• CERT Director Greg Touhill: To Lead Is to Serve

    Greg Touhill, director of the Software Engineering’s Institute’sComputer Emergency Response Teamdivision is an atypical technology leader. For one thing, he’s been in tech and other leadership positions that span the US Air Force, the US government, the private sector and now SEI’s CERT. More importantly, he’s been a major force in the cybersecurity realm, making the world a safer place and even saving lives. Touhill earned a bachelor’s degree from the Pennsylvania State University, a master’s degree from the University of Southern California, a master’s degree from the Air War College, was a senior executive fellow at the Harvard University Kennedy School of Government and completed executive education studies at the University of North Carolina. “I was a student intern at Carnegie Mellon, but I was going to college at Penn State and studying chemical engineering. As an Air Force ROTC scholarship recipient, I knew I was going to become an Air Force officer but soon realized that I didn’t necessarily want to be a chemical engineer in the Air Force,” says Touhill. “Because I passed all the mathematics, physics, and engineering courses, I ended up becoming a communications, electronics, and computer systems officer in the Air Force. I spent 30 years, one month and three days on active duty in the United States Air Force, eventually retiring as a brigadier general and having done many different types of jobs that were available to me within and even beyond my career field.” Related:Specifically, he was an operational commander at the squadron, group, and wing levels. For example, as a colonel, Touhill served as director of command, control, communications and computersfor the United States Central Command Forces, then he was appointed chief information officer and director, communications and information at Air Mobility Command. Later, he served as commander, 81st Training Wing at Kessler Air Force Base where he was promoted to brigadier general and commanded over 12,500 personnel. After that, he served as the senior defense officer and US defense attaché at the US Embassy in Kuwait, before concluding his military career as the chief information officer and director, C4 systems at the US Transportation Command, one of 10 US combatant commands, where he and his team were awarded the NSA Rowlett Award for the best cybersecurity program in the government. While in the Air Force, Touhill received numerous awards and decorations including the Bronze Star medal and the Air Force Science and Engineering Award. He is the only three-time recipient of the USAF C4 Professionalism Award. Related:Greg Touhill“I got to serve at major combatant commands, work with coalition partners from many different countries and represented the US as part of a diplomatic mission to Kuwait for two years as the senior defense official at a time when America was withdrawing forces out of Iraq. I also led the negotiation of a new bilateral defense agreement with the Kuwaitis,” says Touhill. “Then I was recruited to continue my service and was asked to serve as the deputy assistant secretary of cybersecurity and communications at the Department of Homeland Security, where I ran the operations of what is now known as the Cybersecurity and Infrastructure Security Agency. I was there at a pivotal moment because we were building up the capacity of that organization and setting the stage for it to become its own agency.” While at DHS, there were many noteworthy breaches including the infamous US Office of People Managementbreach. Those events led to Obama’s visit to the National Cybersecurity and Communications Integration Center.  “I got to brief the president on the state of cybersecurity, what we had seen with the OPM breach and some other deficiencies,” says Touhill. “I was on the federal CIO council as the cybersecurity advisor to that since I’d been a federal CIO before and I got to conclude my federal career by being the first United States government chief information security officer. From there, I pivoted to industry, but I also got to return to Carnegie Mellon as a faculty member at Carnegie Mellon’s Heinz College, where I've been teaching since January 2017.” Related:Touhill has been involved in three startups, two of which were successfully acquired. He also served on three Fortune 100 advisory boards and on the Information Systems Audit and Control Association board, eventually becoming its chair for a term during the seven years he served there. Touhill just celebrated his fourth year at CERT, which he considers the pinnacle of the cybersecurity profession and everything he’s done to date. “Over my career I've led teams that have done major software builds in the national security space. I've also been the guy who's pulled cables and set up routers, hubs and switches, and I've been a system administrator. I've done everything that I could do from the keyboard up all the way up to the White House,” says Touhill. “For 40 years, the Software Engineering Institute has been leading the world in secure by design, cybersecurity, software engineering, artificial intelligence and engineering, pioneering best practices, and figuring out how to make the world a safer more secure and trustworthy place. I’ve had a hand in the making of today’s modern military and government information technology environment, beginning as a 22-year-old lieutenant, and hope to inspire the next generation to do even better.” What ‘Success’ Means Many people would be satisfied with their careers as a brigadier general, a tech leader, the White House’s first anything, or working at CERT, let alone running it. Touhill has spent his entire career making the world a safer place, so it’s not surprising that he considers his greatest achievement saving lives. “In the Middle East and Iraq, convoys were being attacked with improvised explosive devices. There were also ‘direct fire’ attacks where people are firing weapons at you and indirect fire attacks where you could be in the line of fire,” says Touhill. “The convoys were using SINCGARS line-of-site walkie-talkies for communications that are most effective when the ground is flat, and Iraq is not flat. As a result, our troops were at risk of not having reliable communications while under attack. As my team brainstormed options to remedy the situation, one of my guys found some technology, about the size of an iPhone, that could covert a radio signal, which is basically a waveform, into a digital pulse I could put on a dedicated network to support the convoy missions.” For million, Touhill and his team quickly architected, tested, and fielded the Radio over IP networkthat had a 99% reliability rate anywhere in Iraq. Better still, convoys could communicate over the network using any radios. That solution saved a minimum of six lives. In one case, the hospital doctor said if the patient had arrived five minutes later, he would have died. Sage Advice Anyone who has ever spent time in the military or in a military family knows that soldiers are very well disciplined, or they wash out. Other traits include being physically fit, mentally fit, and achieving balance in life, though that’s difficult to achieve in combat. Still, it’s a necessity. “I served three and a half years down range in combat operations. My experience taught me you could be doing 20-hour days for a year or two on end. If you haven’t built a good foundation of being disciplined and fit, it impacts your ability to maintain presence in times of stress, and CISOs work in stressful situations,” says Touhill. “Staying fit also fortifies you for the long haul, so you don’t get burned out as fast.” Another necessary skill is the ability to work well with others.  “Cybersecurity is an interdisciplinary practice. One of the great joys I have as CERT director is the wide range of experts in many different fields that include software engineers, computer engineers, computer scientists, data scientists, mathematicians and physicists,” says Touhill. “I have folks who have business degrees and others who have philosophy degrees. It's really a rich community of interests all coming together towards that common goal of making the world a safer, more secure and more trusted place in the cyber domain. We’re are kind of like the cyber neighborhood watch for the whole world.” He also says that money isn’t everything, having taken a pay cut to go from being an Air Force brigadier general to the deputy assistant secretary of the Department of Homeland Security . “You’ll always do well if you pick the job that matters most. That’s what I did, and I’ve been rewarded every step,” says Touhill.  The biggest challenge he sees is the complexity of cyber systems and software, which can have second, third, and fourth order effects.  “Complexity raises the cost of the attack surface, increases the attack surface, raises the number of vulnerabilities and exploits human weaknesses,” says Touhill. “The No. 1 thing we need to be paying attention to is privacy when it comes to AI because AI can unearth and discover knowledge from data we already have. While it gives us greater insights at greater velocities, we need to be careful that we take precautions to better protect our privacy, civil rights and civil liberties.” 
    #cert #director #greg #touhill #lead
    CERT Director Greg Touhill: To Lead Is to Serve
    Greg Touhill, director of the Software Engineering’s Institute’sComputer Emergency Response Teamdivision is an atypical technology leader. For one thing, he’s been in tech and other leadership positions that span the US Air Force, the US government, the private sector and now SEI’s CERT. More importantly, he’s been a major force in the cybersecurity realm, making the world a safer place and even saving lives. Touhill earned a bachelor’s degree from the Pennsylvania State University, a master’s degree from the University of Southern California, a master’s degree from the Air War College, was a senior executive fellow at the Harvard University Kennedy School of Government and completed executive education studies at the University of North Carolina. “I was a student intern at Carnegie Mellon, but I was going to college at Penn State and studying chemical engineering. As an Air Force ROTC scholarship recipient, I knew I was going to become an Air Force officer but soon realized that I didn’t necessarily want to be a chemical engineer in the Air Force,” says Touhill. “Because I passed all the mathematics, physics, and engineering courses, I ended up becoming a communications, electronics, and computer systems officer in the Air Force. I spent 30 years, one month and three days on active duty in the United States Air Force, eventually retiring as a brigadier general and having done many different types of jobs that were available to me within and even beyond my career field.” Related:Specifically, he was an operational commander at the squadron, group, and wing levels. For example, as a colonel, Touhill served as director of command, control, communications and computersfor the United States Central Command Forces, then he was appointed chief information officer and director, communications and information at Air Mobility Command. Later, he served as commander, 81st Training Wing at Kessler Air Force Base where he was promoted to brigadier general and commanded over 12,500 personnel. After that, he served as the senior defense officer and US defense attaché at the US Embassy in Kuwait, before concluding his military career as the chief information officer and director, C4 systems at the US Transportation Command, one of 10 US combatant commands, where he and his team were awarded the NSA Rowlett Award for the best cybersecurity program in the government. While in the Air Force, Touhill received numerous awards and decorations including the Bronze Star medal and the Air Force Science and Engineering Award. He is the only three-time recipient of the USAF C4 Professionalism Award. Related:Greg Touhill“I got to serve at major combatant commands, work with coalition partners from many different countries and represented the US as part of a diplomatic mission to Kuwait for two years as the senior defense official at a time when America was withdrawing forces out of Iraq. I also led the negotiation of a new bilateral defense agreement with the Kuwaitis,” says Touhill. “Then I was recruited to continue my service and was asked to serve as the deputy assistant secretary of cybersecurity and communications at the Department of Homeland Security, where I ran the operations of what is now known as the Cybersecurity and Infrastructure Security Agency. I was there at a pivotal moment because we were building up the capacity of that organization and setting the stage for it to become its own agency.” While at DHS, there were many noteworthy breaches including the infamous US Office of People Managementbreach. Those events led to Obama’s visit to the National Cybersecurity and Communications Integration Center.  “I got to brief the president on the state of cybersecurity, what we had seen with the OPM breach and some other deficiencies,” says Touhill. “I was on the federal CIO council as the cybersecurity advisor to that since I’d been a federal CIO before and I got to conclude my federal career by being the first United States government chief information security officer. From there, I pivoted to industry, but I also got to return to Carnegie Mellon as a faculty member at Carnegie Mellon’s Heinz College, where I've been teaching since January 2017.” Related:Touhill has been involved in three startups, two of which were successfully acquired. He also served on three Fortune 100 advisory boards and on the Information Systems Audit and Control Association board, eventually becoming its chair for a term during the seven years he served there. Touhill just celebrated his fourth year at CERT, which he considers the pinnacle of the cybersecurity profession and everything he’s done to date. “Over my career I've led teams that have done major software builds in the national security space. I've also been the guy who's pulled cables and set up routers, hubs and switches, and I've been a system administrator. I've done everything that I could do from the keyboard up all the way up to the White House,” says Touhill. “For 40 years, the Software Engineering Institute has been leading the world in secure by design, cybersecurity, software engineering, artificial intelligence and engineering, pioneering best practices, and figuring out how to make the world a safer more secure and trustworthy place. I’ve had a hand in the making of today’s modern military and government information technology environment, beginning as a 22-year-old lieutenant, and hope to inspire the next generation to do even better.” What ‘Success’ Means Many people would be satisfied with their careers as a brigadier general, a tech leader, the White House’s first anything, or working at CERT, let alone running it. Touhill has spent his entire career making the world a safer place, so it’s not surprising that he considers his greatest achievement saving lives. “In the Middle East and Iraq, convoys were being attacked with improvised explosive devices. There were also ‘direct fire’ attacks where people are firing weapons at you and indirect fire attacks where you could be in the line of fire,” says Touhill. “The convoys were using SINCGARS line-of-site walkie-talkies for communications that are most effective when the ground is flat, and Iraq is not flat. As a result, our troops were at risk of not having reliable communications while under attack. As my team brainstormed options to remedy the situation, one of my guys found some technology, about the size of an iPhone, that could covert a radio signal, which is basically a waveform, into a digital pulse I could put on a dedicated network to support the convoy missions.” For million, Touhill and his team quickly architected, tested, and fielded the Radio over IP networkthat had a 99% reliability rate anywhere in Iraq. Better still, convoys could communicate over the network using any radios. That solution saved a minimum of six lives. In one case, the hospital doctor said if the patient had arrived five minutes later, he would have died. Sage Advice Anyone who has ever spent time in the military or in a military family knows that soldiers are very well disciplined, or they wash out. Other traits include being physically fit, mentally fit, and achieving balance in life, though that’s difficult to achieve in combat. Still, it’s a necessity. “I served three and a half years down range in combat operations. My experience taught me you could be doing 20-hour days for a year or two on end. If you haven’t built a good foundation of being disciplined and fit, it impacts your ability to maintain presence in times of stress, and CISOs work in stressful situations,” says Touhill. “Staying fit also fortifies you for the long haul, so you don’t get burned out as fast.” Another necessary skill is the ability to work well with others.  “Cybersecurity is an interdisciplinary practice. One of the great joys I have as CERT director is the wide range of experts in many different fields that include software engineers, computer engineers, computer scientists, data scientists, mathematicians and physicists,” says Touhill. “I have folks who have business degrees and others who have philosophy degrees. It's really a rich community of interests all coming together towards that common goal of making the world a safer, more secure and more trusted place in the cyber domain. We’re are kind of like the cyber neighborhood watch for the whole world.” He also says that money isn’t everything, having taken a pay cut to go from being an Air Force brigadier general to the deputy assistant secretary of the Department of Homeland Security . “You’ll always do well if you pick the job that matters most. That’s what I did, and I’ve been rewarded every step,” says Touhill.  The biggest challenge he sees is the complexity of cyber systems and software, which can have second, third, and fourth order effects.  “Complexity raises the cost of the attack surface, increases the attack surface, raises the number of vulnerabilities and exploits human weaknesses,” says Touhill. “The No. 1 thing we need to be paying attention to is privacy when it comes to AI because AI can unearth and discover knowledge from data we already have. While it gives us greater insights at greater velocities, we need to be careful that we take precautions to better protect our privacy, civil rights and civil liberties.”  #cert #director #greg #touhill #lead
    WWW.INFORMATIONWEEK.COM
    CERT Director Greg Touhill: To Lead Is to Serve
    Greg Touhill, director of the Software Engineering’s Institute’s (SEI’s) Computer Emergency Response Team (CERT) division is an atypical technology leader. For one thing, he’s been in tech and other leadership positions that span the US Air Force, the US government, the private sector and now SEI’s CERT. More importantly, he’s been a major force in the cybersecurity realm, making the world a safer place and even saving lives. Touhill earned a bachelor’s degree from the Pennsylvania State University, a master’s degree from the University of Southern California, a master’s degree from the Air War College, was a senior executive fellow at the Harvard University Kennedy School of Government and completed executive education studies at the University of North Carolina. “I was a student intern at Carnegie Mellon, but I was going to college at Penn State and studying chemical engineering. As an Air Force ROTC scholarship recipient, I knew I was going to become an Air Force officer but soon realized that I didn’t necessarily want to be a chemical engineer in the Air Force,” says Touhill. “Because I passed all the mathematics, physics, and engineering courses, I ended up becoming a communications, electronics, and computer systems officer in the Air Force. I spent 30 years, one month and three days on active duty in the United States Air Force, eventually retiring as a brigadier general and having done many different types of jobs that were available to me within and even beyond my career field.” Related:Specifically, he was an operational commander at the squadron, group, and wing levels. For example, as a colonel, Touhill served as director of command, control, communications and computers (C4) for the United States Central Command Forces, then he was appointed chief information officer and director, communications and information at Air Mobility Command. Later, he served as commander, 81st Training Wing at Kessler Air Force Base where he was promoted to brigadier general and commanded over 12,500 personnel. After that, he served as the senior defense officer and US defense attaché at the US Embassy in Kuwait, before concluding his military career as the chief information officer and director, C4 systems at the US Transportation Command, one of 10 US combatant commands, where he and his team were awarded the NSA Rowlett Award for the best cybersecurity program in the government. While in the Air Force, Touhill received numerous awards and decorations including the Bronze Star medal and the Air Force Science and Engineering Award. He is the only three-time recipient of the USAF C4 Professionalism Award. Related:Greg Touhill“I got to serve at major combatant commands, work with coalition partners from many different countries and represented the US as part of a diplomatic mission to Kuwait for two years as the senior defense official at a time when America was withdrawing forces out of Iraq. I also led the negotiation of a new bilateral defense agreement with the Kuwaitis,” says Touhill. “Then I was recruited to continue my service and was asked to serve as the deputy assistant secretary of cybersecurity and communications at the Department of Homeland Security, where I ran the operations of what is now known as the Cybersecurity and Infrastructure Security Agency. I was there at a pivotal moment because we were building up the capacity of that organization and setting the stage for it to become its own agency.” While at DHS, there were many noteworthy breaches including the infamous US Office of People Management (OPM) breach. Those events led to Obama’s visit to the National Cybersecurity and Communications Integration Center.  “I got to brief the president on the state of cybersecurity, what we had seen with the OPM breach and some other deficiencies,” says Touhill. “I was on the federal CIO council as the cybersecurity advisor to that since I’d been a federal CIO before and I got to conclude my federal career by being the first United States government chief information security officer. From there, I pivoted to industry, but I also got to return to Carnegie Mellon as a faculty member at Carnegie Mellon’s Heinz College, where I've been teaching since January 2017.” Related:Touhill has been involved in three startups, two of which were successfully acquired. He also served on three Fortune 100 advisory boards and on the Information Systems Audit and Control Association board, eventually becoming its chair for a term during the seven years he served there. Touhill just celebrated his fourth year at CERT, which he considers the pinnacle of the cybersecurity profession and everything he’s done to date. “Over my career I've led teams that have done major software builds in the national security space. I've also been the guy who's pulled cables and set up routers, hubs and switches, and I've been a system administrator. I've done everything that I could do from the keyboard up all the way up to the White House,” says Touhill. “For 40 years, the Software Engineering Institute has been leading the world in secure by design, cybersecurity, software engineering, artificial intelligence and engineering, pioneering best practices, and figuring out how to make the world a safer more secure and trustworthy place. I’ve had a hand in the making of today’s modern military and government information technology environment, beginning as a 22-year-old lieutenant, and hope to inspire the next generation to do even better.” What ‘Success’ Means Many people would be satisfied with their careers as a brigadier general, a tech leader, the White House’s first anything, or working at CERT, let alone running it. Touhill has spent his entire career making the world a safer place, so it’s not surprising that he considers his greatest achievement saving lives. “In the Middle East and Iraq, convoys were being attacked with improvised explosive devices. There were also ‘direct fire’ attacks where people are firing weapons at you and indirect fire attacks where you could be in the line of fire,” says Touhill. “The convoys were using SINCGARS line-of-site walkie-talkies for communications that are most effective when the ground is flat, and Iraq is not flat. As a result, our troops were at risk of not having reliable communications while under attack. As my team brainstormed options to remedy the situation, one of my guys found some technology, about the size of an iPhone, that could covert a radio signal, which is basically a waveform, into a digital pulse I could put on a dedicated network to support the convoy missions.” For $11 million, Touhill and his team quickly architected, tested, and fielded the Radio over IP network (aka “Ripper Net”) that had a 99% reliability rate anywhere in Iraq. Better still, convoys could communicate over the network using any radios. That solution saved a minimum of six lives. In one case, the hospital doctor said if the patient had arrived five minutes later, he would have died. Sage Advice Anyone who has ever spent time in the military or in a military family knows that soldiers are very well disciplined, or they wash out. Other traits include being physically fit, mentally fit, and achieving balance in life, though that’s difficult to achieve in combat. Still, it’s a necessity. “I served three and a half years down range in combat operations. My experience taught me you could be doing 20-hour days for a year or two on end. If you haven’t built a good foundation of being disciplined and fit, it impacts your ability to maintain presence in times of stress, and CISOs work in stressful situations,” says Touhill. “Staying fit also fortifies you for the long haul, so you don’t get burned out as fast.” Another necessary skill is the ability to work well with others.  “Cybersecurity is an interdisciplinary practice. One of the great joys I have as CERT director is the wide range of experts in many different fields that include software engineers, computer engineers, computer scientists, data scientists, mathematicians and physicists,” says Touhill. “I have folks who have business degrees and others who have philosophy degrees. It's really a rich community of interests all coming together towards that common goal of making the world a safer, more secure and more trusted place in the cyber domain. We’re are kind of like the cyber neighborhood watch for the whole world.” He also says that money isn’t everything, having taken a pay cut to go from being an Air Force brigadier general to the deputy assistant secretary of the Department of Homeland Security . “You’ll always do well if you pick the job that matters most. That’s what I did, and I’ve been rewarded every step,” says Touhill.  The biggest challenge he sees is the complexity of cyber systems and software, which can have second, third, and fourth order effects.  “Complexity raises the cost of the attack surface, increases the attack surface, raises the number of vulnerabilities and exploits human weaknesses,” says Touhill. “The No. 1 thing we need to be paying attention to is privacy when it comes to AI because AI can unearth and discover knowledge from data we already have. While it gives us greater insights at greater velocities, we need to be careful that we take precautions to better protect our privacy, civil rights and civil liberties.” 
    0 Комментарии 0 Поделились 0 предпросмотр
  • Astronomers Discover Most Powerful Cosmic Explosions Since the Big Bang

    Astronomers have seen the most energetic cosmic explosions yet, a new class of eruptions termed "extreme nuclear transients". These rare events occur when stars at least three times more massive than our Sun are shredded by supermassive black holes. While such cataclysmic events have been known for years, recent flares detected in galactic centres revealed a brightness nearly ten times greater than typical tidal disruption events. The discovery offers new insight into black hole behaviour and energy release in the universe's most extreme environments.Extreme Flares Detected by Gaia and ZTF Reveal Most Energetic Black Hole Events YetAs per a June 4 Science Advances report, lead researcher Jason Hinkle of the University of Hawaii's Institute for Astronomy noticed two mysterious flares from galactic cores in 2016 and 2018, recorded by the European Space Agency's Gaia spacecraft. The scientists recognised them as ENTs because a third one, observed in 2020 by the Zwicky Transient Facility, has similar characteristics. These outbursts gave out more energy than supernovae did, and they lasted much longer than short bursts typically seen during tidal disruption events.Tidal disruption events such as Gaia18cdj are associated with flares that are explosive and long-duration. These explosions are greater than 100 times as intense as supernovas and have been occurring for millions to billions of years. They make ENTs an uncommon, energetic, and long-lived event that cosmic explorers might use.The ENTs' brightness lets astronomers focus on distant galactic centres, as well as the feeding habits of black holes in the universe's early days. "These flares are shining a light on the growth of supermassive black holes in the universe," mentioned co-author Benjamin Shappee, a Hubble fellow at IfA. Their visibility on large scales provides a statistical tool for cosmological studies in the future.Such findings are expanding what astrophysicists know about ENTs-but researchers stress that they're not done wrapping their heads around these mysterious objects just yet. The results might also advance new models of how black holes and stars work together and how energy moves across galaxies. Given upcoming missions with better instruments, the discovery of more ENTs will help astronomers learn even more about these violent events in the cosmos.

    For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube.

    Gadgets 360 Staff

    The resident bot. If you email me, a human will respond.
    More
    #astronomers #discover #most #powerful #cosmic
    Astronomers Discover Most Powerful Cosmic Explosions Since the Big Bang
    Astronomers have seen the most energetic cosmic explosions yet, a new class of eruptions termed "extreme nuclear transients". These rare events occur when stars at least three times more massive than our Sun are shredded by supermassive black holes. While such cataclysmic events have been known for years, recent flares detected in galactic centres revealed a brightness nearly ten times greater than typical tidal disruption events. The discovery offers new insight into black hole behaviour and energy release in the universe's most extreme environments.Extreme Flares Detected by Gaia and ZTF Reveal Most Energetic Black Hole Events YetAs per a June 4 Science Advances report, lead researcher Jason Hinkle of the University of Hawaii's Institute for Astronomy noticed two mysterious flares from galactic cores in 2016 and 2018, recorded by the European Space Agency's Gaia spacecraft. The scientists recognised them as ENTs because a third one, observed in 2020 by the Zwicky Transient Facility, has similar characteristics. These outbursts gave out more energy than supernovae did, and they lasted much longer than short bursts typically seen during tidal disruption events.Tidal disruption events such as Gaia18cdj are associated with flares that are explosive and long-duration. These explosions are greater than 100 times as intense as supernovas and have been occurring for millions to billions of years. They make ENTs an uncommon, energetic, and long-lived event that cosmic explorers might use.The ENTs' brightness lets astronomers focus on distant galactic centres, as well as the feeding habits of black holes in the universe's early days. "These flares are shining a light on the growth of supermassive black holes in the universe," mentioned co-author Benjamin Shappee, a Hubble fellow at IfA. Their visibility on large scales provides a statistical tool for cosmological studies in the future.Such findings are expanding what astrophysicists know about ENTs-but researchers stress that they're not done wrapping their heads around these mysterious objects just yet. The results might also advance new models of how black holes and stars work together and how energy moves across galaxies. Given upcoming missions with better instruments, the discovery of more ENTs will help astronomers learn even more about these violent events in the cosmos. For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube. Gadgets 360 Staff The resident bot. If you email me, a human will respond. More #astronomers #discover #most #powerful #cosmic
    WWW.GADGETS360.COM
    Astronomers Discover Most Powerful Cosmic Explosions Since the Big Bang
    Astronomers have seen the most energetic cosmic explosions yet, a new class of eruptions termed "extreme nuclear transients" (ENTs). These rare events occur when stars at least three times more massive than our Sun are shredded by supermassive black holes. While such cataclysmic events have been known for years, recent flares detected in galactic centres revealed a brightness nearly ten times greater than typical tidal disruption events. The discovery offers new insight into black hole behaviour and energy release in the universe's most extreme environments.Extreme Flares Detected by Gaia and ZTF Reveal Most Energetic Black Hole Events YetAs per a June 4 Science Advances report, lead researcher Jason Hinkle of the University of Hawaii's Institute for Astronomy noticed two mysterious flares from galactic cores in 2016 and 2018, recorded by the European Space Agency's Gaia spacecraft. The scientists recognised them as ENTs because a third one, observed in 2020 by the Zwicky Transient Facility, has similar characteristics. These outbursts gave out more energy than supernovae did, and they lasted much longer than short bursts typically seen during tidal disruption events.Tidal disruption events such as Gaia18cdj are associated with flares that are explosive and long-duration. These explosions are greater than 100 times as intense as supernovas and have been occurring for millions to billions of years. They make ENTs an uncommon, energetic, and long-lived event that cosmic explorers might use.The ENTs' brightness lets astronomers focus on distant galactic centres, as well as the feeding habits of black holes in the universe's early days. "These flares are shining a light on the growth of supermassive black holes in the universe," mentioned co-author Benjamin Shappee, a Hubble fellow at IfA. Their visibility on large scales provides a statistical tool for cosmological studies in the future.Such findings are expanding what astrophysicists know about ENTs-but researchers stress that they're not done wrapping their heads around these mysterious objects just yet. The results might also advance new models of how black holes and stars work together and how energy moves across galaxies. Given upcoming missions with better instruments, the discovery of more ENTs will help astronomers learn even more about these violent events in the cosmos. For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who'sThat360 on Instagram and YouTube. Gadgets 360 Staff The resident bot. If you email me, a human will respond. More
    Like
    Love
    Wow
    Sad
    Angry
    681
    0 Комментарии 0 Поделились 0 предпросмотр
  • Research roundup: 7 stories we almost missed

    Best of the rest

    Research roundup: 7 stories we almost missed

    Also: drumming chimpanzees, picking styles of two jazz greats, and an ancient underground city's soundscape

    Jennifer Ouellette



    May 31, 2025 5:37 pm

    |

    4

    Time lapse photos show a new ping-pong-playing robot performing a top spin.

    Credit:

    David Nguyen, Kendrick Cancio and Sangbae Kim

    Time lapse photos show a new ping-pong-playing robot performing a top spin.

    Credit:

    David Nguyen, Kendrick Cancio and Sangbae Kim

    Story text

    Size

    Small
    Standard
    Large

    Width
    *

    Standard
    Wide

    Links

    Standard
    Orange

    * Subscribers only
      Learn more

    It's a regrettable reality that there is never time to cover all the interesting scientific stories we come across each month. In the past, we've featured year-end roundups of cool science stories wemissed. This year, we're experimenting with a monthly collection. May's list includes a nifty experiment to make a predicted effect of special relativity visible; a ping-pong playing robot that can return hits with 88 percent accuracy; and the discovery of the rare genetic mutation that makes orange cats orange, among other highlights.
    Special relativity made visible

    Credit:

    TU Wien

    Perhaps the most well-known feature of Albert Einstein's special theory of relativity is time dilation and length contraction. In 1959, two physicists predicted another feature of relativistic motion: an object moving near the speed of light should also appear to be rotated. It's not been possible to demonstrate this experimentally, however—until now. Physicists at the Vienna University of Technology figured out how to reproduce this rotational effect in the lab using laser pulses and precision cameras, according to a paper published in the journal Communications Physics.
    They found their inspiration in art, specifically an earlier collaboration with an artist named Enar de Dios Rodriguez, who collaborated with VUT and the University of Vienna on a project involving ultra-fast photography and slow light. For this latest research, they used objects shaped like a cube and a sphere and moved them around the lab while zapping them with ultrashort laser pulses, recording the flashes with a high-speed camera.
    Getting the timing just right effectively yields similar results to a light speed of 2 m/s. After photographing the objects many times using this method, the team then combined the still images into a single image. The results: the cube looked twisted and the sphere's North Pole was in a different location—a demonstration of the rotational effect predicted back in 1959.

    DOI: Communications Physics, 2025. 10.1038/s42005-025-02003-6  .
    Drumming chimpanzees

    A chimpanzee feeling the rhythm. Credit: Current Biology/Eleuteri et al., 2025.

    Chimpanzees are known to "drum" on the roots of trees as a means of communication, often combining that action with what are known as "pant-hoot" vocalizations. Scientists have found that the chimps' drumming exhibits key elements of musical rhythm much like humans, according to  a paper published in the journal Current Biology—specifically non-random timing and isochrony. And chimps from different geographical regions have different drumming rhythms.
    Back in 2022, the same team observed that individual chimps had unique styles of "buttress drumming," which served as a kind of communication, letting others in the same group know their identity, location, and activity. This time around they wanted to know if this was also true of chimps living in different groups and whether their drumming was rhythmic in nature. So they collected video footage of the drumming behavior among 11 chimpanzee communities across six populations in East Africaand West Africa, amounting to 371 drumming bouts.
    Their analysis of the drum patterns confirmed their hypothesis. The western chimps drummed in regularly spaced hits, used faster tempos, and started drumming earlier during their pant-hoot vocalizations. Eastern chimps would alternate between shorter and longer spaced hits. Since this kind of rhythmic percussion is one of the earliest evolved forms of human musical expression and is ubiquitous across cultures, findings such as this could shed light on how our love of rhythm evolved.
    DOI: Current Biology, 2025. 10.1016/j.cub.2025.04.019  .
    Distinctive styles of two jazz greats

    Jazz lovers likely need no introduction to Joe Pass and Wes Montgomery, 20th century guitarists who influenced generations of jazz musicians with their innovative techniques. Montgomery, for instance, didn't use a pick, preferring to pluck the strings with his thumb—a method he developed because he practiced at night after working all day as a machinist and didn't want to wake his children or neighbors. Pass developed his own range of picking techniques, including fingerpicking, hybrid picking, and "flat picking."
    Chirag Gokani and Preston Wilson, both with Applied Research Laboratories and the University of Texas, Austin, greatly admired both Pass and Montgomery and decided to explore the underlying the acoustics of their distinctive playing, modeling the interactions of the thumb, fingers, and pick with a guitar string. They described their research during a meeting of the Acoustical Society of America in New Orleans, LA.
    Among their findings: Montgomery achieved his warm tone by playing closer to the bridge and mostly plucking at the string. Pass's rich tone arose from a combination of using a pick and playing closer to the guitar neck. There were also differences in how much a thumb, finger, and pick slip off the string:  use of the thumbproduced more of a "pluck" compared to the pick, which produced more of a "strike." Gokani and Wilson think their model could be used to synthesize digital guitars with a more realistic sound, as well as helping guitarists better emulate Pass and Montgomery.
    Sounds of an ancient underground city

    Credit:

    Sezin Nas

    Turkey is home to the underground city Derinkuyu, originally carved out inside soft volcanic rock around the 8th century BCE. It was later expanded to include four main ventilation channelsserving seven levels, which could be closed off from the inside with a large rolling stone. The city could hold up to 20,000 people and it  was connected to another underground city, Kaymakli, via tunnels. Derinkuyu helped protect Arab Muslims during the Arab-Byzantine wars, served as a refuge from the Ottomans in the 14th century, and as a haven for Armenians escaping persecution in the early 20th century, among other functions.

    The tunnels were rediscovered in the 1960s and about half of the city has been open to visitors since 2016. The site is naturally of great archaeological interest, but there has been little to no research on the acoustics of the site, particularly the ventilation channels—one of Derinkuyu's most unique features, according to Sezin Nas, an architectural acoustician at Istanbul Galata University in Turkey.  She gave a talk at a meeting of the Acoustical Society of America in New Orleans, LA, about her work on the site's acoustic environment.
    Nas analyzed a church, a living area, and a kitchen, measuring sound sources and reverberation patterns, among other factors, to create a 3D virtual soundscape. The hope is that a better understanding of this aspect of Derinkuyu could improve the design of future underground urban spaces—as well as one day using her virtual soundscape to enable visitors to experience the sounds of the city themselves.
    MIT's latest ping-pong robot
    Robots playing ping-pong have been a thing since the 1980s, of particular interest to scientists because it requires the robot to combine the slow, precise ability to grasp and pick up objects with dynamic, adaptable locomotion. Such robots need high-speed machine vision, fast motors and actuators, precise control, and the ability to make accurate predictions in real time, not to mention being able to develop a game strategy. More recent designs use AI techniques to allow the robots to "learn" from prior data to improve their performance.
    MIT researchers have built their own version of a ping-pong playing robot, incorporating a lightweight design and the ability to precisely return shots. They built on prior work developing the Humanoid, a small bipedal two-armed robot—specifically, modifying the Humanoid's arm by adding an extra degree of freedom to the wrist so the robot could control a ping-pong paddle. They tested their robot by mounting it on a ping-pong table and lobbing 150 balls at it from the other side of the table, capturing the action with high-speed cameras.

    The new bot can execute three different swing typesand during the trial runs it returned the ball with impressive accuracy across all three types: 88.4 percent, 89.2 percent, and 87.5 percent, respectively. Subsequent tweaks to theirrystem brought the robot's strike speed up to 19 meters per second, close to the 12 to 25 meters per second of advanced human players. The addition of control algorithms gave the robot the ability to aim. The robot still has limited mobility and reach because it has to be fixed to the ping-pong table but the MIT researchers plan to rig it to a gantry or wheeled platform in the future to address that shortcoming.
    Why orange cats are orange

    Credit:

    Astropulse/CC BY-SA 3.0

    Cat lovers know orange cats are special for more than their unique coloring, but that's the quality that has intrigued scientists for almost a century. Sure, lots of animals have orange, ginger, or yellow hues, like tigers, orangutans, and golden retrievers. But in domestic cats that color is specifically linked to sex. Almost all orange cats are male. Scientists have now identified the genetic mutation responsible and it appears to be unique to cats, according to a paper published in the journal Current Biology.
    Prior work had narrowed down the region on the X chromosome most likely to contain the relevant mutation. The scientists knew that females usually have just one copy of the mutation and in that case have tortoiseshellcoloring, although in rare cases, a female cat will be orange if both X chromosomes have the mutation. Over the last five to ten years, there has been an explosion in genome resourcesfor cats which greatly aided the team's research, along with taking additional DNA samples from cats at spay and neuter clinics.

    From an initial pool of 51 candidate variants, the scientists narrowed it down to three genes, only one of which was likely to play any role in gene regulation: Arhgap36. It wasn't known to play any role in pigment cells in humans, mice, or non-orange cats. But orange cats are special; their mutationturns on Arhgap36 expression in pigment cells, thereby interfering with the molecular pathway that controls coat color in other orange-shaded mammals. The scientists suggest that this is an example of how genes can acquire new functions, thereby enabling species to better adapt and evolve.
    DOI: Current Biology, 2025. 10.1016/j.cub.2025.03.075  .
    Not a Roman "massacre" after all

    Credit:

    Martin Smith

    In 1936, archaeologists excavating the Iron Age hill fort Maiden Castle in the UK unearthed dozens of human skeletons, all showing signs of lethal injuries to the head and upper body—likely inflicted with weaponry. At the time, this was interpreted as evidence of a pitched battle between the Britons of the local Durotriges tribe and invading Romans. The Romans slaughtered the native inhabitants, thereby bringing a sudden violent end to the Iron Age. At least that's the popular narrative that has prevailed ever since in countless popular articles, books, and documentaries.
    But a paper published in the Oxford Journal of Archaeology calls that narrative into question. Archaeologists at Bournemouth University have re-analyzed those burials, incorporating radiocarbon dating into their efforts. They concluded that those individuals didn't die in a single brutal battle. Rather, it was Britons killing other Britons over multiple generations between the first century BCE and the first century CE—most likely in periodic localized outbursts of violence in the lead-up to the Roman conquest of Britain. It's possible there are still many human remains waiting to be discovered at the site, which could shed further light on what happened at Maiden Castle.
    DOI: Oxford Journal of Archaeology, 2025. 10.1111/ojoa.12324  .

    Jennifer Ouellette
    Senior Writer

    Jennifer Ouellette
    Senior Writer

    Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

    4 Comments
    #research #roundup #stories #almost #missed
    Research roundup: 7 stories we almost missed
    Best of the rest Research roundup: 7 stories we almost missed Also: drumming chimpanzees, picking styles of two jazz greats, and an ancient underground city's soundscape Jennifer Ouellette – May 31, 2025 5:37 pm | 4 Time lapse photos show a new ping-pong-playing robot performing a top spin. Credit: David Nguyen, Kendrick Cancio and Sangbae Kim Time lapse photos show a new ping-pong-playing robot performing a top spin. Credit: David Nguyen, Kendrick Cancio and Sangbae Kim Story text Size Small Standard Large Width * Standard Wide Links Standard Orange * Subscribers only   Learn more It's a regrettable reality that there is never time to cover all the interesting scientific stories we come across each month. In the past, we've featured year-end roundups of cool science stories wemissed. This year, we're experimenting with a monthly collection. May's list includes a nifty experiment to make a predicted effect of special relativity visible; a ping-pong playing robot that can return hits with 88 percent accuracy; and the discovery of the rare genetic mutation that makes orange cats orange, among other highlights. Special relativity made visible Credit: TU Wien Perhaps the most well-known feature of Albert Einstein's special theory of relativity is time dilation and length contraction. In 1959, two physicists predicted another feature of relativistic motion: an object moving near the speed of light should also appear to be rotated. It's not been possible to demonstrate this experimentally, however—until now. Physicists at the Vienna University of Technology figured out how to reproduce this rotational effect in the lab using laser pulses and precision cameras, according to a paper published in the journal Communications Physics. They found their inspiration in art, specifically an earlier collaboration with an artist named Enar de Dios Rodriguez, who collaborated with VUT and the University of Vienna on a project involving ultra-fast photography and slow light. For this latest research, they used objects shaped like a cube and a sphere and moved them around the lab while zapping them with ultrashort laser pulses, recording the flashes with a high-speed camera. Getting the timing just right effectively yields similar results to a light speed of 2 m/s. After photographing the objects many times using this method, the team then combined the still images into a single image. The results: the cube looked twisted and the sphere's North Pole was in a different location—a demonstration of the rotational effect predicted back in 1959. DOI: Communications Physics, 2025. 10.1038/s42005-025-02003-6  . Drumming chimpanzees A chimpanzee feeling the rhythm. Credit: Current Biology/Eleuteri et al., 2025. Chimpanzees are known to "drum" on the roots of trees as a means of communication, often combining that action with what are known as "pant-hoot" vocalizations. Scientists have found that the chimps' drumming exhibits key elements of musical rhythm much like humans, according to  a paper published in the journal Current Biology—specifically non-random timing and isochrony. And chimps from different geographical regions have different drumming rhythms. Back in 2022, the same team observed that individual chimps had unique styles of "buttress drumming," which served as a kind of communication, letting others in the same group know their identity, location, and activity. This time around they wanted to know if this was also true of chimps living in different groups and whether their drumming was rhythmic in nature. So they collected video footage of the drumming behavior among 11 chimpanzee communities across six populations in East Africaand West Africa, amounting to 371 drumming bouts. Their analysis of the drum patterns confirmed their hypothesis. The western chimps drummed in regularly spaced hits, used faster tempos, and started drumming earlier during their pant-hoot vocalizations. Eastern chimps would alternate between shorter and longer spaced hits. Since this kind of rhythmic percussion is one of the earliest evolved forms of human musical expression and is ubiquitous across cultures, findings such as this could shed light on how our love of rhythm evolved. DOI: Current Biology, 2025. 10.1016/j.cub.2025.04.019  . Distinctive styles of two jazz greats Jazz lovers likely need no introduction to Joe Pass and Wes Montgomery, 20th century guitarists who influenced generations of jazz musicians with their innovative techniques. Montgomery, for instance, didn't use a pick, preferring to pluck the strings with his thumb—a method he developed because he practiced at night after working all day as a machinist and didn't want to wake his children or neighbors. Pass developed his own range of picking techniques, including fingerpicking, hybrid picking, and "flat picking." Chirag Gokani and Preston Wilson, both with Applied Research Laboratories and the University of Texas, Austin, greatly admired both Pass and Montgomery and decided to explore the underlying the acoustics of their distinctive playing, modeling the interactions of the thumb, fingers, and pick with a guitar string. They described their research during a meeting of the Acoustical Society of America in New Orleans, LA. Among their findings: Montgomery achieved his warm tone by playing closer to the bridge and mostly plucking at the string. Pass's rich tone arose from a combination of using a pick and playing closer to the guitar neck. There were also differences in how much a thumb, finger, and pick slip off the string:  use of the thumbproduced more of a "pluck" compared to the pick, which produced more of a "strike." Gokani and Wilson think their model could be used to synthesize digital guitars with a more realistic sound, as well as helping guitarists better emulate Pass and Montgomery. Sounds of an ancient underground city Credit: Sezin Nas Turkey is home to the underground city Derinkuyu, originally carved out inside soft volcanic rock around the 8th century BCE. It was later expanded to include four main ventilation channelsserving seven levels, which could be closed off from the inside with a large rolling stone. The city could hold up to 20,000 people and it  was connected to another underground city, Kaymakli, via tunnels. Derinkuyu helped protect Arab Muslims during the Arab-Byzantine wars, served as a refuge from the Ottomans in the 14th century, and as a haven for Armenians escaping persecution in the early 20th century, among other functions. The tunnels were rediscovered in the 1960s and about half of the city has been open to visitors since 2016. The site is naturally of great archaeological interest, but there has been little to no research on the acoustics of the site, particularly the ventilation channels—one of Derinkuyu's most unique features, according to Sezin Nas, an architectural acoustician at Istanbul Galata University in Turkey.  She gave a talk at a meeting of the Acoustical Society of America in New Orleans, LA, about her work on the site's acoustic environment. Nas analyzed a church, a living area, and a kitchen, measuring sound sources and reverberation patterns, among other factors, to create a 3D virtual soundscape. The hope is that a better understanding of this aspect of Derinkuyu could improve the design of future underground urban spaces—as well as one day using her virtual soundscape to enable visitors to experience the sounds of the city themselves. MIT's latest ping-pong robot Robots playing ping-pong have been a thing since the 1980s, of particular interest to scientists because it requires the robot to combine the slow, precise ability to grasp and pick up objects with dynamic, adaptable locomotion. Such robots need high-speed machine vision, fast motors and actuators, precise control, and the ability to make accurate predictions in real time, not to mention being able to develop a game strategy. More recent designs use AI techniques to allow the robots to "learn" from prior data to improve their performance. MIT researchers have built their own version of a ping-pong playing robot, incorporating a lightweight design and the ability to precisely return shots. They built on prior work developing the Humanoid, a small bipedal two-armed robot—specifically, modifying the Humanoid's arm by adding an extra degree of freedom to the wrist so the robot could control a ping-pong paddle. They tested their robot by mounting it on a ping-pong table and lobbing 150 balls at it from the other side of the table, capturing the action with high-speed cameras. The new bot can execute three different swing typesand during the trial runs it returned the ball with impressive accuracy across all three types: 88.4 percent, 89.2 percent, and 87.5 percent, respectively. Subsequent tweaks to theirrystem brought the robot's strike speed up to 19 meters per second, close to the 12 to 25 meters per second of advanced human players. The addition of control algorithms gave the robot the ability to aim. The robot still has limited mobility and reach because it has to be fixed to the ping-pong table but the MIT researchers plan to rig it to a gantry or wheeled platform in the future to address that shortcoming. Why orange cats are orange Credit: Astropulse/CC BY-SA 3.0 Cat lovers know orange cats are special for more than their unique coloring, but that's the quality that has intrigued scientists for almost a century. Sure, lots of animals have orange, ginger, or yellow hues, like tigers, orangutans, and golden retrievers. But in domestic cats that color is specifically linked to sex. Almost all orange cats are male. Scientists have now identified the genetic mutation responsible and it appears to be unique to cats, according to a paper published in the journal Current Biology. Prior work had narrowed down the region on the X chromosome most likely to contain the relevant mutation. The scientists knew that females usually have just one copy of the mutation and in that case have tortoiseshellcoloring, although in rare cases, a female cat will be orange if both X chromosomes have the mutation. Over the last five to ten years, there has been an explosion in genome resourcesfor cats which greatly aided the team's research, along with taking additional DNA samples from cats at spay and neuter clinics. From an initial pool of 51 candidate variants, the scientists narrowed it down to three genes, only one of which was likely to play any role in gene regulation: Arhgap36. It wasn't known to play any role in pigment cells in humans, mice, or non-orange cats. But orange cats are special; their mutationturns on Arhgap36 expression in pigment cells, thereby interfering with the molecular pathway that controls coat color in other orange-shaded mammals. The scientists suggest that this is an example of how genes can acquire new functions, thereby enabling species to better adapt and evolve. DOI: Current Biology, 2025. 10.1016/j.cub.2025.03.075  . Not a Roman "massacre" after all Credit: Martin Smith In 1936, archaeologists excavating the Iron Age hill fort Maiden Castle in the UK unearthed dozens of human skeletons, all showing signs of lethal injuries to the head and upper body—likely inflicted with weaponry. At the time, this was interpreted as evidence of a pitched battle between the Britons of the local Durotriges tribe and invading Romans. The Romans slaughtered the native inhabitants, thereby bringing a sudden violent end to the Iron Age. At least that's the popular narrative that has prevailed ever since in countless popular articles, books, and documentaries. But a paper published in the Oxford Journal of Archaeology calls that narrative into question. Archaeologists at Bournemouth University have re-analyzed those burials, incorporating radiocarbon dating into their efforts. They concluded that those individuals didn't die in a single brutal battle. Rather, it was Britons killing other Britons over multiple generations between the first century BCE and the first century CE—most likely in periodic localized outbursts of violence in the lead-up to the Roman conquest of Britain. It's possible there are still many human remains waiting to be discovered at the site, which could shed further light on what happened at Maiden Castle. DOI: Oxford Journal of Archaeology, 2025. 10.1111/ojoa.12324  . Jennifer Ouellette Senior Writer Jennifer Ouellette Senior Writer Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban. 4 Comments #research #roundup #stories #almost #missed
    ARSTECHNICA.COM
    Research roundup: 7 stories we almost missed
    Best of the rest Research roundup: 7 stories we almost missed Also: drumming chimpanzees, picking styles of two jazz greats, and an ancient underground city's soundscape Jennifer Ouellette – May 31, 2025 5:37 pm | 4 Time lapse photos show a new ping-pong-playing robot performing a top spin. Credit: David Nguyen, Kendrick Cancio and Sangbae Kim Time lapse photos show a new ping-pong-playing robot performing a top spin. Credit: David Nguyen, Kendrick Cancio and Sangbae Kim Story text Size Small Standard Large Width * Standard Wide Links Standard Orange * Subscribers only   Learn more It's a regrettable reality that there is never time to cover all the interesting scientific stories we come across each month. In the past, we've featured year-end roundups of cool science stories we (almost) missed. This year, we're experimenting with a monthly collection. May's list includes a nifty experiment to make a predicted effect of special relativity visible; a ping-pong playing robot that can return hits with 88 percent accuracy; and the discovery of the rare genetic mutation that makes orange cats orange, among other highlights. Special relativity made visible Credit: TU Wien Perhaps the most well-known feature of Albert Einstein's special theory of relativity is time dilation and length contraction. In 1959, two physicists predicted another feature of relativistic motion: an object moving near the speed of light should also appear to be rotated. It's not been possible to demonstrate this experimentally, however—until now. Physicists at the Vienna University of Technology figured out how to reproduce this rotational effect in the lab using laser pulses and precision cameras, according to a paper published in the journal Communications Physics. They found their inspiration in art, specifically an earlier collaboration with an artist named Enar de Dios Rodriguez, who collaborated with VUT and the University of Vienna on a project involving ultra-fast photography and slow light. For this latest research, they used objects shaped like a cube and a sphere and moved them around the lab while zapping them with ultrashort laser pulses, recording the flashes with a high-speed camera. Getting the timing just right effectively yields similar results to a light speed of 2 m/s. After photographing the objects many times using this method, the team then combined the still images into a single image. The results: the cube looked twisted and the sphere's North Pole was in a different location—a demonstration of the rotational effect predicted back in 1959. DOI: Communications Physics, 2025. 10.1038/s42005-025-02003-6  (About DOIs). Drumming chimpanzees A chimpanzee feeling the rhythm. Credit: Current Biology/Eleuteri et al., 2025. Chimpanzees are known to "drum" on the roots of trees as a means of communication, often combining that action with what are known as "pant-hoot" vocalizations (see above video). Scientists have found that the chimps' drumming exhibits key elements of musical rhythm much like humans, according to  a paper published in the journal Current Biology—specifically non-random timing and isochrony. And chimps from different geographical regions have different drumming rhythms. Back in 2022, the same team observed that individual chimps had unique styles of "buttress drumming," which served as a kind of communication, letting others in the same group know their identity, location, and activity. This time around they wanted to know if this was also true of chimps living in different groups and whether their drumming was rhythmic in nature. So they collected video footage of the drumming behavior among 11 chimpanzee communities across six populations in East Africa (Uganda) and West Africa (Ivory Coast), amounting to 371 drumming bouts. Their analysis of the drum patterns confirmed their hypothesis. The western chimps drummed in regularly spaced hits, used faster tempos, and started drumming earlier during their pant-hoot vocalizations. Eastern chimps would alternate between shorter and longer spaced hits. Since this kind of rhythmic percussion is one of the earliest evolved forms of human musical expression and is ubiquitous across cultures, findings such as this could shed light on how our love of rhythm evolved. DOI: Current Biology, 2025. 10.1016/j.cub.2025.04.019  (About DOIs). Distinctive styles of two jazz greats Jazz lovers likely need no introduction to Joe Pass and Wes Montgomery, 20th century guitarists who influenced generations of jazz musicians with their innovative techniques. Montgomery, for instance, didn't use a pick, preferring to pluck the strings with his thumb—a method he developed because he practiced at night after working all day as a machinist and didn't want to wake his children or neighbors. Pass developed his own range of picking techniques, including fingerpicking, hybrid picking, and "flat picking." Chirag Gokani and Preston Wilson, both with Applied Research Laboratories and the University of Texas, Austin, greatly admired both Pass and Montgomery and decided to explore the underlying the acoustics of their distinctive playing, modeling the interactions of the thumb, fingers, and pick with a guitar string. They described their research during a meeting of the Acoustical Society of America in New Orleans, LA. Among their findings: Montgomery achieved his warm tone by playing closer to the bridge and mostly plucking at the string. Pass's rich tone arose from a combination of using a pick and playing closer to the guitar neck. There were also differences in how much a thumb, finger, and pick slip off the string:  use of the thumb (Montgomery) produced more of a "pluck" compared to the pick (Pass), which produced more of a "strike." Gokani and Wilson think their model could be used to synthesize digital guitars with a more realistic sound, as well as helping guitarists better emulate Pass and Montgomery. Sounds of an ancient underground city Credit: Sezin Nas Turkey is home to the underground city Derinkuyu, originally carved out inside soft volcanic rock around the 8th century BCE. It was later expanded to include four main ventilation channels (and some 50,000 smaller shafts) serving seven levels, which could be closed off from the inside with a large rolling stone. The city could hold up to 20,000 people and it  was connected to another underground city, Kaymakli, via tunnels. Derinkuyu helped protect Arab Muslims during the Arab-Byzantine wars, served as a refuge from the Ottomans in the 14th century, and as a haven for Armenians escaping persecution in the early 20th century, among other functions. The tunnels were rediscovered in the 1960s and about half of the city has been open to visitors since 2016. The site is naturally of great archaeological interest, but there has been little to no research on the acoustics of the site, particularly the ventilation channels—one of Derinkuyu's most unique features, according to Sezin Nas, an architectural acoustician at Istanbul Galata University in Turkey.  She gave a talk at a meeting of the Acoustical Society of America in New Orleans, LA, about her work on the site's acoustic environment. Nas analyzed a church, a living area, and a kitchen, measuring sound sources and reverberation patterns, among other factors, to create a 3D virtual soundscape. The hope is that a better understanding of this aspect of Derinkuyu could improve the design of future underground urban spaces—as well as one day using her virtual soundscape to enable visitors to experience the sounds of the city themselves. MIT's latest ping-pong robot Robots playing ping-pong have been a thing since the 1980s, of particular interest to scientists because it requires the robot to combine the slow, precise ability to grasp and pick up objects with dynamic, adaptable locomotion. Such robots need high-speed machine vision, fast motors and actuators, precise control, and the ability to make accurate predictions in real time, not to mention being able to develop a game strategy. More recent designs use AI techniques to allow the robots to "learn" from prior data to improve their performance. MIT researchers have built their own version of a ping-pong playing robot, incorporating a lightweight design and the ability to precisely return shots. They built on prior work developing the Humanoid, a small bipedal two-armed robot—specifically, modifying the Humanoid's arm by adding an extra degree of freedom to the wrist so the robot could control a ping-pong paddle. They tested their robot by mounting it on a ping-pong table and lobbing 150 balls at it from the other side of the table, capturing the action with high-speed cameras. The new bot can execute three different swing types (loop, drive, and chip) and during the trial runs it returned the ball with impressive accuracy across all three types: 88.4 percent, 89.2 percent, and 87.5 percent, respectively. Subsequent tweaks to theirrystem brought the robot's strike speed up to 19 meters per second (about 42 MPH), close to the 12 to 25 meters per second of advanced human players. The addition of control algorithms gave the robot the ability to aim. The robot still has limited mobility and reach because it has to be fixed to the ping-pong table but the MIT researchers plan to rig it to a gantry or wheeled platform in the future to address that shortcoming. Why orange cats are orange Credit: Astropulse/CC BY-SA 3.0 Cat lovers know orange cats are special for more than their unique coloring, but that's the quality that has intrigued scientists for almost a century. Sure, lots of animals have orange, ginger, or yellow hues, like tigers, orangutans, and golden retrievers. But in domestic cats that color is specifically linked to sex. Almost all orange cats are male. Scientists have now identified the genetic mutation responsible and it appears to be unique to cats, according to a paper published in the journal Current Biology. Prior work had narrowed down the region on the X chromosome most likely to contain the relevant mutation. The scientists knew that females usually have just one copy of the mutation and in that case have tortoiseshell (partially orange) coloring, although in rare cases, a female cat will be orange if both X chromosomes have the mutation. Over the last five to ten years, there has been an explosion in genome resources (including complete sequenced genomes) for cats which greatly aided the team's research, along with taking additional DNA samples from cats at spay and neuter clinics. From an initial pool of 51 candidate variants, the scientists narrowed it down to three genes, only one of which was likely to play any role in gene regulation: Arhgap36. It wasn't known to play any role in pigment cells in humans, mice, or non-orange cats. But orange cats are special; their mutation (sex-linked orange) turns on Arhgap36 expression in pigment cells (and only pigment cells), thereby interfering with the molecular pathway that controls coat color in other orange-shaded mammals. The scientists suggest that this is an example of how genes can acquire new functions, thereby enabling species to better adapt and evolve. DOI: Current Biology, 2025. 10.1016/j.cub.2025.03.075  (About DOIs). Not a Roman "massacre" after all Credit: Martin Smith In 1936, archaeologists excavating the Iron Age hill fort Maiden Castle in the UK unearthed dozens of human skeletons, all showing signs of lethal injuries to the head and upper body—likely inflicted with weaponry. At the time, this was interpreted as evidence of a pitched battle between the Britons of the local Durotriges tribe and invading Romans. The Romans slaughtered the native inhabitants, thereby bringing a sudden violent end to the Iron Age. At least that's the popular narrative that has prevailed ever since in countless popular articles, books, and documentaries. But a paper published in the Oxford Journal of Archaeology calls that narrative into question. Archaeologists at Bournemouth University have re-analyzed those burials, incorporating radiocarbon dating into their efforts. They concluded that those individuals didn't die in a single brutal battle. Rather, it was Britons killing other Britons over multiple generations between the first century BCE and the first century CE—most likely in periodic localized outbursts of violence in the lead-up to the Roman conquest of Britain. It's possible there are still many human remains waiting to be discovered at the site, which could shed further light on what happened at Maiden Castle. DOI: Oxford Journal of Archaeology, 2025. 10.1111/ojoa.12324  (About DOIs). Jennifer Ouellette Senior Writer Jennifer Ouellette Senior Writer Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban. 4 Comments
    13 Комментарии 0 Поделились 0 предпросмотр
  • A photon caught in two places at once could destroy the multiverse

    Is it time to say goodbye to the multiverse?SCIENCE PHOTO LIBRARY/Getty Images
    An advanced version of the famous double-slit experiment has directly measured a single photon in two places at once – or at least, that’s the claim made by a team of physicists who say these results could destroy the concept of a multiverse. This interpretation remains highly contested, however, with other physicists arguing that the experiment can’t really tell us anything new about the nature of reality.
    The double-slit experiment, first performed in 1801, has played a key role in the development of quantum mechanics. It shows…
    #photon #caught #two #places #once
    A photon caught in two places at once could destroy the multiverse
    Is it time to say goodbye to the multiverse?SCIENCE PHOTO LIBRARY/Getty Images An advanced version of the famous double-slit experiment has directly measured a single photon in two places at once – or at least, that’s the claim made by a team of physicists who say these results could destroy the concept of a multiverse. This interpretation remains highly contested, however, with other physicists arguing that the experiment can’t really tell us anything new about the nature of reality. The double-slit experiment, first performed in 1801, has played a key role in the development of quantum mechanics. It shows… #photon #caught #two #places #once
    WWW.NEWSCIENTIST.COM
    A photon caught in two places at once could destroy the multiverse
    Is it time to say goodbye to the multiverse?SCIENCE PHOTO LIBRARY/Getty Images An advanced version of the famous double-slit experiment has directly measured a single photon in two places at once – or at least, that’s the claim made by a team of physicists who say these results could destroy the concept of a multiverse. This interpretation remains highly contested, however, with other physicists arguing that the experiment can’t really tell us anything new about the nature of reality. The double-slit experiment, first performed in 1801, has played a key role in the development of quantum mechanics. It shows…
    0 Комментарии 0 Поделились 0 предпросмотр
  • Scientists Intrigued by Strange Behavior of Distant Planet

    A team of astronomers observed a confused exoplanet orbiting its two parent stars in a highly unusual way.As New Scientist reports, the planet, which was first discovered in 2004, is located in a system called Nu Octantis 72 light-years away, and is twice the size of Jupiter. After it was spotted, some physicists thought its mere existence was impossible due to its extremely close proximity to its twin stars.But according to a new paper published in the journal Nature, an international team of researchers is proposing a wild new theory to explain how the planet could exist while also having such an extremely tight orbit.They propose that one of the stars and the planet orbit the second star in two opposite directions. In other words, the planet is retrograde, or orbiting the star in reverse."The existence of this planet has been controversial, because there were no observational precedents and we expect planets to form in prograde orbit if they form at the same time as the stars," coauthor and University of Hong Kong professor Man Hoi Lee told IFLScience.To make matters even more unusual, the researchers propose that the planet's orbit is sandwiched between the two stars, forcing it to thread the needle during each orbit.It's an erratic dance that highlights how much there's still to learn about the complex orbital mechanics of multi-star systems."It invites scientists to consider a wider range of star and planet scenarios regarding both formation and evolution," University of Texas at Arlington professor Manfred Cuntz, who was not involved in the research, told New Scientist.One of the system's stars is a white dwarf, indicating it's nearing the end of its life cycle and making Nu Octantis an even more exotic outlier. The scientists estimate that the system was formed 2.9 billion years ago.However, the planet came to be much later. The researchers propose that it either used to orbit both stars, and changed to its unusual trajectory after one of the stars turned into a white dwarf, or it accreted its considerable mass from said white dwarf.But more research is needed before they can develop a more accurate picture of how the planet evolved."Observations of other planets in tight binary systems with late-stage or post-main- sequence stellar components will provide additional clues for us to better understand the formation and dynamical evolution of planetary systems," the team wrote in its paper.The researchers are already excited to get a closer glimpse of a similar binary star system, such as HD 59686, which also hosts an enormous gas giant with six times the mass of Jupiter.More on binary star systems: Alpha Centauri Sending Stream of Objects Into Our Solar System, Scientists ProposeShare This Article
    #scientists #intrigued #strange #behavior #distant
    Scientists Intrigued by Strange Behavior of Distant Planet
    A team of astronomers observed a confused exoplanet orbiting its two parent stars in a highly unusual way.As New Scientist reports, the planet, which was first discovered in 2004, is located in a system called Nu Octantis 72 light-years away, and is twice the size of Jupiter. After it was spotted, some physicists thought its mere existence was impossible due to its extremely close proximity to its twin stars.But according to a new paper published in the journal Nature, an international team of researchers is proposing a wild new theory to explain how the planet could exist while also having such an extremely tight orbit.They propose that one of the stars and the planet orbit the second star in two opposite directions. In other words, the planet is retrograde, or orbiting the star in reverse."The existence of this planet has been controversial, because there were no observational precedents and we expect planets to form in prograde orbit if they form at the same time as the stars," coauthor and University of Hong Kong professor Man Hoi Lee told IFLScience.To make matters even more unusual, the researchers propose that the planet's orbit is sandwiched between the two stars, forcing it to thread the needle during each orbit.It's an erratic dance that highlights how much there's still to learn about the complex orbital mechanics of multi-star systems."It invites scientists to consider a wider range of star and planet scenarios regarding both formation and evolution," University of Texas at Arlington professor Manfred Cuntz, who was not involved in the research, told New Scientist.One of the system's stars is a white dwarf, indicating it's nearing the end of its life cycle and making Nu Octantis an even more exotic outlier. The scientists estimate that the system was formed 2.9 billion years ago.However, the planet came to be much later. The researchers propose that it either used to orbit both stars, and changed to its unusual trajectory after one of the stars turned into a white dwarf, or it accreted its considerable mass from said white dwarf.But more research is needed before they can develop a more accurate picture of how the planet evolved."Observations of other planets in tight binary systems with late-stage or post-main- sequence stellar components will provide additional clues for us to better understand the formation and dynamical evolution of planetary systems," the team wrote in its paper.The researchers are already excited to get a closer glimpse of a similar binary star system, such as HD 59686, which also hosts an enormous gas giant with six times the mass of Jupiter.More on binary star systems: Alpha Centauri Sending Stream of Objects Into Our Solar System, Scientists ProposeShare This Article #scientists #intrigued #strange #behavior #distant
    FUTURISM.COM
    Scientists Intrigued by Strange Behavior of Distant Planet
    A team of astronomers observed a confused exoplanet orbiting its two parent stars in a highly unusual way.As New Scientist reports, the planet, which was first discovered in 2004, is located in a system called Nu Octantis 72 light-years away, and is twice the size of Jupiter. After it was spotted, some physicists thought its mere existence was impossible due to its extremely close proximity to its twin stars.But according to a new paper published in the journal Nature, an international team of researchers is proposing a wild new theory to explain how the planet could exist while also having such an extremely tight orbit.They propose that one of the stars and the planet orbit the second star in two opposite directions. In other words, the planet is retrograde, or orbiting the star in reverse."The existence of this planet has been controversial, because there were no observational precedents and we expect planets to form in prograde orbit if they form at the same time as the stars," coauthor and University of Hong Kong professor Man Hoi Lee told IFLScience.To make matters even more unusual, the researchers propose that the planet's orbit is sandwiched between the two stars, forcing it to thread the needle during each orbit.It's an erratic dance that highlights how much there's still to learn about the complex orbital mechanics of multi-star systems."It invites scientists to consider a wider range of star and planet scenarios regarding both formation and evolution," University of Texas at Arlington professor Manfred Cuntz, who was not involved in the research, told New Scientist.One of the system's stars is a white dwarf, indicating it's nearing the end of its life cycle and making Nu Octantis an even more exotic outlier. The scientists estimate that the system was formed 2.9 billion years ago.However, the planet came to be much later. The researchers propose that it either used to orbit both stars, and changed to its unusual trajectory after one of the stars turned into a white dwarf, or it accreted its considerable mass from said white dwarf.But more research is needed before they can develop a more accurate picture of how the planet evolved."Observations of other planets in tight binary systems with late-stage or post-main- sequence stellar components will provide additional clues for us to better understand the formation and dynamical evolution of planetary systems," the team wrote in its paper.The researchers are already excited to get a closer glimpse of a similar binary star system, such as HD 59686, which also hosts an enormous gas giant with six times the mass of Jupiter.More on binary star systems: Alpha Centauri Sending Stream of Objects Into Our Solar System, Scientists ProposeShare This Article
    0 Комментарии 0 Поделились 0 предпросмотр
  • What Sonic Detectives Listen for When Rockets Launch

    Physicists who record rocket launches and landings, most often by SpaceX, are learning important facts about the acoustics of spaceflight.
    #what #sonic #detectives #listen #when
    What Sonic Detectives Listen for When Rockets Launch
    Physicists who record rocket launches and landings, most often by SpaceX, are learning important facts about the acoustics of spaceflight. #what #sonic #detectives #listen #when
    WWW.NYTIMES.COM
    What Sonic Detectives Listen for When Rockets Launch
    Physicists who record rocket launches and landings, most often by SpaceX, are learning important facts about the acoustics of spaceflight.
    0 Комментарии 0 Поделились 0 предпросмотр
  • Physicists are waging a cosmic battle over the nature of dark energy

    The Kitt Peak National Observatory, near Tucson, Arizona, is home to DESIKPNO/NOIRLab/NSF/AURA/P. Marenfeld
    Is dark energy changing, or is it just more of the same? Last month, astronomers announced the startling finding that dark energy – which is thought to cause the accelerating expansion of the universe – might weaken over time. This has forced physicists to consider upending the standard cosmological model of the universe but now, some researchers are saying this may be premature.
    Since it started scanning the sky in 2021, the Dark Energy Spectroscopic Instrumentin Arizona has been carefully measuring the distances between millions of…
    #physicists #are #waging #cosmic #battle
    Physicists are waging a cosmic battle over the nature of dark energy
    The Kitt Peak National Observatory, near Tucson, Arizona, is home to DESIKPNO/NOIRLab/NSF/AURA/P. Marenfeld Is dark energy changing, or is it just more of the same? Last month, astronomers announced the startling finding that dark energy – which is thought to cause the accelerating expansion of the universe – might weaken over time. This has forced physicists to consider upending the standard cosmological model of the universe but now, some researchers are saying this may be premature. Since it started scanning the sky in 2021, the Dark Energy Spectroscopic Instrumentin Arizona has been carefully measuring the distances between millions of… #physicists #are #waging #cosmic #battle
    WWW.NEWSCIENTIST.COM
    Physicists are waging a cosmic battle over the nature of dark energy
    The Kitt Peak National Observatory, near Tucson, Arizona, is home to DESIKPNO/NOIRLab/NSF/AURA/P. Marenfeld Is dark energy changing, or is it just more of the same? Last month, astronomers announced the startling finding that dark energy – which is thought to cause the accelerating expansion of the universe – might weaken over time. This has forced physicists to consider upending the standard cosmological model of the universe but now, some researchers are saying this may be premature. Since it started scanning the sky in 2021, the Dark Energy Spectroscopic Instrument (DESI) in Arizona has been carefully measuring the distances between millions of…
    0 Комментарии 0 Поделились 0 предпросмотр
CGShares https://cgshares.com