• لماذا تقضي ساعات في قراءة ملفات PDF المعقدة بينما يمكنك ببساطة ترك ChatGPT يقوم بالمهمة نيابةً عنك؟ نعم، لأن الذكاء الاصطناعي قد وصل إلى ذروته في تلخيص الممل! حان الوقت لكي نترك العناء لآلة تفكر نيابةً عنا، بينما نستمتع بكوب من القهوة ونتابع آخر مستجدات الدليل الشامل لتلخيص ملفات PDF.

    ربما سيأتي اليوم الذي نحتاج فيه فقط إلى كتابة "تلخيص لي" في كل شيء، من التقارير إلى الأبحاث، وسنحصل على حياة خالية من التفكير. لكن انتبهوا، لا تنسوا أن تسألوا ChatGPT عن
    لماذا تقضي ساعات في قراءة ملفات PDF المعقدة بينما يمكنك ببساطة ترك ChatGPT يقوم بالمهمة نيابةً عنك؟ نعم، لأن الذكاء الاصطناعي قد وصل إلى ذروته في تلخيص الممل! حان الوقت لكي نترك العناء لآلة تفكر نيابةً عنا، بينما نستمتع بكوب من القهوة ونتابع آخر مستجدات الدليل الشامل لتلخيص ملفات PDF. ربما سيأتي اليوم الذي نحتاج فيه فقط إلى كتابة "تلخيص لي" في كل شيء، من التقارير إلى الأبحاث، وسنحصل على حياة خالية من التفكير. لكن انتبهوا، لا تنسوا أن تسألوا ChatGPT عن
    ARABHARDWARE.NET
    الدليل الشامل لتلخيص ملفات PDF باستخدام ChatGPT (وما بعده)
    The post الدليل الشامل لتلخيص ملفات PDF باستخدام ChatGPT (وما بعده) appeared first on عرب هاردوير.
    Like
    Wow
    Love
    Sad
    Angry
    50
    1 Комментарии 0 Поделились 0 предпросмотр
  • Your next nonfiction book could write itself, but you’ll own the rights

    TL;DR: Turn ideas into full-length books with AI—lifetime access for just Writing a book takes time—something most of us don’t have between inbox chaos and back-to-back meetings. But what if all you needed was an idea? That’s where YouBooks steps in. This AI-powered tool helps you generate full-length nonfiction books with just a few prompts, and right now, you can lock in lifetime access for.
    YouBooks pulls from several top-tier AI models, like ChatGPT, Claude, and Gemini, and combines them with live web research to build out detailed, structured manuscripts up to 300,000 words. Whether you want to write about productivity, startup culture, parenting, or personal finance, feed in your topic and let the AI do the heavy lifting.
    Why is Youbooks for you?

    150,000 credits per monthDownloadable formats: PDF, DOCX, EPUB
    Commercial rights so that you can sell, share, or publish your books
    Custom style options to match your tone or brand

    It’s a serious time-saver if you’ve been sitting on an idea forever or want to build a content empire without writing every word yourself. Plus, unlike many AI tools, YouBooks gives you full ownership of the content you create.

    Snag a lifetime subscription to YouBooks for  and start turning your thoughts into fully formed nonfiction books: no ghostwriters, no subscriptions, and no gatekeepers.

    Youbooks – AI Nonfiction Book Generator: Lifetime SubscriptionSee Deal
    StackSocial prices subject to change.
    #your #next #nonfiction #book #could
    Your next nonfiction book could write itself, but you’ll own the rights
    TL;DR: Turn ideas into full-length books with AI—lifetime access for just Writing a book takes time—something most of us don’t have between inbox chaos and back-to-back meetings. But what if all you needed was an idea? That’s where YouBooks steps in. This AI-powered tool helps you generate full-length nonfiction books with just a few prompts, and right now, you can lock in lifetime access for. YouBooks pulls from several top-tier AI models, like ChatGPT, Claude, and Gemini, and combines them with live web research to build out detailed, structured manuscripts up to 300,000 words. Whether you want to write about productivity, startup culture, parenting, or personal finance, feed in your topic and let the AI do the heavy lifting. Why is Youbooks for you? 150,000 credits per monthDownloadable formats: PDF, DOCX, EPUB Commercial rights so that you can sell, share, or publish your books Custom style options to match your tone or brand It’s a serious time-saver if you’ve been sitting on an idea forever or want to build a content empire without writing every word yourself. Plus, unlike many AI tools, YouBooks gives you full ownership of the content you create. Snag a lifetime subscription to YouBooks for  and start turning your thoughts into fully formed nonfiction books: no ghostwriters, no subscriptions, and no gatekeepers. Youbooks – AI Nonfiction Book Generator: Lifetime SubscriptionSee Deal StackSocial prices subject to change. #your #next #nonfiction #book #could
    WWW.PCWORLD.COM
    Your next nonfiction book could write itself, but you’ll own the rights
    TL;DR: Turn ideas into full-length books with AI—lifetime access for just $49. Writing a book takes time—something most of us don’t have between inbox chaos and back-to-back meetings. But what if all you needed was an idea? That’s where YouBooks steps in. This AI-powered tool helps you generate full-length nonfiction books with just a few prompts, and right now, you can lock in lifetime access for $49 (reg. $540). YouBooks pulls from several top-tier AI models, like ChatGPT, Claude, and Gemini, and combines them with live web research to build out detailed, structured manuscripts up to 300,000 words. Whether you want to write about productivity, startup culture, parenting, or personal finance, feed in your topic and let the AI do the heavy lifting. Why is Youbooks for you? 150,000 credits per month (1 word = 1 credit) Downloadable formats: PDF, DOCX, EPUB Commercial rights so that you can sell, share, or publish your books Custom style options to match your tone or brand It’s a serious time-saver if you’ve been sitting on an idea forever or want to build a content empire without writing every word yourself. Plus, unlike many AI tools, YouBooks gives you full ownership of the content you create. Snag a lifetime subscription to YouBooks for $49 and start turning your thoughts into fully formed nonfiction books: no ghostwriters, no subscriptions, and no gatekeepers. Youbooks – AI Nonfiction Book Generator: Lifetime SubscriptionSee Deal StackSocial prices subject to change.
    Like
    Love
    Wow
    Sad
    Angry
    516
    0 Комментарии 0 Поделились 0 предпросмотр
  • Ankur Kothari Q&A: Customer Engagement Book Interview

    Reading Time: 9 minutes
    In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns.
    But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic.
    This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results.
    Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.

     
    Ankur Kothari Q&A Interview
    1. What types of customer engagement data are most valuable for making strategic business decisions?
    Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns.
    Second would be demographic information: age, location, income, and other relevant personal characteristics.
    Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews.
    Fourth would be the customer journey data.

    We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data.

    2. How do you distinguish between data that is actionable versus data that is just noise?
    First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance.
    Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in.

    You also want to make sure that there is consistency across sources.
    Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory.
    Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy.

    By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions.

    3. How can customer engagement data be used to identify and prioritize new business opportunities?
    First, it helps us to uncover unmet needs.

    By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points.

    Second would be identifying emerging needs.
    Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly.
    Third would be segmentation analysis.
    Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies.
    Last is to build competitive differentiation.

    Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions.

    4. Can you share an example of where data insights directly influenced a critical decision?
    I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings.
    We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms.
    That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs.

    That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial.

    5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time?
    When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences.
    We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments.
    Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content.

    With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns.

    6. How are you doing the 1:1 personalization?
    We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer.
    So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer.
    That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience.

    We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers.

    7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service?
    Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved.
    The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments.

    Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention.

    So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization.

    8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights?
    I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights.

    Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement.

    Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant.
    As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively.
    So there’s a lack of understanding of marketing and sales as domains.
    It’s a huge effort and can take a lot of investment.

    Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing.

    9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data?
    If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge.
    Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side.

    Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important.

    10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before?
    First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do.
    And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations.
    The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it.

    Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one.

    11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations?
    We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI.
    We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals.

    We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization.

    12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data?
    I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points.
    Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us.
    We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels.
    Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms.

    Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps.

    13. How do you ensure data quality and consistency across multiple channels to make these informed decisions?
    We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies.
    While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing.
    We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats.

    On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically.

    14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years?
    The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices.
    Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities.
    We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases.
    As the world is collecting more data, privacy concerns and regulations come into play.
    I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies.
    And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture.

    So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.

     
    This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die.
    Download the PDF or request a physical copy of the book here.
    The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    #ankur #kothari #qampampa #customer #engagement
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage. #ankur #kothari #qampampa #customer #engagement
    WWW.MOENGAGE.COM
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question (and many others), we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    Like
    Love
    Wow
    Angry
    Sad
    478
    0 Комментарии 0 Поделились 0 предпросмотр
  • Would you switch browsers for a chatbot?

    Hi, friends! Welcome to Installer No. 87, your guide to the best and Verge-iest stuff in the world.This week, I’ve been reading about Sabrina Carpenter and Khaby Lame and intimacy coordinators, finally making a dent in Barbarians at the Gate, watching all the Ben Schwartz and Friends I can find on YouTube, planning my days with the new Finalist beta, recklessly installing all the Apple developer betas after WWDC, thoroughly enjoying Dakota Johnson’s current press tour, and trying to clear all my inboxes before I go on parental leave. It’s… going.I also have for you a much-awaited new browser, a surprise update to a great photo editor, a neat trailer for a meh-looking movie, a classic Steve Jobs speech, and much more. Slightly shorter issue this week, sorry; there’s just a lot going on, but I didn’t want to leave y’all hanging entirely. Oh, and: we’ll be off next week, for Juneteenth, vacation, and general summer chaos reasons. We’ll be back in full force after that, though! Let’s get into it.The DropDia. I know there are a lot of Arc fans here in the Installerverse, and I know you, like me, will have a lot of feelings about the company’s new and extremely AI-focused browser. Personally, I don’t see leaving Arc anytime soon, but there are some really fascinating ideasin Dia already. Snapseed 3.0. I completely forgot Snapseed even existed, and now here’s a really nice update with a bunch of new editing tools and a nice new redesign! As straightforward photo editors go, this is one of the better ones. The new version is only on iOS right now, but I assume it’s heading to Android shortly.“I Tried To Make Something In America.” I was first turned onto the story of the Smarter Scrubber by a great Search Engine episode, and this is a great companion to the story about what it really takes to bring manufacturing back to the US. And why it’s hard to justify.. That link, and the trailer, will only do anything for you if you have a newer iPhone. But even if you don’t care about the movie, the trailer — which actually buzzes in sync with the car’s rumbles and revs — is just really, really cool. Android 16. You can’t get the cool, colorful new look just yet or the desktop mode I am extremely excited about — there’s a lot of good stuff in Android 16 but most of it is coming later. Still, Live Updates look good, and there’s some helpful accessibility stuff, as well.The Infinite Machine Olto. I am such a sucker for any kind of futuristic-looking electric scooter, and this one really hits the sweet spot. Part moped, part e-bike, all Blade Runner vibes. If it wasn’t then I would’ve probably ordered one already.The Fujifilm X-E5. I kept wondering why Fujifilm didn’t just make, like, a hundred different great-looking cameras at every imaginable price because everyone wants a camera this cool. Well, here we are! It’s a spin on the X100VI but with interchangeable lenses and a few power-user features. All my photographer friends are going to want this.Call Her Alex. I confess I’m no Call Her Daddy diehard, but I found this two-part doc on Alex Cooper really interesting. Cooper’s story is all about understanding people, the internet, and what it means to feel connected now. It’s all very low-stakes and somehow also existential? It’s only two parts, you should watch it.“Steve Jobs - 2005 Stanford Commencement Address.” For the 20th anniversary of Jobs’ famousspeech, the Steve Jobs Archive put together a big package of stories, notes, and other materials around the speech. Plus, a newly high-def version of the video. This one’s always worth the 15 minutes.Dune: Awakening. Dune has ascended to the rare territory of “I will check out anything from this franchise, ever, no questions asked.” This game is big on open-world survival and ornithopters, too, so it’s even more my kind of thing. And it’s apparently punishingly difficult in spots.CrowdsourcedHere’s what the Installer community is into this week. I want to know what you’re into right now as well! Email installer@theverge.com or message me on Signal — @davidpierce.11 — with your recommendations for anything and everything, and we’ll feature some of our favorites here every week. For even more great recommendations, check out the replies to this post on Threads and this post on Bluesky.“I had tried the paper planner in the leather Paper Republic journal but since have moved onto the Remarkable Paper Pro color e-ink device which takes everything you like about paper but makes it editable and color coded. Combine this with a Remarkable planner in PDF format off of Etsy and you are golden.” — Jason“I started reading a manga series from content creator Cory Kenshin called Monsters We Make. So far, I love it. Already preordered Vol. 2.” — Rob“I recently went down the third party controller rabbit hole after my trusty adapted Xbox One controller finally kicked the bucket, and I wanted something I could use across my PC, phone, handheld, Switch, etc. I’ve been playing with the GameSir Cyclone 2 for a few weeks, and it feels really deluxe. The thumbsticks are impossibly smooth and accurate thanks to its TMR joysticks. The face buttons took a second for my brain to adjust to; the short travel distance initially registered as mushy, but once I stopped trying to pound the buttons like I was at the arcade, I found the subtle mechanical click super satisfying.” — Sam“The Apple TV Plus miniseries Long Way Home. It’s Ewan McGregor and Charley Boorman’s fourth Long Way series. This time they are touring some European countries on vintage bikes that they fixed, and it’s such a light-hearted show from two really down to earth humans. Connecting with other people in different cultures and seeing their journey is such a treat!” — Esmael“Podcast recommendation: Devil and the Deep Blue Sea by Christianity Today. A deep dive into the Satanic Panic of the 80’s and 90’s.” — Drew“Splatoon 3and the new How to Train Your Dragon.” — Aaron“I can’t put Mario Kart World down. When I get tired of the intense Knockout Tour mode I go to Free Roam and try to knock out P-Switch challenges, some of which are really tough! I’m obsessed.” — Dave“Fable, a cool app for finding books with virtual book clubs. It’s the closest to a more cozy online bookstore with more honest reviews. I just wish you could click on the author’s name to see their other books.” — Astrid“This is the Summer Games Fest weekand there are a TON of game demos to try out on Steam. One that has caught my attention / play time the most is Wildgate. It’s a team based spaceship shooter where ship crews battle and try to escape with a powerful artifact.” — Sean“Battlefront 2 is back for some reason. Still looks great.” — IanSigning offI have long been fascinated by weather forecasting. I recommend Andrew Blum’s book, The Weather Machine, to people all the time, as a way to understand both how we learned to predict the weather and why it’s a literally culture-changing thing to be able to do so. And if you want to make yourself so, so angry, there’s a whole chunk of Michael Lewis’s book, The Fifth Risk, about how a bunch of companies managed to basically privatize forecasts… based on government data. The weather is a huge business, an extremely powerful political force, and even more important to our way of life than we realize. And we’re really good at predicting the weather!I’ve also been hearing for years that weather forecasting is a perfect use for AI. It’s all about vast quantities of historical data, tiny fluctuations in readings, and finding patterns that often don’t want to be found. So, of course, as soon as I read my colleague Justine Calma’s story about a new Google project called Weather Lab, I spent the next hour poking through the data to see how well DeepMind managed to predict and track recent storms. It’s deeply wonky stuff, but it’s cool to see Big Tech trying to figure out Mother Nature — and almost getting it right. Almost.See you next week!See More:
    #would #you #switch #browsers #chatbot
    Would you switch browsers for a chatbot?
    Hi, friends! Welcome to Installer No. 87, your guide to the best and Verge-iest stuff in the world.This week, I’ve been reading about Sabrina Carpenter and Khaby Lame and intimacy coordinators, finally making a dent in Barbarians at the Gate, watching all the Ben Schwartz and Friends I can find on YouTube, planning my days with the new Finalist beta, recklessly installing all the Apple developer betas after WWDC, thoroughly enjoying Dakota Johnson’s current press tour, and trying to clear all my inboxes before I go on parental leave. It’s… going.I also have for you a much-awaited new browser, a surprise update to a great photo editor, a neat trailer for a meh-looking movie, a classic Steve Jobs speech, and much more. Slightly shorter issue this week, sorry; there’s just a lot going on, but I didn’t want to leave y’all hanging entirely. Oh, and: we’ll be off next week, for Juneteenth, vacation, and general summer chaos reasons. We’ll be back in full force after that, though! Let’s get into it.The DropDia. I know there are a lot of Arc fans here in the Installerverse, and I know you, like me, will have a lot of feelings about the company’s new and extremely AI-focused browser. Personally, I don’t see leaving Arc anytime soon, but there are some really fascinating ideasin Dia already. Snapseed 3.0. I completely forgot Snapseed even existed, and now here’s a really nice update with a bunch of new editing tools and a nice new redesign! As straightforward photo editors go, this is one of the better ones. The new version is only on iOS right now, but I assume it’s heading to Android shortly.“I Tried To Make Something In America.” I was first turned onto the story of the Smarter Scrubber by a great Search Engine episode, and this is a great companion to the story about what it really takes to bring manufacturing back to the US. And why it’s hard to justify.. That link, and the trailer, will only do anything for you if you have a newer iPhone. But even if you don’t care about the movie, the trailer — which actually buzzes in sync with the car’s rumbles and revs — is just really, really cool. Android 16. You can’t get the cool, colorful new look just yet or the desktop mode I am extremely excited about — there’s a lot of good stuff in Android 16 but most of it is coming later. Still, Live Updates look good, and there’s some helpful accessibility stuff, as well.The Infinite Machine Olto. I am such a sucker for any kind of futuristic-looking electric scooter, and this one really hits the sweet spot. Part moped, part e-bike, all Blade Runner vibes. If it wasn’t then I would’ve probably ordered one already.The Fujifilm X-E5. I kept wondering why Fujifilm didn’t just make, like, a hundred different great-looking cameras at every imaginable price because everyone wants a camera this cool. Well, here we are! It’s a spin on the X100VI but with interchangeable lenses and a few power-user features. All my photographer friends are going to want this.Call Her Alex. I confess I’m no Call Her Daddy diehard, but I found this two-part doc on Alex Cooper really interesting. Cooper’s story is all about understanding people, the internet, and what it means to feel connected now. It’s all very low-stakes and somehow also existential? It’s only two parts, you should watch it.“Steve Jobs - 2005 Stanford Commencement Address.” For the 20th anniversary of Jobs’ famousspeech, the Steve Jobs Archive put together a big package of stories, notes, and other materials around the speech. Plus, a newly high-def version of the video. This one’s always worth the 15 minutes.Dune: Awakening. Dune has ascended to the rare territory of “I will check out anything from this franchise, ever, no questions asked.” This game is big on open-world survival and ornithopters, too, so it’s even more my kind of thing. And it’s apparently punishingly difficult in spots.CrowdsourcedHere’s what the Installer community is into this week. I want to know what you’re into right now as well! Email installer@theverge.com or message me on Signal — @davidpierce.11 — with your recommendations for anything and everything, and we’ll feature some of our favorites here every week. For even more great recommendations, check out the replies to this post on Threads and this post on Bluesky.“I had tried the paper planner in the leather Paper Republic journal but since have moved onto the Remarkable Paper Pro color e-ink device which takes everything you like about paper but makes it editable and color coded. Combine this with a Remarkable planner in PDF format off of Etsy and you are golden.” — Jason“I started reading a manga series from content creator Cory Kenshin called Monsters We Make. So far, I love it. Already preordered Vol. 2.” — Rob“I recently went down the third party controller rabbit hole after my trusty adapted Xbox One controller finally kicked the bucket, and I wanted something I could use across my PC, phone, handheld, Switch, etc. I’ve been playing with the GameSir Cyclone 2 for a few weeks, and it feels really deluxe. The thumbsticks are impossibly smooth and accurate thanks to its TMR joysticks. The face buttons took a second for my brain to adjust to; the short travel distance initially registered as mushy, but once I stopped trying to pound the buttons like I was at the arcade, I found the subtle mechanical click super satisfying.” — Sam“The Apple TV Plus miniseries Long Way Home. It’s Ewan McGregor and Charley Boorman’s fourth Long Way series. This time they are touring some European countries on vintage bikes that they fixed, and it’s such a light-hearted show from two really down to earth humans. Connecting with other people in different cultures and seeing their journey is such a treat!” — Esmael“Podcast recommendation: Devil and the Deep Blue Sea by Christianity Today. A deep dive into the Satanic Panic of the 80’s and 90’s.” — Drew“Splatoon 3and the new How to Train Your Dragon.” — Aaron“I can’t put Mario Kart World down. When I get tired of the intense Knockout Tour mode I go to Free Roam and try to knock out P-Switch challenges, some of which are really tough! I’m obsessed.” — Dave“Fable, a cool app for finding books with virtual book clubs. It’s the closest to a more cozy online bookstore with more honest reviews. I just wish you could click on the author’s name to see their other books.” — Astrid“This is the Summer Games Fest weekand there are a TON of game demos to try out on Steam. One that has caught my attention / play time the most is Wildgate. It’s a team based spaceship shooter where ship crews battle and try to escape with a powerful artifact.” — Sean“Battlefront 2 is back for some reason. Still looks great.” — IanSigning offI have long been fascinated by weather forecasting. I recommend Andrew Blum’s book, The Weather Machine, to people all the time, as a way to understand both how we learned to predict the weather and why it’s a literally culture-changing thing to be able to do so. And if you want to make yourself so, so angry, there’s a whole chunk of Michael Lewis’s book, The Fifth Risk, about how a bunch of companies managed to basically privatize forecasts… based on government data. The weather is a huge business, an extremely powerful political force, and even more important to our way of life than we realize. And we’re really good at predicting the weather!I’ve also been hearing for years that weather forecasting is a perfect use for AI. It’s all about vast quantities of historical data, tiny fluctuations in readings, and finding patterns that often don’t want to be found. So, of course, as soon as I read my colleague Justine Calma’s story about a new Google project called Weather Lab, I spent the next hour poking through the data to see how well DeepMind managed to predict and track recent storms. It’s deeply wonky stuff, but it’s cool to see Big Tech trying to figure out Mother Nature — and almost getting it right. Almost.See you next week!See More: #would #you #switch #browsers #chatbot
    WWW.THEVERGE.COM
    Would you switch browsers for a chatbot?
    Hi, friends! Welcome to Installer No. 87, your guide to the best and Verge-iest stuff in the world. (If you’re new here, welcome, happy It’s Officially Too Hot Now Week, and also you can read all the old editions at the Installer homepage.) This week, I’ve been reading about Sabrina Carpenter and Khaby Lame and intimacy coordinators, finally making a dent in Barbarians at the Gate, watching all the Ben Schwartz and Friends I can find on YouTube, planning my days with the new Finalist beta, recklessly installing all the Apple developer betas after WWDC, thoroughly enjoying Dakota Johnson’s current press tour, and trying to clear all my inboxes before I go on parental leave. It’s… going.I also have for you a much-awaited new browser, a surprise update to a great photo editor, a neat trailer for a meh-looking movie, a classic Steve Jobs speech, and much more. Slightly shorter issue this week, sorry; there’s just a lot going on, but I didn’t want to leave y’all hanging entirely. Oh, and: we’ll be off next week, for Juneteenth, vacation, and general summer chaos reasons. We’ll be back in full force after that, though! Let’s get into it.(As always, the best part of Installer is your ideas and tips. What do you want to know more about? What awesome tricks do you know that everyone else should? What app should everyone be using? Tell me everything: installer@theverge.com. And if you know someone else who might enjoy Installer, forward it to them and tell them to subscribe here.)The DropDia. I know there are a lot of Arc fans here in the Installerverse, and I know you, like me, will have a lot of feelings about the company’s new and extremely AI-focused browser. Personally, I don’t see leaving Arc anytime soon, but there are some really fascinating ideas (and nice design touches) in Dia already. Snapseed 3.0. I completely forgot Snapseed even existed, and now here’s a really nice update with a bunch of new editing tools and a nice new redesign! As straightforward photo editors go, this is one of the better ones. The new version is only on iOS right now, but I assume it’s heading to Android shortly.“I Tried To Make Something In America.” I was first turned onto the story of the Smarter Scrubber by a great Search Engine episode, and this is a great companion to the story about what it really takes to bring manufacturing back to the US. And why it’s hard to justify.. That link, and the trailer, will only do anything for you if you have a newer iPhone. But even if you don’t care about the movie, the trailer — which actually buzzes in sync with the car’s rumbles and revs — is just really, really cool. Android 16. You can’t get the cool, colorful new look just yet or the desktop mode I am extremely excited about — there’s a lot of good stuff in Android 16 but most of it is coming later. Still, Live Updates look good, and there’s some helpful accessibility stuff, as well.The Infinite Machine Olto. I am such a sucker for any kind of futuristic-looking electric scooter, and this one really hits the sweet spot. Part moped, part e-bike, all Blade Runner vibes. If it wasn’t $3,500, then I would’ve probably ordered one already.The Fujifilm X-E5. I kept wondering why Fujifilm didn’t just make, like, a hundred different great-looking cameras at every imaginable price because everyone wants a camera this cool. Well, here we are! It’s a spin on the X100VI but with interchangeable lenses and a few power-user features. All my photographer friends are going to want this.Call Her Alex. I confess I’m no Call Her Daddy diehard, but I found this two-part doc on Alex Cooper really interesting. Cooper’s story is all about understanding people, the internet, and what it means to feel connected now. It’s all very low-stakes and somehow also existential? It’s only two parts, you should watch it.“Steve Jobs - 2005 Stanford Commencement Address.” For the 20th anniversary of Jobs’ famous (and genuinely fabulous) speech, the Steve Jobs Archive put together a big package of stories, notes, and other materials around the speech. Plus, a newly high-def version of the video. This one’s always worth the 15 minutes.Dune: Awakening. Dune has ascended to the rare territory of “I will check out anything from this franchise, ever, no questions asked.” This game is big on open-world survival and ornithopters, too, so it’s even more my kind of thing. And it’s apparently punishingly difficult in spots.CrowdsourcedHere’s what the Installer community is into this week. I want to know what you’re into right now as well! Email installer@theverge.com or message me on Signal — @davidpierce.11 — with your recommendations for anything and everything, and we’ll feature some of our favorites here every week. For even more great recommendations, check out the replies to this post on Threads and this post on Bluesky.“I had tried the paper planner in the leather Paper Republic journal but since have moved onto the Remarkable Paper Pro color e-ink device which takes everything you like about paper but makes it editable and color coded. Combine this with a Remarkable planner in PDF format off of Etsy and you are golden.” — Jason“I started reading a manga series from content creator Cory Kenshin called Monsters We Make. So far, I love it. Already preordered Vol. 2.” — Rob“I recently went down the third party controller rabbit hole after my trusty adapted Xbox One controller finally kicked the bucket, and I wanted something I could use across my PC, phone, handheld, Switch, etc. I’ve been playing with the GameSir Cyclone 2 for a few weeks, and it feels really deluxe. The thumbsticks are impossibly smooth and accurate thanks to its TMR joysticks. The face buttons took a second for my brain to adjust to; the short travel distance initially registered as mushy, but once I stopped trying to pound the buttons like I was at the arcade, I found the subtle mechanical click super satisfying.” — Sam“The Apple TV Plus miniseries Long Way Home. It’s Ewan McGregor and Charley Boorman’s fourth Long Way series. This time they are touring some European countries on vintage bikes that they fixed, and it’s such a light-hearted show from two really down to earth humans. Connecting with other people in different cultures and seeing their journey is such a treat!” — Esmael“Podcast recommendation: Devil and the Deep Blue Sea by Christianity Today. A deep dive into the Satanic Panic of the 80’s and 90’s.” — Drew“Splatoon 3 (the free Switch 2 update) and the new How to Train Your Dragon.” — Aaron“I can’t put Mario Kart World down. When I get tired of the intense Knockout Tour mode I go to Free Roam and try to knock out P-Switch challenges, some of which are really tough! I’m obsessed.” — Dave“Fable, a cool app for finding books with virtual book clubs. It’s the closest to a more cozy online bookstore with more honest reviews. I just wish you could click on the author’s name to see their other books.” — Astrid“This is the Summer Games Fest week (formerly E3, RIP) and there are a TON of game demos to try out on Steam. One that has caught my attention / play time the most is Wildgate. It’s a team based spaceship shooter where ship crews battle and try to escape with a powerful artifact.” — Sean“Battlefront 2 is back for some reason. Still looks great.” — IanSigning offI have long been fascinated by weather forecasting. I recommend Andrew Blum’s book, The Weather Machine, to people all the time, as a way to understand both how we learned to predict the weather and why it’s a literally culture-changing thing to be able to do so. And if you want to make yourself so, so angry, there’s a whole chunk of Michael Lewis’s book, The Fifth Risk, about how a bunch of companies managed to basically privatize forecasts… based on government data. The weather is a huge business, an extremely powerful political force, and even more important to our way of life than we realize. And we’re really good at predicting the weather!I’ve also been hearing for years that weather forecasting is a perfect use for AI. It’s all about vast quantities of historical data, tiny fluctuations in readings, and finding patterns that often don’t want to be found. So, of course, as soon as I read my colleague Justine Calma’s story about a new Google project called Weather Lab, I spent the next hour poking through the data to see how well DeepMind managed to predict and track recent storms. It’s deeply wonky stuff, but it’s cool to see Big Tech trying to figure out Mother Nature — and almost getting it right. Almost.See you next week!See More:
    Like
    Love
    Wow
    Angry
    Sad
    525
    0 Комментарии 0 Поделились 0 предпросмотр
  • Alec Haase Q&A: Customer Engagement Book Interview

    Reading Time: 6 minutes
    What is marketing without data? Assumptions. Guesses. Fluff.
    For Chapter 6 of our book, “The Customer Engagement Book: Adapt or Die,” we spoke with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, to explore how engagement data can truly inform critical business decisions. 
    Alec discusses the different types of customer behaviors that matter most, how to separate meaningful information from the rest, and the role of systems that learn over time to create tailored customer experiences.
    This interview provides insights into using data for real-time actions and shaping the future of marketing. Prepare to learn about AI decision-making and how a focus on data is changing how we engage with customers.

     
    Alec Haase Q&A Interview
    1. What types of customer engagement data are most valuable for making strategic business decisions?
    It’s a culmination of everything.
    Behavioral signals — the actual conversions and micro-conversions that users take within your product or website.
    Obviously, that’s things like purchases. But there are also other behavioral signals marketers should be using and thinking about. Things like micro-conversions — maybe that’s shopping for a product, clicking to learn more about a product, or visiting a certain page on your website.
    Behind that, you also need to have all your user data to tie that to.

    So I know someone took said action; I can follow up with them in email or out on paid social. I need the user identifiers to do that.

    2. How do you distinguish between data that is actionable versus data that is just noise?
    Data that’s actionable includes the conversions and micro-conversions — very clear instances of “someone did this.” I can react to or measure those.
    What’s becoming a bit of a challenge for marketers is understanding that there’s other data that is valuable for machine learning or reinforcement learning models, things like tags on the types of products customers are interacting with.
    Maybe there’s category information about that product, or color information. That would otherwise look like noise to the average marketer. But behind the scenes, it can be used for reinforcement learning.

    There is definitely the “clear-cut” actionable data, but marketers shouldn’t be quick to classify things as noise because the rise in machine learning and reinforcement learning will make that data more valuable.

    3. How can customer engagement data be used to identify and prioritize new business opportunities?
    At Hightouch, we don’t necessarily think about retroactive analysis. We have a system where we have customer engagement data firing in that we then have real-time scores reacting to.
    An interesting example is when you have machine learning and reinforcement learning models running. In the pet retailer example I gave you, the system is able to figure out what to prioritize.
    The concept of reinforcement learning is not a marketer making rules to say, “I know this type of thing works well on this type of audience.”

    It’s the machine itself using the data to determine what attribute responds well to which offer, recommendation, or marketing campaign.

    4. How can marketers ensure their use of customer engagement data aligns with the broader business objectives?
    It starts with the objectives. It’s starting with the desired outcome and working your way back. That whole flip of the paradigm is starting with outcomes and letting the system optimize. What are you trying to drive, and then back into the types of experiences that can make that happen?
    There’s personalization.
    When we talk about data-driven experiences and personalization, Spotify Wrapped is the North Star. For Spotify Wrapped, you want to drive customer stickiness and create a brand. To make that happen, you want to send a personalized email. What components do you want in that email?

    Maybe it’s top five songs, top five artists, and then you can back into the actual event data you need to make that happen.

    5. What role does engagement data play in influencing cross-functional decisions such as those in product development, sales, or customer service?
    For product development, it’s product analytics — knowing what features users are using, or seeing in heat maps where users are clicking.
    Sales is similar. We’re using behavioral signals like what types of content they’re reading on the site to help inform what they would be interested in — the types of products or the types of use cases.

    For customer service, you can look at errors they’ve run into in the past or specific purchases they’ve made, so that when you’re helping them the next time they engage with you, you know exactly what their past behaviors were and what products they could be calling about.

    6. What are some challenges marketers face when trying to translate customer engagement data into actionable insights?
    Access to data is one challenge. You might not know what data you have because marketers historically may not have been used to the systems where data is stored.
    Historically, that’s been pretty siloed away from them. Rich behavioral data and other data across the business was stored somewhere else.
    Now, as more companies embrace the data warehouse at the center of their business, it gives everyone a true single place where data can be stored.

    Marketers are working more with data teams, understanding more about the data they have, and using that data to power downstream use cases, personalization, reinforcement learning, or general business insights.

    7. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations?
    As a marketer, I think proof is key. The best thing is if you’ve actually run a test. “I think we should do this. I ran a small test, and it’s showing that this is actually proving out.” Being able to clearly explain and justify your reasoning with data is super important.

    8. What technology or tools have you found most effective for gathering and analyzing customer engagement data?
    Any type of behavioral event collection, specifically ones that write to the cloud data warehouse, is the critical component. Your data team is operating off the data warehouse.
    Having an event collection product that stores data in that central spot is really important if you want to use the other data when making recommendations.
    You want to get everything into the data warehouse where it can be used both for insights and for putting into action.

    For Spotify Wrapped, you want to collect behavioral event signals like songs listened to or concerts attended, writing to the warehouse so that you can get insights back — how many songs were played this year, projections for next month — but then you can also use those behavioral events in downstream platforms to fire off personalized emails with product recommendations or Spotify Wrapped-style experiences.

    9. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years?

    What we’re excited about is the concept of AI Decisioning — having AI agents actually using customer data to train their own models and decision-making to create personalized experiences.
    We’re sitting on top of all this behavioral data, engagement data, and user attributes, and our system is learning from all of that to make the best decisions across downstream systems.
    Whether that’s as simple as driving a loyalty program and figuring out what emails to send or what on-site experiences to show, or exposing insights that might lead you to completely change your business strategy, we see engagement data as the fuel to the engine of reinforcement learning, machine learning, AI agents, this whole next wave of Martech that’s just now coming.
    But it all starts with having the data to train those systems.

    I think that behavioral data is the fuel of modern Martech, and that only holds more true as Martech platforms adopt these decisioning and AI capabilities, because they’re only as good as the data that’s training the models.

     

     
    This interview Q&A was hosted with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, for Chapter 6 of The Customer Engagement Book: Adapt or Die.
    Download the PDF or request a physical copy of the book here.
    The post Alec Haase Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    #alec #haase #qampampa #customer #engagement
    Alec Haase Q&A: Customer Engagement Book Interview
    Reading Time: 6 minutes What is marketing without data? Assumptions. Guesses. Fluff. For Chapter 6 of our book, “The Customer Engagement Book: Adapt or Die,” we spoke with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, to explore how engagement data can truly inform critical business decisions.  Alec discusses the different types of customer behaviors that matter most, how to separate meaningful information from the rest, and the role of systems that learn over time to create tailored customer experiences. This interview provides insights into using data for real-time actions and shaping the future of marketing. Prepare to learn about AI decision-making and how a focus on data is changing how we engage with customers.   Alec Haase Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? It’s a culmination of everything. Behavioral signals — the actual conversions and micro-conversions that users take within your product or website. Obviously, that’s things like purchases. But there are also other behavioral signals marketers should be using and thinking about. Things like micro-conversions — maybe that’s shopping for a product, clicking to learn more about a product, or visiting a certain page on your website. Behind that, you also need to have all your user data to tie that to. So I know someone took said action; I can follow up with them in email or out on paid social. I need the user identifiers to do that. 2. How do you distinguish between data that is actionable versus data that is just noise? Data that’s actionable includes the conversions and micro-conversions — very clear instances of “someone did this.” I can react to or measure those. What’s becoming a bit of a challenge for marketers is understanding that there’s other data that is valuable for machine learning or reinforcement learning models, things like tags on the types of products customers are interacting with. Maybe there’s category information about that product, or color information. That would otherwise look like noise to the average marketer. But behind the scenes, it can be used for reinforcement learning. There is definitely the “clear-cut” actionable data, but marketers shouldn’t be quick to classify things as noise because the rise in machine learning and reinforcement learning will make that data more valuable. 3. How can customer engagement data be used to identify and prioritize new business opportunities? At Hightouch, we don’t necessarily think about retroactive analysis. We have a system where we have customer engagement data firing in that we then have real-time scores reacting to. An interesting example is when you have machine learning and reinforcement learning models running. In the pet retailer example I gave you, the system is able to figure out what to prioritize. The concept of reinforcement learning is not a marketer making rules to say, “I know this type of thing works well on this type of audience.” It’s the machine itself using the data to determine what attribute responds well to which offer, recommendation, or marketing campaign. 4. How can marketers ensure their use of customer engagement data aligns with the broader business objectives? It starts with the objectives. It’s starting with the desired outcome and working your way back. That whole flip of the paradigm is starting with outcomes and letting the system optimize. What are you trying to drive, and then back into the types of experiences that can make that happen? There’s personalization. When we talk about data-driven experiences and personalization, Spotify Wrapped is the North Star. For Spotify Wrapped, you want to drive customer stickiness and create a brand. To make that happen, you want to send a personalized email. What components do you want in that email? Maybe it’s top five songs, top five artists, and then you can back into the actual event data you need to make that happen. 5. What role does engagement data play in influencing cross-functional decisions such as those in product development, sales, or customer service? For product development, it’s product analytics — knowing what features users are using, or seeing in heat maps where users are clicking. Sales is similar. We’re using behavioral signals like what types of content they’re reading on the site to help inform what they would be interested in — the types of products or the types of use cases. For customer service, you can look at errors they’ve run into in the past or specific purchases they’ve made, so that when you’re helping them the next time they engage with you, you know exactly what their past behaviors were and what products they could be calling about. 6. What are some challenges marketers face when trying to translate customer engagement data into actionable insights? Access to data is one challenge. You might not know what data you have because marketers historically may not have been used to the systems where data is stored. Historically, that’s been pretty siloed away from them. Rich behavioral data and other data across the business was stored somewhere else. Now, as more companies embrace the data warehouse at the center of their business, it gives everyone a true single place where data can be stored. Marketers are working more with data teams, understanding more about the data they have, and using that data to power downstream use cases, personalization, reinforcement learning, or general business insights. 7. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? As a marketer, I think proof is key. The best thing is if you’ve actually run a test. “I think we should do this. I ran a small test, and it’s showing that this is actually proving out.” Being able to clearly explain and justify your reasoning with data is super important. 8. What technology or tools have you found most effective for gathering and analyzing customer engagement data? Any type of behavioral event collection, specifically ones that write to the cloud data warehouse, is the critical component. Your data team is operating off the data warehouse. Having an event collection product that stores data in that central spot is really important if you want to use the other data when making recommendations. You want to get everything into the data warehouse where it can be used both for insights and for putting into action. For Spotify Wrapped, you want to collect behavioral event signals like songs listened to or concerts attended, writing to the warehouse so that you can get insights back — how many songs were played this year, projections for next month — but then you can also use those behavioral events in downstream platforms to fire off personalized emails with product recommendations or Spotify Wrapped-style experiences. 9. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? What we’re excited about is the concept of AI Decisioning — having AI agents actually using customer data to train their own models and decision-making to create personalized experiences. We’re sitting on top of all this behavioral data, engagement data, and user attributes, and our system is learning from all of that to make the best decisions across downstream systems. Whether that’s as simple as driving a loyalty program and figuring out what emails to send or what on-site experiences to show, or exposing insights that might lead you to completely change your business strategy, we see engagement data as the fuel to the engine of reinforcement learning, machine learning, AI agents, this whole next wave of Martech that’s just now coming. But it all starts with having the data to train those systems. I think that behavioral data is the fuel of modern Martech, and that only holds more true as Martech platforms adopt these decisioning and AI capabilities, because they’re only as good as the data that’s training the models.     This interview Q&A was hosted with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Alec Haase Q&A: Customer Engagement Book Interview appeared first on MoEngage. #alec #haase #qampampa #customer #engagement
    WWW.MOENGAGE.COM
    Alec Haase Q&A: Customer Engagement Book Interview
    Reading Time: 6 minutes What is marketing without data? Assumptions. Guesses. Fluff. For Chapter 6 of our book, “The Customer Engagement Book: Adapt or Die,” we spoke with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, to explore how engagement data can truly inform critical business decisions.  Alec discusses the different types of customer behaviors that matter most, how to separate meaningful information from the rest, and the role of systems that learn over time to create tailored customer experiences. This interview provides insights into using data for real-time actions and shaping the future of marketing. Prepare to learn about AI decision-making and how a focus on data is changing how we engage with customers.   Alec Haase Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? It’s a culmination of everything. Behavioral signals — the actual conversions and micro-conversions that users take within your product or website. Obviously, that’s things like purchases. But there are also other behavioral signals marketers should be using and thinking about. Things like micro-conversions — maybe that’s shopping for a product, clicking to learn more about a product, or visiting a certain page on your website. Behind that, you also need to have all your user data to tie that to. So I know someone took said action; I can follow up with them in email or out on paid social. I need the user identifiers to do that. 2. How do you distinguish between data that is actionable versus data that is just noise? Data that’s actionable includes the conversions and micro-conversions — very clear instances of “someone did this.” I can react to or measure those. What’s becoming a bit of a challenge for marketers is understanding that there’s other data that is valuable for machine learning or reinforcement learning models, things like tags on the types of products customers are interacting with. Maybe there’s category information about that product, or color information. That would otherwise look like noise to the average marketer. But behind the scenes, it can be used for reinforcement learning. There is definitely the “clear-cut” actionable data, but marketers shouldn’t be quick to classify things as noise because the rise in machine learning and reinforcement learning will make that data more valuable. 3. How can customer engagement data be used to identify and prioritize new business opportunities? At Hightouch, we don’t necessarily think about retroactive analysis. We have a system where we have customer engagement data firing in that we then have real-time scores reacting to. An interesting example is when you have machine learning and reinforcement learning models running. In the pet retailer example I gave you, the system is able to figure out what to prioritize. The concept of reinforcement learning is not a marketer making rules to say, “I know this type of thing works well on this type of audience.” It’s the machine itself using the data to determine what attribute responds well to which offer, recommendation, or marketing campaign. 4. How can marketers ensure their use of customer engagement data aligns with the broader business objectives? It starts with the objectives. It’s starting with the desired outcome and working your way back. That whole flip of the paradigm is starting with outcomes and letting the system optimize. What are you trying to drive, and then back into the types of experiences that can make that happen? There’s personalization. When we talk about data-driven experiences and personalization, Spotify Wrapped is the North Star. For Spotify Wrapped, you want to drive customer stickiness and create a brand. To make that happen, you want to send a personalized email. What components do you want in that email? Maybe it’s top five songs, top five artists, and then you can back into the actual event data you need to make that happen. 5. What role does engagement data play in influencing cross-functional decisions such as those in product development, sales, or customer service? For product development, it’s product analytics — knowing what features users are using, or seeing in heat maps where users are clicking. Sales is similar. We’re using behavioral signals like what types of content they’re reading on the site to help inform what they would be interested in — the types of products or the types of use cases. For customer service, you can look at errors they’ve run into in the past or specific purchases they’ve made, so that when you’re helping them the next time they engage with you, you know exactly what their past behaviors were and what products they could be calling about. 6. What are some challenges marketers face when trying to translate customer engagement data into actionable insights? Access to data is one challenge. You might not know what data you have because marketers historically may not have been used to the systems where data is stored. Historically, that’s been pretty siloed away from them. Rich behavioral data and other data across the business was stored somewhere else. Now, as more companies embrace the data warehouse at the center of their business, it gives everyone a true single place where data can be stored. Marketers are working more with data teams, understanding more about the data they have, and using that data to power downstream use cases, personalization, reinforcement learning, or general business insights. 7. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? As a marketer, I think proof is key. The best thing is if you’ve actually run a test. “I think we should do this. I ran a small test, and it’s showing that this is actually proving out.” Being able to clearly explain and justify your reasoning with data is super important. 8. What technology or tools have you found most effective for gathering and analyzing customer engagement data? Any type of behavioral event collection, specifically ones that write to the cloud data warehouse, is the critical component. Your data team is operating off the data warehouse. Having an event collection product that stores data in that central spot is really important if you want to use the other data when making recommendations. You want to get everything into the data warehouse where it can be used both for insights and for putting into action. For Spotify Wrapped, you want to collect behavioral event signals like songs listened to or concerts attended, writing to the warehouse so that you can get insights back — how many songs were played this year, projections for next month — but then you can also use those behavioral events in downstream platforms to fire off personalized emails with product recommendations or Spotify Wrapped-style experiences. 9. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? What we’re excited about is the concept of AI Decisioning — having AI agents actually using customer data to train their own models and decision-making to create personalized experiences. We’re sitting on top of all this behavioral data, engagement data, and user attributes, and our system is learning from all of that to make the best decisions across downstream systems. Whether that’s as simple as driving a loyalty program and figuring out what emails to send or what on-site experiences to show, or exposing insights that might lead you to completely change your business strategy, we see engagement data as the fuel to the engine of reinforcement learning, machine learning, AI agents, this whole next wave of Martech that’s just now coming. But it all starts with having the data to train those systems. I think that behavioral data is the fuel of modern Martech, and that only holds more true as Martech platforms adopt these decisioning and AI capabilities, because they’re only as good as the data that’s training the models.     This interview Q&A was hosted with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Alec Haase Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    0 Комментарии 0 Поделились 0 предпросмотр
  • Mirela Cialai Q&A: Customer Engagement Book Interview

    Reading Time: 9 minutes
    In the ever-evolving landscape of customer engagement, staying ahead of the curve is not just advantageous, it’s essential.
    That’s why, for Chapter 7 of “The Customer Engagement Book: Adapt or Die,” we sat down with Mirela Cialai, a seasoned expert in CRM and Martech strategies at brands like Equinox. Mirela brings a wealth of knowledge in aligning technology roadmaps with business goals, shifting organizational focuses from acquisition to retention, and leveraging hyper-personalization to drive success.
    In this interview, Mirela dives deep into building robust customer engagement technology roadmaps. She unveils the “PAPER” framework—Plan, Audit, Prioritize, Execute, Refine—a simple yet effective strategy for marketers.
    You’ll gain insights into identifying gaps in your Martech stack, ensuring data accuracy, and prioritizing initiatives that deliver the greatest impact and ROI.
    Whether you’re navigating data silos, striving for cross-functional alignment, or aiming for seamless tech integration, Mirela’s expertise provides practical solutions and actionable takeaways.

     
    Mirela Cialai Q&A Interview
    1. How do you define the vision for a customer engagement platform roadmap in alignment with the broader business goals? Can you share any examples of successful visions from your experience?

    Defining the vision for the roadmap in alignment with the broader business goals involves creating a strategic framework that connects the team’s objectives with the organization’s overarching mission or primary objectives.

    This could be revenue growth, customer retention, market expansion, or operational efficiency.
    We then break down these goals into actionable areas where the team can contribute, such as improving engagement, increasing lifetime value, or driving acquisition.
    We articulate how the team will support business goals by defining the KPIs that link CRM outcomes — the team’s outcomes — to business goals.
    In a previous role, the CRM team I was leading faced significant challenges due to the lack of attribution capabilities and a reliance on surface-level metrics such as open rates and click-through rates to measure performance.
    This approach made it difficult to quantify the impact of our efforts on broader business objectives such as revenue growth.
    Recognizing this gap, I worked on defining a vision for the CRM team to address these shortcomings.
    Our vision was to drive measurable growth through enhanced data accuracy and improved attribution capabilities, which allowed us to deliver targeted, data-driven, and personalized customer experiences.
    To bring this vision to life, I developed a roadmap that focused on first improving data accuracy, building our attribution capabilities, and delivering personalization at scale.

    By aligning the vision with these strategic priorities, we were able to demonstrate the tangible impact of our efforts on the key business goals.

    2. What steps did you take to ensure data accuracy?
    The data team was very diligent in ensuring that our data warehouse had accurate data.
    So taking that as the source of truth, we started cleaning the data in all the other platforms that were integrated with our data warehouse — our CRM platform, our attribution analytics platform, etc.

    That’s where we started, looking at all the different integrations and ensuring that the data flows were correct and that we had all the right flows in place. And also validating and cleaning our email database — that helped, having more accurate data.

    3. How do you recommend shifting organizational focus from acquisition to retention within a customer engagement strategy?
    Shifting an organization’s focus from acquisition to retention requires a cultural and strategic shift, emphasizing the immense value that existing customers bring to long-term growth and profitability.
    I would start by quantifying the value of retention, showcasing how retaining customers is significantly more cost-effective than acquiring new ones. Research consistently shows that increasing retention rates by just 5% can boost profits by at least 25 to 95%.
    This data helps make a compelling case to stakeholders about the importance of prioritizing retention.
    Next, I would link retention to core business goals by demonstrating how enhancing customer lifetime value and loyalty can directly drive revenue growth.
    This involves shifting the organization’s focus to retention-specific metrics such as churn rate, repeat purchase rate, and customer LTV. These metrics provide actionable insights into customer behaviors and highlight the financial impact of retention initiatives, ensuring alignment with the broader company objectives.

    By framing retention as a driver of sustainable growth, the organization can see it not as a competing priority, but as a complementary strategy to acquisition, ultimately leading to a more balanced and effective customer engagement strategy.

    4. What are the key steps in analyzing a brand’s current Martech stack capabilities to identify gaps and opportunities for improvement?
    Developing a clear understanding of the Martech stack’s current state and ensuring it aligns with a brand’s strategic needs and future goals requires a structured and strategic approach.
    The process begins with defining what success looks like in terms of technology capabilities such as scalability, integration, automation, and data accessibility, and linking these capabilities directly to the brand’s broader business objectives.
    I start by doing an inventory of all tools currently in use, including their purpose, owner, and key functionalities, assessing if these tools are being used to their full potential or if there are features that remain unused, and reviewing how well tools integrate with one another and with our core systems, the data warehouse.
    Also, comparing the capabilities of each tool and results against industry standards and competitor practices and looking for missing functionalities such as personalization, omnichannel orchestration, or advanced analytics, and identifying overlapping tools that could be consolidated to save costs and streamline workflows.
    Finally, review the costs of the current tools against their impact on business outcomes and identify technologies that could reduce costs, increase efficiency, or deliver higher ROI through enhanced capabilities.

    Establish a regular review cycle for the Martech stack to ensure it evolves alongside the business and the technological landscape.

    5. How do you evaluate whether a company’s tech stack can support innovative customer-focused campaigns, and what red flags should marketers look out for?
    I recommend taking a structured approach and first ensure there is seamless integration across all tools to support a unified customer view and data sharing across the different channels.
    Determine if the stack can handle increasing data volumes, larger audiences, and additional channels as the campaigns grow, and check if it supports dynamic content, behavior-based triggers, and advanced segmentation and can process and act on data in real time through emerging technologies like AI/ML predictive analytics to enable marketers to launch responsive and timely campaigns.
    Most importantly, we need to ensure that the stack offers robust reporting tools that provide actionable insights, allowing teams to track performance and optimize campaigns.
    Some of the red flags are: data silos where customer data is fragmented across platforms and not easily accessible or integrated, inability to process or respond to customer behavior in real time, a reliance on manual intervention for tasks like segmentation, data extraction, campaign deployment, and poor scalability.

    If the stack struggles with growing data volumes or expanding to new channels, it won’t support the company’s evolving needs.

    6. What role do hyper-personalization and timely communication play in a successful customer engagement strategy? How do you ensure they’re built into the technology roadmap?
    Hyper-personalization and timely communication are essential components of a successful customer engagement strategy because they create meaningful, relevant, and impactful experiences that deepen the relationship with customers, enhance loyalty, and drive business outcomes.
    Hyper-personalization leverages data to deliver tailored content that resonates with each individual based on their preferences, behavior, or past interactions, and timely communication ensures these personalized interactions occur at the most relevant moments, which ultimately increases their impact.
    Customers are more likely to engage with messages that feel relevant and align with their needs, and real-time triggers such as cart abandonment or post-purchase upsells capitalize on moments when customers are most likely to convert.

    By embedding these capabilities into the roadmap through data integration, AI-driven insights, automation, and continuous optimization, we can deliver impactful, relevant, and timely experiences that foster deeper customer relationships and drive long-term success.

    7. What’s your approach to breaking down the customer engagement technology roadmap into manageable phases? How do you prioritize the initiatives?
    To create a manageable roadmap, we need to divide it into distinct phases, starting with building the foundation by addressing data cleanup, system integrations, and establishing metrics, which lays the groundwork for success.
    Next, we can focus on early wins and quick impact by launching behavior-based campaigns, automating workflows, and improving personalization to drive immediate value.
    Then we can move to optimization and expansion, incorporating predictive analytics, cross-channel orchestration, and refined attribution models to enhance our capabilities.
    Finally, prioritize innovation and scalability, leveraging AI/ML for hyper-personalization, scaling campaigns to new markets, and ensuring the system is equipped for future growth.
    By starting with foundational projects, delivering quick wins, and building towards scalable innovation, we can drive measurable outcomes while maintaining our agility to adapt to evolving needs.

    In terms of prioritizing initiatives effectively, I would focus on projects that deliver the greatest impact on business goals, on customer experience and ROI, while we consider feasibility, urgency, and resource availability.

    In the past, I’ve used frameworks like Impact Effort Matrix to identify the high-impact, low-effort initiatives and ensure that the most critical projects are addressed first.
    8. How do you ensure cross-functional alignment around this roadmap? What processes have worked best for you?
    Ensuring cross-functional alignment requires clear communication, collaborative planning, and shared accountability.
    We need to establish a shared understanding of the roadmap’s purpose and how it ties to the company’s overall goals by clearly articulating the “why” behind the roadmap and how each team can contribute to its success.
    To foster buy-in and ensure the roadmap reflects diverse perspectives and needs, we need to involve all stakeholders early on during the roadmap development and clearly outline each team’s role in executing the roadmap to ensure accountability across the different teams.

    To keep teams informed and aligned, we use meetings such as roadmap kickoff sessions and regular check-ins to share updates, address challenges collaboratively, and celebrate milestones together.

    9. If you were to outline a simple framework for marketers to follow when building a customer engagement technology roadmap, what would it look like?
    A simple framework for marketers to follow when building the roadmap can be summarized in five clear steps: Plan, Audit, Prioritize, Execute, and Refine.
    In one word: PAPER. Here’s how it breaks down.

    Plan: We lay the groundwork for the roadmap by defining the CRM strategy and aligning it with the business goals.
    Audit: We evaluate the current state of our CRM capabilities. We conduct a comprehensive assessment of our tools, our data, the processes, and team workflows to identify any potential gaps.
    Prioritize: initiatives based on impact, feasibility, and ROI potential.
    Execute: by implementing the roadmap in manageable phases.
    Refine: by continuously improving CRM performance and refining the roadmap.

    So the PAPER framework — Plan, Audit, Prioritize, Execute, and Refine — provides a structured, iterative approach allowing marketers to create a scalable and impactful customer engagement strategy.

    10. What are the most common challenges marketers face in creating or executing a customer engagement strategy, and how can they address these effectively?
    The most critical is when the customer data is siloed across different tools and platforms, making it very difficult to get a unified view of the customer. This limits the ability to deliver personalized and consistent experiences.

    The solution is to invest in tools that can centralize data from all touchpoints and ensure seamless integration between different platforms to create a single source of truth.

    Another challenge is the lack of clear metrics and ROI measurement and the inability to connect engagement efforts to tangible business outcomes, making it very hard to justify investment or optimize strategies.
    The solution for that is to define clear KPIs at the outset and use attribution models to link customer interactions to revenue and other key outcomes.
    Overcoming internal silos is another challenge where there is misalignment between teams, which can lead to inconsistent messaging and delayed execution.
    A solution to this is to foster cross-functional collaboration through shared goals, regular communication, and joint planning sessions.
    Besides these, other challenges marketers can face are delivering personalization at scale, keeping up with changing customer expectations, resource and budget constraints, resistance to change, and others.
    While creating and executing a customer engagement strategy can be challenging, these obstacles can be addressed through strategic planning, leveraging the right tools, fostering collaboration, and staying adaptable to customer needs and industry trends.

    By tackling these challenges proactively, marketers can deliver impactful customer-centric strategies that drive long-term success.

    11. What are the top takeaways or lessons that you’ve learned from building customer engagement technology roadmaps that others should keep in mind?
    I would say one of the most important takeaways is to ensure that the roadmap directly supports the company’s broader objectives.
    Whether the focus is on retention, customer lifetime value, or revenue growth, the roadmap must bridge the gap between high-level business goals and actionable initiatives.

    Another important lesson: The roadmap is only as effective as the data and systems it’s built upon.

    I’ve learned the importance of prioritizing foundational elements like data cleanup, integrations, and governance before tackling advanced initiatives like personalization or predictive analytics. Skipping this step can lead to inefficiencies or missed opportunities later on.
    A Customer Engagement Roadmap is a strategic tool that evolves alongside the business and its customers.

    So by aligning with business goals, building a solid foundation, focusing on impact, fostering collaboration, and remaining adaptable, you can create a roadmap that delivers measurable results and meaningful customer experiences.

     

     
    This interview Q&A was hosted with Mirela Cialai, Director of CRM & MarTech at Equinox, for Chapter 7 of The Customer Engagement Book: Adapt or Die.
    Download the PDF or request a physical copy of the book here.
    The post Mirela Cialai Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    #mirela #cialai #qampampa #customer #engagement
    Mirela Cialai Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In the ever-evolving landscape of customer engagement, staying ahead of the curve is not just advantageous, it’s essential. That’s why, for Chapter 7 of “The Customer Engagement Book: Adapt or Die,” we sat down with Mirela Cialai, a seasoned expert in CRM and Martech strategies at brands like Equinox. Mirela brings a wealth of knowledge in aligning technology roadmaps with business goals, shifting organizational focuses from acquisition to retention, and leveraging hyper-personalization to drive success. In this interview, Mirela dives deep into building robust customer engagement technology roadmaps. She unveils the “PAPER” framework—Plan, Audit, Prioritize, Execute, Refine—a simple yet effective strategy for marketers. You’ll gain insights into identifying gaps in your Martech stack, ensuring data accuracy, and prioritizing initiatives that deliver the greatest impact and ROI. Whether you’re navigating data silos, striving for cross-functional alignment, or aiming for seamless tech integration, Mirela’s expertise provides practical solutions and actionable takeaways.   Mirela Cialai Q&A Interview 1. How do you define the vision for a customer engagement platform roadmap in alignment with the broader business goals? Can you share any examples of successful visions from your experience? Defining the vision for the roadmap in alignment with the broader business goals involves creating a strategic framework that connects the team’s objectives with the organization’s overarching mission or primary objectives. This could be revenue growth, customer retention, market expansion, or operational efficiency. We then break down these goals into actionable areas where the team can contribute, such as improving engagement, increasing lifetime value, or driving acquisition. We articulate how the team will support business goals by defining the KPIs that link CRM outcomes — the team’s outcomes — to business goals. In a previous role, the CRM team I was leading faced significant challenges due to the lack of attribution capabilities and a reliance on surface-level metrics such as open rates and click-through rates to measure performance. This approach made it difficult to quantify the impact of our efforts on broader business objectives such as revenue growth. Recognizing this gap, I worked on defining a vision for the CRM team to address these shortcomings. Our vision was to drive measurable growth through enhanced data accuracy and improved attribution capabilities, which allowed us to deliver targeted, data-driven, and personalized customer experiences. To bring this vision to life, I developed a roadmap that focused on first improving data accuracy, building our attribution capabilities, and delivering personalization at scale. By aligning the vision with these strategic priorities, we were able to demonstrate the tangible impact of our efforts on the key business goals. 2. What steps did you take to ensure data accuracy? The data team was very diligent in ensuring that our data warehouse had accurate data. So taking that as the source of truth, we started cleaning the data in all the other platforms that were integrated with our data warehouse — our CRM platform, our attribution analytics platform, etc. That’s where we started, looking at all the different integrations and ensuring that the data flows were correct and that we had all the right flows in place. And also validating and cleaning our email database — that helped, having more accurate data. 3. How do you recommend shifting organizational focus from acquisition to retention within a customer engagement strategy? Shifting an organization’s focus from acquisition to retention requires a cultural and strategic shift, emphasizing the immense value that existing customers bring to long-term growth and profitability. I would start by quantifying the value of retention, showcasing how retaining customers is significantly more cost-effective than acquiring new ones. Research consistently shows that increasing retention rates by just 5% can boost profits by at least 25 to 95%. This data helps make a compelling case to stakeholders about the importance of prioritizing retention. Next, I would link retention to core business goals by demonstrating how enhancing customer lifetime value and loyalty can directly drive revenue growth. This involves shifting the organization’s focus to retention-specific metrics such as churn rate, repeat purchase rate, and customer LTV. These metrics provide actionable insights into customer behaviors and highlight the financial impact of retention initiatives, ensuring alignment with the broader company objectives. By framing retention as a driver of sustainable growth, the organization can see it not as a competing priority, but as a complementary strategy to acquisition, ultimately leading to a more balanced and effective customer engagement strategy. 4. What are the key steps in analyzing a brand’s current Martech stack capabilities to identify gaps and opportunities for improvement? Developing a clear understanding of the Martech stack’s current state and ensuring it aligns with a brand’s strategic needs and future goals requires a structured and strategic approach. The process begins with defining what success looks like in terms of technology capabilities such as scalability, integration, automation, and data accessibility, and linking these capabilities directly to the brand’s broader business objectives. I start by doing an inventory of all tools currently in use, including their purpose, owner, and key functionalities, assessing if these tools are being used to their full potential or if there are features that remain unused, and reviewing how well tools integrate with one another and with our core systems, the data warehouse. Also, comparing the capabilities of each tool and results against industry standards and competitor practices and looking for missing functionalities such as personalization, omnichannel orchestration, or advanced analytics, and identifying overlapping tools that could be consolidated to save costs and streamline workflows. Finally, review the costs of the current tools against their impact on business outcomes and identify technologies that could reduce costs, increase efficiency, or deliver higher ROI through enhanced capabilities. Establish a regular review cycle for the Martech stack to ensure it evolves alongside the business and the technological landscape. 5. How do you evaluate whether a company’s tech stack can support innovative customer-focused campaigns, and what red flags should marketers look out for? I recommend taking a structured approach and first ensure there is seamless integration across all tools to support a unified customer view and data sharing across the different channels. Determine if the stack can handle increasing data volumes, larger audiences, and additional channels as the campaigns grow, and check if it supports dynamic content, behavior-based triggers, and advanced segmentation and can process and act on data in real time through emerging technologies like AI/ML predictive analytics to enable marketers to launch responsive and timely campaigns. Most importantly, we need to ensure that the stack offers robust reporting tools that provide actionable insights, allowing teams to track performance and optimize campaigns. Some of the red flags are: data silos where customer data is fragmented across platforms and not easily accessible or integrated, inability to process or respond to customer behavior in real time, a reliance on manual intervention for tasks like segmentation, data extraction, campaign deployment, and poor scalability. If the stack struggles with growing data volumes or expanding to new channels, it won’t support the company’s evolving needs. 6. What role do hyper-personalization and timely communication play in a successful customer engagement strategy? How do you ensure they’re built into the technology roadmap? Hyper-personalization and timely communication are essential components of a successful customer engagement strategy because they create meaningful, relevant, and impactful experiences that deepen the relationship with customers, enhance loyalty, and drive business outcomes. Hyper-personalization leverages data to deliver tailored content that resonates with each individual based on their preferences, behavior, or past interactions, and timely communication ensures these personalized interactions occur at the most relevant moments, which ultimately increases their impact. Customers are more likely to engage with messages that feel relevant and align with their needs, and real-time triggers such as cart abandonment or post-purchase upsells capitalize on moments when customers are most likely to convert. By embedding these capabilities into the roadmap through data integration, AI-driven insights, automation, and continuous optimization, we can deliver impactful, relevant, and timely experiences that foster deeper customer relationships and drive long-term success. 7. What’s your approach to breaking down the customer engagement technology roadmap into manageable phases? How do you prioritize the initiatives? To create a manageable roadmap, we need to divide it into distinct phases, starting with building the foundation by addressing data cleanup, system integrations, and establishing metrics, which lays the groundwork for success. Next, we can focus on early wins and quick impact by launching behavior-based campaigns, automating workflows, and improving personalization to drive immediate value. Then we can move to optimization and expansion, incorporating predictive analytics, cross-channel orchestration, and refined attribution models to enhance our capabilities. Finally, prioritize innovation and scalability, leveraging AI/ML for hyper-personalization, scaling campaigns to new markets, and ensuring the system is equipped for future growth. By starting with foundational projects, delivering quick wins, and building towards scalable innovation, we can drive measurable outcomes while maintaining our agility to adapt to evolving needs. In terms of prioritizing initiatives effectively, I would focus on projects that deliver the greatest impact on business goals, on customer experience and ROI, while we consider feasibility, urgency, and resource availability. In the past, I’ve used frameworks like Impact Effort Matrix to identify the high-impact, low-effort initiatives and ensure that the most critical projects are addressed first. 8. How do you ensure cross-functional alignment around this roadmap? What processes have worked best for you? Ensuring cross-functional alignment requires clear communication, collaborative planning, and shared accountability. We need to establish a shared understanding of the roadmap’s purpose and how it ties to the company’s overall goals by clearly articulating the “why” behind the roadmap and how each team can contribute to its success. To foster buy-in and ensure the roadmap reflects diverse perspectives and needs, we need to involve all stakeholders early on during the roadmap development and clearly outline each team’s role in executing the roadmap to ensure accountability across the different teams. To keep teams informed and aligned, we use meetings such as roadmap kickoff sessions and regular check-ins to share updates, address challenges collaboratively, and celebrate milestones together. 9. If you were to outline a simple framework for marketers to follow when building a customer engagement technology roadmap, what would it look like? A simple framework for marketers to follow when building the roadmap can be summarized in five clear steps: Plan, Audit, Prioritize, Execute, and Refine. In one word: PAPER. Here’s how it breaks down. Plan: We lay the groundwork for the roadmap by defining the CRM strategy and aligning it with the business goals. Audit: We evaluate the current state of our CRM capabilities. We conduct a comprehensive assessment of our tools, our data, the processes, and team workflows to identify any potential gaps. Prioritize: initiatives based on impact, feasibility, and ROI potential. Execute: by implementing the roadmap in manageable phases. Refine: by continuously improving CRM performance and refining the roadmap. So the PAPER framework — Plan, Audit, Prioritize, Execute, and Refine — provides a structured, iterative approach allowing marketers to create a scalable and impactful customer engagement strategy. 10. What are the most common challenges marketers face in creating or executing a customer engagement strategy, and how can they address these effectively? The most critical is when the customer data is siloed across different tools and platforms, making it very difficult to get a unified view of the customer. This limits the ability to deliver personalized and consistent experiences. The solution is to invest in tools that can centralize data from all touchpoints and ensure seamless integration between different platforms to create a single source of truth. Another challenge is the lack of clear metrics and ROI measurement and the inability to connect engagement efforts to tangible business outcomes, making it very hard to justify investment or optimize strategies. The solution for that is to define clear KPIs at the outset and use attribution models to link customer interactions to revenue and other key outcomes. Overcoming internal silos is another challenge where there is misalignment between teams, which can lead to inconsistent messaging and delayed execution. A solution to this is to foster cross-functional collaboration through shared goals, regular communication, and joint planning sessions. Besides these, other challenges marketers can face are delivering personalization at scale, keeping up with changing customer expectations, resource and budget constraints, resistance to change, and others. While creating and executing a customer engagement strategy can be challenging, these obstacles can be addressed through strategic planning, leveraging the right tools, fostering collaboration, and staying adaptable to customer needs and industry trends. By tackling these challenges proactively, marketers can deliver impactful customer-centric strategies that drive long-term success. 11. What are the top takeaways or lessons that you’ve learned from building customer engagement technology roadmaps that others should keep in mind? I would say one of the most important takeaways is to ensure that the roadmap directly supports the company’s broader objectives. Whether the focus is on retention, customer lifetime value, or revenue growth, the roadmap must bridge the gap between high-level business goals and actionable initiatives. Another important lesson: The roadmap is only as effective as the data and systems it’s built upon. I’ve learned the importance of prioritizing foundational elements like data cleanup, integrations, and governance before tackling advanced initiatives like personalization or predictive analytics. Skipping this step can lead to inefficiencies or missed opportunities later on. A Customer Engagement Roadmap is a strategic tool that evolves alongside the business and its customers. So by aligning with business goals, building a solid foundation, focusing on impact, fostering collaboration, and remaining adaptable, you can create a roadmap that delivers measurable results and meaningful customer experiences.     This interview Q&A was hosted with Mirela Cialai, Director of CRM & MarTech at Equinox, for Chapter 7 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Mirela Cialai Q&A: Customer Engagement Book Interview appeared first on MoEngage. #mirela #cialai #qampampa #customer #engagement
    WWW.MOENGAGE.COM
    Mirela Cialai Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In the ever-evolving landscape of customer engagement, staying ahead of the curve is not just advantageous, it’s essential. That’s why, for Chapter 7 of “The Customer Engagement Book: Adapt or Die,” we sat down with Mirela Cialai, a seasoned expert in CRM and Martech strategies at brands like Equinox. Mirela brings a wealth of knowledge in aligning technology roadmaps with business goals, shifting organizational focuses from acquisition to retention, and leveraging hyper-personalization to drive success. In this interview, Mirela dives deep into building robust customer engagement technology roadmaps. She unveils the “PAPER” framework—Plan, Audit, Prioritize, Execute, Refine—a simple yet effective strategy for marketers. You’ll gain insights into identifying gaps in your Martech stack, ensuring data accuracy, and prioritizing initiatives that deliver the greatest impact and ROI. Whether you’re navigating data silos, striving for cross-functional alignment, or aiming for seamless tech integration, Mirela’s expertise provides practical solutions and actionable takeaways.   Mirela Cialai Q&A Interview 1. How do you define the vision for a customer engagement platform roadmap in alignment with the broader business goals? Can you share any examples of successful visions from your experience? Defining the vision for the roadmap in alignment with the broader business goals involves creating a strategic framework that connects the team’s objectives with the organization’s overarching mission or primary objectives. This could be revenue growth, customer retention, market expansion, or operational efficiency. We then break down these goals into actionable areas where the team can contribute, such as improving engagement, increasing lifetime value, or driving acquisition. We articulate how the team will support business goals by defining the KPIs that link CRM outcomes — the team’s outcomes — to business goals. In a previous role, the CRM team I was leading faced significant challenges due to the lack of attribution capabilities and a reliance on surface-level metrics such as open rates and click-through rates to measure performance. This approach made it difficult to quantify the impact of our efforts on broader business objectives such as revenue growth. Recognizing this gap, I worked on defining a vision for the CRM team to address these shortcomings. Our vision was to drive measurable growth through enhanced data accuracy and improved attribution capabilities, which allowed us to deliver targeted, data-driven, and personalized customer experiences. To bring this vision to life, I developed a roadmap that focused on first improving data accuracy, building our attribution capabilities, and delivering personalization at scale. By aligning the vision with these strategic priorities, we were able to demonstrate the tangible impact of our efforts on the key business goals. 2. What steps did you take to ensure data accuracy? The data team was very diligent in ensuring that our data warehouse had accurate data. So taking that as the source of truth, we started cleaning the data in all the other platforms that were integrated with our data warehouse — our CRM platform, our attribution analytics platform, etc. That’s where we started, looking at all the different integrations and ensuring that the data flows were correct and that we had all the right flows in place. And also validating and cleaning our email database — that helped, having more accurate data. 3. How do you recommend shifting organizational focus from acquisition to retention within a customer engagement strategy? Shifting an organization’s focus from acquisition to retention requires a cultural and strategic shift, emphasizing the immense value that existing customers bring to long-term growth and profitability. I would start by quantifying the value of retention, showcasing how retaining customers is significantly more cost-effective than acquiring new ones. Research consistently shows that increasing retention rates by just 5% can boost profits by at least 25 to 95%. This data helps make a compelling case to stakeholders about the importance of prioritizing retention. Next, I would link retention to core business goals by demonstrating how enhancing customer lifetime value and loyalty can directly drive revenue growth. This involves shifting the organization’s focus to retention-specific metrics such as churn rate, repeat purchase rate, and customer LTV. These metrics provide actionable insights into customer behaviors and highlight the financial impact of retention initiatives, ensuring alignment with the broader company objectives. By framing retention as a driver of sustainable growth, the organization can see it not as a competing priority, but as a complementary strategy to acquisition, ultimately leading to a more balanced and effective customer engagement strategy. 4. What are the key steps in analyzing a brand’s current Martech stack capabilities to identify gaps and opportunities for improvement? Developing a clear understanding of the Martech stack’s current state and ensuring it aligns with a brand’s strategic needs and future goals requires a structured and strategic approach. The process begins with defining what success looks like in terms of technology capabilities such as scalability, integration, automation, and data accessibility, and linking these capabilities directly to the brand’s broader business objectives. I start by doing an inventory of all tools currently in use, including their purpose, owner, and key functionalities, assessing if these tools are being used to their full potential or if there are features that remain unused, and reviewing how well tools integrate with one another and with our core systems, the data warehouse. Also, comparing the capabilities of each tool and results against industry standards and competitor practices and looking for missing functionalities such as personalization, omnichannel orchestration, or advanced analytics, and identifying overlapping tools that could be consolidated to save costs and streamline workflows. Finally, review the costs of the current tools against their impact on business outcomes and identify technologies that could reduce costs, increase efficiency, or deliver higher ROI through enhanced capabilities. Establish a regular review cycle for the Martech stack to ensure it evolves alongside the business and the technological landscape. 5. How do you evaluate whether a company’s tech stack can support innovative customer-focused campaigns, and what red flags should marketers look out for? I recommend taking a structured approach and first ensure there is seamless integration across all tools to support a unified customer view and data sharing across the different channels. Determine if the stack can handle increasing data volumes, larger audiences, and additional channels as the campaigns grow, and check if it supports dynamic content, behavior-based triggers, and advanced segmentation and can process and act on data in real time through emerging technologies like AI/ML predictive analytics to enable marketers to launch responsive and timely campaigns. Most importantly, we need to ensure that the stack offers robust reporting tools that provide actionable insights, allowing teams to track performance and optimize campaigns. Some of the red flags are: data silos where customer data is fragmented across platforms and not easily accessible or integrated, inability to process or respond to customer behavior in real time, a reliance on manual intervention for tasks like segmentation, data extraction, campaign deployment, and poor scalability. If the stack struggles with growing data volumes or expanding to new channels, it won’t support the company’s evolving needs. 6. What role do hyper-personalization and timely communication play in a successful customer engagement strategy? How do you ensure they’re built into the technology roadmap? Hyper-personalization and timely communication are essential components of a successful customer engagement strategy because they create meaningful, relevant, and impactful experiences that deepen the relationship with customers, enhance loyalty, and drive business outcomes. Hyper-personalization leverages data to deliver tailored content that resonates with each individual based on their preferences, behavior, or past interactions, and timely communication ensures these personalized interactions occur at the most relevant moments, which ultimately increases their impact. Customers are more likely to engage with messages that feel relevant and align with their needs, and real-time triggers such as cart abandonment or post-purchase upsells capitalize on moments when customers are most likely to convert. By embedding these capabilities into the roadmap through data integration, AI-driven insights, automation, and continuous optimization, we can deliver impactful, relevant, and timely experiences that foster deeper customer relationships and drive long-term success. 7. What’s your approach to breaking down the customer engagement technology roadmap into manageable phases? How do you prioritize the initiatives? To create a manageable roadmap, we need to divide it into distinct phases, starting with building the foundation by addressing data cleanup, system integrations, and establishing metrics, which lays the groundwork for success. Next, we can focus on early wins and quick impact by launching behavior-based campaigns, automating workflows, and improving personalization to drive immediate value. Then we can move to optimization and expansion, incorporating predictive analytics, cross-channel orchestration, and refined attribution models to enhance our capabilities. Finally, prioritize innovation and scalability, leveraging AI/ML for hyper-personalization, scaling campaigns to new markets, and ensuring the system is equipped for future growth. By starting with foundational projects, delivering quick wins, and building towards scalable innovation, we can drive measurable outcomes while maintaining our agility to adapt to evolving needs. In terms of prioritizing initiatives effectively, I would focus on projects that deliver the greatest impact on business goals, on customer experience and ROI, while we consider feasibility, urgency, and resource availability. In the past, I’ve used frameworks like Impact Effort Matrix to identify the high-impact, low-effort initiatives and ensure that the most critical projects are addressed first. 8. How do you ensure cross-functional alignment around this roadmap? What processes have worked best for you? Ensuring cross-functional alignment requires clear communication, collaborative planning, and shared accountability. We need to establish a shared understanding of the roadmap’s purpose and how it ties to the company’s overall goals by clearly articulating the “why” behind the roadmap and how each team can contribute to its success. To foster buy-in and ensure the roadmap reflects diverse perspectives and needs, we need to involve all stakeholders early on during the roadmap development and clearly outline each team’s role in executing the roadmap to ensure accountability across the different teams. To keep teams informed and aligned, we use meetings such as roadmap kickoff sessions and regular check-ins to share updates, address challenges collaboratively, and celebrate milestones together. 9. If you were to outline a simple framework for marketers to follow when building a customer engagement technology roadmap, what would it look like? A simple framework for marketers to follow when building the roadmap can be summarized in five clear steps: Plan, Audit, Prioritize, Execute, and Refine. In one word: PAPER. Here’s how it breaks down. Plan: We lay the groundwork for the roadmap by defining the CRM strategy and aligning it with the business goals. Audit: We evaluate the current state of our CRM capabilities. We conduct a comprehensive assessment of our tools, our data, the processes, and team workflows to identify any potential gaps. Prioritize: initiatives based on impact, feasibility, and ROI potential. Execute: by implementing the roadmap in manageable phases. Refine: by continuously improving CRM performance and refining the roadmap. So the PAPER framework — Plan, Audit, Prioritize, Execute, and Refine — provides a structured, iterative approach allowing marketers to create a scalable and impactful customer engagement strategy. 10. What are the most common challenges marketers face in creating or executing a customer engagement strategy, and how can they address these effectively? The most critical is when the customer data is siloed across different tools and platforms, making it very difficult to get a unified view of the customer. This limits the ability to deliver personalized and consistent experiences. The solution is to invest in tools that can centralize data from all touchpoints and ensure seamless integration between different platforms to create a single source of truth. Another challenge is the lack of clear metrics and ROI measurement and the inability to connect engagement efforts to tangible business outcomes, making it very hard to justify investment or optimize strategies. The solution for that is to define clear KPIs at the outset and use attribution models to link customer interactions to revenue and other key outcomes. Overcoming internal silos is another challenge where there is misalignment between teams, which can lead to inconsistent messaging and delayed execution. A solution to this is to foster cross-functional collaboration through shared goals, regular communication, and joint planning sessions. Besides these, other challenges marketers can face are delivering personalization at scale, keeping up with changing customer expectations, resource and budget constraints, resistance to change, and others. While creating and executing a customer engagement strategy can be challenging, these obstacles can be addressed through strategic planning, leveraging the right tools, fostering collaboration, and staying adaptable to customer needs and industry trends. By tackling these challenges proactively, marketers can deliver impactful customer-centric strategies that drive long-term success. 11. What are the top takeaways or lessons that you’ve learned from building customer engagement technology roadmaps that others should keep in mind? I would say one of the most important takeaways is to ensure that the roadmap directly supports the company’s broader objectives. Whether the focus is on retention, customer lifetime value, or revenue growth, the roadmap must bridge the gap between high-level business goals and actionable initiatives. Another important lesson: The roadmap is only as effective as the data and systems it’s built upon. I’ve learned the importance of prioritizing foundational elements like data cleanup, integrations, and governance before tackling advanced initiatives like personalization or predictive analytics. Skipping this step can lead to inefficiencies or missed opportunities later on. A Customer Engagement Roadmap is a strategic tool that evolves alongside the business and its customers. So by aligning with business goals, building a solid foundation, focusing on impact, fostering collaboration, and remaining adaptable, you can create a roadmap that delivers measurable results and meaningful customer experiences.     This interview Q&A was hosted with Mirela Cialai, Director of CRM & MarTech at Equinox, for Chapter 7 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Mirela Cialai Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    0 Комментарии 0 Поделились 0 предпросмотр
  • Discord Invite Link Hijacking Delivers AsyncRAT and Skuld Stealer Targeting Crypto Wallets

    Jun 14, 2025Ravie LakshmananMalware / Threat Intelligence

    A new malware campaign is exploiting a weakness in Discord's invitation system to deliver an information stealer called Skuld and the AsyncRAT remote access trojan.
    "Attackers hijacked the links through vanity link registration, allowing them to silently redirect users from trusted sources to malicious servers," Check Point said in a technical report. "The attackers combined the ClickFix phishing technique, multi-stage loaders, and time-based evasions to stealthily deliver AsyncRAT, and a customized Skuld Stealer targeting crypto wallets."
    The issue with Discord's invite mechanism is that it allows attackers to hijack expired or deleted invite links and secretly redirect unsuspecting users to malicious servers under their control. This also means that a Discord invite link that was once trusted and shared on forums or social media platforms could unwittingly lead users to malicious sites.

    Details of the campaign come a little over a month after the cybersecurity company revealed another sophisticated phishing campaign that hijacked expired vanity invite links to entice users into joining a Discord server and instruct them to visit a phishing site to verify ownership, only to have their digital assets drained upon connecting their wallets.
    While users can create temporary, permanent, or custominvite links on Discord, the platform prevents other legitimate servers from reclaiming a previously expired or deleted invite. However, Check Point found that creating custom invite links allows the reuse of expired invite codes and even deleted permanent invite codes in some cases.

    This ability to reuse Discord expired or deleted codes when creating custom vanity invite links opens the door to abuse, allowing attackers to claim it for their malicious server.
    "This creates a serious risk: Users who follow previously trusted invite linkscan unknowingly be redirected to fake Discord servers created by threat actors," Check Point said.
    The Discord invite-link hijacking, in a nutshell, involves taking control of invite links originally shared by legitimate communities and then using them to redirect users to the malicious server. Users who fall prey to the scheme and join the server are asked to complete a verification step in order to gain full server access by authorizing a bot, which then leads them to a fake website with a prominent "Verify" button.
    This is where the attackers take the attack to the next level by incorporating the infamous ClickFix social engineering tactic to trick users into infecting their systems under the pretext of verification.

    Specifically, clicking the "Verify" button surreptitiously executes JavaScript that copies a PowerShell command to the machine's clipboard, after which the users are urged to launch the Windows Run dialog, paste the already copied "verification string", and press Enter to authenticate their accounts.
    But in reality, performing these steps triggers the download of a PowerShell script hosted on Pastebin that subsequently retrieves and executes a first-stage downloader, which is ultimately used to drop AsyncRAT and Skuld Stealer from a remote server and execute them.
    At the heart of this attack lies a meticulously engineered, multi-stage infection process designed for both precision and stealth, while also taking steps to subvert security protections through sandbox security checks.
    AsyncRAT, which offers comprehensive remote control capabilities over infected systems, has been found to employ a technique called dead drop resolver to access the actual command-and-controlserver by reading a Pastebin file.
    The other payload is a Golang information stealer that's downloaded from Bitbucket. It's equipped to steal sensitive user data from Discord, various browsers, crypto wallets, and gaming platforms.
    Skuld is also capable of harvesting crypto wallet seed phrases and passwords from the Exodus and Atomic crypto wallets. It accomplishes this using an approach called wallet injection that replaces legitimate application files with trojanized versions downloaded from GitHub. It's worth noting that a similar technique was recently put to use by a rogue npm package named pdf-to-office.
    The attack also employs a custom version of an open-source tool known as ChromeKatz to bypass Chrome's app-bound encryption protections. The collected data is exfiltrated to the miscreants via a Discord webhook.
    The fact that payload delivery and data exfiltration occur via trusted cloud services such as GitHub, Bitbucket, Pastebin, and Discord allows the threat actors to blend in with normal traffic and fly under the radar. Discord has since disabled the malicious bot, effectively breaking the attack chain.

    Check Point said it also identified another campaign mounted by the same threat actor that distributes the loader as a modified version of a hacktool for unlocking pirated games. The malicious program, also hosted on Bitbucket, has been downloaded 350 times.
    It has been assessed that the victims of these campaigns are primarily located in the United States, Vietnam, France, Germany, Slovakia, Austria, the Netherlands, and the United Kingdom.
    The findings represent the latest example of how cybercriminals are targeting the popular social platform, which has had its content delivery networkabused to host malware in the past.
    "This campaign illustrates how a subtle feature of Discord's invite system, the ability to reuse expired or deleted invite codes in vanity invite links, can be exploited as a powerful attack vector," the researchers said. "By hijacking legitimate invite links, threat actors silently redirect unsuspecting users to malicious Discord servers."
    "The choice of payloads, including a powerful stealer specifically targeting cryptocurrency wallets, suggests that the attackers are primarily focused on crypto users and motivated by financial gain."

    Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post.

    SHARE




    #discord #invite #link #hijacking #delivers
    Discord Invite Link Hijacking Delivers AsyncRAT and Skuld Stealer Targeting Crypto Wallets
    Jun 14, 2025Ravie LakshmananMalware / Threat Intelligence A new malware campaign is exploiting a weakness in Discord's invitation system to deliver an information stealer called Skuld and the AsyncRAT remote access trojan. "Attackers hijacked the links through vanity link registration, allowing them to silently redirect users from trusted sources to malicious servers," Check Point said in a technical report. "The attackers combined the ClickFix phishing technique, multi-stage loaders, and time-based evasions to stealthily deliver AsyncRAT, and a customized Skuld Stealer targeting crypto wallets." The issue with Discord's invite mechanism is that it allows attackers to hijack expired or deleted invite links and secretly redirect unsuspecting users to malicious servers under their control. This also means that a Discord invite link that was once trusted and shared on forums or social media platforms could unwittingly lead users to malicious sites. Details of the campaign come a little over a month after the cybersecurity company revealed another sophisticated phishing campaign that hijacked expired vanity invite links to entice users into joining a Discord server and instruct them to visit a phishing site to verify ownership, only to have their digital assets drained upon connecting their wallets. While users can create temporary, permanent, or custominvite links on Discord, the platform prevents other legitimate servers from reclaiming a previously expired or deleted invite. However, Check Point found that creating custom invite links allows the reuse of expired invite codes and even deleted permanent invite codes in some cases. This ability to reuse Discord expired or deleted codes when creating custom vanity invite links opens the door to abuse, allowing attackers to claim it for their malicious server. "This creates a serious risk: Users who follow previously trusted invite linkscan unknowingly be redirected to fake Discord servers created by threat actors," Check Point said. The Discord invite-link hijacking, in a nutshell, involves taking control of invite links originally shared by legitimate communities and then using them to redirect users to the malicious server. Users who fall prey to the scheme and join the server are asked to complete a verification step in order to gain full server access by authorizing a bot, which then leads them to a fake website with a prominent "Verify" button. This is where the attackers take the attack to the next level by incorporating the infamous ClickFix social engineering tactic to trick users into infecting their systems under the pretext of verification. Specifically, clicking the "Verify" button surreptitiously executes JavaScript that copies a PowerShell command to the machine's clipboard, after which the users are urged to launch the Windows Run dialog, paste the already copied "verification string", and press Enter to authenticate their accounts. But in reality, performing these steps triggers the download of a PowerShell script hosted on Pastebin that subsequently retrieves and executes a first-stage downloader, which is ultimately used to drop AsyncRAT and Skuld Stealer from a remote server and execute them. At the heart of this attack lies a meticulously engineered, multi-stage infection process designed for both precision and stealth, while also taking steps to subvert security protections through sandbox security checks. AsyncRAT, which offers comprehensive remote control capabilities over infected systems, has been found to employ a technique called dead drop resolver to access the actual command-and-controlserver by reading a Pastebin file. The other payload is a Golang information stealer that's downloaded from Bitbucket. It's equipped to steal sensitive user data from Discord, various browsers, crypto wallets, and gaming platforms. Skuld is also capable of harvesting crypto wallet seed phrases and passwords from the Exodus and Atomic crypto wallets. It accomplishes this using an approach called wallet injection that replaces legitimate application files with trojanized versions downloaded from GitHub. It's worth noting that a similar technique was recently put to use by a rogue npm package named pdf-to-office. The attack also employs a custom version of an open-source tool known as ChromeKatz to bypass Chrome's app-bound encryption protections. The collected data is exfiltrated to the miscreants via a Discord webhook. The fact that payload delivery and data exfiltration occur via trusted cloud services such as GitHub, Bitbucket, Pastebin, and Discord allows the threat actors to blend in with normal traffic and fly under the radar. Discord has since disabled the malicious bot, effectively breaking the attack chain. Check Point said it also identified another campaign mounted by the same threat actor that distributes the loader as a modified version of a hacktool for unlocking pirated games. The malicious program, also hosted on Bitbucket, has been downloaded 350 times. It has been assessed that the victims of these campaigns are primarily located in the United States, Vietnam, France, Germany, Slovakia, Austria, the Netherlands, and the United Kingdom. The findings represent the latest example of how cybercriminals are targeting the popular social platform, which has had its content delivery networkabused to host malware in the past. "This campaign illustrates how a subtle feature of Discord's invite system, the ability to reuse expired or deleted invite codes in vanity invite links, can be exploited as a powerful attack vector," the researchers said. "By hijacking legitimate invite links, threat actors silently redirect unsuspecting users to malicious Discord servers." "The choice of payloads, including a powerful stealer specifically targeting cryptocurrency wallets, suggests that the attackers are primarily focused on crypto users and motivated by financial gain." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE     #discord #invite #link #hijacking #delivers
    THEHACKERNEWS.COM
    Discord Invite Link Hijacking Delivers AsyncRAT and Skuld Stealer Targeting Crypto Wallets
    Jun 14, 2025Ravie LakshmananMalware / Threat Intelligence A new malware campaign is exploiting a weakness in Discord's invitation system to deliver an information stealer called Skuld and the AsyncRAT remote access trojan. "Attackers hijacked the links through vanity link registration, allowing them to silently redirect users from trusted sources to malicious servers," Check Point said in a technical report. "The attackers combined the ClickFix phishing technique, multi-stage loaders, and time-based evasions to stealthily deliver AsyncRAT, and a customized Skuld Stealer targeting crypto wallets." The issue with Discord's invite mechanism is that it allows attackers to hijack expired or deleted invite links and secretly redirect unsuspecting users to malicious servers under their control. This also means that a Discord invite link that was once trusted and shared on forums or social media platforms could unwittingly lead users to malicious sites. Details of the campaign come a little over a month after the cybersecurity company revealed another sophisticated phishing campaign that hijacked expired vanity invite links to entice users into joining a Discord server and instruct them to visit a phishing site to verify ownership, only to have their digital assets drained upon connecting their wallets. While users can create temporary, permanent, or custom (vanity) invite links on Discord, the platform prevents other legitimate servers from reclaiming a previously expired or deleted invite. However, Check Point found that creating custom invite links allows the reuse of expired invite codes and even deleted permanent invite codes in some cases. This ability to reuse Discord expired or deleted codes when creating custom vanity invite links opens the door to abuse, allowing attackers to claim it for their malicious server. "This creates a serious risk: Users who follow previously trusted invite links (e.g., on websites, blogs, or forums) can unknowingly be redirected to fake Discord servers created by threat actors," Check Point said. The Discord invite-link hijacking, in a nutshell, involves taking control of invite links originally shared by legitimate communities and then using them to redirect users to the malicious server. Users who fall prey to the scheme and join the server are asked to complete a verification step in order to gain full server access by authorizing a bot, which then leads them to a fake website with a prominent "Verify" button. This is where the attackers take the attack to the next level by incorporating the infamous ClickFix social engineering tactic to trick users into infecting their systems under the pretext of verification. Specifically, clicking the "Verify" button surreptitiously executes JavaScript that copies a PowerShell command to the machine's clipboard, after which the users are urged to launch the Windows Run dialog, paste the already copied "verification string" (i.e., the PowerShell command), and press Enter to authenticate their accounts. But in reality, performing these steps triggers the download of a PowerShell script hosted on Pastebin that subsequently retrieves and executes a first-stage downloader, which is ultimately used to drop AsyncRAT and Skuld Stealer from a remote server and execute them. At the heart of this attack lies a meticulously engineered, multi-stage infection process designed for both precision and stealth, while also taking steps to subvert security protections through sandbox security checks. AsyncRAT, which offers comprehensive remote control capabilities over infected systems, has been found to employ a technique called dead drop resolver to access the actual command-and-control (C2) server by reading a Pastebin file. The other payload is a Golang information stealer that's downloaded from Bitbucket. It's equipped to steal sensitive user data from Discord, various browsers, crypto wallets, and gaming platforms. Skuld is also capable of harvesting crypto wallet seed phrases and passwords from the Exodus and Atomic crypto wallets. It accomplishes this using an approach called wallet injection that replaces legitimate application files with trojanized versions downloaded from GitHub. It's worth noting that a similar technique was recently put to use by a rogue npm package named pdf-to-office. The attack also employs a custom version of an open-source tool known as ChromeKatz to bypass Chrome's app-bound encryption protections. The collected data is exfiltrated to the miscreants via a Discord webhook. The fact that payload delivery and data exfiltration occur via trusted cloud services such as GitHub, Bitbucket, Pastebin, and Discord allows the threat actors to blend in with normal traffic and fly under the radar. Discord has since disabled the malicious bot, effectively breaking the attack chain. Check Point said it also identified another campaign mounted by the same threat actor that distributes the loader as a modified version of a hacktool for unlocking pirated games. The malicious program, also hosted on Bitbucket, has been downloaded 350 times. It has been assessed that the victims of these campaigns are primarily located in the United States, Vietnam, France, Germany, Slovakia, Austria, the Netherlands, and the United Kingdom. The findings represent the latest example of how cybercriminals are targeting the popular social platform, which has had its content delivery network (CDN) abused to host malware in the past. "This campaign illustrates how a subtle feature of Discord's invite system, the ability to reuse expired or deleted invite codes in vanity invite links, can be exploited as a powerful attack vector," the researchers said. "By hijacking legitimate invite links, threat actors silently redirect unsuspecting users to malicious Discord servers." "The choice of payloads, including a powerful stealer specifically targeting cryptocurrency wallets, suggests that the attackers are primarily focused on crypto users and motivated by financial gain." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE    
    0 Комментарии 0 Поделились 0 предпросмотр
CGShares https://cgshares.com