepSeek’s V3 predecessor cost a mere million — which was described by former Tesla AI scientist Andrej Karpathy as “a joke of a budget” compared to the tens or hundreds of millions spent by U.S. competitors. More strikingly, while OpenAI reportedly spent million training its recent “Orion” model, DeepSeek achieved superior benchmark results for just million — less than 1.2% of OpenAI’s investment. If you get starry eyed believing these incredible results were achieved even as DeepSeek was at a severe disadvantage based on its inability to access advanced AI chips, I hate to tell you, but that narrative isn’t entirely accurate. Initial U.S. export controls focused primarily on compute capabilities, not on memory and networking — two crucial components for AI development. That means that the chips DeepSeek had access to were not poor quality chips; their networking and memory capabilities allowed DeepSeek to parallelize operations across many units, a key strategy for running their large model efficiently. This, combined with China’s national push toward controlling the entire vertical stack of AI infrastructure, resulted in accelerated innovation that many Western observers didn’t anticipate. DeepSeek’s advancements were an inevitable part of AI development, but they brought known advancements forward a few years earlier than would have been possible otherwise, and that’s pretty amazing. Pragmatism over process Beyond hardware optimization, DeepSeek’s approach to training data represents another departure from conventional Western practices. Rather than relying solely on web-scraped content, DeepSeek reportedly leveraged significant amounts of synthetic data and outputs from other proprietary models. This is a classic example of model distillation, or the ability to learn from really powerful models. Such an approach, however, raises questions about data privacy and governance that might concern Western enterprise customers. Still, it underscores DeepSeek’s overall pragmatic focus on results over process. The effective use of synthetic data is a key differentiator. Synthetic data can be very effective when it comes to training large models, but you have to be careful; some model architectures handle synthetic data better than others. For instance, transformer-based models with mixture of expertsarchitectures like DeepSeek’s tend to be more robust when incorporating synthetic data, while more traditional dense architectures like those used in early Llama models can experience performance degradation or even “model collapse” when trained on too much synthetic content. This architectural sensitivity matters because synthetic data introduces different patterns and distributions compared to real-world data. When a model architecture doesn’t handle synthetic data well, it may learn shortcuts or biases present in the synthetic data generation process rather than generalizable knowledge. This can lead to reduced performance on real-world tasks, increased hallucinations or brittleness when facing novel situations.  Still, DeepSeek’s engineering teams reportedly designed their model architecture specifically with synthetic data integration in mind from the earliest planning stages. This allowed the company to leverage the cost benefits of synthetic data without sacrificing performance. Market reverberations Why does all of this matter? Stock market aside, DeepSeek’s emergence has triggered substantive strategic shifts among industry leaders. Case in point: OpenAI. Sam Altman recently announced plans to release the company’s first “open-weight” language model since 2019. This is a pretty notable pivot for a company that built its business on proprietary systems. It seems DeepSeek’s rise, on top of Llama’s success, has hit OpenAI’s leader hard. Just a month after DeepSeek arrived on the scene, Altman admitted that OpenAI had been “on the wrong side of history” regarding open-source AI.  With OpenAI reportedly spending to 8 billion annually on operations, the economic pressure from efficient alternatives like DeepSeek has become impossible to ignore. As AI scholar Kai-Fu Lee bluntly put it: “You’re spending billion or billion a year, making a massive loss, and here you have a competitor coming in with an open-source model that’s for free.” This necessitates change. This economic reality prompted OpenAI to pursue a massive billion funding round that valued the company at an unprecedented billion. But even with a war chest of funds at its disposal, the fundamental challenge remains: OpenAI’s approach is dramatically more resource-intensive than DeepSeek’s. Beyond model training Another significant trend accelerated by DeepSeek is the shift toward “test-time compute”. As major AI labs have now trained their models on much of the available public data on the internet, data scarcity is slowing further improvements in pre-training. To get around this, DeepSeek announced a collaboration with Tsinghua University to enable “self-principled critique tuning”. This approach trains AI to develop its own rules for judging content and then uses those rules to provide detailed critiques. The system includes a built-in “judge” that evaluates the AI’s answers in real-time, comparing responses against core rules and quality standards. The development is part of a movement towards autonomous self-evaluation and improvement in AI systems in which models use inference time to improve results, rather than simply making models larger during training. DeepSeek calls its system “DeepSeek-GRM”. But, as with its model distillation approach, this could be considered a mix of promise and risk. For example, if the AI develops its own judging criteria, there’s a risk those principles diverge from human values, ethics or context. The rules could end up being overly rigid or biased, optimizing for style over substance, and/or reinforce incorrect assumptions or hallucinations. Additionally, without a human in the loop, issues could arise if the “judge” is flawed or misaligned. It’s a kind of AI talking to itself, without robust external grounding. On top of this, users and developers may not understand why the AI reached a certain conclusion — which feeds into a bigger concern: Should an AI be allowed to decide what is “good” or “correct” based solely on its own logic? These risks shouldn’t be discounted. At the same time, this approach is gaining traction, as again DeepSeek builds on the body of work of othersto create what is likely the first full-stack application of SPCT in a commercial effort. This could mark a powerful shift in AI autonomy, but there still is a need for rigorous auditing, transparency and safeguards. It’s not just about models getting smarter, but that they remain aligned, interpretable, and trustworthy as they begin critiquing themselves without human guardrails. Moving into the future So, taking all of this into account, the rise of DeepSeek signals a broader shift in the AI industry toward parallel innovation tracks. While companies continue building more powerful compute clusters for next-generation capabilities, there will also be intense focus on finding efficiency gains through software engineering and model architecture improvements to offset the challenges of AI energy consumption, which far outpaces power generation capacity.  Companies are taking note. Microsoft, for example, has halted data center development in multiple regions globally, recalibrating toward a more distributed, efficient infrastructure approach. While still planning to invest approximately billion in AI infrastructure this fiscal year, the company is reallocating resources in response to the efficiency gains DeepSeek introduced to the market. Meta has also responded, With so much movement in such a short time, it becomes somewhat ironic that the U.S. sanctions designed to maintain American AI dominance may have instead accelerated the very innovation they sought to contain. By constraining access to materials, DeepSeek was forced to blaze a new trail. Moving forward, as the industry continues to evolve globally, adaptability for all players will be key. Policies, people and market reactions will continue to shift the ground rules — whether it’s eliminating the AI diffusion rule, a new ban on technology purchases or something else entirely. It’s what we learn from one another and how we respond that will be worth watching. Jae Lee is CEO and co-founder of TwelveLabs. Daily insights on business use cases with VB Daily If you want to impress your boss, VB Daily has you covered. We give you the inside scoop on what companies are doing with generative AI, from regulatory shifts to practical deployments, so you can share insights for maximum ROI. Read our Privacy Policy Thanks for subscribing. Check out more VB newsletters here. An error occured. #rethinking #deepseeks #playbook #shakes #highspend
    VENTUREBEAT.COM
    Rethinking AI: DeepSeek’s playbook shakes up the high-spend, high-compute paradigm
    Join the event trusted by enterprise leaders for nearly two decades. VB Transform brings together the people building real enterprise AI strategy. Learn more When DeepSeek released its R1 model this January, it wasn’t just another AI announcement. It was a watershed moment that sent shockwaves through the tech industry, forcing industry leaders to reconsider their fundamental approaches to AI development. What makes DeepSeek’s accomplishment remarkable isn’t that the company developed novel capabilities; rather, it was how it achieved comparable results to those delivered by tech heavyweights at a fraction of the cost. In reality, DeepSeek didn’t do anything that hadn’t been done before; its innovation stemmed from pursuing different priorities. As a result, we are now experiencing rapid-fire development along two parallel tracks: efficiency and compute.  As DeepSeek prepares to release its R2 model, and as it concurrently faces the potential of even greater chip restrictions from the U.S., it’s important to look at how it captured so much attention. Engineering around constraints DeepSeek’s arrival, as sudden and dramatic as it was, captivated us all because it showcased the capacity for innovation to thrive even under significant constraints. Faced with U.S. export controls limiting access to cutting-edge AI chips, DeepSeek was forced to find alternative pathways to AI advancement. While U.S. companies pursued performance gains through more powerful hardware, bigger models and better data, DeepSeek focused on optimizing what was available. It implemented known ideas with remarkable execution — and there is novelty in executing what’s known and doing it well. This efficiency-first mindset yielded incredibly impressive results. DeepSeek’s R1 model reportedly matches OpenAI’s capabilities at just 5 to 10% of the operating cost. According to reports, the final training run for DeepSeek’s V3 predecessor cost a mere $6 million — which was described by former Tesla AI scientist Andrej Karpathy as “a joke of a budget” compared to the tens or hundreds of millions spent by U.S. competitors. More strikingly, while OpenAI reportedly spent $500 million training its recent “Orion” model, DeepSeek achieved superior benchmark results for just $5.6 million — less than 1.2% of OpenAI’s investment. If you get starry eyed believing these incredible results were achieved even as DeepSeek was at a severe disadvantage based on its inability to access advanced AI chips, I hate to tell you, but that narrative isn’t entirely accurate (even though it makes a good story). Initial U.S. export controls focused primarily on compute capabilities, not on memory and networking — two crucial components for AI development. That means that the chips DeepSeek had access to were not poor quality chips; their networking and memory capabilities allowed DeepSeek to parallelize operations across many units, a key strategy for running their large model efficiently. This, combined with China’s national push toward controlling the entire vertical stack of AI infrastructure, resulted in accelerated innovation that many Western observers didn’t anticipate. DeepSeek’s advancements were an inevitable part of AI development, but they brought known advancements forward a few years earlier than would have been possible otherwise, and that’s pretty amazing. Pragmatism over process Beyond hardware optimization, DeepSeek’s approach to training data represents another departure from conventional Western practices. Rather than relying solely on web-scraped content, DeepSeek reportedly leveraged significant amounts of synthetic data and outputs from other proprietary models. This is a classic example of model distillation, or the ability to learn from really powerful models. Such an approach, however, raises questions about data privacy and governance that might concern Western enterprise customers. Still, it underscores DeepSeek’s overall pragmatic focus on results over process. The effective use of synthetic data is a key differentiator. Synthetic data can be very effective when it comes to training large models, but you have to be careful; some model architectures handle synthetic data better than others. For instance, transformer-based models with mixture of experts (MoE) architectures like DeepSeek’s tend to be more robust when incorporating synthetic data, while more traditional dense architectures like those used in early Llama models can experience performance degradation or even “model collapse” when trained on too much synthetic content. This architectural sensitivity matters because synthetic data introduces different patterns and distributions compared to real-world data. When a model architecture doesn’t handle synthetic data well, it may learn shortcuts or biases present in the synthetic data generation process rather than generalizable knowledge. This can lead to reduced performance on real-world tasks, increased hallucinations or brittleness when facing novel situations.  Still, DeepSeek’s engineering teams reportedly designed their model architecture specifically with synthetic data integration in mind from the earliest planning stages. This allowed the company to leverage the cost benefits of synthetic data without sacrificing performance. Market reverberations Why does all of this matter? Stock market aside, DeepSeek’s emergence has triggered substantive strategic shifts among industry leaders. Case in point: OpenAI. Sam Altman recently announced plans to release the company’s first “open-weight” language model since 2019. This is a pretty notable pivot for a company that built its business on proprietary systems. It seems DeepSeek’s rise, on top of Llama’s success, has hit OpenAI’s leader hard. Just a month after DeepSeek arrived on the scene, Altman admitted that OpenAI had been “on the wrong side of history” regarding open-source AI.  With OpenAI reportedly spending $7 to 8 billion annually on operations, the economic pressure from efficient alternatives like DeepSeek has become impossible to ignore. As AI scholar Kai-Fu Lee bluntly put it: “You’re spending $7 billion or $8 billion a year, making a massive loss, and here you have a competitor coming in with an open-source model that’s for free.” This necessitates change. This economic reality prompted OpenAI to pursue a massive $40 billion funding round that valued the company at an unprecedented $300 billion. But even with a war chest of funds at its disposal, the fundamental challenge remains: OpenAI’s approach is dramatically more resource-intensive than DeepSeek’s. Beyond model training Another significant trend accelerated by DeepSeek is the shift toward “test-time compute” (TTC). As major AI labs have now trained their models on much of the available public data on the internet, data scarcity is slowing further improvements in pre-training. To get around this, DeepSeek announced a collaboration with Tsinghua University to enable “self-principled critique tuning” (SPCT). This approach trains AI to develop its own rules for judging content and then uses those rules to provide detailed critiques. The system includes a built-in “judge” that evaluates the AI’s answers in real-time, comparing responses against core rules and quality standards. The development is part of a movement towards autonomous self-evaluation and improvement in AI systems in which models use inference time to improve results, rather than simply making models larger during training. DeepSeek calls its system “DeepSeek-GRM” (generalist reward modeling). But, as with its model distillation approach, this could be considered a mix of promise and risk. For example, if the AI develops its own judging criteria, there’s a risk those principles diverge from human values, ethics or context. The rules could end up being overly rigid or biased, optimizing for style over substance, and/or reinforce incorrect assumptions or hallucinations. Additionally, without a human in the loop, issues could arise if the “judge” is flawed or misaligned. It’s a kind of AI talking to itself, without robust external grounding. On top of this, users and developers may not understand why the AI reached a certain conclusion — which feeds into a bigger concern: Should an AI be allowed to decide what is “good” or “correct” based solely on its own logic? These risks shouldn’t be discounted. At the same time, this approach is gaining traction, as again DeepSeek builds on the body of work of others (think OpenAI’s “critique and revise” methods, Anthropic’s constitutional AI or research on self-rewarding agents) to create what is likely the first full-stack application of SPCT in a commercial effort. This could mark a powerful shift in AI autonomy, but there still is a need for rigorous auditing, transparency and safeguards. It’s not just about models getting smarter, but that they remain aligned, interpretable, and trustworthy as they begin critiquing themselves without human guardrails. Moving into the future So, taking all of this into account, the rise of DeepSeek signals a broader shift in the AI industry toward parallel innovation tracks. While companies continue building more powerful compute clusters for next-generation capabilities, there will also be intense focus on finding efficiency gains through software engineering and model architecture improvements to offset the challenges of AI energy consumption, which far outpaces power generation capacity.  Companies are taking note. Microsoft, for example, has halted data center development in multiple regions globally, recalibrating toward a more distributed, efficient infrastructure approach. While still planning to invest approximately $80 billion in AI infrastructure this fiscal year, the company is reallocating resources in response to the efficiency gains DeepSeek introduced to the market. Meta has also responded, With so much movement in such a short time, it becomes somewhat ironic that the U.S. sanctions designed to maintain American AI dominance may have instead accelerated the very innovation they sought to contain. By constraining access to materials, DeepSeek was forced to blaze a new trail. Moving forward, as the industry continues to evolve globally, adaptability for all players will be key. Policies, people and market reactions will continue to shift the ground rules — whether it’s eliminating the AI diffusion rule, a new ban on technology purchases or something else entirely. It’s what we learn from one another and how we respond that will be worth watching. Jae Lee is CEO and co-founder of TwelveLabs. Daily insights on business use cases with VB Daily If you want to impress your boss, VB Daily has you covered. We give you the inside scoop on what companies are doing with generative AI, from regulatory shifts to practical deployments, so you can share insights for maximum ROI. Read our Privacy Policy Thanks for subscribing. Check out more VB newsletters here. An error occured.
    0 Comentários 0 Compartilhamentos 0 Anterior
  • How Do I Make A Small Space Look Bigger Without Renovating

    Living in a small space doesn’t mean you have to feel cramped or boxed in. With the right design tricks, you can make even the tiniest room feel open, airy, and inviting, no renovation required. Whether you’re in a compact apartment, a small home, or just trying to make the most of a single room, smart styling and layout choices can dramatically shift how the space looks and feels. From strategic lighting and paint colors to furniture swaps and clever storage solutions, there are plenty of easy, affordable ways to stretch your square footage visually. Ready to transform your space? Here are some practical, design-savvy ideas to make your home feel bigger without tearing down a single wall.

    1. Opt for Multi-Functional Furniture

    Image Source: House Beautiful

    In a small space, every piece of furniture should earn its keep. Look for multi-functional items: ottomans that open up for storage, beds with drawers underneath, or coffee tables that can extend or lift to become a desk. Not only do these pieces help reduce clutter, but they also free up floor space, making the room look more open. Bonus points for furniture that can be folded away when not in use. By choosing versatile pieces, you’re making the most of every inch without sacrificing style or comfort.

    2. Keep Pathways Clear

    Image Source: The Spruce

    One of the simplest yet most effective ways to make a small space feel bigger is to keep pathways and walkways clear. When furniture or clutter blocks natural movement through a room, it can make the space feel cramped and chaotic. Take a walk through your home and notice where you’re dodging corners or squeezing between pieces,those are areas to rethink. Opt for smaller furniture with slim profiles, or rearrange what you have to create an easy, natural flow. Open walkways help your eyes move freely through the room, making everything feel more spacious, breathable, and intentional. It’s all about giving yourself room to move,literally and visually.

    3. Use Glass and Lucite Furniture

    Image Source: The Spruce

    Transparent furniture made from glass or Lucitetakes up less visual space because you can see right through it. A glass coffee table or clear dining chairs can provide functionality without cluttering up the view. These pieces practically disappear into the background, which helps the room feel more open. They also add a touch of modern sophistication. When you need furniture but don’t want it to dominate the room, going clear is a clever design choice.

    4. Don’t Over-Clutter Your Space

    Image Source: House Beautiful

    In small spaces, clutter accumulates fast,and it visually shrinks your environment. The more items scattered around, the more cramped the room feels. Start by taking a critical look at what you own and asking: do I really need this here? Use storage bins, under-bed containers, or floating shelves to hide away what you don’t use daily. Keep surfaces like countertops, desks, and coffee tables as clear as possible. A minimal, clean setup allows the eye to rest and makes the space feel open and intentional. Remember: less stuff equals more space,both physically and mentally.

    5. Utilize Your Windows

    Image Source: House Beautiful

    Windows are like built-in art that can also dramatically affect how big or small your space feels. Don’t cover them with heavy drapes or clutter them with too many objects on the sill. Keep window treatments light and minimal,sheer curtains or roller blinds are perfect. If privacy isn’t a big concern, consider leaving them bare. Letting natural light flood in through your windows instantly opens up your space and makes it feel brighter and more expansive. You can also place mirrors or shiny surfaces near windows to reflect more light into the room and maximize their impact.

    6. Downsize Your Dining Table

    Image Source: House Beautiful

    A large dining table can dominate a small room, leaving little space to move or breathe. If you rarely entertain a big crowd, consider downsizing to a smaller round or drop-leaf table. These take up less visual and physical space and still offer enough room for daily meals. You can always keep a folding table or stackable chairs nearby for when guests do come over. Round tables are especially great for small spaces because they allow smoother traffic flow and eliminate awkward corners. Plus, a smaller table encourages intimacy during meals and helps the whole area feel more open and functional.

    7. Use Mirrors Strategically

    Image Source: The Tiny Cottage

    Mirrors can work magic in a small room. They reflect both natural and artificial light, which can instantly make a space feel larger and brighter. A large mirror on a wall opposite a window can double the amount of light in your room. Mirrored furniture or decor elements like trays and picture frames also help. Think about using mirrored closet doors or even creating a mirror gallery wall. It’s not just about brightness; mirrors also create a sense of depth, tricking the eye into seeing more space than there actually is.

    8. Install a Murphy Bed

    Image Source: House Beautiful

    A Murphy bedis a game-changer for anyone living in a tight space. It folds up into the wall or a cabinet when not in use, instantly transforming your bedroom into a living room, office, or workout area. This setup gives you the flexibility to have a multi-purpose room without sacrificing comfort. Modern Murphy beds often come with built-in shelves or desks, offering even more function without taking up extra space. If you want to reclaim your floor during the day and still get a good night’s sleep, this is one smart solution.

    9. Paint It White

    Image Source: House Beautiful

    Painting your walls white is one of the easiest and most effective tricks to make a space feel bigger. White reflects light, helping the room feel open, clean, and fresh. It creates a seamless look, making walls seem to recede and ceilings feel higher. You can still have fun with the space, layer in texture, subtle patterns, or neutral accessories to keep it from feeling sterile. White also acts as a blank canvas, letting your furniture and art stand out. Whether you’re decorating a studio apartment or a small home office, a fresh coat of white paint can work wonders.

    10. Prioritize Natural Light

    Image Source: The Spruce

    Natural light has an incredible ability to make any room feel more spacious and welcoming. To make the most of it, avoid blocking windows with bulky furniture or dark curtains. Consider using light-filtering shades or sheer curtains to let sunlight pour in while maintaining some privacy. Arrange mirrors or reflective surfaces like glossy tables and metallic decor to bounce the light around the room. Even placing furniture in a way that lets light flow freely can change how open your home feels. Natural light not only brightens your space but also boosts your mood, making it a double win.

    11. Maximize Shelving

    Image Source: House Beautiful

    When floor space is limited, vertical storage becomes your best ally. Floating shelves, wall-mounted units, or tall bookcases draw the eye upward, creating a sense of height and maximizing every inch. They’re perfect for books, plants, artwork, or even kitchen supplies if you’re short on cabinets. You can also install corner shelves to use often-overlooked spots. Keep them tidy and curated,group items by color, size, or theme for a visually pleasing look. Shelving helps reduce clutter on the floor and tabletops, keeping your home organized and visually open without requiring any extra square footage.

    12. Keep It Neutral

    Image Source: House Beautiful

    Neutral tones, like soft whites, light grays, warm beiges, and pale taupes,can make a space feel calm and cohesive. These colors reflect light well and reduce visual clutter, making your room appear larger. A neutral palette doesn’t mean boring; you can still play with textures, patterns, and accents within that color family. Add throw pillows, rugs, or wall art in layered neutrals for interest without overwhelming the space. When everything flows in similar tones, it creates continuity, which tricks the eye into seeing a more expansive area. It’s an effortless way to open up your home without lifting a hammer.

    13. Choose Benches, Not Chairs

    Image Source: House Beautiful

    When space is tight, traditional dining chairs or bulky accent seats can eat up more room than they’re worth. Benches, on the other hand, are a sleek, versatile alternative. They tuck neatly under tables when not in use, saving valuable floor space and keeping walkways open. In entryways, living rooms, or at the foot of a bed, a bench offers seating and can double as storage or display. Some come with built-in compartments or open space beneath for baskets. Plus, benches visually declutter the room with their simple, low-profile design.

    14. Use Vertical Spaces

    Image Source: The Spruce

    When you’re short on square footage, think vertical. Use tall bookshelves, wall-mounted shelves, and hanging storage to keep things off the floor. Vertical lines naturally draw the eye upward, which creates a feeling of height and openness. Consider mounting floating shelves for books, plants, or decorative items. Hooks and pegboards can add function without taking up space. Making use of your wall space not only maximizes storage but also frees up floor area, which visually enlarges the room.

    15. Add a Gallery Wall

    Image Source: House Beautiful

    It might seem counterintuitive, but adding a gallery wall can actually make a small space feel bigger,if done right. A curated display of art, photos, or prints draws the eye upward and outward, giving the illusion of a larger area. Stick to cohesive frames and colors to maintain a clean, intentional look. You can go symmetrical for a polished feel or get creative with an organic, freeform layout. Position the gallery higher on the wall to elongate the space visually. Just be sure not to overcrowd,balance is key. A thoughtful gallery wall adds personality without cluttering the room.

    Finishing Notes:

    Creating a spacious feel in a small home doesn’t require a sledgehammer or a major remodel, it just takes a bit of strategy and smart design. From downsizing your dining table to letting natural light pour in, each tip we’ve shared is an easy, budget-friendly way to visually open up your space.

    If you’re looking for even more inspiration, layout ideas, or style guides, be sure to explore Home Designing. It’s packed with expert advice, modern interior trends, and visual walkthroughs to help you transform your space, big or small, into something that truly feels like home.
    #how #make #small #space #look
    How Do I Make A Small Space Look Bigger Without Renovating
    Living in a small space doesn’t mean you have to feel cramped or boxed in. With the right design tricks, you can make even the tiniest room feel open, airy, and inviting, no renovation required. Whether you’re in a compact apartment, a small home, or just trying to make the most of a single room, smart styling and layout choices can dramatically shift how the space looks and feels. From strategic lighting and paint colors to furniture swaps and clever storage solutions, there are plenty of easy, affordable ways to stretch your square footage visually. Ready to transform your space? Here are some practical, design-savvy ideas to make your home feel bigger without tearing down a single wall. 1. Opt for Multi-Functional Furniture Image Source: House Beautiful In a small space, every piece of furniture should earn its keep. Look for multi-functional items: ottomans that open up for storage, beds with drawers underneath, or coffee tables that can extend or lift to become a desk. Not only do these pieces help reduce clutter, but they also free up floor space, making the room look more open. Bonus points for furniture that can be folded away when not in use. By choosing versatile pieces, you’re making the most of every inch without sacrificing style or comfort. 2. Keep Pathways Clear Image Source: The Spruce One of the simplest yet most effective ways to make a small space feel bigger is to keep pathways and walkways clear. When furniture or clutter blocks natural movement through a room, it can make the space feel cramped and chaotic. Take a walk through your home and notice where you’re dodging corners or squeezing between pieces,those are areas to rethink. Opt for smaller furniture with slim profiles, or rearrange what you have to create an easy, natural flow. Open walkways help your eyes move freely through the room, making everything feel more spacious, breathable, and intentional. It’s all about giving yourself room to move,literally and visually. 3. Use Glass and Lucite Furniture Image Source: The Spruce Transparent furniture made from glass or Lucitetakes up less visual space because you can see right through it. A glass coffee table or clear dining chairs can provide functionality without cluttering up the view. These pieces practically disappear into the background, which helps the room feel more open. They also add a touch of modern sophistication. When you need furniture but don’t want it to dominate the room, going clear is a clever design choice. 4. Don’t Over-Clutter Your Space Image Source: House Beautiful In small spaces, clutter accumulates fast,and it visually shrinks your environment. The more items scattered around, the more cramped the room feels. Start by taking a critical look at what you own and asking: do I really need this here? Use storage bins, under-bed containers, or floating shelves to hide away what you don’t use daily. Keep surfaces like countertops, desks, and coffee tables as clear as possible. A minimal, clean setup allows the eye to rest and makes the space feel open and intentional. Remember: less stuff equals more space,both physically and mentally. 5. Utilize Your Windows Image Source: House Beautiful Windows are like built-in art that can also dramatically affect how big or small your space feels. Don’t cover them with heavy drapes or clutter them with too many objects on the sill. Keep window treatments light and minimal,sheer curtains or roller blinds are perfect. If privacy isn’t a big concern, consider leaving them bare. Letting natural light flood in through your windows instantly opens up your space and makes it feel brighter and more expansive. You can also place mirrors or shiny surfaces near windows to reflect more light into the room and maximize their impact. 6. Downsize Your Dining Table Image Source: House Beautiful A large dining table can dominate a small room, leaving little space to move or breathe. If you rarely entertain a big crowd, consider downsizing to a smaller round or drop-leaf table. These take up less visual and physical space and still offer enough room for daily meals. You can always keep a folding table or stackable chairs nearby for when guests do come over. Round tables are especially great for small spaces because they allow smoother traffic flow and eliminate awkward corners. Plus, a smaller table encourages intimacy during meals and helps the whole area feel more open and functional. 7. Use Mirrors Strategically Image Source: The Tiny Cottage Mirrors can work magic in a small room. They reflect both natural and artificial light, which can instantly make a space feel larger and brighter. A large mirror on a wall opposite a window can double the amount of light in your room. Mirrored furniture or decor elements like trays and picture frames also help. Think about using mirrored closet doors or even creating a mirror gallery wall. It’s not just about brightness; mirrors also create a sense of depth, tricking the eye into seeing more space than there actually is. 8. Install a Murphy Bed Image Source: House Beautiful A Murphy bedis a game-changer for anyone living in a tight space. It folds up into the wall or a cabinet when not in use, instantly transforming your bedroom into a living room, office, or workout area. This setup gives you the flexibility to have a multi-purpose room without sacrificing comfort. Modern Murphy beds often come with built-in shelves or desks, offering even more function without taking up extra space. If you want to reclaim your floor during the day and still get a good night’s sleep, this is one smart solution. 9. Paint It White Image Source: House Beautiful Painting your walls white is one of the easiest and most effective tricks to make a space feel bigger. White reflects light, helping the room feel open, clean, and fresh. It creates a seamless look, making walls seem to recede and ceilings feel higher. You can still have fun with the space, layer in texture, subtle patterns, or neutral accessories to keep it from feeling sterile. White also acts as a blank canvas, letting your furniture and art stand out. Whether you’re decorating a studio apartment or a small home office, a fresh coat of white paint can work wonders. 10. Prioritize Natural Light Image Source: The Spruce Natural light has an incredible ability to make any room feel more spacious and welcoming. To make the most of it, avoid blocking windows with bulky furniture or dark curtains. Consider using light-filtering shades or sheer curtains to let sunlight pour in while maintaining some privacy. Arrange mirrors or reflective surfaces like glossy tables and metallic decor to bounce the light around the room. Even placing furniture in a way that lets light flow freely can change how open your home feels. Natural light not only brightens your space but also boosts your mood, making it a double win. 11. Maximize Shelving Image Source: House Beautiful When floor space is limited, vertical storage becomes your best ally. Floating shelves, wall-mounted units, or tall bookcases draw the eye upward, creating a sense of height and maximizing every inch. They’re perfect for books, plants, artwork, or even kitchen supplies if you’re short on cabinets. You can also install corner shelves to use often-overlooked spots. Keep them tidy and curated,group items by color, size, or theme for a visually pleasing look. Shelving helps reduce clutter on the floor and tabletops, keeping your home organized and visually open without requiring any extra square footage. 12. Keep It Neutral Image Source: House Beautiful Neutral tones, like soft whites, light grays, warm beiges, and pale taupes,can make a space feel calm and cohesive. These colors reflect light well and reduce visual clutter, making your room appear larger. A neutral palette doesn’t mean boring; you can still play with textures, patterns, and accents within that color family. Add throw pillows, rugs, or wall art in layered neutrals for interest without overwhelming the space. When everything flows in similar tones, it creates continuity, which tricks the eye into seeing a more expansive area. It’s an effortless way to open up your home without lifting a hammer. 13. Choose Benches, Not Chairs Image Source: House Beautiful When space is tight, traditional dining chairs or bulky accent seats can eat up more room than they’re worth. Benches, on the other hand, are a sleek, versatile alternative. They tuck neatly under tables when not in use, saving valuable floor space and keeping walkways open. In entryways, living rooms, or at the foot of a bed, a bench offers seating and can double as storage or display. Some come with built-in compartments or open space beneath for baskets. Plus, benches visually declutter the room with their simple, low-profile design. 14. Use Vertical Spaces Image Source: The Spruce When you’re short on square footage, think vertical. Use tall bookshelves, wall-mounted shelves, and hanging storage to keep things off the floor. Vertical lines naturally draw the eye upward, which creates a feeling of height and openness. Consider mounting floating shelves for books, plants, or decorative items. Hooks and pegboards can add function without taking up space. Making use of your wall space not only maximizes storage but also frees up floor area, which visually enlarges the room. 15. Add a Gallery Wall Image Source: House Beautiful It might seem counterintuitive, but adding a gallery wall can actually make a small space feel bigger,if done right. A curated display of art, photos, or prints draws the eye upward and outward, giving the illusion of a larger area. Stick to cohesive frames and colors to maintain a clean, intentional look. You can go symmetrical for a polished feel or get creative with an organic, freeform layout. Position the gallery higher on the wall to elongate the space visually. Just be sure not to overcrowd,balance is key. A thoughtful gallery wall adds personality without cluttering the room. Finishing Notes: Creating a spacious feel in a small home doesn’t require a sledgehammer or a major remodel, it just takes a bit of strategy and smart design. From downsizing your dining table to letting natural light pour in, each tip we’ve shared is an easy, budget-friendly way to visually open up your space. If you’re looking for even more inspiration, layout ideas, or style guides, be sure to explore Home Designing. It’s packed with expert advice, modern interior trends, and visual walkthroughs to help you transform your space, big or small, into something that truly feels like home. #how #make #small #space #look
    WWW.HOME-DESIGNING.COM
    How Do I Make A Small Space Look Bigger Without Renovating
    Living in a small space doesn’t mean you have to feel cramped or boxed in. With the right design tricks, you can make even the tiniest room feel open, airy, and inviting, no renovation required. Whether you’re in a compact apartment, a small home, or just trying to make the most of a single room, smart styling and layout choices can dramatically shift how the space looks and feels. From strategic lighting and paint colors to furniture swaps and clever storage solutions, there are plenty of easy, affordable ways to stretch your square footage visually. Ready to transform your space? Here are some practical, design-savvy ideas to make your home feel bigger without tearing down a single wall. 1. Opt for Multi-Functional Furniture Image Source: House Beautiful In a small space, every piece of furniture should earn its keep. Look for multi-functional items: ottomans that open up for storage, beds with drawers underneath, or coffee tables that can extend or lift to become a desk. Not only do these pieces help reduce clutter, but they also free up floor space, making the room look more open. Bonus points for furniture that can be folded away when not in use. By choosing versatile pieces, you’re making the most of every inch without sacrificing style or comfort. 2. Keep Pathways Clear Image Source: The Spruce One of the simplest yet most effective ways to make a small space feel bigger is to keep pathways and walkways clear. When furniture or clutter blocks natural movement through a room, it can make the space feel cramped and chaotic. Take a walk through your home and notice where you’re dodging corners or squeezing between pieces,those are areas to rethink. Opt for smaller furniture with slim profiles, or rearrange what you have to create an easy, natural flow. Open walkways help your eyes move freely through the room, making everything feel more spacious, breathable, and intentional. It’s all about giving yourself room to move,literally and visually. 3. Use Glass and Lucite Furniture Image Source: The Spruce Transparent furniture made from glass or Lucite (acrylic) takes up less visual space because you can see right through it. A glass coffee table or clear dining chairs can provide functionality without cluttering up the view. These pieces practically disappear into the background, which helps the room feel more open. They also add a touch of modern sophistication. When you need furniture but don’t want it to dominate the room, going clear is a clever design choice. 4. Don’t Over-Clutter Your Space Image Source: House Beautiful In small spaces, clutter accumulates fast,and it visually shrinks your environment. The more items scattered around, the more cramped the room feels. Start by taking a critical look at what you own and asking: do I really need this here? Use storage bins, under-bed containers, or floating shelves to hide away what you don’t use daily. Keep surfaces like countertops, desks, and coffee tables as clear as possible. A minimal, clean setup allows the eye to rest and makes the space feel open and intentional. Remember: less stuff equals more space,both physically and mentally. 5. Utilize Your Windows Image Source: House Beautiful Windows are like built-in art that can also dramatically affect how big or small your space feels. Don’t cover them with heavy drapes or clutter them with too many objects on the sill. Keep window treatments light and minimal,sheer curtains or roller blinds are perfect. If privacy isn’t a big concern, consider leaving them bare. Letting natural light flood in through your windows instantly opens up your space and makes it feel brighter and more expansive. You can also place mirrors or shiny surfaces near windows to reflect more light into the room and maximize their impact. 6. Downsize Your Dining Table Image Source: House Beautiful A large dining table can dominate a small room, leaving little space to move or breathe. If you rarely entertain a big crowd, consider downsizing to a smaller round or drop-leaf table. These take up less visual and physical space and still offer enough room for daily meals. You can always keep a folding table or stackable chairs nearby for when guests do come over. Round tables are especially great for small spaces because they allow smoother traffic flow and eliminate awkward corners. Plus, a smaller table encourages intimacy during meals and helps the whole area feel more open and functional. 7. Use Mirrors Strategically Image Source: The Tiny Cottage Mirrors can work magic in a small room. They reflect both natural and artificial light, which can instantly make a space feel larger and brighter. A large mirror on a wall opposite a window can double the amount of light in your room. Mirrored furniture or decor elements like trays and picture frames also help. Think about using mirrored closet doors or even creating a mirror gallery wall. It’s not just about brightness; mirrors also create a sense of depth, tricking the eye into seeing more space than there actually is. 8. Install a Murphy Bed Image Source: House Beautiful A Murphy bed (also known as a wall bed) is a game-changer for anyone living in a tight space. It folds up into the wall or a cabinet when not in use, instantly transforming your bedroom into a living room, office, or workout area. This setup gives you the flexibility to have a multi-purpose room without sacrificing comfort. Modern Murphy beds often come with built-in shelves or desks, offering even more function without taking up extra space. If you want to reclaim your floor during the day and still get a good night’s sleep, this is one smart solution. 9. Paint It White Image Source: House Beautiful Painting your walls white is one of the easiest and most effective tricks to make a space feel bigger. White reflects light, helping the room feel open, clean, and fresh. It creates a seamless look, making walls seem to recede and ceilings feel higher. You can still have fun with the space, layer in texture, subtle patterns, or neutral accessories to keep it from feeling sterile. White also acts as a blank canvas, letting your furniture and art stand out. Whether you’re decorating a studio apartment or a small home office, a fresh coat of white paint can work wonders. 10. Prioritize Natural Light Image Source: The Spruce Natural light has an incredible ability to make any room feel more spacious and welcoming. To make the most of it, avoid blocking windows with bulky furniture or dark curtains. Consider using light-filtering shades or sheer curtains to let sunlight pour in while maintaining some privacy. Arrange mirrors or reflective surfaces like glossy tables and metallic decor to bounce the light around the room. Even placing furniture in a way that lets light flow freely can change how open your home feels. Natural light not only brightens your space but also boosts your mood, making it a double win. 11. Maximize Shelving Image Source: House Beautiful When floor space is limited, vertical storage becomes your best ally. Floating shelves, wall-mounted units, or tall bookcases draw the eye upward, creating a sense of height and maximizing every inch. They’re perfect for books, plants, artwork, or even kitchen supplies if you’re short on cabinets. You can also install corner shelves to use often-overlooked spots. Keep them tidy and curated,group items by color, size, or theme for a visually pleasing look. Shelving helps reduce clutter on the floor and tabletops, keeping your home organized and visually open without requiring any extra square footage. 12. Keep It Neutral Image Source: House Beautiful Neutral tones, like soft whites, light grays, warm beiges, and pale taupes,can make a space feel calm and cohesive. These colors reflect light well and reduce visual clutter, making your room appear larger. A neutral palette doesn’t mean boring; you can still play with textures, patterns, and accents within that color family. Add throw pillows, rugs, or wall art in layered neutrals for interest without overwhelming the space. When everything flows in similar tones, it creates continuity, which tricks the eye into seeing a more expansive area. It’s an effortless way to open up your home without lifting a hammer. 13. Choose Benches, Not Chairs Image Source: House Beautiful When space is tight, traditional dining chairs or bulky accent seats can eat up more room than they’re worth. Benches, on the other hand, are a sleek, versatile alternative. They tuck neatly under tables when not in use, saving valuable floor space and keeping walkways open. In entryways, living rooms, or at the foot of a bed, a bench offers seating and can double as storage or display. Some come with built-in compartments or open space beneath for baskets. Plus, benches visually declutter the room with their simple, low-profile design. 14. Use Vertical Spaces Image Source: The Spruce When you’re short on square footage, think vertical. Use tall bookshelves, wall-mounted shelves, and hanging storage to keep things off the floor. Vertical lines naturally draw the eye upward, which creates a feeling of height and openness. Consider mounting floating shelves for books, plants, or decorative items. Hooks and pegboards can add function without taking up space. Making use of your wall space not only maximizes storage but also frees up floor area, which visually enlarges the room. 15. Add a Gallery Wall Image Source: House Beautiful It might seem counterintuitive, but adding a gallery wall can actually make a small space feel bigger,if done right. A curated display of art, photos, or prints draws the eye upward and outward, giving the illusion of a larger area. Stick to cohesive frames and colors to maintain a clean, intentional look. You can go symmetrical for a polished feel or get creative with an organic, freeform layout. Position the gallery higher on the wall to elongate the space visually. Just be sure not to overcrowd,balance is key. A thoughtful gallery wall adds personality without cluttering the room. Finishing Notes: Creating a spacious feel in a small home doesn’t require a sledgehammer or a major remodel, it just takes a bit of strategy and smart design. From downsizing your dining table to letting natural light pour in, each tip we’ve shared is an easy, budget-friendly way to visually open up your space. If you’re looking for even more inspiration, layout ideas, or style guides, be sure to explore Home Designing. It’s packed with expert advice, modern interior trends, and visual walkthroughs to help you transform your space, big or small, into something that truly feels like home.
    0 Comentários 0 Compartilhamentos 0 Anterior
CGShares https://cgshares.com