• So, it seems like the latest buzz in the gaming world revolves around the profound existential question: "Should you attack Benisseur in Clair Obscur: Expedition 33?" I mean, what a dilemma! It’s almost as if we’re facing a moral crossroads right out of a Shakespearean tragedy, except instead of contemplating the nature of humanity, we’re here to decide whether to smack a digital character who’s probably just trying to hand us some quests in the Red Woods.

    Let’s break this down, shall we? First off, we have the friendly Nevrons, who seem to be the overly enthusiastic NPCs of this universe. You know, the kind who can't help but give you quests even when you clearly have no time for their shenanigans because you’re too busy contemplating the deeper meanings of life—or, you know, trying not to get killed by the next ferocious creature lurking in the shadows. And what do they come up with? "Hey, why not take on Benisseur?" Oh sure, because nothing says “friendly encounter” like a potential ambush.

    Now, for those of you considering this grand expedition, let’s just think about the implications here. Attacking Benisseur? Really? Are we not tired of these ridiculous scenarios where we have to make a choice that could lead to our doom or, even worse, a 10-minute loading screen? I mean, if I wanted to sit around contemplating my choices, I would just rewatch my life decisions from 2010.

    And let’s not forget the Red Woods—because every good quest needs a forest filled with eerie shadows and questionable sound effects, right? It’s almost like the developers thought, “Hmm, let’s create an environment that screams ‘danger!’ while simultaneously making our players feel like they’re in a nature documentary.” Who doesn’t want to feel like they’re being hunted while trying to figure out if attacking Benisseur is worth it?

    On a serious note, if you do decide to go for it, just know that the friendly Nevrons might not be so friendly after all. After all, what’s a little betrayal between friends? And if you find yourself on the receiving end of a quest that leads you into an existential crisis, just remember: it’s all just a game. Or is it?

    So here’s to you, brave adventurers! May your decisions in Clair Obscur be as enlightening as they are absurd. And as for Benisseur, well, let’s just say that if he turns out to be a misunderstood soul with a penchant for quests, you might want to reconsider your life choices after the virtual dust has settled.

    #ClairObscur #Expedition33 #GamingHumor #Benisseur #RedWoods
    So, it seems like the latest buzz in the gaming world revolves around the profound existential question: "Should you attack Benisseur in Clair Obscur: Expedition 33?" I mean, what a dilemma! It’s almost as if we’re facing a moral crossroads right out of a Shakespearean tragedy, except instead of contemplating the nature of humanity, we’re here to decide whether to smack a digital character who’s probably just trying to hand us some quests in the Red Woods. Let’s break this down, shall we? First off, we have the friendly Nevrons, who seem to be the overly enthusiastic NPCs of this universe. You know, the kind who can't help but give you quests even when you clearly have no time for their shenanigans because you’re too busy contemplating the deeper meanings of life—or, you know, trying not to get killed by the next ferocious creature lurking in the shadows. And what do they come up with? "Hey, why not take on Benisseur?" Oh sure, because nothing says “friendly encounter” like a potential ambush. Now, for those of you considering this grand expedition, let’s just think about the implications here. Attacking Benisseur? Really? Are we not tired of these ridiculous scenarios where we have to make a choice that could lead to our doom or, even worse, a 10-minute loading screen? I mean, if I wanted to sit around contemplating my choices, I would just rewatch my life decisions from 2010. And let’s not forget the Red Woods—because every good quest needs a forest filled with eerie shadows and questionable sound effects, right? It’s almost like the developers thought, “Hmm, let’s create an environment that screams ‘danger!’ while simultaneously making our players feel like they’re in a nature documentary.” Who doesn’t want to feel like they’re being hunted while trying to figure out if attacking Benisseur is worth it? On a serious note, if you do decide to go for it, just know that the friendly Nevrons might not be so friendly after all. After all, what’s a little betrayal between friends? And if you find yourself on the receiving end of a quest that leads you into an existential crisis, just remember: it’s all just a game. Or is it? So here’s to you, brave adventurers! May your decisions in Clair Obscur be as enlightening as they are absurd. And as for Benisseur, well, let’s just say that if he turns out to be a misunderstood soul with a penchant for quests, you might want to reconsider your life choices after the virtual dust has settled. #ClairObscur #Expedition33 #GamingHumor #Benisseur #RedWoods
    Should You Attack Benisseur In Clair Obscur: Expedition 33?
    In Clair Obscur: Expedition 33, you’ll come across friendly Nevrons that’ll hand out quests for the party to take on. Some are easier than others, including this one located in the Red Woods.Read more...
    Like
    Love
    Wow
    Angry
    Sad
    245
    1 Commentarii 0 Distribuiri 0 previzualizare
  • Smoking Gun

    Several key adjustments to gameplay mechanics and lots of optimization has been made.

    Posted by Sklorite-Studios-LLC on Jun 5th, 2025

    Hello! After receiving some friendly feedback about the gameplay mechanics, there have been some changes to accommodate and make things better for all players. Additionally, a good amount of time has been spent to polish and improve performance.However, I am looking for anyone who is interested in playing the game for free, to provide more feedback and a steam review! Just jump into the official Smoking Gun Discord Server and mention you are interested in providing feedback and I'll get you a free steam key for the game! No strings attached, I just need some honest feedback; good or bad! There is a limited number of keys available, so first come, first serve!

    I appreciate your willingness and look forward to getting in touch! Thanks!
    -Sklor @ Sklorite Studios LLC
    #smoking #gun
    Smoking Gun
    Several key adjustments to gameplay mechanics and lots of optimization has been made. Posted by Sklorite-Studios-LLC on Jun 5th, 2025 Hello! After receiving some friendly feedback about the gameplay mechanics, there have been some changes to accommodate and make things better for all players. Additionally, a good amount of time has been spent to polish and improve performance.However, I am looking for anyone who is interested in playing the game for free, to provide more feedback and a steam review! Just jump into the official Smoking Gun Discord Server and mention you are interested in providing feedback and I'll get you a free steam key for the game! No strings attached, I just need some honest feedback; good or bad! There is a limited number of keys available, so first come, first serve! I appreciate your willingness and look forward to getting in touch! Thanks! -Sklor @ Sklorite Studios LLC #smoking #gun
    WWW.INDIEDB.COM
    Smoking Gun
    Several key adjustments to gameplay mechanics and lots of optimization has been made. Posted by Sklorite-Studios-LLC on Jun 5th, 2025 Hello! After receiving some friendly feedback about the gameplay mechanics, there have been some changes to accommodate and make things better for all players. Additionally, a good amount of time has been spent to polish and improve performance. (visit the steam update page for more details!) However, I am looking for anyone who is interested in playing the game for free, to provide more feedback and a steam review! Just jump into the official Smoking Gun Discord Server and mention you are interested in providing feedback and I'll get you a free steam key for the game! No strings attached, I just need some honest feedback; good or bad! There is a limited number of keys available, so first come, first serve (limit of 1 per account)! I appreciate your willingness and look forward to getting in touch! Thanks! -Sklor @ Sklorite Studios LLC
    Like
    Love
    Wow
    Sad
    Angry
    367
    0 Commentarii 0 Distribuiri 0 previzualizare
  • New Zealand’s Email Security Requirements for Government Organizations: What You Need to Know

    The Secure Government EmailCommon Implementation Framework
    New Zealand’s government is introducing a comprehensive email security framework designed to protect official communications from phishing and domain spoofing. This new framework, which will be mandatory for all government agencies by October 2025, establishes clear technical standards to enhance email security and retire the outdated SEEMail service. 
    Key Takeaways

    All NZ government agencies must comply with new email security requirements by October 2025.
    The new framework strengthens trust and security in government communications by preventing spoofing and phishing.
    The framework mandates TLS 1.2+, SPF, DKIM, DMARC with p=reject, MTA-STS, and DLP controls.
    EasyDMARC simplifies compliance with our guided setup, monitoring, and automated reporting.

    Start a Free Trial

    What is the Secure Government Email Common Implementation Framework?
    The Secure Government EmailCommon Implementation Framework is a new government-led initiative in New Zealand designed to standardize email security across all government agencies. Its main goal is to secure external email communication, reduce domain spoofing in phishing attacks, and replace the legacy SEEMail service.
    Why is New Zealand Implementing New Government Email Security Standards?
    The framework was developed by New Zealand’s Department of Internal Affairsas part of its role in managing ICT Common Capabilities. It leverages modern email security controls via the Domain Name Systemto enable the retirement of the legacy SEEMail service and provide:

    Encryption for transmission security
    Digital signing for message integrity
    Basic non-repudiationDomain spoofing protection

    These improvements apply to all emails, not just those routed through SEEMail, offering broader protection across agency communications.
    What Email Security Technologies Are Required by the New NZ SGE Framework?
    The SGE Framework outlines the following key technologies that agencies must implement:

    TLS 1.2 or higher with implicit TLS enforced
    TLS-RPTSPFDKIMDMARCwith reporting
    MTA-STSData Loss Prevention controls

    These technologies work together to ensure encrypted email transmission, validate sender identity, prevent unauthorized use of domains, and reduce the risk of sensitive data leaks.

    Get in touch

    When Do NZ Government Agencies Need to Comply with this Framework?
    All New Zealand government agencies are expected to fully implement the Secure Government EmailCommon Implementation Framework by October 2025. Agencies should begin their planning and deployment now to ensure full compliance by the deadline.
    The All of Government Secure Email Common Implementation Framework v1.0
    What are the Mandated Requirements for Domains?
    Below are the exact requirements for all email-enabled domains under the new framework.
    ControlExact RequirementTLSMinimum TLS 1.2. TLS 1.1, 1.0, SSL, or clear-text not permitted.TLS-RPTAll email-sending domains must have TLS reporting enabled.SPFMust exist and end with -all.DKIMAll outbound email from every sending service must be DKIM-signed at the final hop.DMARCPolicy of p=reject on all email-enabled domains. adkim=s is recommended when not bulk-sending.MTA-STSEnabled and set to enforce.Implicit TLSMust be configured and enforced for every connection.Data Loss PreventionEnforce in line with the New Zealand Information Security Manualand Protective Security Requirements.
    Compliance Monitoring and Reporting
    The All of Government Service Deliveryteam will be monitoring compliance with the framework. Monitoring will initially cover SPF, DMARC, and MTA-STS settings and will be expanded to include DKIM. Changes to these settings will be monitored, enabling reporting on email security compliance across all government agencies. Ongoing monitoring will highlight changes to domains, ensure new domains are set up with security in place, and monitor the implementation of future email security technologies. 
    Should compliance changes occur, such as an agency’s SPF record being changed from -all to ~all, this will be captured so that the AoGSD Security Team can investigate. They will then communicate directly with the agency to determine if an issue exists or if an error has occurred, reviewing each case individually.
    Deployment Checklist for NZ Government Compliance

    Enforce TLS 1.2 minimum, implicit TLS, MTA-STS & TLS-RPT
    SPF with -all
    DKIM on all outbound email
    DMARC p=reject 
    adkim=s where suitable
    For non-email/parked domains: SPF -all, empty DKIM, DMARC reject strict
    Compliance dashboard
    Inbound DMARC evaluation enforced
    DLP aligned with NZISM

    Start a Free Trial

    How EasyDMARC Can Help Government Agencies Comply
    EasyDMARC provides a comprehensive email security solution that simplifies the deployment and ongoing management of DNS-based email security protocols like SPF, DKIM, and DMARC with reporting. Our platform offers automated checks, real-time monitoring, and a guided setup to help government organizations quickly reach compliance.
    1. TLS-RPT / MTA-STS audit
    EasyDMARC enables you to enable the Managed MTA-STS and TLS-RPT option with a single click. We provide the required DNS records and continuously monitor them for issues, delivering reports on TLS negotiation problems. This helps agencies ensure secure email transmission and quickly detect delivery or encryption failures.

    Note: In this screenshot, you can see how to deploy MTA-STS and TLS Reporting by adding just three CNAME records provided by EasyDMARC. It’s recommended to start in “testing” mode, evaluate the TLS-RPT reports, and then gradually switch your MTA-STS policy to “enforce”. The process is simple and takes just a few clicks.

    As shown above, EasyDMARC parses incoming TLS reports into a centralized dashboard, giving you clear visibility into delivery and encryption issues across all sending sources.
    2. SPF with “-all”In the EasyDARC platform, you can run the SPF Record Generator to create a compliant record. Publish your v=spf1 record with “-all” to enforce a hard fail for unauthorized senders and prevent spoofed emails from passing SPF checks. This strengthens your domain’s protection against impersonation.

    Note: It is highly recommended to start adjusting your SPF record only after you begin receiving DMARC reports and identifying your legitimate email sources. As we’ll explain in more detail below, both SPF and DKIM should be adjusted after you gain visibility through reports.
    Making changes without proper visibility can lead to false positives, misconfigurations, and potential loss of legitimate emails. That’s why the first step should always be setting DMARC to p=none, receiving reports, analyzing them, and then gradually fixing any SPF or DKIM issues.
    3. DKIM on all outbound email
    DKIM must be configured for all email sources sending emails on behalf of your domain. This is critical, as DKIM plays a bigger role than SPF when it comes to building domain reputation, surviving auto-forwarding, mailing lists, and other edge cases.
    As mentioned above, DMARC reports provide visibility into your email sources, allowing you to implement DKIM accordingly. If you’re using third-party services like Google Workspace, Microsoft 365, or Mimecast, you’ll need to retrieve the public DKIM key from your provider’s admin interface.
    EasyDMARC maintains a backend directory of over 1,400 email sources. We also give you detailed guidance on how to configure SPF and DKIM correctly for major ESPs. 
    Note: At the end of this article, you’ll find configuration links for well-known ESPs like Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid – helping you avoid common misconfigurations and get aligned with SGE requirements.
    If you’re using a dedicated MTA, DKIM must be implemented manually. EasyDMARC’s DKIM Record Generator lets you generate both public and private keys for your server. The private key is stored on your MTA, while the public key must be published in your DNS.

    4. DMARC p=reject rollout
    As mentioned in previous points, DMARC reporting is the first and most important step on your DMARC enforcement journey. Always start with a p=none policy and configure RUA reports to be sent to EasyDMARC. Use the report insights to identify and fix SPF and DKIM alignment issues, then gradually move to p=quarantine and finally p=reject once all legitimate email sources have been authenticated. 
    This phased approach ensures full protection against domain spoofing without risking legitimate email delivery.

    5. adkim Strict Alignment Check
    This strict alignment check is not always applicable, especially if you’re using third-party bulk ESPs, such as Sendgrid, that require you to set DKIM on a subdomain level. You can set adkim=s in your DMARC TXT record, or simply enable strict mode in EasyDMARC’s Managed DMARC settings. This ensures that only emails with a DKIM signature that exactly match your domain pass alignment, adding an extra layer of protection against domain spoofing. But only do this if you are NOT a bulk sender.

    6. Securing Non-Email Enabled Domains
    The purpose of deploying email security to non-email-enabled domains, or parked domains, is to prevent messages being spoofed from that domain. This requirement remains even if the root-level domain has SP=reject set within its DMARC record.
    Under this new framework, you must bulk import and mark parked domains as “Parked.” Crucially, this requires adjusting SPF settings to an empty record, setting DMARC to p=reject, and ensuring an empty DKIM record is in place: • SPF record: “v=spf1 -all”.
    • Wildcard DKIM record with empty public key.• DMARC record: “v=DMARC1;p=reject;adkim=s;aspf=s;rua=mailto:…”.
    EasyDMARC allows you to add and label parked domains for free. This is important because it helps you monitor any activity from these domains and ensure they remain protected with a strict DMARC policy of p=reject.
    7. Compliance Dashboard
    Use EasyDMARC’s Domain Scanner to assess the security posture of each domain with a clear compliance score and risk level. The dashboard highlights configuration gaps and guides remediation steps, helping government agencies stay on track toward full compliance with the SGE Framework.

    8. Inbound DMARC Evaluation Enforced
    You don’t need to apply any changes if you’re using Google Workspace, Microsoft 365, or other major mailbox providers. Most of them already enforce DMARC evaluation on incoming emails.
    However, some legacy Microsoft 365 setups may still quarantine emails that fail DMARC checks, even when the sending domain has a p=reject policy, instead of rejecting them. This behavior can be adjusted directly from your Microsoft Defender portal. about this in our step-by-step guide on how to set up SPF, DKIM, and DMARC from Microsoft Defender.
    If you’re using a third-party mail provider that doesn’t enforce having a DMARC policy for incoming emails, which is rare, you’ll need to contact their support to request a configuration change.
    9. Data Loss Prevention Aligned with NZISM
    The New Zealand Information Security Manualis the New Zealand Government’s manual on information assurance and information systems security. It includes guidance on data loss prevention, which must be followed to be aligned with the SEG.
    Need Help Setting up SPF and DKIM for your Email Provider?
    Setting up SPF and DKIM for different ESPs often requires specific configurations. Some providers require you to publish SPF and DKIM on a subdomain, while others only require DKIM, or have different formatting rules. We’ve simplified all these steps to help you avoid misconfigurations that could delay your DMARC enforcement, or worse, block legitimate emails from reaching your recipients.
    Below you’ll find comprehensive setup guides for Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid. You can also explore our full blog section that covers setup instructions for many other well-known ESPs.
    Remember, all this information is reflected in your DMARC aggregate reports. These reports give you live visibility into your outgoing email ecosystem, helping you analyze and fix any issues specific to a given provider.
    Here are our step-by-step guides for the most common platforms:

    Google Workspace

    Microsoft 365

    These guides will help ensure your DNS records are configured correctly as part of the Secure Government EmailFramework rollout.
    Meet New Government Email Security Standards With EasyDMARC
    New Zealand’s SEG Framework sets a clear path for government agencies to enhance their email security by October 2025. With EasyDMARC, you can meet these technical requirements efficiently and with confidence. From protocol setup to continuous monitoring and compliance tracking, EasyDMARC streamlines the entire process, ensuring strong protection against spoofing, phishing, and data loss while simplifying your transition from SEEMail.
    #new #zealands #email #security #requirements
    New Zealand’s Email Security Requirements for Government Organizations: What You Need to Know
    The Secure Government EmailCommon Implementation Framework New Zealand’s government is introducing a comprehensive email security framework designed to protect official communications from phishing and domain spoofing. This new framework, which will be mandatory for all government agencies by October 2025, establishes clear technical standards to enhance email security and retire the outdated SEEMail service.  Key Takeaways All NZ government agencies must comply with new email security requirements by October 2025. The new framework strengthens trust and security in government communications by preventing spoofing and phishing. The framework mandates TLS 1.2+, SPF, DKIM, DMARC with p=reject, MTA-STS, and DLP controls. EasyDMARC simplifies compliance with our guided setup, monitoring, and automated reporting. Start a Free Trial What is the Secure Government Email Common Implementation Framework? The Secure Government EmailCommon Implementation Framework is a new government-led initiative in New Zealand designed to standardize email security across all government agencies. Its main goal is to secure external email communication, reduce domain spoofing in phishing attacks, and replace the legacy SEEMail service. Why is New Zealand Implementing New Government Email Security Standards? The framework was developed by New Zealand’s Department of Internal Affairsas part of its role in managing ICT Common Capabilities. It leverages modern email security controls via the Domain Name Systemto enable the retirement of the legacy SEEMail service and provide: Encryption for transmission security Digital signing for message integrity Basic non-repudiationDomain spoofing protection These improvements apply to all emails, not just those routed through SEEMail, offering broader protection across agency communications. What Email Security Technologies Are Required by the New NZ SGE Framework? The SGE Framework outlines the following key technologies that agencies must implement: TLS 1.2 or higher with implicit TLS enforced TLS-RPTSPFDKIMDMARCwith reporting MTA-STSData Loss Prevention controls These technologies work together to ensure encrypted email transmission, validate sender identity, prevent unauthorized use of domains, and reduce the risk of sensitive data leaks. Get in touch When Do NZ Government Agencies Need to Comply with this Framework? All New Zealand government agencies are expected to fully implement the Secure Government EmailCommon Implementation Framework by October 2025. Agencies should begin their planning and deployment now to ensure full compliance by the deadline. The All of Government Secure Email Common Implementation Framework v1.0 What are the Mandated Requirements for Domains? Below are the exact requirements for all email-enabled domains under the new framework. ControlExact RequirementTLSMinimum TLS 1.2. TLS 1.1, 1.0, SSL, or clear-text not permitted.TLS-RPTAll email-sending domains must have TLS reporting enabled.SPFMust exist and end with -all.DKIMAll outbound email from every sending service must be DKIM-signed at the final hop.DMARCPolicy of p=reject on all email-enabled domains. adkim=s is recommended when not bulk-sending.MTA-STSEnabled and set to enforce.Implicit TLSMust be configured and enforced for every connection.Data Loss PreventionEnforce in line with the New Zealand Information Security Manualand Protective Security Requirements. Compliance Monitoring and Reporting The All of Government Service Deliveryteam will be monitoring compliance with the framework. Monitoring will initially cover SPF, DMARC, and MTA-STS settings and will be expanded to include DKIM. Changes to these settings will be monitored, enabling reporting on email security compliance across all government agencies. Ongoing monitoring will highlight changes to domains, ensure new domains are set up with security in place, and monitor the implementation of future email security technologies.  Should compliance changes occur, such as an agency’s SPF record being changed from -all to ~all, this will be captured so that the AoGSD Security Team can investigate. They will then communicate directly with the agency to determine if an issue exists or if an error has occurred, reviewing each case individually. Deployment Checklist for NZ Government Compliance Enforce TLS 1.2 minimum, implicit TLS, MTA-STS & TLS-RPT SPF with -all DKIM on all outbound email DMARC p=reject  adkim=s where suitable For non-email/parked domains: SPF -all, empty DKIM, DMARC reject strict Compliance dashboard Inbound DMARC evaluation enforced DLP aligned with NZISM Start a Free Trial How EasyDMARC Can Help Government Agencies Comply EasyDMARC provides a comprehensive email security solution that simplifies the deployment and ongoing management of DNS-based email security protocols like SPF, DKIM, and DMARC with reporting. Our platform offers automated checks, real-time monitoring, and a guided setup to help government organizations quickly reach compliance. 1. TLS-RPT / MTA-STS audit EasyDMARC enables you to enable the Managed MTA-STS and TLS-RPT option with a single click. We provide the required DNS records and continuously monitor them for issues, delivering reports on TLS negotiation problems. This helps agencies ensure secure email transmission and quickly detect delivery or encryption failures. Note: In this screenshot, you can see how to deploy MTA-STS and TLS Reporting by adding just three CNAME records provided by EasyDMARC. It’s recommended to start in “testing” mode, evaluate the TLS-RPT reports, and then gradually switch your MTA-STS policy to “enforce”. The process is simple and takes just a few clicks. As shown above, EasyDMARC parses incoming TLS reports into a centralized dashboard, giving you clear visibility into delivery and encryption issues across all sending sources. 2. SPF with “-all”In the EasyDARC platform, you can run the SPF Record Generator to create a compliant record. Publish your v=spf1 record with “-all” to enforce a hard fail for unauthorized senders and prevent spoofed emails from passing SPF checks. This strengthens your domain’s protection against impersonation. Note: It is highly recommended to start adjusting your SPF record only after you begin receiving DMARC reports and identifying your legitimate email sources. As we’ll explain in more detail below, both SPF and DKIM should be adjusted after you gain visibility through reports. Making changes without proper visibility can lead to false positives, misconfigurations, and potential loss of legitimate emails. That’s why the first step should always be setting DMARC to p=none, receiving reports, analyzing them, and then gradually fixing any SPF or DKIM issues. 3. DKIM on all outbound email DKIM must be configured for all email sources sending emails on behalf of your domain. This is critical, as DKIM plays a bigger role than SPF when it comes to building domain reputation, surviving auto-forwarding, mailing lists, and other edge cases. As mentioned above, DMARC reports provide visibility into your email sources, allowing you to implement DKIM accordingly. If you’re using third-party services like Google Workspace, Microsoft 365, or Mimecast, you’ll need to retrieve the public DKIM key from your provider’s admin interface. EasyDMARC maintains a backend directory of over 1,400 email sources. We also give you detailed guidance on how to configure SPF and DKIM correctly for major ESPs.  Note: At the end of this article, you’ll find configuration links for well-known ESPs like Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid – helping you avoid common misconfigurations and get aligned with SGE requirements. If you’re using a dedicated MTA, DKIM must be implemented manually. EasyDMARC’s DKIM Record Generator lets you generate both public and private keys for your server. The private key is stored on your MTA, while the public key must be published in your DNS. 4. DMARC p=reject rollout As mentioned in previous points, DMARC reporting is the first and most important step on your DMARC enforcement journey. Always start with a p=none policy and configure RUA reports to be sent to EasyDMARC. Use the report insights to identify and fix SPF and DKIM alignment issues, then gradually move to p=quarantine and finally p=reject once all legitimate email sources have been authenticated.  This phased approach ensures full protection against domain spoofing without risking legitimate email delivery. 5. adkim Strict Alignment Check This strict alignment check is not always applicable, especially if you’re using third-party bulk ESPs, such as Sendgrid, that require you to set DKIM on a subdomain level. You can set adkim=s in your DMARC TXT record, or simply enable strict mode in EasyDMARC’s Managed DMARC settings. This ensures that only emails with a DKIM signature that exactly match your domain pass alignment, adding an extra layer of protection against domain spoofing. But only do this if you are NOT a bulk sender. 6. Securing Non-Email Enabled Domains The purpose of deploying email security to non-email-enabled domains, or parked domains, is to prevent messages being spoofed from that domain. This requirement remains even if the root-level domain has SP=reject set within its DMARC record. Under this new framework, you must bulk import and mark parked domains as “Parked.” Crucially, this requires adjusting SPF settings to an empty record, setting DMARC to p=reject, and ensuring an empty DKIM record is in place: • SPF record: “v=spf1 -all”. • Wildcard DKIM record with empty public key.• DMARC record: “v=DMARC1;p=reject;adkim=s;aspf=s;rua=mailto:…”. EasyDMARC allows you to add and label parked domains for free. This is important because it helps you monitor any activity from these domains and ensure they remain protected with a strict DMARC policy of p=reject. 7. Compliance Dashboard Use EasyDMARC’s Domain Scanner to assess the security posture of each domain with a clear compliance score and risk level. The dashboard highlights configuration gaps and guides remediation steps, helping government agencies stay on track toward full compliance with the SGE Framework. 8. Inbound DMARC Evaluation Enforced You don’t need to apply any changes if you’re using Google Workspace, Microsoft 365, or other major mailbox providers. Most of them already enforce DMARC evaluation on incoming emails. However, some legacy Microsoft 365 setups may still quarantine emails that fail DMARC checks, even when the sending domain has a p=reject policy, instead of rejecting them. This behavior can be adjusted directly from your Microsoft Defender portal. about this in our step-by-step guide on how to set up SPF, DKIM, and DMARC from Microsoft Defender. If you’re using a third-party mail provider that doesn’t enforce having a DMARC policy for incoming emails, which is rare, you’ll need to contact their support to request a configuration change. 9. Data Loss Prevention Aligned with NZISM The New Zealand Information Security Manualis the New Zealand Government’s manual on information assurance and information systems security. It includes guidance on data loss prevention, which must be followed to be aligned with the SEG. Need Help Setting up SPF and DKIM for your Email Provider? Setting up SPF and DKIM for different ESPs often requires specific configurations. Some providers require you to publish SPF and DKIM on a subdomain, while others only require DKIM, or have different formatting rules. We’ve simplified all these steps to help you avoid misconfigurations that could delay your DMARC enforcement, or worse, block legitimate emails from reaching your recipients. Below you’ll find comprehensive setup guides for Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid. You can also explore our full blog section that covers setup instructions for many other well-known ESPs. Remember, all this information is reflected in your DMARC aggregate reports. These reports give you live visibility into your outgoing email ecosystem, helping you analyze and fix any issues specific to a given provider. Here are our step-by-step guides for the most common platforms: Google Workspace Microsoft 365 These guides will help ensure your DNS records are configured correctly as part of the Secure Government EmailFramework rollout. Meet New Government Email Security Standards With EasyDMARC New Zealand’s SEG Framework sets a clear path for government agencies to enhance their email security by October 2025. With EasyDMARC, you can meet these technical requirements efficiently and with confidence. From protocol setup to continuous monitoring and compliance tracking, EasyDMARC streamlines the entire process, ensuring strong protection against spoofing, phishing, and data loss while simplifying your transition from SEEMail. #new #zealands #email #security #requirements
    EASYDMARC.COM
    New Zealand’s Email Security Requirements for Government Organizations: What You Need to Know
    The Secure Government Email (SGE) Common Implementation Framework New Zealand’s government is introducing a comprehensive email security framework designed to protect official communications from phishing and domain spoofing. This new framework, which will be mandatory for all government agencies by October 2025, establishes clear technical standards to enhance email security and retire the outdated SEEMail service.  Key Takeaways All NZ government agencies must comply with new email security requirements by October 2025. The new framework strengthens trust and security in government communications by preventing spoofing and phishing. The framework mandates TLS 1.2+, SPF, DKIM, DMARC with p=reject, MTA-STS, and DLP controls. EasyDMARC simplifies compliance with our guided setup, monitoring, and automated reporting. Start a Free Trial What is the Secure Government Email Common Implementation Framework? The Secure Government Email (SGE) Common Implementation Framework is a new government-led initiative in New Zealand designed to standardize email security across all government agencies. Its main goal is to secure external email communication, reduce domain spoofing in phishing attacks, and replace the legacy SEEMail service. Why is New Zealand Implementing New Government Email Security Standards? The framework was developed by New Zealand’s Department of Internal Affairs (DIA) as part of its role in managing ICT Common Capabilities. It leverages modern email security controls via the Domain Name System (DNS) to enable the retirement of the legacy SEEMail service and provide: Encryption for transmission security Digital signing for message integrity Basic non-repudiation (by allowing only authorized senders) Domain spoofing protection These improvements apply to all emails, not just those routed through SEEMail, offering broader protection across agency communications. What Email Security Technologies Are Required by the New NZ SGE Framework? The SGE Framework outlines the following key technologies that agencies must implement: TLS 1.2 or higher with implicit TLS enforced TLS-RPT (TLS Reporting) SPF (Sender Policy Framework) DKIM (DomainKeys Identified Mail) DMARC (Domain-based Message Authentication, Reporting, and Conformance) with reporting MTA-STS (Mail Transfer Agent Strict Transport Security) Data Loss Prevention controls These technologies work together to ensure encrypted email transmission, validate sender identity, prevent unauthorized use of domains, and reduce the risk of sensitive data leaks. Get in touch When Do NZ Government Agencies Need to Comply with this Framework? All New Zealand government agencies are expected to fully implement the Secure Government Email (SGE) Common Implementation Framework by October 2025. Agencies should begin their planning and deployment now to ensure full compliance by the deadline. The All of Government Secure Email Common Implementation Framework v1.0 What are the Mandated Requirements for Domains? Below are the exact requirements for all email-enabled domains under the new framework. ControlExact RequirementTLSMinimum TLS 1.2. TLS 1.1, 1.0, SSL, or clear-text not permitted.TLS-RPTAll email-sending domains must have TLS reporting enabled.SPFMust exist and end with -all.DKIMAll outbound email from every sending service must be DKIM-signed at the final hop.DMARCPolicy of p=reject on all email-enabled domains. adkim=s is recommended when not bulk-sending.MTA-STSEnabled and set to enforce.Implicit TLSMust be configured and enforced for every connection.Data Loss PreventionEnforce in line with the New Zealand Information Security Manual (NZISM) and Protective Security Requirements (PSR). Compliance Monitoring and Reporting The All of Government Service Delivery (AoGSD) team will be monitoring compliance with the framework. Monitoring will initially cover SPF, DMARC, and MTA-STS settings and will be expanded to include DKIM. Changes to these settings will be monitored, enabling reporting on email security compliance across all government agencies. Ongoing monitoring will highlight changes to domains, ensure new domains are set up with security in place, and monitor the implementation of future email security technologies.  Should compliance changes occur, such as an agency’s SPF record being changed from -all to ~all, this will be captured so that the AoGSD Security Team can investigate. They will then communicate directly with the agency to determine if an issue exists or if an error has occurred, reviewing each case individually. Deployment Checklist for NZ Government Compliance Enforce TLS 1.2 minimum, implicit TLS, MTA-STS & TLS-RPT SPF with -all DKIM on all outbound email DMARC p=reject  adkim=s where suitable For non-email/parked domains: SPF -all, empty DKIM, DMARC reject strict Compliance dashboard Inbound DMARC evaluation enforced DLP aligned with NZISM Start a Free Trial How EasyDMARC Can Help Government Agencies Comply EasyDMARC provides a comprehensive email security solution that simplifies the deployment and ongoing management of DNS-based email security protocols like SPF, DKIM, and DMARC with reporting. Our platform offers automated checks, real-time monitoring, and a guided setup to help government organizations quickly reach compliance. 1. TLS-RPT / MTA-STS audit EasyDMARC enables you to enable the Managed MTA-STS and TLS-RPT option with a single click. We provide the required DNS records and continuously monitor them for issues, delivering reports on TLS negotiation problems. This helps agencies ensure secure email transmission and quickly detect delivery or encryption failures. Note: In this screenshot, you can see how to deploy MTA-STS and TLS Reporting by adding just three CNAME records provided by EasyDMARC. It’s recommended to start in “testing” mode, evaluate the TLS-RPT reports, and then gradually switch your MTA-STS policy to “enforce”. The process is simple and takes just a few clicks. As shown above, EasyDMARC parses incoming TLS reports into a centralized dashboard, giving you clear visibility into delivery and encryption issues across all sending sources. 2. SPF with “-all”In the EasyDARC platform, you can run the SPF Record Generator to create a compliant record. Publish your v=spf1 record with “-all” to enforce a hard fail for unauthorized senders and prevent spoofed emails from passing SPF checks. This strengthens your domain’s protection against impersonation. Note: It is highly recommended to start adjusting your SPF record only after you begin receiving DMARC reports and identifying your legitimate email sources. As we’ll explain in more detail below, both SPF and DKIM should be adjusted after you gain visibility through reports. Making changes without proper visibility can lead to false positives, misconfigurations, and potential loss of legitimate emails. That’s why the first step should always be setting DMARC to p=none, receiving reports, analyzing them, and then gradually fixing any SPF or DKIM issues. 3. DKIM on all outbound email DKIM must be configured for all email sources sending emails on behalf of your domain. This is critical, as DKIM plays a bigger role than SPF when it comes to building domain reputation, surviving auto-forwarding, mailing lists, and other edge cases. As mentioned above, DMARC reports provide visibility into your email sources, allowing you to implement DKIM accordingly (see first screenshot). If you’re using third-party services like Google Workspace, Microsoft 365, or Mimecast, you’ll need to retrieve the public DKIM key from your provider’s admin interface (see second screenshot). EasyDMARC maintains a backend directory of over 1,400 email sources. We also give you detailed guidance on how to configure SPF and DKIM correctly for major ESPs.  Note: At the end of this article, you’ll find configuration links for well-known ESPs like Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid – helping you avoid common misconfigurations and get aligned with SGE requirements. If you’re using a dedicated MTA (e.g., Postfix), DKIM must be implemented manually. EasyDMARC’s DKIM Record Generator lets you generate both public and private keys for your server. The private key is stored on your MTA, while the public key must be published in your DNS (see third and fourth screenshots). 4. DMARC p=reject rollout As mentioned in previous points, DMARC reporting is the first and most important step on your DMARC enforcement journey. Always start with a p=none policy and configure RUA reports to be sent to EasyDMARC. Use the report insights to identify and fix SPF and DKIM alignment issues, then gradually move to p=quarantine and finally p=reject once all legitimate email sources have been authenticated.  This phased approach ensures full protection against domain spoofing without risking legitimate email delivery. 5. adkim Strict Alignment Check This strict alignment check is not always applicable, especially if you’re using third-party bulk ESPs, such as Sendgrid, that require you to set DKIM on a subdomain level. You can set adkim=s in your DMARC TXT record, or simply enable strict mode in EasyDMARC’s Managed DMARC settings. This ensures that only emails with a DKIM signature that exactly match your domain pass alignment, adding an extra layer of protection against domain spoofing. But only do this if you are NOT a bulk sender. 6. Securing Non-Email Enabled Domains The purpose of deploying email security to non-email-enabled domains, or parked domains, is to prevent messages being spoofed from that domain. This requirement remains even if the root-level domain has SP=reject set within its DMARC record. Under this new framework, you must bulk import and mark parked domains as “Parked.” Crucially, this requires adjusting SPF settings to an empty record, setting DMARC to p=reject, and ensuring an empty DKIM record is in place: • SPF record: “v=spf1 -all”. • Wildcard DKIM record with empty public key.• DMARC record: “v=DMARC1;p=reject;adkim=s;aspf=s;rua=mailto:…”. EasyDMARC allows you to add and label parked domains for free. This is important because it helps you monitor any activity from these domains and ensure they remain protected with a strict DMARC policy of p=reject. 7. Compliance Dashboard Use EasyDMARC’s Domain Scanner to assess the security posture of each domain with a clear compliance score and risk level. The dashboard highlights configuration gaps and guides remediation steps, helping government agencies stay on track toward full compliance with the SGE Framework. 8. Inbound DMARC Evaluation Enforced You don’t need to apply any changes if you’re using Google Workspace, Microsoft 365, or other major mailbox providers. Most of them already enforce DMARC evaluation on incoming emails. However, some legacy Microsoft 365 setups may still quarantine emails that fail DMARC checks, even when the sending domain has a p=reject policy, instead of rejecting them. This behavior can be adjusted directly from your Microsoft Defender portal. Read more about this in our step-by-step guide on how to set up SPF, DKIM, and DMARC from Microsoft Defender. If you’re using a third-party mail provider that doesn’t enforce having a DMARC policy for incoming emails, which is rare, you’ll need to contact their support to request a configuration change. 9. Data Loss Prevention Aligned with NZISM The New Zealand Information Security Manual (NZISM) is the New Zealand Government’s manual on information assurance and information systems security. It includes guidance on data loss prevention (DLP), which must be followed to be aligned with the SEG. Need Help Setting up SPF and DKIM for your Email Provider? Setting up SPF and DKIM for different ESPs often requires specific configurations. Some providers require you to publish SPF and DKIM on a subdomain, while others only require DKIM, or have different formatting rules. We’ve simplified all these steps to help you avoid misconfigurations that could delay your DMARC enforcement, or worse, block legitimate emails from reaching your recipients. Below you’ll find comprehensive setup guides for Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid. You can also explore our full blog section that covers setup instructions for many other well-known ESPs. Remember, all this information is reflected in your DMARC aggregate reports. These reports give you live visibility into your outgoing email ecosystem, helping you analyze and fix any issues specific to a given provider. Here are our step-by-step guides for the most common platforms: Google Workspace Microsoft 365 These guides will help ensure your DNS records are configured correctly as part of the Secure Government Email (SGE) Framework rollout. Meet New Government Email Security Standards With EasyDMARC New Zealand’s SEG Framework sets a clear path for government agencies to enhance their email security by October 2025. With EasyDMARC, you can meet these technical requirements efficiently and with confidence. From protocol setup to continuous monitoring and compliance tracking, EasyDMARC streamlines the entire process, ensuring strong protection against spoofing, phishing, and data loss while simplifying your transition from SEEMail.
    0 Commentarii 0 Distribuiri 0 previzualizare
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Commentarii 0 Distribuiri 0 previzualizare
  • Download Unreal Engine 2D animation plugin Odyssey for free

    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" ";

    Epic Games has made Odyssey, Praxinos’s 2D animation plugin for Unreal Engine, available for free through Fab, its online marketplace.The software – which can be used for storyboarding or texturing 3D models as well as creating 2D animation – is available for free indefinitely, and will continue to be updated.
    A serious professional 2D animation tool created by former TVPaint staff

    Created by a team that includes former developers of standalone 2D animation software TVPaint, Odyssey has been in development since 2019.Part of that work was also funded by Epic Games, with Praxinos receiving an Epic MegaGrant for two of Odyssey’s precursors: painting plugin Iliad and storyboard and layout plugin Epos.
    Odyssey itself was released last year after beta testing at French animation studios including Ellipse Animation, and originally cost €1,200 for a perpetual license.

    Create 2D animation, storyboards, or textures for 3D models

    Although Odyssey’s main function is to create 2D animation – for movie and broadcast projects, motion graphics, or even games – the plugin adds a wider 2D toolset to Unreal Engine.Other use cases include storyboarding – you can import image sequences and turn them into storyboards – and texturing, either by painting 2D texture maps, or painting onto 3D meshes.
    It supports both 2D and 3D workflows, with the 2D editors – which include a flipbook editor as well as the 2D texture and animation editors – complemented by a 3D viewport.
    The bitmap painting toolset makes use of Unreal Engine’s Blueprint system, making it possible for users to create new painting brushes using a node-based workflow, and supports pressure sensitivity on graphics tablets.
    There is also a vector toolset for creating hard-edged shapes.
    Animation features include onion skinning, Toon Boom-style shift and trace, and automatic inbetweening.
    The plugin supports standard 2D and 3D file formats, including PSD, FBX and USD.
    Available for free indefinitely, but future updates planned

    Epic Games regularly makes Unreal Engine assets available for free through Fab, but usually only for a limited period of time.Odyssey is different, in that it is available for free indefinitely.
    However, it will continue to get updates: according to Epic Games’ blog post, Praxinos “plans to work in close collaboration with Epic Games and continue to enhance Odyssey”.
    As well as Odyssey itself, Praxinos offers custom tools development and training, which will hopefully also help to support future development.
    System requirements and availability

    Odyssey is compatible with Unreal Engine 5.6 on Windows and macOS. It is available for free under a Fab Standard License, including for commercial use. about Odyssey on Praxinos’s website
    Find more detailed information in Odyssey’s online manual
    Download Unreal Engine 2D animation plugin Odyssey for free

    Have your say on this story by following CG Channel on Facebook, Instagram and X. As well as being able to comment on stories, followers of our social media accounts can see videos we don’t post on the site itself, including making-ofs for the latest VFX movies, animations, games cinematics and motion graphics projects.
    #download #unreal #engine #animation #plugin
    Download Unreal Engine 2D animation plugin Odyssey for free
    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "; Epic Games has made Odyssey, Praxinos’s 2D animation plugin for Unreal Engine, available for free through Fab, its online marketplace.The software – which can be used for storyboarding or texturing 3D models as well as creating 2D animation – is available for free indefinitely, and will continue to be updated. A serious professional 2D animation tool created by former TVPaint staff Created by a team that includes former developers of standalone 2D animation software TVPaint, Odyssey has been in development since 2019.Part of that work was also funded by Epic Games, with Praxinos receiving an Epic MegaGrant for two of Odyssey’s precursors: painting plugin Iliad and storyboard and layout plugin Epos. Odyssey itself was released last year after beta testing at French animation studios including Ellipse Animation, and originally cost €1,200 for a perpetual license. Create 2D animation, storyboards, or textures for 3D models Although Odyssey’s main function is to create 2D animation – for movie and broadcast projects, motion graphics, or even games – the plugin adds a wider 2D toolset to Unreal Engine.Other use cases include storyboarding – you can import image sequences and turn them into storyboards – and texturing, either by painting 2D texture maps, or painting onto 3D meshes. It supports both 2D and 3D workflows, with the 2D editors – which include a flipbook editor as well as the 2D texture and animation editors – complemented by a 3D viewport. The bitmap painting toolset makes use of Unreal Engine’s Blueprint system, making it possible for users to create new painting brushes using a node-based workflow, and supports pressure sensitivity on graphics tablets. There is also a vector toolset for creating hard-edged shapes. Animation features include onion skinning, Toon Boom-style shift and trace, and automatic inbetweening. The plugin supports standard 2D and 3D file formats, including PSD, FBX and USD. Available for free indefinitely, but future updates planned Epic Games regularly makes Unreal Engine assets available for free through Fab, but usually only for a limited period of time.Odyssey is different, in that it is available for free indefinitely. However, it will continue to get updates: according to Epic Games’ blog post, Praxinos “plans to work in close collaboration with Epic Games and continue to enhance Odyssey”. As well as Odyssey itself, Praxinos offers custom tools development and training, which will hopefully also help to support future development. System requirements and availability Odyssey is compatible with Unreal Engine 5.6 on Windows and macOS. It is available for free under a Fab Standard License, including for commercial use. about Odyssey on Praxinos’s website Find more detailed information in Odyssey’s online manual Download Unreal Engine 2D animation plugin Odyssey for free Have your say on this story by following CG Channel on Facebook, Instagram and X. As well as being able to comment on stories, followers of our social media accounts can see videos we don’t post on the site itself, including making-ofs for the latest VFX movies, animations, games cinematics and motion graphics projects. #download #unreal #engine #animation #plugin
    Download Unreal Engine 2D animation plugin Odyssey for free
    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd" Epic Games has made Odyssey, Praxinos’s 2D animation plugin for Unreal Engine, available for free through Fab, its online marketplace.The software – which can be used for storyboarding or texturing 3D models as well as creating 2D animation – is available for free indefinitely, and will continue to be updated. A serious professional 2D animation tool created by former TVPaint staff Created by a team that includes former developers of standalone 2D animation software TVPaint, Odyssey has been in development since 2019.Part of that work was also funded by Epic Games, with Praxinos receiving an Epic MegaGrant for two of Odyssey’s precursors: painting plugin Iliad and storyboard and layout plugin Epos. Odyssey itself was released last year after beta testing at French animation studios including Ellipse Animation, and originally cost €1,200 for a perpetual license. Create 2D animation, storyboards, or textures for 3D models Although Odyssey’s main function is to create 2D animation – for movie and broadcast projects, motion graphics, or even games – the plugin adds a wider 2D toolset to Unreal Engine.Other use cases include storyboarding – you can import image sequences and turn them into storyboards – and texturing, either by painting 2D texture maps, or painting onto 3D meshes. It supports both 2D and 3D workflows, with the 2D editors – which include a flipbook editor as well as the 2D texture and animation editors – complemented by a 3D viewport. The bitmap painting toolset makes use of Unreal Engine’s Blueprint system, making it possible for users to create new painting brushes using a node-based workflow, and supports pressure sensitivity on graphics tablets. There is also a vector toolset for creating hard-edged shapes. Animation features include onion skinning, Toon Boom-style shift and trace, and automatic inbetweening. The plugin supports standard 2D and 3D file formats, including PSD, FBX and USD. Available for free indefinitely, but future updates planned Epic Games regularly makes Unreal Engine assets available for free through Fab, but usually only for a limited period of time.Odyssey is different, in that it is available for free indefinitely. However, it will continue to get updates: according to Epic Games’ blog post, Praxinos “plans to work in close collaboration with Epic Games and continue to enhance Odyssey”. As well as Odyssey itself, Praxinos offers custom tools development and training, which will hopefully also help to support future development. System requirements and availability Odyssey is compatible with Unreal Engine 5.6 on Windows and macOS. It is available for free under a Fab Standard License, including for commercial use.Read more about Odyssey on Praxinos’s website Find more detailed information in Odyssey’s online manual Download Unreal Engine 2D animation plugin Odyssey for free Have your say on this story by following CG Channel on Facebook, Instagram and X (formerly Twitter). As well as being able to comment on stories, followers of our social media accounts can see videos we don’t post on the site itself, including making-ofs for the latest VFX movies, animations, games cinematics and motion graphics projects.
    0 Commentarii 0 Distribuiri 0 previzualizare
CGShares https://cgshares.com