• NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI

    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions.
    Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges.
    To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure.
    Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations.
    Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint.

    NVIDIA Omniverse Blueprint for Smart City AI 
    The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes:

    NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale.
    NVIDIA Cosmos to generate synthetic data at scale for post-training AI models.
    NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language modelsand large language models.
    NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization, helping process vast amounts of video data and provide critical insights to optimize business processes.

    The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint.
    NVIDIA Partner Ecosystem Powers Smart Cities Worldwide
    The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own.
    SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning.
    This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management.
    Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption.

    The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second.
    Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events.
    To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second.

    Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance.
    Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases.
    The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems.

    Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins.
    Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%.

    Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance.
    Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities.
    Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents.
    Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    #nvidia #brings #physical #european #cities
    NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI
    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions. Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges. To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure. Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations. Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint. NVIDIA Omniverse Blueprint for Smart City AI  The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes: NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale. NVIDIA Cosmos to generate synthetic data at scale for post-training AI models. NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language modelsand large language models. NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization, helping process vast amounts of video data and provide critical insights to optimize business processes. The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint. NVIDIA Partner Ecosystem Powers Smart Cities Worldwide The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own. SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning. This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management. Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption. The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second. Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events. To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second. Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance. Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases. The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems. Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins. Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%. Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance. Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities. Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents. Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. #nvidia #brings #physical #european #cities
    BLOGS.NVIDIA.COM
    NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI
    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions. Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges. To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure. Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations. Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint. NVIDIA Omniverse Blueprint for Smart City AI  The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes: NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale. NVIDIA Cosmos to generate synthetic data at scale for post-training AI models. NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language models (VLMs) and large language models. NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization (VSS), helping process vast amounts of video data and provide critical insights to optimize business processes. The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint. NVIDIA Partner Ecosystem Powers Smart Cities Worldwide The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own. SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning. This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management. Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption. https://blogs.nvidia.com/wp-content/uploads/2025/06/01-Monaco-Akila.mp4 The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second. Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events. To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second. https://blogs.nvidia.com/wp-content/uploads/2025/06/02-K2K-Polermo-1600x900-1.mp4 Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance. Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases. The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems. https://blogs.nvidia.com/wp-content/uploads/2025/06/03-Milestone.mp4 Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins. Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%. https://blogs.nvidia.com/wp-content/uploads/2025/06/02-Linker-Vision-1280x680-1.mp4 Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance. Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities. Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents. Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    Like
    Love
    Wow
    34
    0 Σχόλια 0 Μοιράστηκε
  • European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters

    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Unionare working together to give the media industry access to high-quality and trusted cloud and AI technologies.
    Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape.
    The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values.
    Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs.
    “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.”

    Empowering Media Innovation in Europe
    To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations.
    Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facilityand Media eXchange Layerarchitecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem.
    The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies.
    As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI.
    In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development.
    Partnering With Public Service Media for Sovereign Cloud and AI
    Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI.
    By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI.
    This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations.
    “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.”
    Learn more about the EBU.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. 
    #european #broadcasting #union #nvidia #partner
    European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters
    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Unionare working together to give the media industry access to high-quality and trusted cloud and AI technologies. Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape. The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values. Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs. “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.” Empowering Media Innovation in Europe To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations. Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facilityand Media eXchange Layerarchitecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem. The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies. As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI. In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development. Partnering With Public Service Media for Sovereign Cloud and AI Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI. By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI. This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations. “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.” Learn more about the EBU. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.  #european #broadcasting #union #nvidia #partner
    BLOGS.NVIDIA.COM
    European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters
    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Union (EBU) are working together to give the media industry access to high-quality and trusted cloud and AI technologies. Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape. The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values. Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs. “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.” Empowering Media Innovation in Europe To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations. Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facility (DMF) and Media eXchange Layer (MXL) architecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem. The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies. As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI. In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development. Partnering With Public Service Media for Sovereign Cloud and AI Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI. By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI. This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations. “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.” Learn more about the EBU. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. 
    Like
    Love
    Wow
    Sad
    Angry
    35
    0 Σχόλια 0 Μοιράστηκε
  • The AI execution gap: Why 80% of projects don’t reach production

    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle.
    #execution #gap #why #projects #dont
    The AI execution gap: Why 80% of projects don’t reach production
    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle. #execution #gap #why #projects #dont
    WWW.ARTIFICIALINTELLIGENCE-NEWS.COM
    The AI execution gap: Why 80% of projects don’t reach production
    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to $631 billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least $1 million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle.(Image source: Unsplash)
    Like
    Love
    Wow
    Angry
    Sad
    598
    0 Σχόλια 0 Μοιράστηκε
  • The Role of the 3-2-1 Backup Rule in Cybersecurity

    Daniel Pearson , CEO, KnownHostJune 12, 20253 Min ReadBusiness success concept. Cubes with arrows and target on the top.Cyber incidents are expected to cost the US billion in 2025. According to the latest estimates, this dynamic will continue to rise, reaching approximately 1.82 trillion US dollars in cybercrime costs by 2028. These figures highlight the crucial importance of strong cybersecurity strategies, which businesses must build to reduce the likelihood of risks. As technology evolves at a dramatic pace, businesses are increasingly dependent on utilizing digital infrastructure, exposing themselves to threats such as ransomware, accidental data loss, and corruption.  Despite the 3-2-1 backup rule being invented in 2009, this strategy has stayed relevant for businesses over the years, ensuring that the loss of data is minimized under threat, and will be a crucial method in the upcoming years to prevent major data loss.   What Is the 3-2-1 Backup Rule? The 3-2-1 backup rule is a popular backup strategy that ensures resilience against data loss. The setup consists of keeping your original data and two backups.  The data also needs to be stored in two different locations, such as the cloud or a local drive.  The one in the 3-2-1 backup rule represents storing a copy of your data off site, and this completes the setup.  This setup has been considered a gold standard in IT security, as it minimizes points of failure and increases the chance of successful data recovery in the event of a cyber-attack.  Related:Why Is This Rule Relevant in the Modern Cyber Threat Landscape? Statistics show that in 2024, 80% of companies have seen an increase in the frequency of cloud attacks.  Although many businesses assume that storing data in the cloud is enough, it is certainly not failsafe, and businesses are in bigger danger than ever due to the vast development of technology and AI capabilities attackers can manipulate and use.  As the cloud infrastructure has seen a similar speed of growth, cyber criminals are actively targeting these, leaving businesses with no clear recovery option. Therefore, more than ever, businesses need to invest in immutable backup solutions.  Common Backup Mistakes Businesses Make A common misstep is keeping all backups on the same physical network. If malware gets in, it can quickly spread and encrypt both the primary data and the backups, wiping out everything in one go. Another issue is the lack of offline or air-gapped backups. Many businesses rely entirely on cloud-based or on-premises storage that's always connected, which means their recovery options could be compromised during an attack. Related:Finally, one of the most overlooked yet crucial steps is testing backup restoration. A backup is only useful if it can actually be restored. Too often, companies skip regular testing. This can lead to a harsh reality check when they discover, too late, that their backup data is either corrupted or completely inaccessible after a breach. How to Implement the 3-2-1 Backup Rule? To successfully implement the 3-2-1 backup strategy as part of a robust cybersecurity framework, organizations should start by diversifying their storage methods. A resilient approach typically includes a mix of local storage, cloud-based solutions, and physical media such as external hard drives.  From there, it's essential to incorporate technologies that support write-once, read-many functionalities. This means backups cannot be modified or deleted, even by administrators, providing an extra layer of protection against threats. To further enhance resilience, organizations should make use of automation and AI-driven tools. These technologies can offer real-time monitoring, detect anomalies, and apply predictive analytics to maintain the integrity of backup data and flag any unusual activity or failures in the process. Lastly, it's crucial to ensure your backup strategy aligns with relevant regulatory requirements, such as GDPR in the UK or CCPA in the US. Compliance not only mitigates legal risk but also reinforces your commitment to data protection and operational continuity. Related:By blending the time-tested 3-2-1 rule with modern advances like immutable storage and intelligent monitoring, organizations can build a highly resilient backup architecture that strengthens their overall cybersecurity posture. About the AuthorDaniel Pearson CEO, KnownHostDaniel Pearson is the CEO of KnownHost, a managed web hosting service provider. Pearson also serves as a dedicated board member and supporter of the AlmaLinux OS Foundation, a non-profit organization focused on advancing the AlmaLinux OS -- an open-source operating system derived from RHEL. His passion for technology extends beyond his professional endeavors, as he actively promotes digital literacy and empowerment. Pearson's entrepreneurial drive and extensive industry knowledge have solidified his reputation as a respected figure in the tech community. See more from Daniel Pearson ReportsMore ReportsNever Miss a Beat: Get a snapshot of the issues affecting the IT industry straight to your inbox.SIGN-UPYou May Also Like
    #role #backup #rule #cybersecurity
    The Role of the 3-2-1 Backup Rule in Cybersecurity
    Daniel Pearson , CEO, KnownHostJune 12, 20253 Min ReadBusiness success concept. Cubes with arrows and target on the top.Cyber incidents are expected to cost the US billion in 2025. According to the latest estimates, this dynamic will continue to rise, reaching approximately 1.82 trillion US dollars in cybercrime costs by 2028. These figures highlight the crucial importance of strong cybersecurity strategies, which businesses must build to reduce the likelihood of risks. As technology evolves at a dramatic pace, businesses are increasingly dependent on utilizing digital infrastructure, exposing themselves to threats such as ransomware, accidental data loss, and corruption.  Despite the 3-2-1 backup rule being invented in 2009, this strategy has stayed relevant for businesses over the years, ensuring that the loss of data is minimized under threat, and will be a crucial method in the upcoming years to prevent major data loss.   What Is the 3-2-1 Backup Rule? The 3-2-1 backup rule is a popular backup strategy that ensures resilience against data loss. The setup consists of keeping your original data and two backups.  The data also needs to be stored in two different locations, such as the cloud or a local drive.  The one in the 3-2-1 backup rule represents storing a copy of your data off site, and this completes the setup.  This setup has been considered a gold standard in IT security, as it minimizes points of failure and increases the chance of successful data recovery in the event of a cyber-attack.  Related:Why Is This Rule Relevant in the Modern Cyber Threat Landscape? Statistics show that in 2024, 80% of companies have seen an increase in the frequency of cloud attacks.  Although many businesses assume that storing data in the cloud is enough, it is certainly not failsafe, and businesses are in bigger danger than ever due to the vast development of technology and AI capabilities attackers can manipulate and use.  As the cloud infrastructure has seen a similar speed of growth, cyber criminals are actively targeting these, leaving businesses with no clear recovery option. Therefore, more than ever, businesses need to invest in immutable backup solutions.  Common Backup Mistakes Businesses Make A common misstep is keeping all backups on the same physical network. If malware gets in, it can quickly spread and encrypt both the primary data and the backups, wiping out everything in one go. Another issue is the lack of offline or air-gapped backups. Many businesses rely entirely on cloud-based or on-premises storage that's always connected, which means their recovery options could be compromised during an attack. Related:Finally, one of the most overlooked yet crucial steps is testing backup restoration. A backup is only useful if it can actually be restored. Too often, companies skip regular testing. This can lead to a harsh reality check when they discover, too late, that their backup data is either corrupted or completely inaccessible after a breach. How to Implement the 3-2-1 Backup Rule? To successfully implement the 3-2-1 backup strategy as part of a robust cybersecurity framework, organizations should start by diversifying their storage methods. A resilient approach typically includes a mix of local storage, cloud-based solutions, and physical media such as external hard drives.  From there, it's essential to incorporate technologies that support write-once, read-many functionalities. This means backups cannot be modified or deleted, even by administrators, providing an extra layer of protection against threats. To further enhance resilience, organizations should make use of automation and AI-driven tools. These technologies can offer real-time monitoring, detect anomalies, and apply predictive analytics to maintain the integrity of backup data and flag any unusual activity or failures in the process. Lastly, it's crucial to ensure your backup strategy aligns with relevant regulatory requirements, such as GDPR in the UK or CCPA in the US. Compliance not only mitigates legal risk but also reinforces your commitment to data protection and operational continuity. Related:By blending the time-tested 3-2-1 rule with modern advances like immutable storage and intelligent monitoring, organizations can build a highly resilient backup architecture that strengthens their overall cybersecurity posture. About the AuthorDaniel Pearson CEO, KnownHostDaniel Pearson is the CEO of KnownHost, a managed web hosting service provider. Pearson also serves as a dedicated board member and supporter of the AlmaLinux OS Foundation, a non-profit organization focused on advancing the AlmaLinux OS -- an open-source operating system derived from RHEL. His passion for technology extends beyond his professional endeavors, as he actively promotes digital literacy and empowerment. Pearson's entrepreneurial drive and extensive industry knowledge have solidified his reputation as a respected figure in the tech community. See more from Daniel Pearson ReportsMore ReportsNever Miss a Beat: Get a snapshot of the issues affecting the IT industry straight to your inbox.SIGN-UPYou May Also Like #role #backup #rule #cybersecurity
    WWW.INFORMATIONWEEK.COM
    The Role of the 3-2-1 Backup Rule in Cybersecurity
    Daniel Pearson , CEO, KnownHostJune 12, 20253 Min ReadBusiness success concept. Cubes with arrows and target on the top.Cyber incidents are expected to cost the US $639 billion in 2025. According to the latest estimates, this dynamic will continue to rise, reaching approximately 1.82 trillion US dollars in cybercrime costs by 2028. These figures highlight the crucial importance of strong cybersecurity strategies, which businesses must build to reduce the likelihood of risks. As technology evolves at a dramatic pace, businesses are increasingly dependent on utilizing digital infrastructure, exposing themselves to threats such as ransomware, accidental data loss, and corruption.  Despite the 3-2-1 backup rule being invented in 2009, this strategy has stayed relevant for businesses over the years, ensuring that the loss of data is minimized under threat, and will be a crucial method in the upcoming years to prevent major data loss.   What Is the 3-2-1 Backup Rule? The 3-2-1 backup rule is a popular backup strategy that ensures resilience against data loss. The setup consists of keeping your original data and two backups.  The data also needs to be stored in two different locations, such as the cloud or a local drive.  The one in the 3-2-1 backup rule represents storing a copy of your data off site, and this completes the setup.  This setup has been considered a gold standard in IT security, as it minimizes points of failure and increases the chance of successful data recovery in the event of a cyber-attack.  Related:Why Is This Rule Relevant in the Modern Cyber Threat Landscape? Statistics show that in 2024, 80% of companies have seen an increase in the frequency of cloud attacks.  Although many businesses assume that storing data in the cloud is enough, it is certainly not failsafe, and businesses are in bigger danger than ever due to the vast development of technology and AI capabilities attackers can manipulate and use.  As the cloud infrastructure has seen a similar speed of growth, cyber criminals are actively targeting these, leaving businesses with no clear recovery option. Therefore, more than ever, businesses need to invest in immutable backup solutions.  Common Backup Mistakes Businesses Make A common misstep is keeping all backups on the same physical network. If malware gets in, it can quickly spread and encrypt both the primary data and the backups, wiping out everything in one go. Another issue is the lack of offline or air-gapped backups. Many businesses rely entirely on cloud-based or on-premises storage that's always connected, which means their recovery options could be compromised during an attack. Related:Finally, one of the most overlooked yet crucial steps is testing backup restoration. A backup is only useful if it can actually be restored. Too often, companies skip regular testing. This can lead to a harsh reality check when they discover, too late, that their backup data is either corrupted or completely inaccessible after a breach. How to Implement the 3-2-1 Backup Rule? To successfully implement the 3-2-1 backup strategy as part of a robust cybersecurity framework, organizations should start by diversifying their storage methods. A resilient approach typically includes a mix of local storage, cloud-based solutions, and physical media such as external hard drives.  From there, it's essential to incorporate technologies that support write-once, read-many functionalities. This means backups cannot be modified or deleted, even by administrators, providing an extra layer of protection against threats. To further enhance resilience, organizations should make use of automation and AI-driven tools. These technologies can offer real-time monitoring, detect anomalies, and apply predictive analytics to maintain the integrity of backup data and flag any unusual activity or failures in the process. Lastly, it's crucial to ensure your backup strategy aligns with relevant regulatory requirements, such as GDPR in the UK or CCPA in the US. Compliance not only mitigates legal risk but also reinforces your commitment to data protection and operational continuity. Related:By blending the time-tested 3-2-1 rule with modern advances like immutable storage and intelligent monitoring, organizations can build a highly resilient backup architecture that strengthens their overall cybersecurity posture. About the AuthorDaniel Pearson CEO, KnownHostDaniel Pearson is the CEO of KnownHost, a managed web hosting service provider. Pearson also serves as a dedicated board member and supporter of the AlmaLinux OS Foundation, a non-profit organization focused on advancing the AlmaLinux OS -- an open-source operating system derived from RHEL. His passion for technology extends beyond his professional endeavors, as he actively promotes digital literacy and empowerment. Pearson's entrepreneurial drive and extensive industry knowledge have solidified his reputation as a respected figure in the tech community. See more from Daniel Pearson ReportsMore ReportsNever Miss a Beat: Get a snapshot of the issues affecting the IT industry straight to your inbox.SIGN-UPYou May Also Like
    Like
    Love
    Wow
    Sad
    Angry
    519
    2 Σχόλια 0 Μοιράστηκε
  • MedTech AI, hardware, and clinical application programmes

    Modern healthcare innovations span AI, devices, software, images, and regulatory frameworks, all requiring stringent coordination. Generative AI arguably has the strongest transformative potential in healthcare technology programmes, with it already being applied across various domains, such as R&D, commercial operations, and supply chain management.Traditional models for medical appointments, like face-to-face appointments, and paper-based processes may not be sufficient to meet the fast-paced, data-driven medical landscape of today. Therefore, healthcare professionals and patients are seeking more convenient and efficient ways to access and share information, meeting the complex standards of modern medical science. According to McKinsey, Medtech companies are at the forefront of healthcare innovation, estimating they could capture between billion and billion annually in productivity gains. Through GenAI adoption, an additional billion plus in revenue is estimated from products and service innovations. A McKinsey 2024 survey revealed around two thirds of Medtech executives have already implemented Gen AI, with approximately 20% scaling their solutions up and reporting substantial benefits to productivity.  While advanced technology implementation is growing across the medical industry, challenges persist. Organisations face hurdles like data integration issues, decentralised strategies, and skill gaps. Together, these highlight a need for a more streamlined approach to Gen AI deployment. Of all the Medtech domains, R&D is leading the way in Gen AI adoption. Being the most comfortable with new technologies, R&D departments use Gen AI tools to streamline work processes, such as summarising research papers or scientific articles, highlighting a grassroots adoption trend. Individual researchers are using AI to enhance productivity, even when no formal company-wide strategies are in place.While AI tools automate and accelerate R&D tasks, human review is still required to ensure final submissions are correct and satisfactory. Gen AI is proving to reduce time spent on administrative tasks for teams and improve research accuracy and depth, with some companies experiencing 20% to 30% gains in research productivity. KPIs for success in healthcare product programmesMeasuring business performance is essential in the healthcare sector. The number one goal is, of course, to deliver high-quality care, yet simultaneously maintain efficient operations. By measuring and analysing KPIs, healthcare providers are in a better position to improve patient outcomes through their data-based considerations. KPIs can also improve resource allocation, and encourage continuous improvement in all areas of care. In terms of healthcare product programmes, these structured initiatives prioritise the development, delivery, and continual optimisation of medical products. But to be a success, they require cross-functional coordination of clinical, technical, regulatory, and business teams. Time to market is critical, ensuring a product moves from the concept stage to launch as quickly as possible.Of particular note is the emphasis needing to be placed on labelling and documentation. McKinsey notes that AI-assisted labelling has resulted in a 20%-30% improvement in operational efficiency. Resource utilisation rates are also important, showing how efficiently time, budget, and/or headcount are used during the developmental stage of products. In the healthcare sector, KPIs ought to focus on several factors, including operational efficiency, patient outcomes, financial health of the business, and patient satisfaction. To achieve a comprehensive view of performance, these can be categorised into financial, operational, clinical quality, and patient experience.Bridging user experience with technical precision – design awardsInnovation is no longer solely judged by technical performance with user experiencebeing equally important. Some of the latest innovations in healthcare are recognised at the UX Design Awards, products that exemplify the best in user experience as well as technical precision. Top products prioritise the needs and experiences of both patients and healthcare professionals, also ensuring each product meets the rigorous clinical and regulatory standards of the sector. One example is the CIARTIC Move by Siemens Healthineers, a self-driving 3D C-arm imaging system that lets surgeons operate, controlling the device wirelessly in a sterile field. Computer hardware company ASUS has also received accolades for its HealthConnect App and VivoWatch Series, showcasing the fusion of AIoT-driven smart healthcare solutions with user-friendly interfaces – sometimes in what are essentially consumer devices. This demonstrates how technical innovation is being made accessible and becoming increasingly intuitive as patients gain technical fluency.  Navigating regulatory and product development pathways simultaneously The establishing of clinical and regulatory paths is important, as this enables healthcare teams to feed a twin stream of findings back into development. Gen AI adoption has become a transformative approach, automating the production and refining of complex documents, mixed data sets, and structured and unstructured data. By integrating regulatory considerations early and adopting technologies like Gen AI as part of agile practices, healthcare product programmes help teams navigate a regulatory landscape that can often shift. Baking a regulatory mindset into a team early helps ensure compliance and continued innovation. Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here.
    #medtech #hardware #clinical #application #programmes
    MedTech AI, hardware, and clinical application programmes
    Modern healthcare innovations span AI, devices, software, images, and regulatory frameworks, all requiring stringent coordination. Generative AI arguably has the strongest transformative potential in healthcare technology programmes, with it already being applied across various domains, such as R&D, commercial operations, and supply chain management.Traditional models for medical appointments, like face-to-face appointments, and paper-based processes may not be sufficient to meet the fast-paced, data-driven medical landscape of today. Therefore, healthcare professionals and patients are seeking more convenient and efficient ways to access and share information, meeting the complex standards of modern medical science. According to McKinsey, Medtech companies are at the forefront of healthcare innovation, estimating they could capture between billion and billion annually in productivity gains. Through GenAI adoption, an additional billion plus in revenue is estimated from products and service innovations. A McKinsey 2024 survey revealed around two thirds of Medtech executives have already implemented Gen AI, with approximately 20% scaling their solutions up and reporting substantial benefits to productivity.  While advanced technology implementation is growing across the medical industry, challenges persist. Organisations face hurdles like data integration issues, decentralised strategies, and skill gaps. Together, these highlight a need for a more streamlined approach to Gen AI deployment. Of all the Medtech domains, R&D is leading the way in Gen AI adoption. Being the most comfortable with new technologies, R&D departments use Gen AI tools to streamline work processes, such as summarising research papers or scientific articles, highlighting a grassroots adoption trend. Individual researchers are using AI to enhance productivity, even when no formal company-wide strategies are in place.While AI tools automate and accelerate R&D tasks, human review is still required to ensure final submissions are correct and satisfactory. Gen AI is proving to reduce time spent on administrative tasks for teams and improve research accuracy and depth, with some companies experiencing 20% to 30% gains in research productivity. KPIs for success in healthcare product programmesMeasuring business performance is essential in the healthcare sector. The number one goal is, of course, to deliver high-quality care, yet simultaneously maintain efficient operations. By measuring and analysing KPIs, healthcare providers are in a better position to improve patient outcomes through their data-based considerations. KPIs can also improve resource allocation, and encourage continuous improvement in all areas of care. In terms of healthcare product programmes, these structured initiatives prioritise the development, delivery, and continual optimisation of medical products. But to be a success, they require cross-functional coordination of clinical, technical, regulatory, and business teams. Time to market is critical, ensuring a product moves from the concept stage to launch as quickly as possible.Of particular note is the emphasis needing to be placed on labelling and documentation. McKinsey notes that AI-assisted labelling has resulted in a 20%-30% improvement in operational efficiency. Resource utilisation rates are also important, showing how efficiently time, budget, and/or headcount are used during the developmental stage of products. In the healthcare sector, KPIs ought to focus on several factors, including operational efficiency, patient outcomes, financial health of the business, and patient satisfaction. To achieve a comprehensive view of performance, these can be categorised into financial, operational, clinical quality, and patient experience.Bridging user experience with technical precision – design awardsInnovation is no longer solely judged by technical performance with user experiencebeing equally important. Some of the latest innovations in healthcare are recognised at the UX Design Awards, products that exemplify the best in user experience as well as technical precision. Top products prioritise the needs and experiences of both patients and healthcare professionals, also ensuring each product meets the rigorous clinical and regulatory standards of the sector. One example is the CIARTIC Move by Siemens Healthineers, a self-driving 3D C-arm imaging system that lets surgeons operate, controlling the device wirelessly in a sterile field. Computer hardware company ASUS has also received accolades for its HealthConnect App and VivoWatch Series, showcasing the fusion of AIoT-driven smart healthcare solutions with user-friendly interfaces – sometimes in what are essentially consumer devices. This demonstrates how technical innovation is being made accessible and becoming increasingly intuitive as patients gain technical fluency.  Navigating regulatory and product development pathways simultaneously The establishing of clinical and regulatory paths is important, as this enables healthcare teams to feed a twin stream of findings back into development. Gen AI adoption has become a transformative approach, automating the production and refining of complex documents, mixed data sets, and structured and unstructured data. By integrating regulatory considerations early and adopting technologies like Gen AI as part of agile practices, healthcare product programmes help teams navigate a regulatory landscape that can often shift. Baking a regulatory mindset into a team early helps ensure compliance and continued innovation. Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here. #medtech #hardware #clinical #application #programmes
    WWW.ARTIFICIALINTELLIGENCE-NEWS.COM
    MedTech AI, hardware, and clinical application programmes
    Modern healthcare innovations span AI, devices, software, images, and regulatory frameworks, all requiring stringent coordination. Generative AI arguably has the strongest transformative potential in healthcare technology programmes, with it already being applied across various domains, such as R&D, commercial operations, and supply chain management.Traditional models for medical appointments, like face-to-face appointments, and paper-based processes may not be sufficient to meet the fast-paced, data-driven medical landscape of today. Therefore, healthcare professionals and patients are seeking more convenient and efficient ways to access and share information, meeting the complex standards of modern medical science. According to McKinsey, Medtech companies are at the forefront of healthcare innovation, estimating they could capture between $14 billion and $55 billion annually in productivity gains. Through GenAI adoption, an additional $50 billion plus in revenue is estimated from products and service innovations. A McKinsey 2024 survey revealed around two thirds of Medtech executives have already implemented Gen AI, with approximately 20% scaling their solutions up and reporting substantial benefits to productivity.  While advanced technology implementation is growing across the medical industry, challenges persist. Organisations face hurdles like data integration issues, decentralised strategies, and skill gaps. Together, these highlight a need for a more streamlined approach to Gen AI deployment. Of all the Medtech domains, R&D is leading the way in Gen AI adoption. Being the most comfortable with new technologies, R&D departments use Gen AI tools to streamline work processes, such as summarising research papers or scientific articles, highlighting a grassroots adoption trend. Individual researchers are using AI to enhance productivity, even when no formal company-wide strategies are in place.While AI tools automate and accelerate R&D tasks, human review is still required to ensure final submissions are correct and satisfactory. Gen AI is proving to reduce time spent on administrative tasks for teams and improve research accuracy and depth, with some companies experiencing 20% to 30% gains in research productivity. KPIs for success in healthcare product programmesMeasuring business performance is essential in the healthcare sector. The number one goal is, of course, to deliver high-quality care, yet simultaneously maintain efficient operations. By measuring and analysing KPIs, healthcare providers are in a better position to improve patient outcomes through their data-based considerations. KPIs can also improve resource allocation, and encourage continuous improvement in all areas of care. In terms of healthcare product programmes, these structured initiatives prioritise the development, delivery, and continual optimisation of medical products. But to be a success, they require cross-functional coordination of clinical, technical, regulatory, and business teams. Time to market is critical, ensuring a product moves from the concept stage to launch as quickly as possible.Of particular note is the emphasis needing to be placed on labelling and documentation. McKinsey notes that AI-assisted labelling has resulted in a 20%-30% improvement in operational efficiency. Resource utilisation rates are also important, showing how efficiently time, budget, and/or headcount are used during the developmental stage of products. In the healthcare sector, KPIs ought to focus on several factors, including operational efficiency, patient outcomes, financial health of the business, and patient satisfaction. To achieve a comprehensive view of performance, these can be categorised into financial, operational, clinical quality, and patient experience.Bridging user experience with technical precision – design awardsInnovation is no longer solely judged by technical performance with user experience (UX) being equally important. Some of the latest innovations in healthcare are recognised at the UX Design Awards, products that exemplify the best in user experience as well as technical precision. Top products prioritise the needs and experiences of both patients and healthcare professionals, also ensuring each product meets the rigorous clinical and regulatory standards of the sector. One example is the CIARTIC Move by Siemens Healthineers, a self-driving 3D C-arm imaging system that lets surgeons operate, controlling the device wirelessly in a sterile field. Computer hardware company ASUS has also received accolades for its HealthConnect App and VivoWatch Series, showcasing the fusion of AIoT-driven smart healthcare solutions with user-friendly interfaces – sometimes in what are essentially consumer devices. This demonstrates how technical innovation is being made accessible and becoming increasingly intuitive as patients gain technical fluency.  Navigating regulatory and product development pathways simultaneously The establishing of clinical and regulatory paths is important, as this enables healthcare teams to feed a twin stream of findings back into development. Gen AI adoption has become a transformative approach, automating the production and refining of complex documents, mixed data sets, and structured and unstructured data. By integrating regulatory considerations early and adopting technologies like Gen AI as part of agile practices, healthcare product programmes help teams navigate a regulatory landscape that can often shift. Baking a regulatory mindset into a team early helps ensure compliance and continued innovation. (Image source: “IBM Achieves New Deep Learning Breakthrough” by IBM Research is licensed under CC BY-ND 2.0.)Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here.
    0 Σχόλια 0 Μοιράστηκε
  • Reclaiming Control: Digital Sovereignty in 2025

    Sovereignty has mattered since the invention of the nation state—defined by borders, laws, and taxes that apply within and without. While many have tried to define it, the core idea remains: nations or jurisdictions seek to stay in control, usually to the benefit of those within their borders.
    Digital sovereignty is a relatively new concept, also difficult to define but straightforward to understand. Data and applications don’t understand borders unless they are specified in policy terms, as coded into the infrastructure.
    The World Wide Web had no such restrictions at its inception. Communitarian groups such as the Electronic Frontier Foundation, service providers and hyperscalers, non-profits and businesses all embraced a model that suggested data would look after itself.
    But data won’t look after itself, for several reasons. First, data is massively out of control. We generate more of it all the time, and for at least two or three decades, most organizations haven’t fully understood their data assets. This creates inefficiency and risk—not least, widespread vulnerability to cyberattack.
    Risk is probability times impact—and right now, the probabilities have shot up. Invasions, tariffs, political tensions, and more have brought new urgency. This time last year, the idea of switching off another country’s IT systems was not on the radar. Now we’re seeing it happen—including the U.S. government blocking access to services overseas.
    Digital sovereignty isn’t just a European concern, though it is often framed as such. In South America for example, I am told that sovereignty is leading conversations with hyperscalers; in African countries, it is being stipulated in supplier agreements. Many jurisdictions are watching, assessing, and reviewing their stance on digital sovereignty.
    As the adage goes: a crisis is a problem with no time left to solve it. Digital sovereignty was a problem in waiting—but now it’s urgent. It’s gone from being an abstract ‘right to sovereignty’ to becoming a clear and present issue, in government thinking, corporate risk and how we architect and operate our computer systems.
    What does the digital sovereignty landscape look like today?
    Much has changed since this time last year. Unknowns remain, but much of what was unclear this time last year is now starting to solidify. Terminology is clearer – for example talking about classification and localisation rather than generic concepts.
    We’re seeing a shift from theory to practice. Governments and organizations are putting policies in place that simply didn’t exist before. For example, some countries are seeing “in-country” as a primary goal, whereas othersare adopting a risk-based approach based on trusted locales.
    We’re also seeing a shift in risk priorities. From a risk standpoint, the classic triad of confidentiality, integrity, and availability are at the heart of the digital sovereignty conversation. Historically, the focus has been much more on confidentiality, driven by concerns about the US Cloud Act: essentially, can foreign governments see my data?
    This year however, availability is rising in prominence, due to geopolitics and very real concerns about data accessibility in third countries. Integrity is being talked about less from a sovereignty perspective, but is no less important as a cybercrime target—ransomware and fraud being two clear and present risks.
    Thinking more broadly, digital sovereignty is not just about data, or even intellectual property, but also the brain drain. Countries don’t want all their brightest young technologists leaving university only to end up in California or some other, more attractive country. They want to keep talent at home and innovate locally, to the benefit of their own GDP.
    How Are Cloud Providers Responding?
    Hyperscalers are playing catch-up, still looking for ways to satisfy the letter of the law whilst ignoringits spirit. It’s not enough for Microsoft or AWS to say they will do everything they can to protect a jurisdiction’s data, if they are already legally obliged to do the opposite. Legislation, in this case US legislation, calls the shots—and we all know just how fragile this is right now.
    We see hyperscaler progress where they offer technology to be locally managed by a third party, rather than themselves. For example, Google’s partnership with Thales, or Microsoft with Orange, both in France. However, these are point solutions, not part of a general standard. Meanwhile, AWS’ recent announcement about creating a local entity doesn’t solve for the problem of US over-reach, which remains a core issue.
    Non-hyperscaler providers and software vendors have an increasingly significant play: Oracle and HPE offer solutions that can be deployed and managed locally for example; Broadcom/VMware and Red Hat provide technologies that locally situated, private cloud providers can host. Digital sovereignty is thus a catalyst for a redistribution of “cloud spend” across a broader pool of players.
    What Can Enterprise Organizations Do About It?
    First, see digital sovereignty as a core element of data and application strategy. For a nation, sovereignty means having solid borders, control over IP, GDP, and so on. That’s the goal for corporations as well—control, self-determination, and resilience.
    If sovereignty isn’t seen as an element of strategy, it gets pushed down into the implementation layer, leading to inefficient architectures and duplicated effort. Far better to decide up front what data, applications and processes need to be treated as sovereign, and defining an architecture to support that.
    This sets the scene for making informed provisioning decisions. Your organization may have made some big bets on key vendors or hyperscalers, but multi-platform thinking increasingly dominates: multiple public and private cloud providers, with integrated operations and management. Sovereign cloud becomes one element of a well-structured multi-platform architecture.
    It is not cost-neutral to deliver on sovereignty, but the overall business value should be tangible. A sovereignty initiative should bring clear advantages, not just for itself, but through the benefits that come with better control, visibility, and efficiency.
    Knowing where your data is, understanding which data matters, managing it efficiently so you’re not duplicating or fragmenting it across systems—these are valuable outcomes. In addition, ignoring these questions can lead to non-compliance or be outright illegal. Even if we don’t use terms like ‘sovereignty’, organizations need a handle on their information estate.
    Organizations shouldn’t be thinking everything cloud-based needs to be sovereign, but should be building strategies and policies based on data classification, prioritization and risk. Build that picture and you can solve for the highest-priority items first—the data with the strongest classification and greatest risk. That process alone takes care of 80–90% of the problem space, avoiding making sovereignty another problem whilst solving nothing.
    Where to start? Look after your own organization first
    Sovereignty and systems thinking go hand in hand: it’s all about scope. In enterprise architecture or business design, the biggest mistake is boiling the ocean—trying to solve everything at once.
    Instead, focus on your own sovereignty. Worry about your own organization, your own jurisdiction. Know where your own borders are. Understand who your customers are, and what their requirements are. For example, if you’re a manufacturer selling into specific countries—what do those countries require? Solve for that, not for everything else. Don’t try to plan for every possible future scenario.
    Focus on what you have, what you’re responsible for, and what you need to address right now. Classify and prioritise your data assets based on real-world risk. Do that, and you’re already more than halfway toward solving digital sovereignty—with all the efficiency, control, and compliance benefits that come with it.
    Digital sovereignty isn’t just regulatory, but strategic. Organizations that act now can reduce risk, improve operational clarity, and prepare for a future based on trust, compliance, and resilience.
    The post Reclaiming Control: Digital Sovereignty in 2025 appeared first on Gigaom.
    #reclaiming #control #digital #sovereignty
    Reclaiming Control: Digital Sovereignty in 2025
    Sovereignty has mattered since the invention of the nation state—defined by borders, laws, and taxes that apply within and without. While many have tried to define it, the core idea remains: nations or jurisdictions seek to stay in control, usually to the benefit of those within their borders. Digital sovereignty is a relatively new concept, also difficult to define but straightforward to understand. Data and applications don’t understand borders unless they are specified in policy terms, as coded into the infrastructure. The World Wide Web had no such restrictions at its inception. Communitarian groups such as the Electronic Frontier Foundation, service providers and hyperscalers, non-profits and businesses all embraced a model that suggested data would look after itself. But data won’t look after itself, for several reasons. First, data is massively out of control. We generate more of it all the time, and for at least two or three decades, most organizations haven’t fully understood their data assets. This creates inefficiency and risk—not least, widespread vulnerability to cyberattack. Risk is probability times impact—and right now, the probabilities have shot up. Invasions, tariffs, political tensions, and more have brought new urgency. This time last year, the idea of switching off another country’s IT systems was not on the radar. Now we’re seeing it happen—including the U.S. government blocking access to services overseas. Digital sovereignty isn’t just a European concern, though it is often framed as such. In South America for example, I am told that sovereignty is leading conversations with hyperscalers; in African countries, it is being stipulated in supplier agreements. Many jurisdictions are watching, assessing, and reviewing their stance on digital sovereignty. As the adage goes: a crisis is a problem with no time left to solve it. Digital sovereignty was a problem in waiting—but now it’s urgent. It’s gone from being an abstract ‘right to sovereignty’ to becoming a clear and present issue, in government thinking, corporate risk and how we architect and operate our computer systems. What does the digital sovereignty landscape look like today? Much has changed since this time last year. Unknowns remain, but much of what was unclear this time last year is now starting to solidify. Terminology is clearer – for example talking about classification and localisation rather than generic concepts. We’re seeing a shift from theory to practice. Governments and organizations are putting policies in place that simply didn’t exist before. For example, some countries are seeing “in-country” as a primary goal, whereas othersare adopting a risk-based approach based on trusted locales. We’re also seeing a shift in risk priorities. From a risk standpoint, the classic triad of confidentiality, integrity, and availability are at the heart of the digital sovereignty conversation. Historically, the focus has been much more on confidentiality, driven by concerns about the US Cloud Act: essentially, can foreign governments see my data? This year however, availability is rising in prominence, due to geopolitics and very real concerns about data accessibility in third countries. Integrity is being talked about less from a sovereignty perspective, but is no less important as a cybercrime target—ransomware and fraud being two clear and present risks. Thinking more broadly, digital sovereignty is not just about data, or even intellectual property, but also the brain drain. Countries don’t want all their brightest young technologists leaving university only to end up in California or some other, more attractive country. They want to keep talent at home and innovate locally, to the benefit of their own GDP. How Are Cloud Providers Responding? Hyperscalers are playing catch-up, still looking for ways to satisfy the letter of the law whilst ignoringits spirit. It’s not enough for Microsoft or AWS to say they will do everything they can to protect a jurisdiction’s data, if they are already legally obliged to do the opposite. Legislation, in this case US legislation, calls the shots—and we all know just how fragile this is right now. We see hyperscaler progress where they offer technology to be locally managed by a third party, rather than themselves. For example, Google’s partnership with Thales, or Microsoft with Orange, both in France. However, these are point solutions, not part of a general standard. Meanwhile, AWS’ recent announcement about creating a local entity doesn’t solve for the problem of US over-reach, which remains a core issue. Non-hyperscaler providers and software vendors have an increasingly significant play: Oracle and HPE offer solutions that can be deployed and managed locally for example; Broadcom/VMware and Red Hat provide technologies that locally situated, private cloud providers can host. Digital sovereignty is thus a catalyst for a redistribution of “cloud spend” across a broader pool of players. What Can Enterprise Organizations Do About It? First, see digital sovereignty as a core element of data and application strategy. For a nation, sovereignty means having solid borders, control over IP, GDP, and so on. That’s the goal for corporations as well—control, self-determination, and resilience. If sovereignty isn’t seen as an element of strategy, it gets pushed down into the implementation layer, leading to inefficient architectures and duplicated effort. Far better to decide up front what data, applications and processes need to be treated as sovereign, and defining an architecture to support that. This sets the scene for making informed provisioning decisions. Your organization may have made some big bets on key vendors or hyperscalers, but multi-platform thinking increasingly dominates: multiple public and private cloud providers, with integrated operations and management. Sovereign cloud becomes one element of a well-structured multi-platform architecture. It is not cost-neutral to deliver on sovereignty, but the overall business value should be tangible. A sovereignty initiative should bring clear advantages, not just for itself, but through the benefits that come with better control, visibility, and efficiency. Knowing where your data is, understanding which data matters, managing it efficiently so you’re not duplicating or fragmenting it across systems—these are valuable outcomes. In addition, ignoring these questions can lead to non-compliance or be outright illegal. Even if we don’t use terms like ‘sovereignty’, organizations need a handle on their information estate. Organizations shouldn’t be thinking everything cloud-based needs to be sovereign, but should be building strategies and policies based on data classification, prioritization and risk. Build that picture and you can solve for the highest-priority items first—the data with the strongest classification and greatest risk. That process alone takes care of 80–90% of the problem space, avoiding making sovereignty another problem whilst solving nothing. Where to start? Look after your own organization first Sovereignty and systems thinking go hand in hand: it’s all about scope. In enterprise architecture or business design, the biggest mistake is boiling the ocean—trying to solve everything at once. Instead, focus on your own sovereignty. Worry about your own organization, your own jurisdiction. Know where your own borders are. Understand who your customers are, and what their requirements are. For example, if you’re a manufacturer selling into specific countries—what do those countries require? Solve for that, not for everything else. Don’t try to plan for every possible future scenario. Focus on what you have, what you’re responsible for, and what you need to address right now. Classify and prioritise your data assets based on real-world risk. Do that, and you’re already more than halfway toward solving digital sovereignty—with all the efficiency, control, and compliance benefits that come with it. Digital sovereignty isn’t just regulatory, but strategic. Organizations that act now can reduce risk, improve operational clarity, and prepare for a future based on trust, compliance, and resilience. The post Reclaiming Control: Digital Sovereignty in 2025 appeared first on Gigaom. #reclaiming #control #digital #sovereignty
    GIGAOM.COM
    Reclaiming Control: Digital Sovereignty in 2025
    Sovereignty has mattered since the invention of the nation state—defined by borders, laws, and taxes that apply within and without. While many have tried to define it, the core idea remains: nations or jurisdictions seek to stay in control, usually to the benefit of those within their borders. Digital sovereignty is a relatively new concept, also difficult to define but straightforward to understand. Data and applications don’t understand borders unless they are specified in policy terms, as coded into the infrastructure. The World Wide Web had no such restrictions at its inception. Communitarian groups such as the Electronic Frontier Foundation, service providers and hyperscalers, non-profits and businesses all embraced a model that suggested data would look after itself. But data won’t look after itself, for several reasons. First, data is massively out of control. We generate more of it all the time, and for at least two or three decades (according to historical surveys I’ve run), most organizations haven’t fully understood their data assets. This creates inefficiency and risk—not least, widespread vulnerability to cyberattack. Risk is probability times impact—and right now, the probabilities have shot up. Invasions, tariffs, political tensions, and more have brought new urgency. This time last year, the idea of switching off another country’s IT systems was not on the radar. Now we’re seeing it happen—including the U.S. government blocking access to services overseas. Digital sovereignty isn’t just a European concern, though it is often framed as such. In South America for example, I am told that sovereignty is leading conversations with hyperscalers; in African countries, it is being stipulated in supplier agreements. Many jurisdictions are watching, assessing, and reviewing their stance on digital sovereignty. As the adage goes: a crisis is a problem with no time left to solve it. Digital sovereignty was a problem in waiting—but now it’s urgent. It’s gone from being an abstract ‘right to sovereignty’ to becoming a clear and present issue, in government thinking, corporate risk and how we architect and operate our computer systems. What does the digital sovereignty landscape look like today? Much has changed since this time last year. Unknowns remain, but much of what was unclear this time last year is now starting to solidify. Terminology is clearer – for example talking about classification and localisation rather than generic concepts. We’re seeing a shift from theory to practice. Governments and organizations are putting policies in place that simply didn’t exist before. For example, some countries are seeing “in-country” as a primary goal, whereas others (the UK included) are adopting a risk-based approach based on trusted locales. We’re also seeing a shift in risk priorities. From a risk standpoint, the classic triad of confidentiality, integrity, and availability are at the heart of the digital sovereignty conversation. Historically, the focus has been much more on confidentiality, driven by concerns about the US Cloud Act: essentially, can foreign governments see my data? This year however, availability is rising in prominence, due to geopolitics and very real concerns about data accessibility in third countries. Integrity is being talked about less from a sovereignty perspective, but is no less important as a cybercrime target—ransomware and fraud being two clear and present risks. Thinking more broadly, digital sovereignty is not just about data, or even intellectual property, but also the brain drain. Countries don’t want all their brightest young technologists leaving university only to end up in California or some other, more attractive country. They want to keep talent at home and innovate locally, to the benefit of their own GDP. How Are Cloud Providers Responding? Hyperscalers are playing catch-up, still looking for ways to satisfy the letter of the law whilst ignoring (in the French sense) its spirit. It’s not enough for Microsoft or AWS to say they will do everything they can to protect a jurisdiction’s data, if they are already legally obliged to do the opposite. Legislation, in this case US legislation, calls the shots—and we all know just how fragile this is right now. We see hyperscaler progress where they offer technology to be locally managed by a third party, rather than themselves. For example, Google’s partnership with Thales, or Microsoft with Orange, both in France (Microsoft has similar in Germany). However, these are point solutions, not part of a general standard. Meanwhile, AWS’ recent announcement about creating a local entity doesn’t solve for the problem of US over-reach, which remains a core issue. Non-hyperscaler providers and software vendors have an increasingly significant play: Oracle and HPE offer solutions that can be deployed and managed locally for example; Broadcom/VMware and Red Hat provide technologies that locally situated, private cloud providers can host. Digital sovereignty is thus a catalyst for a redistribution of “cloud spend” across a broader pool of players. What Can Enterprise Organizations Do About It? First, see digital sovereignty as a core element of data and application strategy. For a nation, sovereignty means having solid borders, control over IP, GDP, and so on. That’s the goal for corporations as well—control, self-determination, and resilience. If sovereignty isn’t seen as an element of strategy, it gets pushed down into the implementation layer, leading to inefficient architectures and duplicated effort. Far better to decide up front what data, applications and processes need to be treated as sovereign, and defining an architecture to support that. This sets the scene for making informed provisioning decisions. Your organization may have made some big bets on key vendors or hyperscalers, but multi-platform thinking increasingly dominates: multiple public and private cloud providers, with integrated operations and management. Sovereign cloud becomes one element of a well-structured multi-platform architecture. It is not cost-neutral to deliver on sovereignty, but the overall business value should be tangible. A sovereignty initiative should bring clear advantages, not just for itself, but through the benefits that come with better control, visibility, and efficiency. Knowing where your data is, understanding which data matters, managing it efficiently so you’re not duplicating or fragmenting it across systems—these are valuable outcomes. In addition, ignoring these questions can lead to non-compliance or be outright illegal. Even if we don’t use terms like ‘sovereignty’, organizations need a handle on their information estate. Organizations shouldn’t be thinking everything cloud-based needs to be sovereign, but should be building strategies and policies based on data classification, prioritization and risk. Build that picture and you can solve for the highest-priority items first—the data with the strongest classification and greatest risk. That process alone takes care of 80–90% of the problem space, avoiding making sovereignty another problem whilst solving nothing. Where to start? Look after your own organization first Sovereignty and systems thinking go hand in hand: it’s all about scope. In enterprise architecture or business design, the biggest mistake is boiling the ocean—trying to solve everything at once. Instead, focus on your own sovereignty. Worry about your own organization, your own jurisdiction. Know where your own borders are. Understand who your customers are, and what their requirements are. For example, if you’re a manufacturer selling into specific countries—what do those countries require? Solve for that, not for everything else. Don’t try to plan for every possible future scenario. Focus on what you have, what you’re responsible for, and what you need to address right now. Classify and prioritise your data assets based on real-world risk. Do that, and you’re already more than halfway toward solving digital sovereignty—with all the efficiency, control, and compliance benefits that come with it. Digital sovereignty isn’t just regulatory, but strategic. Organizations that act now can reduce risk, improve operational clarity, and prepare for a future based on trust, compliance, and resilience. The post Reclaiming Control: Digital Sovereignty in 2025 appeared first on Gigaom.
    0 Σχόλια 0 Μοιράστηκε
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Σχόλια 0 Μοιράστηκε
  • CIOs baffled by ‘buzzwords, hype and confusion’ around AI

    Technology leaders are baffled by a “cacophony” of “buzzwords, hype and confusion” over the benefits of artificial intelligence, according to the founder and CEO of technology company Pegasystems.
    Alan Trefler, who is known for his prowess at chess and ping pong, as well as running a bn turnover tech company, spends much of his time meeting clients, CIOs and business leaders.
    “I think CIOs are struggling to understand all of the buzzwords, hype and confusion that exists,” he said.
    “The words AI and agentic are being thrown around in this great cacophony and they don’t know what it means. I hear that constantly.”
    CIOs are under pressure from their CEOs, who are convinced AI will offer something valuable.
    “CIOs are really hungry for pragmatic and practical solutions, and in the absence of those, many of them are doing a lot of experimentation,” said Trefler.
    Companies are looking at large language models to summarise documents, or to help stimulate ideas for knowledge workers, or generate first drafts of reports – all of which will save time and make people more productive.

    But Trefler said companies are wary of letting AI loose on critical business applications, because it’s just too unpredictable and prone to hallucinations.
    “There is a lot of fear over handing things over to something that no one understands exactly how it works, and that is the absolute state of play when it comes to general AI models,” he said.
    Trefler is scathing about big tech companies that are pushing AI agents and large language models for business-critical applications. “I think they have taken an expedient but short-sighted path,” he said.
    “I believe the idea that you will turn over critical business operations to an agent, when those operations have to be predictable, reliable, precise and fair to clients … is something that is full of issues, not just in the short term, but structurally.”
    One of the problems is that generative AI models are extraordinarily sensitive to the data they are trained on and the construction of the prompts used to instruct them. A slight change in a prompt or in the training data can lead to a very different outcome.
    For example, a business banking application might learn its customer is a bit richer or a bit poorer than expected.
    “You could easily imagine the prompt deciding to change the interest rate charged, whether that was what the institution wanted or whether it would be legal according to the various regulations that lenders must comply with,” said Trefler.

    Trefler said Pega has taken a different approach to some other technology suppliers in the way it adds AI into business applications.
    Rather than using AI agents to solve problems in real time, AI agents do their thinking in advance.
    Business experts can use them to help them co-design business processes to perform anything from assessing a loan application, giving an offer to a valued customer, or sending out an invoice.
    Companies can still deploy AI chatbots and bots capable of answering queries on the phone. Their job is not to work out the solution from scratch for every enquiry, but to decide which is the right pre-written process to follow.
    As Trefler put it, design agents can create “dozens and dozens” of workflows to handle all the actions a company needs to take care of its customers.
    “You just use the natural language model for semantics to be able to handle the miracle of getting the language right, but tie that language to workflows, so that you have reliable, predictable, regulatory-approved ways to execute,” he said.

    Large language modelsare not always the right solution. Trefler demonstrated how ChatGPT 4.0 tried and failed to solve a chess puzzle. The LLM repeatedly suggested impossible or illegal moves, despite Trefler’s corrections. On the other hand, another AI tool, Stockfish, a dedicated chess engine, solved the problem instantly.
    The other drawback with LLMs is that they consume vast amounts of energy. That means if AI agents are reasoning during “run time”, they are going to consume hundreds of times more electricity than an AI agent that simply selects from pre-determined workflows, said Trefler.
    “ChatGPT is inherently, enormously consumptive … as it’s answering your question, its firing literally hundreds of millions to trillions of nodes,” he said. “All of that takeselectricity.”
    Using an employee pay claim as an example, Trefler said a better alternative is to generate, say, 30 alternative workflows to cover the major variations found in a pay claim.
    That gives you “real specificity and real efficiency”, he said. “And it’s a very different approach to turning a process over to a machine with a prompt and letting the machine reason it through every single time.”
    “If you go down the philosophy of using a graphics processing unitto do the creation of a workflow and a workflow engine to execute the workflow, the workflow engine takes a 200th of the electricity because there is no reasoning,” said Trefler.
    He is clear that the growing use of AI will have a profound effect on the jobs market, and that whole categories of jobs will disappear.
    The need for translators, for example, is likely to dry up by 2027 as AI systems become better at translating spoken and written language. Google’s real-time translator is already “frighteningly good” and improving.
    Pega now plans to work more closely with its network of system integrators, including Accenture and Cognizant to deliver AI services to businesses.

    An initiative launched last week will allow system integrators to incorporate their own best practices and tools into Pega’s rapid workflow development tools. The move will mean Pega’s technology reaches a wider range of businesses.
    Under the programme, known as Powered by Pega Blueprint, system integrators will be able to deploy customised versions of Blueprint.
    They can use the tool to reverse-engineer ageing applications and replace them with modern AI workflows that can run on Pega’s cloud-based platform.
    “The idea is that we are looking to make this Blueprint Agent design approach available not just through us, but through a bunch of major partners supplemented with their own intellectual property,” said Trefler.
    That represents a major expansion for Pega, which has largely concentrated on supplying technology to several hundred clients, representing the top Fortune 500 companies.
    “We have never done something like this before, and I think that is going to lead to a massive shift in how this technology can go out to market,” he added.

    When AI agents behave in unexpected ways
    Iris is incredibly smart, diligent and a delight to work with. If you ask her, she will tell you she is an intern at Pegasystems, and that she lives in a lighthouse on the island of Texel, north of the Netherlands. She is, of course, an AI agent.
    When one executive at Pega emailed Iris and asked her to write a proposal for a financial services company based on his notes and internet research, Iris got to work.
    Some time later, the executive received a phone call from the company. “‘Listen, we got a proposal from Pega,’” recalled Rob Walker, vice-president at Pega, speaking at the Pegaworld conference last week. “‘It’s a good proposal, but it seems to be signed by one of your interns, and in her signature, it says she lives in a lighthouse.’ That taught us early on that agents like Iris need a safety harness.”
    The developers banned Iris from sending an email to anyone other than the person who sent the original request.
    Then Pega’s ethics department sent Iris a potentially abusive email from a Pega employee to test her response.
    Iris reasoned that the email was either a joke, abusive, or that the employee was under distress, said Walker.
    She considered forwarding the email to the employee’s manager or to HR. But both of these options were now blocked by her developers. “So what does she do? She sent an out of office,” he said. “Conflict avoidance, right? So human, but very creative.”
    #cios #baffled #buzzwords #hype #confusion
    CIOs baffled by ‘buzzwords, hype and confusion’ around AI
    Technology leaders are baffled by a “cacophony” of “buzzwords, hype and confusion” over the benefits of artificial intelligence, according to the founder and CEO of technology company Pegasystems. Alan Trefler, who is known for his prowess at chess and ping pong, as well as running a bn turnover tech company, spends much of his time meeting clients, CIOs and business leaders. “I think CIOs are struggling to understand all of the buzzwords, hype and confusion that exists,” he said. “The words AI and agentic are being thrown around in this great cacophony and they don’t know what it means. I hear that constantly.” CIOs are under pressure from their CEOs, who are convinced AI will offer something valuable. “CIOs are really hungry for pragmatic and practical solutions, and in the absence of those, many of them are doing a lot of experimentation,” said Trefler. Companies are looking at large language models to summarise documents, or to help stimulate ideas for knowledge workers, or generate first drafts of reports – all of which will save time and make people more productive. But Trefler said companies are wary of letting AI loose on critical business applications, because it’s just too unpredictable and prone to hallucinations. “There is a lot of fear over handing things over to something that no one understands exactly how it works, and that is the absolute state of play when it comes to general AI models,” he said. Trefler is scathing about big tech companies that are pushing AI agents and large language models for business-critical applications. “I think they have taken an expedient but short-sighted path,” he said. “I believe the idea that you will turn over critical business operations to an agent, when those operations have to be predictable, reliable, precise and fair to clients … is something that is full of issues, not just in the short term, but structurally.” One of the problems is that generative AI models are extraordinarily sensitive to the data they are trained on and the construction of the prompts used to instruct them. A slight change in a prompt or in the training data can lead to a very different outcome. For example, a business banking application might learn its customer is a bit richer or a bit poorer than expected. “You could easily imagine the prompt deciding to change the interest rate charged, whether that was what the institution wanted or whether it would be legal according to the various regulations that lenders must comply with,” said Trefler. Trefler said Pega has taken a different approach to some other technology suppliers in the way it adds AI into business applications. Rather than using AI agents to solve problems in real time, AI agents do their thinking in advance. Business experts can use them to help them co-design business processes to perform anything from assessing a loan application, giving an offer to a valued customer, or sending out an invoice. Companies can still deploy AI chatbots and bots capable of answering queries on the phone. Their job is not to work out the solution from scratch for every enquiry, but to decide which is the right pre-written process to follow. As Trefler put it, design agents can create “dozens and dozens” of workflows to handle all the actions a company needs to take care of its customers. “You just use the natural language model for semantics to be able to handle the miracle of getting the language right, but tie that language to workflows, so that you have reliable, predictable, regulatory-approved ways to execute,” he said. Large language modelsare not always the right solution. Trefler demonstrated how ChatGPT 4.0 tried and failed to solve a chess puzzle. The LLM repeatedly suggested impossible or illegal moves, despite Trefler’s corrections. On the other hand, another AI tool, Stockfish, a dedicated chess engine, solved the problem instantly. The other drawback with LLMs is that they consume vast amounts of energy. That means if AI agents are reasoning during “run time”, they are going to consume hundreds of times more electricity than an AI agent that simply selects from pre-determined workflows, said Trefler. “ChatGPT is inherently, enormously consumptive … as it’s answering your question, its firing literally hundreds of millions to trillions of nodes,” he said. “All of that takeselectricity.” Using an employee pay claim as an example, Trefler said a better alternative is to generate, say, 30 alternative workflows to cover the major variations found in a pay claim. That gives you “real specificity and real efficiency”, he said. “And it’s a very different approach to turning a process over to a machine with a prompt and letting the machine reason it through every single time.” “If you go down the philosophy of using a graphics processing unitto do the creation of a workflow and a workflow engine to execute the workflow, the workflow engine takes a 200th of the electricity because there is no reasoning,” said Trefler. He is clear that the growing use of AI will have a profound effect on the jobs market, and that whole categories of jobs will disappear. The need for translators, for example, is likely to dry up by 2027 as AI systems become better at translating spoken and written language. Google’s real-time translator is already “frighteningly good” and improving. Pega now plans to work more closely with its network of system integrators, including Accenture and Cognizant to deliver AI services to businesses. An initiative launched last week will allow system integrators to incorporate their own best practices and tools into Pega’s rapid workflow development tools. The move will mean Pega’s technology reaches a wider range of businesses. Under the programme, known as Powered by Pega Blueprint, system integrators will be able to deploy customised versions of Blueprint. They can use the tool to reverse-engineer ageing applications and replace them with modern AI workflows that can run on Pega’s cloud-based platform. “The idea is that we are looking to make this Blueprint Agent design approach available not just through us, but through a bunch of major partners supplemented with their own intellectual property,” said Trefler. That represents a major expansion for Pega, which has largely concentrated on supplying technology to several hundred clients, representing the top Fortune 500 companies. “We have never done something like this before, and I think that is going to lead to a massive shift in how this technology can go out to market,” he added. When AI agents behave in unexpected ways Iris is incredibly smart, diligent and a delight to work with. If you ask her, she will tell you she is an intern at Pegasystems, and that she lives in a lighthouse on the island of Texel, north of the Netherlands. She is, of course, an AI agent. When one executive at Pega emailed Iris and asked her to write a proposal for a financial services company based on his notes and internet research, Iris got to work. Some time later, the executive received a phone call from the company. “‘Listen, we got a proposal from Pega,’” recalled Rob Walker, vice-president at Pega, speaking at the Pegaworld conference last week. “‘It’s a good proposal, but it seems to be signed by one of your interns, and in her signature, it says she lives in a lighthouse.’ That taught us early on that agents like Iris need a safety harness.” The developers banned Iris from sending an email to anyone other than the person who sent the original request. Then Pega’s ethics department sent Iris a potentially abusive email from a Pega employee to test her response. Iris reasoned that the email was either a joke, abusive, or that the employee was under distress, said Walker. She considered forwarding the email to the employee’s manager or to HR. But both of these options were now blocked by her developers. “So what does she do? She sent an out of office,” he said. “Conflict avoidance, right? So human, but very creative.” #cios #baffled #buzzwords #hype #confusion
    WWW.COMPUTERWEEKLY.COM
    CIOs baffled by ‘buzzwords, hype and confusion’ around AI
    Technology leaders are baffled by a “cacophony” of “buzzwords, hype and confusion” over the benefits of artificial intelligence (AI), according to the founder and CEO of technology company Pegasystems. Alan Trefler, who is known for his prowess at chess and ping pong, as well as running a $1.5bn turnover tech company, spends much of his time meeting clients, CIOs and business leaders. “I think CIOs are struggling to understand all of the buzzwords, hype and confusion that exists,” he said. “The words AI and agentic are being thrown around in this great cacophony and they don’t know what it means. I hear that constantly.” CIOs are under pressure from their CEOs, who are convinced AI will offer something valuable. “CIOs are really hungry for pragmatic and practical solutions, and in the absence of those, many of them are doing a lot of experimentation,” said Trefler. Companies are looking at large language models to summarise documents, or to help stimulate ideas for knowledge workers, or generate first drafts of reports – all of which will save time and make people more productive. But Trefler said companies are wary of letting AI loose on critical business applications, because it’s just too unpredictable and prone to hallucinations. “There is a lot of fear over handing things over to something that no one understands exactly how it works, and that is the absolute state of play when it comes to general AI models,” he said. Trefler is scathing about big tech companies that are pushing AI agents and large language models for business-critical applications. “I think they have taken an expedient but short-sighted path,” he said. “I believe the idea that you will turn over critical business operations to an agent, when those operations have to be predictable, reliable, precise and fair to clients … is something that is full of issues, not just in the short term, but structurally.” One of the problems is that generative AI models are extraordinarily sensitive to the data they are trained on and the construction of the prompts used to instruct them. A slight change in a prompt or in the training data can lead to a very different outcome. For example, a business banking application might learn its customer is a bit richer or a bit poorer than expected. “You could easily imagine the prompt deciding to change the interest rate charged, whether that was what the institution wanted or whether it would be legal according to the various regulations that lenders must comply with,” said Trefler. Trefler said Pega has taken a different approach to some other technology suppliers in the way it adds AI into business applications. Rather than using AI agents to solve problems in real time, AI agents do their thinking in advance. Business experts can use them to help them co-design business processes to perform anything from assessing a loan application, giving an offer to a valued customer, or sending out an invoice. Companies can still deploy AI chatbots and bots capable of answering queries on the phone. Their job is not to work out the solution from scratch for every enquiry, but to decide which is the right pre-written process to follow. As Trefler put it, design agents can create “dozens and dozens” of workflows to handle all the actions a company needs to take care of its customers. “You just use the natural language model for semantics to be able to handle the miracle of getting the language right, but tie that language to workflows, so that you have reliable, predictable, regulatory-approved ways to execute,” he said. Large language models (LLMs) are not always the right solution. Trefler demonstrated how ChatGPT 4.0 tried and failed to solve a chess puzzle. The LLM repeatedly suggested impossible or illegal moves, despite Trefler’s corrections. On the other hand, another AI tool, Stockfish, a dedicated chess engine, solved the problem instantly. The other drawback with LLMs is that they consume vast amounts of energy. That means if AI agents are reasoning during “run time”, they are going to consume hundreds of times more electricity than an AI agent that simply selects from pre-determined workflows, said Trefler. “ChatGPT is inherently, enormously consumptive … as it’s answering your question, its firing literally hundreds of millions to trillions of nodes,” he said. “All of that takes [large quantities of] electricity.” Using an employee pay claim as an example, Trefler said a better alternative is to generate, say, 30 alternative workflows to cover the major variations found in a pay claim. That gives you “real specificity and real efficiency”, he said. “And it’s a very different approach to turning a process over to a machine with a prompt and letting the machine reason it through every single time.” “If you go down the philosophy of using a graphics processing unit [GPU] to do the creation of a workflow and a workflow engine to execute the workflow, the workflow engine takes a 200th of the electricity because there is no reasoning,” said Trefler. He is clear that the growing use of AI will have a profound effect on the jobs market, and that whole categories of jobs will disappear. The need for translators, for example, is likely to dry up by 2027 as AI systems become better at translating spoken and written language. Google’s real-time translator is already “frighteningly good” and improving. Pega now plans to work more closely with its network of system integrators, including Accenture and Cognizant to deliver AI services to businesses. An initiative launched last week will allow system integrators to incorporate their own best practices and tools into Pega’s rapid workflow development tools. The move will mean Pega’s technology reaches a wider range of businesses. Under the programme, known as Powered by Pega Blueprint, system integrators will be able to deploy customised versions of Blueprint. They can use the tool to reverse-engineer ageing applications and replace them with modern AI workflows that can run on Pega’s cloud-based platform. “The idea is that we are looking to make this Blueprint Agent design approach available not just through us, but through a bunch of major partners supplemented with their own intellectual property,” said Trefler. That represents a major expansion for Pega, which has largely concentrated on supplying technology to several hundred clients, representing the top Fortune 500 companies. “We have never done something like this before, and I think that is going to lead to a massive shift in how this technology can go out to market,” he added. When AI agents behave in unexpected ways Iris is incredibly smart, diligent and a delight to work with. If you ask her, she will tell you she is an intern at Pegasystems, and that she lives in a lighthouse on the island of Texel, north of the Netherlands. She is, of course, an AI agent. When one executive at Pega emailed Iris and asked her to write a proposal for a financial services company based on his notes and internet research, Iris got to work. Some time later, the executive received a phone call from the company. “‘Listen, we got a proposal from Pega,’” recalled Rob Walker, vice-president at Pega, speaking at the Pegaworld conference last week. “‘It’s a good proposal, but it seems to be signed by one of your interns, and in her signature, it says she lives in a lighthouse.’ That taught us early on that agents like Iris need a safety harness.” The developers banned Iris from sending an email to anyone other than the person who sent the original request. Then Pega’s ethics department sent Iris a potentially abusive email from a Pega employee to test her response. Iris reasoned that the email was either a joke, abusive, or that the employee was under distress, said Walker. She considered forwarding the email to the employee’s manager or to HR. But both of these options were now blocked by her developers. “So what does she do? She sent an out of office,” he said. “Conflict avoidance, right? So human, but very creative.”
    0 Σχόλια 0 Μοιράστηκε
  • A shortage of high-voltage power cables could stall the clean energy transition

    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why.
    A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea.
    Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment.
    High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress.

    "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg.
    The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities.
    // Related Stories

    As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct currentcables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses.

    But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometersof new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years.
    Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused.
    Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule.
    Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross.
    Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted.
    The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them."
    #shortage #highvoltage #power #cables #could
    A shortage of high-voltage power cables could stall the clean energy transition
    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why. A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea. Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment. High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress. "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg. The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities. // Related Stories As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct currentcables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses. But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometersof new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years. Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused. Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule. Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross. Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted. The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them." #shortage #highvoltage #power #cables #could
    WWW.TECHSPOT.COM
    A shortage of high-voltage power cables could stall the clean energy transition
    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why. A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea. Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment. High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress. "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg. The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities. // Related Stories As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct current (HVDC) cables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses. But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometers (around 49.7 million miles) of new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years. Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused. Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule. Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross. Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted. The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them."
    0 Σχόλια 0 Μοιράστηκε
  • As AI faces court challenges from Disney and Universal, legal battles are shaping the industry's future | Opinion

    As AI faces court challenges from Disney and Universal, legal battles are shaping the industry's future | Opinion
    Silicon advances and design innovations do still push us forward – but the future landscape of the industry is also being sculpted in courtrooms and parliaments

    Image credit: Disney / Epic Games

    Opinion

    by Rob Fahey
    Contributing Editor

    Published on June 13, 2025

    In some regards, the past couple of weeks have felt rather reassuring.
    We've just seen a hugely successful launch for a new Nintendo console, replete with long queues for midnight sales events. Over the next few days, the various summer events and showcases that have sprouted amongst the scattered bones of E3 generated waves of interest and hype for a host of new games.
    It all feels like old times. It's enough to make you imagine that while change is the only constant, at least it's we're facing change that's fairly well understood, change in the form of faster, cheaper silicon, or bigger, more ambitious games.
    If only the winds that blow through this industry all came from such well-defined points on the compass. Nestled in amongst the week's headlines, though, was something that's likely to have profound but much harder to understand impacts on this industry and many others over the coming years – a lawsuit being brought by Disney and NBC Universal against Midjourney, operators of the eponymous generative AI image creation tool.
    In some regards, the lawsuit looks fairly straightforward; the arguments made and considered in reaching its outcome, though, may have a profound impact on both the ability of creatives and media companiesto protect their IP rights from a very new kind of threat, and the ways in which a promising but highly controversial and risky new set of development and creative tools can be used commercially.
    A more likely tack on Midjourney's side will be the argument that they are not responsible for what their customers create with the tool
    I say the lawsuit looks straightforward from some angles, but honestly overall it looks fairly open and shut – the media giants accuse Midjourney of replicating their copyrighted characters and material, and of essentially building a machine for churning out limitless copyright violations.
    The evidence submitted includes screenshot after screenshot of Midjourney generating pages of images of famous copyrighted and trademarked characters ranging from Yoda to Homer Simpson, so "no we didn't" isn't going to be much of a defence strategy here.
    A more likely tack on Midjourney's side will be the argument that they are not responsible for what their customers create with the tool – you don't sue the manufacturers of oil paints or canvases when artists use them to paint something copyright-infringing, nor does Microsoft get sued when someone writes something libellous in Word, and Midjourney may try to argue that their software belongs in that tool category, with users alone being ultimately responsible for how they use them.

    If that argument prevails and survives appeals and challenges, it would be a major triumph for the nascent generative AI industry and a hugely damaging blow to IP holders and creatives, since it would seriously undermine their argument that AI companies shouldn't be able to include copyrighted material into training data sets without licensing or compensation.
    The reason Disney and NBCU are going after Midjourney specifically seems to be partially down to Midjourney being especially reticent to negotiate with them about licensing fees and prompt restrictions; other generative AI firms have started talking, at least, about paying for content licenses for training data, and have imposed various limitations on their software to prevent the most egregious and obvious forms of copyright violation.
    In the process, though, they're essentially risking a court showdown over a set of not-quite-clear legal questions at the heart of this dispute, and if Midjourney were to prevail in that argument, other AI companies would likely back off from engaging with IP holders on this topic.
    To be clear, though, it seems highly unlikely that Midjourney will win that argument, at least not in the medium to long term. Yet depending on how this case moves forward, losing the argument could have equally dramatic consequences – especially if the courts find themselves compelled to consider the question of how, exactly, a generative AI system reproduces a copyrighted character with such precision without storing copyright-infringing data in some manner.
    The 2020s are turning out to be the decade in which many key regulatory issues come to a head all at once
    AI advocates have been trying to handwave around this notion from the outset, but at some point a court is going to have to sit down and confront the fact that the precision with which these systems can replicate copyrighted characters, scenes, and other materials requires that they must have stored that infringing material in some form.
    That it's stored as a scattered mesh of probabilities across the vertices of a high-dimensional vector array, rather than a straightforward, monolithic media file, is clearly important but may ultimately be considered moot. If the data is in the system and can be replicated on request, how that differs from Napster or The Pirate Bay is arguably just a matter of technical obfuscation.
    Not having to defend that technical argument in court thus far has been a huge boon to the generative AI field; if it is knocked over in that venue, it will have knock-on effects on every company in the sector and on every business that uses their products.
    Nobody can be quite sure which of the various rocks and pebbles being kicked on this slope is going to set off the landslide, but there seems to be an increasing consensus that a legal and regulatory reckoning is coming for generative AI.
    Consequently, a lot of what's happening in that market right now has the feel of companies desperately trying to establish products and lock in revenue streams before that happens, because it'll be harder to regulate a technology that's genuinely integrated into the world's economic systems than it is to impose limits on one that's currently only clocking up relatively paltry sales and revenues.

    Keeping an eye on this is crucial for any industry that's started experimenting with AI in its workflows – none more than a creative industry like video games, where various forms of AI usage have been posited, although the enthusiasm and buzz so far massively outweighs any tangible benefits from the technology.
    Regardless of what happens in legal and regulatory contexts, AI is already a double-edged sword for any creative industry.
    Used judiciously, it might help to speed up development processes and reduce overheads. Applied in a slapdash or thoughtless manner, it can and will end up wreaking havoc on development timelines, filling up storefronts with endless waves of vaguely-copyright-infringing slop, and potentially make creative firms, from the industry's biggest companies to its smallest indie developers, into victims of impossibly large-scale copyright infringement rather than beneficiaries of a new wave of technology-fuelled productivity.
    The legal threat now hanging over the sector isn't new, merely amplified. We've known for a long time that AI generated artwork, code, and text has significant problems from the perspective of intellectual property rights.
    Even if you're not using AI yourself, however – even if you're vehemently opposed to it on moral and ethical grounds, the Midjourney judgement and its fallout may well impact the creative work you produce yourself and how it ends up being used and abused by these products in future.
    This all has huge ramifications for the games business and will shape everything from how games are created to how IP can be protected for many years to come – a wind of change that's very different and vastly more unpredictable than those we're accustomed to. It's a reminder of just how much of the industry's future is currently being shaped not in development studios and semiconductor labs, but rather in courtrooms and parliamentary committees.
    The ways in which generative AI can be used and how copyright can persist in the face of it will be fundamentally shaped in courts and parliaments, but it's far from the only crucially important topic being hashed out in those venues.
    The ongoing legal turmoil over the opening up of mobile app ecosystems, too, will have huge impacts on the games industry. Meanwhile, the debates over loot boxes, gambling, and various consumer protection aspects related to free-to-play models continue to rumble on in the background.
    Because the industry moves fast while governments move slow, it's easy to forget that that's still an active topic for as far as governments are concerned, and hammers may come down at any time.
    Regulation by governments, whether through the passage of new legislation or the interpretation of existing laws in the courts, has always loomed in the background of any major industry, especially one with strong cultural relevance. The games industry is no stranger to that being part of the background heartbeat of the business.
    The 2020s, however, are turning out to be the decade in which many key regulatory issues come to a head all at once, whether it's AI and copyright, app stores and walled gardens, or loot boxes and IAP-based business models.
    Rulings on those topics in various different global markets will create a complex new landscape that will shape the winds that blow through the business, and how things look in the 2030s and beyond will be fundamentally impacted by those decisions.
    #faces #court #challenges #disney #universal
    As AI faces court challenges from Disney and Universal, legal battles are shaping the industry's future | Opinion
    As AI faces court challenges from Disney and Universal, legal battles are shaping the industry's future | Opinion Silicon advances and design innovations do still push us forward – but the future landscape of the industry is also being sculpted in courtrooms and parliaments Image credit: Disney / Epic Games Opinion by Rob Fahey Contributing Editor Published on June 13, 2025 In some regards, the past couple of weeks have felt rather reassuring. We've just seen a hugely successful launch for a new Nintendo console, replete with long queues for midnight sales events. Over the next few days, the various summer events and showcases that have sprouted amongst the scattered bones of E3 generated waves of interest and hype for a host of new games. It all feels like old times. It's enough to make you imagine that while change is the only constant, at least it's we're facing change that's fairly well understood, change in the form of faster, cheaper silicon, or bigger, more ambitious games. If only the winds that blow through this industry all came from such well-defined points on the compass. Nestled in amongst the week's headlines, though, was something that's likely to have profound but much harder to understand impacts on this industry and many others over the coming years – a lawsuit being brought by Disney and NBC Universal against Midjourney, operators of the eponymous generative AI image creation tool. In some regards, the lawsuit looks fairly straightforward; the arguments made and considered in reaching its outcome, though, may have a profound impact on both the ability of creatives and media companiesto protect their IP rights from a very new kind of threat, and the ways in which a promising but highly controversial and risky new set of development and creative tools can be used commercially. A more likely tack on Midjourney's side will be the argument that they are not responsible for what their customers create with the tool I say the lawsuit looks straightforward from some angles, but honestly overall it looks fairly open and shut – the media giants accuse Midjourney of replicating their copyrighted characters and material, and of essentially building a machine for churning out limitless copyright violations. The evidence submitted includes screenshot after screenshot of Midjourney generating pages of images of famous copyrighted and trademarked characters ranging from Yoda to Homer Simpson, so "no we didn't" isn't going to be much of a defence strategy here. A more likely tack on Midjourney's side will be the argument that they are not responsible for what their customers create with the tool – you don't sue the manufacturers of oil paints or canvases when artists use them to paint something copyright-infringing, nor does Microsoft get sued when someone writes something libellous in Word, and Midjourney may try to argue that their software belongs in that tool category, with users alone being ultimately responsible for how they use them. If that argument prevails and survives appeals and challenges, it would be a major triumph for the nascent generative AI industry and a hugely damaging blow to IP holders and creatives, since it would seriously undermine their argument that AI companies shouldn't be able to include copyrighted material into training data sets without licensing or compensation. The reason Disney and NBCU are going after Midjourney specifically seems to be partially down to Midjourney being especially reticent to negotiate with them about licensing fees and prompt restrictions; other generative AI firms have started talking, at least, about paying for content licenses for training data, and have imposed various limitations on their software to prevent the most egregious and obvious forms of copyright violation. In the process, though, they're essentially risking a court showdown over a set of not-quite-clear legal questions at the heart of this dispute, and if Midjourney were to prevail in that argument, other AI companies would likely back off from engaging with IP holders on this topic. To be clear, though, it seems highly unlikely that Midjourney will win that argument, at least not in the medium to long term. Yet depending on how this case moves forward, losing the argument could have equally dramatic consequences – especially if the courts find themselves compelled to consider the question of how, exactly, a generative AI system reproduces a copyrighted character with such precision without storing copyright-infringing data in some manner. The 2020s are turning out to be the decade in which many key regulatory issues come to a head all at once AI advocates have been trying to handwave around this notion from the outset, but at some point a court is going to have to sit down and confront the fact that the precision with which these systems can replicate copyrighted characters, scenes, and other materials requires that they must have stored that infringing material in some form. That it's stored as a scattered mesh of probabilities across the vertices of a high-dimensional vector array, rather than a straightforward, monolithic media file, is clearly important but may ultimately be considered moot. If the data is in the system and can be replicated on request, how that differs from Napster or The Pirate Bay is arguably just a matter of technical obfuscation. Not having to defend that technical argument in court thus far has been a huge boon to the generative AI field; if it is knocked over in that venue, it will have knock-on effects on every company in the sector and on every business that uses their products. Nobody can be quite sure which of the various rocks and pebbles being kicked on this slope is going to set off the landslide, but there seems to be an increasing consensus that a legal and regulatory reckoning is coming for generative AI. Consequently, a lot of what's happening in that market right now has the feel of companies desperately trying to establish products and lock in revenue streams before that happens, because it'll be harder to regulate a technology that's genuinely integrated into the world's economic systems than it is to impose limits on one that's currently only clocking up relatively paltry sales and revenues. Keeping an eye on this is crucial for any industry that's started experimenting with AI in its workflows – none more than a creative industry like video games, where various forms of AI usage have been posited, although the enthusiasm and buzz so far massively outweighs any tangible benefits from the technology. Regardless of what happens in legal and regulatory contexts, AI is already a double-edged sword for any creative industry. Used judiciously, it might help to speed up development processes and reduce overheads. Applied in a slapdash or thoughtless manner, it can and will end up wreaking havoc on development timelines, filling up storefronts with endless waves of vaguely-copyright-infringing slop, and potentially make creative firms, from the industry's biggest companies to its smallest indie developers, into victims of impossibly large-scale copyright infringement rather than beneficiaries of a new wave of technology-fuelled productivity. The legal threat now hanging over the sector isn't new, merely amplified. We've known for a long time that AI generated artwork, code, and text has significant problems from the perspective of intellectual property rights. Even if you're not using AI yourself, however – even if you're vehemently opposed to it on moral and ethical grounds, the Midjourney judgement and its fallout may well impact the creative work you produce yourself and how it ends up being used and abused by these products in future. This all has huge ramifications for the games business and will shape everything from how games are created to how IP can be protected for many years to come – a wind of change that's very different and vastly more unpredictable than those we're accustomed to. It's a reminder of just how much of the industry's future is currently being shaped not in development studios and semiconductor labs, but rather in courtrooms and parliamentary committees. The ways in which generative AI can be used and how copyright can persist in the face of it will be fundamentally shaped in courts and parliaments, but it's far from the only crucially important topic being hashed out in those venues. The ongoing legal turmoil over the opening up of mobile app ecosystems, too, will have huge impacts on the games industry. Meanwhile, the debates over loot boxes, gambling, and various consumer protection aspects related to free-to-play models continue to rumble on in the background. Because the industry moves fast while governments move slow, it's easy to forget that that's still an active topic for as far as governments are concerned, and hammers may come down at any time. Regulation by governments, whether through the passage of new legislation or the interpretation of existing laws in the courts, has always loomed in the background of any major industry, especially one with strong cultural relevance. The games industry is no stranger to that being part of the background heartbeat of the business. The 2020s, however, are turning out to be the decade in which many key regulatory issues come to a head all at once, whether it's AI and copyright, app stores and walled gardens, or loot boxes and IAP-based business models. Rulings on those topics in various different global markets will create a complex new landscape that will shape the winds that blow through the business, and how things look in the 2030s and beyond will be fundamentally impacted by those decisions. #faces #court #challenges #disney #universal
    WWW.GAMESINDUSTRY.BIZ
    As AI faces court challenges from Disney and Universal, legal battles are shaping the industry's future | Opinion
    As AI faces court challenges from Disney and Universal, legal battles are shaping the industry's future | Opinion Silicon advances and design innovations do still push us forward – but the future landscape of the industry is also being sculpted in courtrooms and parliaments Image credit: Disney / Epic Games Opinion by Rob Fahey Contributing Editor Published on June 13, 2025 In some regards, the past couple of weeks have felt rather reassuring. We've just seen a hugely successful launch for a new Nintendo console, replete with long queues for midnight sales events. Over the next few days, the various summer events and showcases that have sprouted amongst the scattered bones of E3 generated waves of interest and hype for a host of new games. It all feels like old times. It's enough to make you imagine that while change is the only constant, at least it's we're facing change that's fairly well understood, change in the form of faster, cheaper silicon, or bigger, more ambitious games. If only the winds that blow through this industry all came from such well-defined points on the compass. Nestled in amongst the week's headlines, though, was something that's likely to have profound but much harder to understand impacts on this industry and many others over the coming years – a lawsuit being brought by Disney and NBC Universal against Midjourney, operators of the eponymous generative AI image creation tool. In some regards, the lawsuit looks fairly straightforward; the arguments made and considered in reaching its outcome, though, may have a profound impact on both the ability of creatives and media companies (including game studios and publishers) to protect their IP rights from a very new kind of threat, and the ways in which a promising but highly controversial and risky new set of development and creative tools can be used commercially. A more likely tack on Midjourney's side will be the argument that they are not responsible for what their customers create with the tool I say the lawsuit looks straightforward from some angles, but honestly overall it looks fairly open and shut – the media giants accuse Midjourney of replicating their copyrighted characters and material, and of essentially building a machine for churning out limitless copyright violations. The evidence submitted includes screenshot after screenshot of Midjourney generating pages of images of famous copyrighted and trademarked characters ranging from Yoda to Homer Simpson, so "no we didn't" isn't going to be much of a defence strategy here. A more likely tack on Midjourney's side will be the argument that they are not responsible for what their customers create with the tool – you don't sue the manufacturers of oil paints or canvases when artists use them to paint something copyright-infringing, nor does Microsoft get sued when someone writes something libellous in Word, and Midjourney may try to argue that their software belongs in that tool category, with users alone being ultimately responsible for how they use them. If that argument prevails and survives appeals and challenges, it would be a major triumph for the nascent generative AI industry and a hugely damaging blow to IP holders and creatives, since it would seriously undermine their argument that AI companies shouldn't be able to include copyrighted material into training data sets without licensing or compensation. The reason Disney and NBCU are going after Midjourney specifically seems to be partially down to Midjourney being especially reticent to negotiate with them about licensing fees and prompt restrictions; other generative AI firms have started talking, at least, about paying for content licenses for training data, and have imposed various limitations on their software to prevent the most egregious and obvious forms of copyright violation (at least for famous characters belonging to rich companies; if you're an individual or a smaller company, it's entirely the Wild West out there as regards your IP rights). In the process, though, they're essentially risking a court showdown over a set of not-quite-clear legal questions at the heart of this dispute, and if Midjourney were to prevail in that argument, other AI companies would likely back off from engaging with IP holders on this topic. To be clear, though, it seems highly unlikely that Midjourney will win that argument, at least not in the medium to long term. Yet depending on how this case moves forward, losing the argument could have equally dramatic consequences – especially if the courts find themselves compelled to consider the question of how, exactly, a generative AI system reproduces a copyrighted character with such precision without storing copyright-infringing data in some manner. The 2020s are turning out to be the decade in which many key regulatory issues come to a head all at once AI advocates have been trying to handwave around this notion from the outset, but at some point a court is going to have to sit down and confront the fact that the precision with which these systems can replicate copyrighted characters, scenes, and other materials requires that they must have stored that infringing material in some form. That it's stored as a scattered mesh of probabilities across the vertices of a high-dimensional vector array, rather than a straightforward, monolithic media file, is clearly important but may ultimately be considered moot. If the data is in the system and can be replicated on request, how that differs from Napster or The Pirate Bay is arguably just a matter of technical obfuscation. Not having to defend that technical argument in court thus far has been a huge boon to the generative AI field; if it is knocked over in that venue, it will have knock-on effects on every company in the sector and on every business that uses their products. Nobody can be quite sure which of the various rocks and pebbles being kicked on this slope is going to set off the landslide, but there seems to be an increasing consensus that a legal and regulatory reckoning is coming for generative AI. Consequently, a lot of what's happening in that market right now has the feel of companies desperately trying to establish products and lock in revenue streams before that happens, because it'll be harder to regulate a technology that's genuinely integrated into the world's economic systems than it is to impose limits on one that's currently only clocking up relatively paltry sales and revenues. Keeping an eye on this is crucial for any industry that's started experimenting with AI in its workflows – none more than a creative industry like video games, where various forms of AI usage have been posited, although the enthusiasm and buzz so far massively outweighs any tangible benefits from the technology. Regardless of what happens in legal and regulatory contexts, AI is already a double-edged sword for any creative industry. Used judiciously, it might help to speed up development processes and reduce overheads. Applied in a slapdash or thoughtless manner, it can and will end up wreaking havoc on development timelines, filling up storefronts with endless waves of vaguely-copyright-infringing slop, and potentially make creative firms, from the industry's biggest companies to its smallest indie developers, into victims of impossibly large-scale copyright infringement rather than beneficiaries of a new wave of technology-fuelled productivity. The legal threat now hanging over the sector isn't new, merely amplified. We've known for a long time that AI generated artwork, code, and text has significant problems from the perspective of intellectual property rights (you can infringe someone else's copyright with it, but generally can't impose your own copyright on its creations – opening careless companies up to a risk of having key assets in their game being technically public domain and impossible to protect). Even if you're not using AI yourself, however – even if you're vehemently opposed to it on moral and ethical grounds (which is entirely valid given the highly dubious land-grab these companies have done for their training data), the Midjourney judgement and its fallout may well impact the creative work you produce yourself and how it ends up being used and abused by these products in future. This all has huge ramifications for the games business and will shape everything from how games are created to how IP can be protected for many years to come – a wind of change that's very different and vastly more unpredictable than those we're accustomed to. It's a reminder of just how much of the industry's future is currently being shaped not in development studios and semiconductor labs, but rather in courtrooms and parliamentary committees. The ways in which generative AI can be used and how copyright can persist in the face of it will be fundamentally shaped in courts and parliaments, but it's far from the only crucially important topic being hashed out in those venues. The ongoing legal turmoil over the opening up of mobile app ecosystems, too, will have huge impacts on the games industry. Meanwhile, the debates over loot boxes, gambling, and various consumer protection aspects related to free-to-play models continue to rumble on in the background. Because the industry moves fast while governments move slow, it's easy to forget that that's still an active topic for as far as governments are concerned, and hammers may come down at any time. Regulation by governments, whether through the passage of new legislation or the interpretation of existing laws in the courts, has always loomed in the background of any major industry, especially one with strong cultural relevance. The games industry is no stranger to that being part of the background heartbeat of the business. The 2020s, however, are turning out to be the decade in which many key regulatory issues come to a head all at once, whether it's AI and copyright, app stores and walled gardens, or loot boxes and IAP-based business models. Rulings on those topics in various different global markets will create a complex new landscape that will shape the winds that blow through the business, and how things look in the 2030s and beyond will be fundamentally impacted by those decisions.
    0 Σχόλια 0 Μοιράστηκε
Αναζήτηση αποτελεσμάτων