• Embrace the future of energy with linear solar chargers for lithium capacitors! These innovative devices are not just versatile and cost-effective, but they also open up a world of possibilities for DC-DC circuits. While switch-mode power supplies have their strengths, there are moments when linear chargers shine even brighter!

    Imagine harnessing the sun’s energy in a way that’s efficient and straightforward. It’s time to explore new horizons and empower our devices with sustainable solutions! Let’s light up our lives and the world around us with clean energy!

    Stay curious, stay inspired, and keep pushing the boundaries of what’s possible!

    #SolarEnergy #Innovation #Sustainability #CleanTech #Empowerment
    🌞 Embrace the future of energy with linear solar chargers for lithium capacitors! 🚀 These innovative devices are not just versatile and cost-effective, but they also open up a world of possibilities for DC-DC circuits. While switch-mode power supplies have their strengths, there are moments when linear chargers shine even brighter! 🌟 Imagine harnessing the sun’s energy in a way that’s efficient and straightforward. It’s time to explore new horizons and empower our devices with sustainable solutions! Let’s light up our lives and the world around us with clean energy! 🌍✨ Stay curious, stay inspired, and keep pushing the boundaries of what’s possible! #SolarEnergy #Innovation #Sustainability #CleanTech #Empowerment
    HACKADAY.COM
    Linear Solar Chargers for Lithium Capacitors
    For as versatile and inexpensive as switch-mode power supplies are at all kinds of different tasks, they’re not always the ideal choice for every DC-DC circuit. Although they can do …read more
    1 Commentarios 0 Acciones
  • هل أنتم مستعدون للانطلاق في رحلة مذهلة إلى عالم الخيال العلمي؟ مع دليل The Gnomon Workshop الشامل حول استخدام أدوات Solaris في Houdini، ستتمكنون من إتقان أساليب الإضاءة والتخطيط لتأثيرات VFX بطريقة احترافية!

    تخيلوا أنفسكم تصنعون مشاهد تأسر الأنفاس وتترك أثراً لا يُنسى! كل خطوة تتعلمونها ستقربكم من تحقيق أحلامكم في عالم السينما والتصميم. لا تترددوا في استكشاف هذا المحتوى الرائع، فكل لحظة من التعلم هي فرصة جديدة للإبداع!
    ✨ هل أنتم مستعدون للانطلاق في رحلة مذهلة إلى عالم الخيال العلمي؟ 🚀 مع دليل The Gnomon Workshop الشامل حول استخدام أدوات Solaris في Houdini، ستتمكنون من إتقان أساليب الإضاءة والتخطيط لتأثيرات VFX بطريقة احترافية! 🌌✨ تخيلوا أنفسكم تصنعون مشاهد تأسر الأنفاس وتترك أثراً لا يُنسى! 💫 كل خطوة تتعلمونها ستقربكم من تحقيق أحلامكم في عالم السينما والتصميم. لا تترددوا في استكشاف هذا المحتوى الرائع، فكل لحظة من التعلم هي فرصة جديدة للإبداع! 💖
    Tutorial: Creating a Sci-Fi Sequence using Houdini Solaris
    Master lighting and layout workflows for VFX with The Gnomon Workshop's comprehensive guide to Houdini's Solaris toolset.
    1 Commentarios 0 Acciones
  • Casa Sofia by Mário Martins Atelier: A Contemporary Urban Infill in Lagos

    Casa Sofia | © Fernando Guerra / FG+SG
    Located in the historic heart of Lagos, Portugal, Casa Sofia by Mário Martins Atelier is a thoughtful exercise in urban integration and contemporary reinterpretation. Occupying a site once held by a modest two-story house, the project is situated on the corner of a block facing the Church of St Sebastião. With its commanding presence, this national monument set a formidable challenge for the architects: introducing a new residence that respects the weight of history while offering a clear, contemporary expression.

    Casa Sofia Technical Information

    Architects1-4: Mário Martins Atelier
    Location: Lagos, Portugal
    Project Completion Years: 2023
    Photographs: © Fernando Guerra / FG+SG

    It is therefore important to design a building to fit into and complete the block. A house that is quiet and solid, with rhythmic metrics, whose new design brings an identity, with the weight and scent of the times, to a city that has existed for many centuries.
    – Mário Martins Atelier

    Casa Sofia Photographs

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG
    Spatial Organization and Circulation
    The design’s ambition is anchored in reconciling modern residential needs with the dense urban fabric that defines the walled city. Rather than imposing a bold or disruptive form, the project embraces the existing rhythms and textures of the surrounding architecture. The result is a building that both defers to and elevates the neighborhood’s character. Its restrained profile and carefully modulated facade echo the massing and articulation of the original house while introducing an identity that is clearly of its time.
    At the core of Casa Sofia’s spatial organization is a deliberate hierarchy of spaces that transitions seamlessly between public, semi-public, and private domains. Entry from the street occurs through a modest set of steps leading to an exterior atrium. This threshold mediates the relationship between the public realm and the interior, grounding the house in its urban context. Once inside, an open hall reveals the vertical flow of the building, dominated by a staircase that appears to float, linking the house’s various levels while maintaining visual continuity throughout.
    The ground floor houses three bedrooms, each with an ensuite bathroom, radiating from the central hall. This level also contains a small basement for technical support, reinforcing the discreet layering of functional and domestic spaces. Midway up the staircase, the house opens onto a garage, a laundry room, and an intimate courtyard. These areas, essential for daily life, are seamlessly integrated into the overall composition, contributing to a spatial richness that is both pragmatic and sensorial.
    On the first floor, an open-plan arrangement accommodates the main living spaces. Around a central void, the living and dining areas, kitchen, and master suite are arranged to encourage visual interplay and shared light. This configuration enhances the spatial porosity, ensuring that despite the density of the historic center, the house retains a sense of openness and fluidity. Above, a recessed roof level recedes from the street, culminating in a panoramic terrace with a swimming pool. Here, the building dissolves into the sky, offering expansive views and light-filled leisure spaces that contrast with the more enclosed lower floors.
    Materiality and Craftsmanship
    Materiality plays a decisive role in mediating the building’s relationship with its context. White-painted plaster, a familiar element in the region, is punctuated by deep limestone moldings. These details create a play of light and shadow that emphasizes the facade’s verticality and rhythm. The generous thickness of the walls, carried over from the site’s earlier construction, lends a sense of solidity and permanence to the house, recalling the tactile traditions of the Algarve’s architecture.
    The interior and exterior detailing is characterized by an economy of means, where each material is selected for its ability to reinforce the house’s quiet presence. Local materials and craftsmanship ground the project in its immediate context while responding to environmental imperatives. High thermal comfort is achieved through careful orientation and passive design strategies, complemented by the integration of solar control and water conservation measures. These considerations underscore the project’s commitment to sustainability without resorting to superficial gestures.
    Broader Urban and Cultural Implications
    Beyond its immediate function as a family home, Casa Sofia engages in a broader dialogue with its urban and cultural surroundings. The project exemplifies a measured response to the question of how to build within a historical setting without resorting to nostalgia or pastiche. It demonstrates that contemporary architecture can find resonance within heritage contexts by prioritizing the values of continuity, scale, and material authenticity.
    In its measured dialogue with the Church of St Sebastião and the centuries-old urban landscape of Lagos, Casa Sofia illustrates the potential for architecture to enrich the experience of place through quiet, rigorous interventions. It is a project that reaffirms architecture’s capacity to negotiate between past and present, crafting spaces that are at once deeply contextual and unambiguously of their moment.
    Casa Sofia Plans

    Sketch | © Mário Martins Atelier

    Ground Level | © Mário Martins Atelier

    Level 1 | © Mário Martins Atelier

    Level 2 | © Mário Martins Atelier

    Roof Plan | © Mário Martins Atelier

    Section | © Mário Martins Atelier
    Casa Sofia Image Gallery

    About Mário Martins Atelier
    Mário Martins Atelier is a Portuguese architecture and urbanism practice founded in 2000 by architect Mário Martins, who holds a degree from the Faculty of Architecture at the Technical University of Lisbon. Headquartered in Lagos with a secondary office in Lisbon, the firm operates with a dedicated multidisciplinary team. The office has developed a broad spectrum of work, from single-family homes and collective housing to public buildings and urban regeneration, distinguished by technical precision, contextual sensitivity, and sustainable strategies.
    Credits and Additional Notes

    Lead Architect: Mário Martins, arq.
    Project Team: Rita Rocha, Sónia Fialho, Susana Caetano, Susana Jóia, Ana Graça
    Engineering: Nuno Grave Engenharia
    Building: Marques Antunes Engenharia Lda
    #casa #sofia #mário #martins #atelier
    Casa Sofia by Mário Martins Atelier: A Contemporary Urban Infill in Lagos
    Casa Sofia | © Fernando Guerra / FG+SG Located in the historic heart of Lagos, Portugal, Casa Sofia by Mário Martins Atelier is a thoughtful exercise in urban integration and contemporary reinterpretation. Occupying a site once held by a modest two-story house, the project is situated on the corner of a block facing the Church of St Sebastião. With its commanding presence, this national monument set a formidable challenge for the architects: introducing a new residence that respects the weight of history while offering a clear, contemporary expression. Casa Sofia Technical Information Architects1-4: Mário Martins Atelier Location: Lagos, Portugal Project Completion Years: 2023 Photographs: © Fernando Guerra / FG+SG It is therefore important to design a building to fit into and complete the block. A house that is quiet and solid, with rhythmic metrics, whose new design brings an identity, with the weight and scent of the times, to a city that has existed for many centuries. – Mário Martins Atelier Casa Sofia Photographs © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG Spatial Organization and Circulation The design’s ambition is anchored in reconciling modern residential needs with the dense urban fabric that defines the walled city. Rather than imposing a bold or disruptive form, the project embraces the existing rhythms and textures of the surrounding architecture. The result is a building that both defers to and elevates the neighborhood’s character. Its restrained profile and carefully modulated facade echo the massing and articulation of the original house while introducing an identity that is clearly of its time. At the core of Casa Sofia’s spatial organization is a deliberate hierarchy of spaces that transitions seamlessly between public, semi-public, and private domains. Entry from the street occurs through a modest set of steps leading to an exterior atrium. This threshold mediates the relationship between the public realm and the interior, grounding the house in its urban context. Once inside, an open hall reveals the vertical flow of the building, dominated by a staircase that appears to float, linking the house’s various levels while maintaining visual continuity throughout. The ground floor houses three bedrooms, each with an ensuite bathroom, radiating from the central hall. This level also contains a small basement for technical support, reinforcing the discreet layering of functional and domestic spaces. Midway up the staircase, the house opens onto a garage, a laundry room, and an intimate courtyard. These areas, essential for daily life, are seamlessly integrated into the overall composition, contributing to a spatial richness that is both pragmatic and sensorial. On the first floor, an open-plan arrangement accommodates the main living spaces. Around a central void, the living and dining areas, kitchen, and master suite are arranged to encourage visual interplay and shared light. This configuration enhances the spatial porosity, ensuring that despite the density of the historic center, the house retains a sense of openness and fluidity. Above, a recessed roof level recedes from the street, culminating in a panoramic terrace with a swimming pool. Here, the building dissolves into the sky, offering expansive views and light-filled leisure spaces that contrast with the more enclosed lower floors. Materiality and Craftsmanship Materiality plays a decisive role in mediating the building’s relationship with its context. White-painted plaster, a familiar element in the region, is punctuated by deep limestone moldings. These details create a play of light and shadow that emphasizes the facade’s verticality and rhythm. The generous thickness of the walls, carried over from the site’s earlier construction, lends a sense of solidity and permanence to the house, recalling the tactile traditions of the Algarve’s architecture. The interior and exterior detailing is characterized by an economy of means, where each material is selected for its ability to reinforce the house’s quiet presence. Local materials and craftsmanship ground the project in its immediate context while responding to environmental imperatives. High thermal comfort is achieved through careful orientation and passive design strategies, complemented by the integration of solar control and water conservation measures. These considerations underscore the project’s commitment to sustainability without resorting to superficial gestures. Broader Urban and Cultural Implications Beyond its immediate function as a family home, Casa Sofia engages in a broader dialogue with its urban and cultural surroundings. The project exemplifies a measured response to the question of how to build within a historical setting without resorting to nostalgia or pastiche. It demonstrates that contemporary architecture can find resonance within heritage contexts by prioritizing the values of continuity, scale, and material authenticity. In its measured dialogue with the Church of St Sebastião and the centuries-old urban landscape of Lagos, Casa Sofia illustrates the potential for architecture to enrich the experience of place through quiet, rigorous interventions. It is a project that reaffirms architecture’s capacity to negotiate between past and present, crafting spaces that are at once deeply contextual and unambiguously of their moment. Casa Sofia Plans Sketch | © Mário Martins Atelier Ground Level | © Mário Martins Atelier Level 1 | © Mário Martins Atelier Level 2 | © Mário Martins Atelier Roof Plan | © Mário Martins Atelier Section | © Mário Martins Atelier Casa Sofia Image Gallery About Mário Martins Atelier Mário Martins Atelier is a Portuguese architecture and urbanism practice founded in 2000 by architect Mário Martins, who holds a degree from the Faculty of Architecture at the Technical University of Lisbon. Headquartered in Lagos with a secondary office in Lisbon, the firm operates with a dedicated multidisciplinary team. The office has developed a broad spectrum of work, from single-family homes and collective housing to public buildings and urban regeneration, distinguished by technical precision, contextual sensitivity, and sustainable strategies. Credits and Additional Notes Lead Architect: Mário Martins, arq. Project Team: Rita Rocha, Sónia Fialho, Susana Caetano, Susana Jóia, Ana Graça Engineering: Nuno Grave Engenharia Building: Marques Antunes Engenharia Lda #casa #sofia #mário #martins #atelier
    ARCHEYES.COM
    Casa Sofia by Mário Martins Atelier: A Contemporary Urban Infill in Lagos
    Casa Sofia | © Fernando Guerra / FG+SG Located in the historic heart of Lagos, Portugal, Casa Sofia by Mário Martins Atelier is a thoughtful exercise in urban integration and contemporary reinterpretation. Occupying a site once held by a modest two-story house, the project is situated on the corner of a block facing the Church of St Sebastião. With its commanding presence, this national monument set a formidable challenge for the architects: introducing a new residence that respects the weight of history while offering a clear, contemporary expression. Casa Sofia Technical Information Architects1-4: Mário Martins Atelier Location: Lagos, Portugal Project Completion Years: 2023 Photographs: © Fernando Guerra / FG+SG It is therefore important to design a building to fit into and complete the block. A house that is quiet and solid, with rhythmic metrics, whose new design brings an identity, with the weight and scent of the times, to a city that has existed for many centuries. – Mário Martins Atelier Casa Sofia Photographs © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG Spatial Organization and Circulation The design’s ambition is anchored in reconciling modern residential needs with the dense urban fabric that defines the walled city. Rather than imposing a bold or disruptive form, the project embraces the existing rhythms and textures of the surrounding architecture. The result is a building that both defers to and elevates the neighborhood’s character. Its restrained profile and carefully modulated facade echo the massing and articulation of the original house while introducing an identity that is clearly of its time. At the core of Casa Sofia’s spatial organization is a deliberate hierarchy of spaces that transitions seamlessly between public, semi-public, and private domains. Entry from the street occurs through a modest set of steps leading to an exterior atrium. This threshold mediates the relationship between the public realm and the interior, grounding the house in its urban context. Once inside, an open hall reveals the vertical flow of the building, dominated by a staircase that appears to float, linking the house’s various levels while maintaining visual continuity throughout. The ground floor houses three bedrooms, each with an ensuite bathroom, radiating from the central hall. This level also contains a small basement for technical support, reinforcing the discreet layering of functional and domestic spaces. Midway up the staircase, the house opens onto a garage, a laundry room, and an intimate courtyard. These areas, essential for daily life, are seamlessly integrated into the overall composition, contributing to a spatial richness that is both pragmatic and sensorial. On the first floor, an open-plan arrangement accommodates the main living spaces. Around a central void, the living and dining areas, kitchen, and master suite are arranged to encourage visual interplay and shared light. This configuration enhances the spatial porosity, ensuring that despite the density of the historic center, the house retains a sense of openness and fluidity. Above, a recessed roof level recedes from the street, culminating in a panoramic terrace with a swimming pool. Here, the building dissolves into the sky, offering expansive views and light-filled leisure spaces that contrast with the more enclosed lower floors. Materiality and Craftsmanship Materiality plays a decisive role in mediating the building’s relationship with its context. White-painted plaster, a familiar element in the region, is punctuated by deep limestone moldings. These details create a play of light and shadow that emphasizes the facade’s verticality and rhythm. The generous thickness of the walls, carried over from the site’s earlier construction, lends a sense of solidity and permanence to the house, recalling the tactile traditions of the Algarve’s architecture. The interior and exterior detailing is characterized by an economy of means, where each material is selected for its ability to reinforce the house’s quiet presence. Local materials and craftsmanship ground the project in its immediate context while responding to environmental imperatives. High thermal comfort is achieved through careful orientation and passive design strategies, complemented by the integration of solar control and water conservation measures. These considerations underscore the project’s commitment to sustainability without resorting to superficial gestures. Broader Urban and Cultural Implications Beyond its immediate function as a family home, Casa Sofia engages in a broader dialogue with its urban and cultural surroundings. The project exemplifies a measured response to the question of how to build within a historical setting without resorting to nostalgia or pastiche. It demonstrates that contemporary architecture can find resonance within heritage contexts by prioritizing the values of continuity, scale, and material authenticity. In its measured dialogue with the Church of St Sebastião and the centuries-old urban landscape of Lagos, Casa Sofia illustrates the potential for architecture to enrich the experience of place through quiet, rigorous interventions. It is a project that reaffirms architecture’s capacity to negotiate between past and present, crafting spaces that are at once deeply contextual and unambiguously of their moment. Casa Sofia Plans Sketch | © Mário Martins Atelier Ground Level | © Mário Martins Atelier Level 1 | © Mário Martins Atelier Level 2 | © Mário Martins Atelier Roof Plan | © Mário Martins Atelier Section | © Mário Martins Atelier Casa Sofia Image Gallery About Mário Martins Atelier Mário Martins Atelier is a Portuguese architecture and urbanism practice founded in 2000 by architect Mário Martins, who holds a degree from the Faculty of Architecture at the Technical University of Lisbon (1988). Headquartered in Lagos with a secondary office in Lisbon, the firm operates with a dedicated multidisciplinary team. The office has developed a broad spectrum of work, from single-family homes and collective housing to public buildings and urban regeneration, distinguished by technical precision, contextual sensitivity, and sustainable strategies. Credits and Additional Notes Lead Architect: Mário Martins, arq. Project Team: Rita Rocha, Sónia Fialho, Susana Caetano, Susana Jóia, Ana Graça Engineering: Nuno Grave Engenharia Building: Marques Antunes Engenharia Lda
    Like
    Love
    Wow
    Sad
    Angry
    395
    2 Commentarios 0 Acciones
  • Air-Conditioning Can Help the Power Grid instead of Overloading It

    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article.
    #airconditioning #can #help #power #grid
    Air-Conditioning Can Help the Power Grid instead of Overloading It
    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article. #airconditioning #can #help #power #grid
    WWW.SCIENTIFICAMERICAN.COM
    Air-Conditioning Can Help the Power Grid instead of Overloading It
    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article.
    Like
    Love
    Wow
    Sad
    Angry
    602
    0 Commentarios 0 Acciones
  • Government ditches public sector decarbonisation scheme

    The government has axed a scheme for upgrading energy efficiency in public sector buildings.
    The Public Sector Decarbonisation Schemedelivered more than £2.5bn in its first three phases for measures such as heat pumps, solar panels, insulation and double glazing, with further funding of nearly £1bn recently announced.
    But the Department for Energy Security and Net Zerohas told Building Design that the scheme has been dropped after the spending review, leaving uncertainty about how upgrades will be funded when the current phase expires in 2028.

    Source: UK Government/FlickrEd Miliband’s Department for Energy Security and Net Zero is responsible for the scheme
    The department said it would set out plans for the period after 2028 in due course.
    In a post on LinkedIn, Dave Welkin, director of sustainability at Gleeds, said he had waited for the release of the spending review with a “sense of trepidation” and was unable to find mention of public sector decarbonisation when Treasury documents were released.
    “I hoped because it was already committed in the Budget that its omission wasn’t ominous,” he wrote.
    Yesterday, he was told by Salix Finance, the non-departmental public body that delivers funding for the scheme, that it was no longer being funded.
    It comes after the withdrawal of funding for the Low Carbon Skills Fundin May.
    According to the government’s website, PSDS and LCSF were intended to support the reduction of emissions from public sector buildings by 75% by 2037, compared to a 2017 baseline.
    “Neither LCSF or PSDS were perfect by any means, but they did provide a vital source of funding for local authorities, hospitals, schools and many other public sector organisations to save energy, carbon and money,” Welkin said.
    “PSDS has helped replace failed heating systems in schools, keeping students warm. It’s replaced roofs on hospitals, helping patients recover from illness. It’s replaced windows in our prisons, improving security and stopping drugs getting behind bars.”
    However, responding to Welkin’s post, Steve Connolly, chief executive at Arriba Technologies, a low carbon heating and cooling firm, said that the scheme was being “mismanaged” with a small number of professional services firms “scooping up disproportionately large grants for their clients”.
    The fourth phase of the scheme was confirmed last September, with allocations confirmed only last month.
    This latest phase, which covers the financial years between 2025/26 and 2027/28, saw the distribution of £940m across the country.
    A DESNZ spokesperson said: “Our settlement is about investing in Britain’s renewal to create energy security, sprint to clean power by 2030, encourage investment, create jobs and bring down bills for good.
    “We will deliver £1bn in current allocations of the Public Sector Decarbonisation Scheme until 2028 and, through Great British Energy, have invested in new rooftop solar power and renewable schemes to lower energy bills for schools and hospitals across the UK.
    “We want to build on this progress by incentivising the public sector to decarbonise, so they can reap the benefits in lower bills and emissions, sharing best practice across government and exploring the use of repayable finance, where appropriate.”
    A government assessment of phase 3a and 3b projects identified a number of issues with the scheme, including delays and cost inflation, with more than a tenth being abandoned subsequent to grants being offered.
    Stakeholders interviewed for the report also identified “difficulties in obtaining skilled contractors and equipment”, especially air source heat pumps.
    The first come first served approach to awarding funding was also said to be “encouraging applicants to opt for more straightforward projects” and “potentially undermining the achievement of PSDS objective by restricting the opportunity for largermore complex measures which may have delivered greater carbon reduction benefits”.
    But the consensus among stakeholders and industry representatives interviewed for the report was that the scheme was “currently key to sustaining the existing UK heat pump market” and that it was “seen as vital in enabling many public sector organisations to invest in heat decarbonisation”.
    #government #ditches #public #sector #decarbonisation
    Government ditches public sector decarbonisation scheme
    The government has axed a scheme for upgrading energy efficiency in public sector buildings. The Public Sector Decarbonisation Schemedelivered more than £2.5bn in its first three phases for measures such as heat pumps, solar panels, insulation and double glazing, with further funding of nearly £1bn recently announced. But the Department for Energy Security and Net Zerohas told Building Design that the scheme has been dropped after the spending review, leaving uncertainty about how upgrades will be funded when the current phase expires in 2028. Source: UK Government/FlickrEd Miliband’s Department for Energy Security and Net Zero is responsible for the scheme The department said it would set out plans for the period after 2028 in due course. In a post on LinkedIn, Dave Welkin, director of sustainability at Gleeds, said he had waited for the release of the spending review with a “sense of trepidation” and was unable to find mention of public sector decarbonisation when Treasury documents were released. “I hoped because it was already committed in the Budget that its omission wasn’t ominous,” he wrote. Yesterday, he was told by Salix Finance, the non-departmental public body that delivers funding for the scheme, that it was no longer being funded. It comes after the withdrawal of funding for the Low Carbon Skills Fundin May. According to the government’s website, PSDS and LCSF were intended to support the reduction of emissions from public sector buildings by 75% by 2037, compared to a 2017 baseline. “Neither LCSF or PSDS were perfect by any means, but they did provide a vital source of funding for local authorities, hospitals, schools and many other public sector organisations to save energy, carbon and money,” Welkin said. “PSDS has helped replace failed heating systems in schools, keeping students warm. It’s replaced roofs on hospitals, helping patients recover from illness. It’s replaced windows in our prisons, improving security and stopping drugs getting behind bars.” However, responding to Welkin’s post, Steve Connolly, chief executive at Arriba Technologies, a low carbon heating and cooling firm, said that the scheme was being “mismanaged” with a small number of professional services firms “scooping up disproportionately large grants for their clients”. The fourth phase of the scheme was confirmed last September, with allocations confirmed only last month. This latest phase, which covers the financial years between 2025/26 and 2027/28, saw the distribution of £940m across the country. A DESNZ spokesperson said: “Our settlement is about investing in Britain’s renewal to create energy security, sprint to clean power by 2030, encourage investment, create jobs and bring down bills for good. “We will deliver £1bn in current allocations of the Public Sector Decarbonisation Scheme until 2028 and, through Great British Energy, have invested in new rooftop solar power and renewable schemes to lower energy bills for schools and hospitals across the UK. “We want to build on this progress by incentivising the public sector to decarbonise, so they can reap the benefits in lower bills and emissions, sharing best practice across government and exploring the use of repayable finance, where appropriate.” A government assessment of phase 3a and 3b projects identified a number of issues with the scheme, including delays and cost inflation, with more than a tenth being abandoned subsequent to grants being offered. Stakeholders interviewed for the report also identified “difficulties in obtaining skilled contractors and equipment”, especially air source heat pumps. The first come first served approach to awarding funding was also said to be “encouraging applicants to opt for more straightforward projects” and “potentially undermining the achievement of PSDS objective by restricting the opportunity for largermore complex measures which may have delivered greater carbon reduction benefits”. But the consensus among stakeholders and industry representatives interviewed for the report was that the scheme was “currently key to sustaining the existing UK heat pump market” and that it was “seen as vital in enabling many public sector organisations to invest in heat decarbonisation”. #government #ditches #public #sector #decarbonisation
    WWW.BDONLINE.CO.UK
    Government ditches public sector decarbonisation scheme
    The government has axed a scheme for upgrading energy efficiency in public sector buildings. The Public Sector Decarbonisation Scheme (PSDS) delivered more than £2.5bn in its first three phases for measures such as heat pumps, solar panels, insulation and double glazing, with further funding of nearly £1bn recently announced. But the Department for Energy Security and Net Zero (DESNZ) has told Building Design that the scheme has been dropped after the spending review, leaving uncertainty about how upgrades will be funded when the current phase expires in 2028. Source: UK Government/FlickrEd Miliband’s Department for Energy Security and Net Zero is responsible for the scheme The department said it would set out plans for the period after 2028 in due course. In a post on LinkedIn, Dave Welkin, director of sustainability at Gleeds, said he had waited for the release of the spending review with a “sense of trepidation” and was unable to find mention of public sector decarbonisation when Treasury documents were released. “I hoped because it was already committed in the Budget that its omission wasn’t ominous,” he wrote. Yesterday, he was told by Salix Finance, the non-departmental public body that delivers funding for the scheme, that it was no longer being funded. It comes after the withdrawal of funding for the Low Carbon Skills Fund (LCSF) in May. According to the government’s website, PSDS and LCSF were intended to support the reduction of emissions from public sector buildings by 75% by 2037, compared to a 2017 baseline. “Neither LCSF or PSDS were perfect by any means, but they did provide a vital source of funding for local authorities, hospitals, schools and many other public sector organisations to save energy, carbon and money,” Welkin said. “PSDS has helped replace failed heating systems in schools, keeping students warm. It’s replaced roofs on hospitals, helping patients recover from illness. It’s replaced windows in our prisons, improving security and stopping drugs getting behind bars.” However, responding to Welkin’s post, Steve Connolly, chief executive at Arriba Technologies, a low carbon heating and cooling firm, said that the scheme was being “mismanaged” with a small number of professional services firms “scooping up disproportionately large grants for their clients”. The fourth phase of the scheme was confirmed last September, with allocations confirmed only last month. This latest phase, which covers the financial years between 2025/26 and 2027/28, saw the distribution of £940m across the country. A DESNZ spokesperson said: “Our settlement is about investing in Britain’s renewal to create energy security, sprint to clean power by 2030, encourage investment, create jobs and bring down bills for good. “We will deliver £1bn in current allocations of the Public Sector Decarbonisation Scheme until 2028 and, through Great British Energy, have invested in new rooftop solar power and renewable schemes to lower energy bills for schools and hospitals across the UK. “We want to build on this progress by incentivising the public sector to decarbonise, so they can reap the benefits in lower bills and emissions, sharing best practice across government and exploring the use of repayable finance, where appropriate.” A government assessment of phase 3a and 3b projects identified a number of issues with the scheme, including delays and cost inflation, with more than a tenth being abandoned subsequent to grants being offered. Stakeholders interviewed for the report also identified “difficulties in obtaining skilled contractors and equipment”, especially air source heat pumps. The first come first served approach to awarding funding was also said to be “encouraging applicants to opt for more straightforward projects” and “potentially undermining the achievement of PSDS objective by restricting the opportunity for larger [and] more complex measures which may have delivered greater carbon reduction benefits”. But the consensus among stakeholders and industry representatives interviewed for the report was that the scheme was “currently key to sustaining the existing UK heat pump market” and that it was “seen as vital in enabling many public sector organisations to invest in heat decarbonisation”.
    Like
    Love
    Wow
    Sad
    Angry
    474
    2 Commentarios 0 Acciones
  • Aga Khan Award for Architecture 2025 announces 19 shortlisted projects from 15 countries

    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" ";
    19 shortlisted projects for the 2025 Award cycle were revealed by the Aga Khan Award for Architecture. A portion of the million prize, one of the biggest in architecture, will be awarded to the winning proposals. Out of the 369 projects nominated for the 16th Award Cycle, an independent Master Jury chose the 19 shortlisted projects from 15 countries.The nine members of the Master Jury for the 16th Award cycle include Azra Akšamija, Noura Al-Sayeh Holtrop, Lucia Allais, David Basulto, Yvonne Farrell, Kabage Karanja, Yacouba Konaté, Hassan Radoine, and Mun Summ Wong.His Late Highness Prince Karim Aga Khan IV created the Aga Khan Award for Architecture in 1977 to recognize and promote architectural ideas that effectively meet the needs and goals of communities where Muslims are a major population. Nearly 10,000 construction projects have been documented since the award's inception 48 years ago, and 128 projects have been granted it. The AKAA's selection method places a strong emphasis on architecture that stimulates and responds to people's cultural ambitions in addition to meeting their physical, social, and economic demands.The Aga Khan Award for Architecture is governed by a Steering Committee chaired by His Highness the Aga Khan. The other members of the Steering Committee are Meisa Batayneh, Principal Architect, Founder, maisam architects and engineers, Amman, Jordan; Souleymane Bachir Diagne, Professor of Philosophy and Francophone Studies, Columbia University, New York, United States of America; Lesley Lokko, Founder & Director, African Futures Institute, Accra, Ghana; Gülru Necipoğlu, Director and Professor, Aga Khan Program for Islamic Architecture, Harvard University, Cambridge, United States of America; Hashim Sarkis, Founder & Principal, Hashim Sarkis Studios; Dean, School of Architecture and Planning, Massachusetts Institute of Technology, Cambridge, United States of America; and Sarah M. Whiting, Partner, WW Architecture; Dean and Josep Lluís Sert Professor of Architecture, Graduate School of Design, Harvard University, Cambridge, United States of America. Farrokh Derakhshani is the Director of the Award.Examples of outstanding architecture in the areas of modern design, social housing, community development and enhancement, historic preservation, reuse and area conservation, landscape design, and environmental enhancement are recognized by the Aga Khan Award for Architecture.Building plans that creatively utilize local resources and relevant technologies, as well as initiatives that could spur such initiatives abroad, are given special consideration. It should be mentioned that in addition to honoring architects, the Award also recognizes towns, builders, clients, master craftspeople, and engineers who have contributed significantly to the project.Projects had to be completed between January 1, 2018, and December 31, 2023, and they had to have been operational for a minimum of one year in order to be eligible for consideration in the 2025 Award cycle. The Award is not available for projects that His Highness the Aga Khan or any of the Aga Khan Development Networkinstitutions have commissioned.See the 19 shortlisted projects with their short project descriptions competing for the 2025 Award Cycle:Khudi Bari. Image © Aga Khan Trust for Culture / City SyntaxBangladeshKhudi Bari, in various locations, by Marina Tabassum ArchitectsMarina Tabassum Architects' Khudi Bari, which can be readily disassembled and reassembled to suit the needs of the users, is a replicable solution for displaced communities impacted by geographic and climatic changes.West Wusutu Village Community Centre. Image © Aga Khan Trust for Culture / Dou YujunChinaWest Wusutu Village Community Centre, Hohhot, Inner Mongolia, by Zhang PengjuIn addition to meeting the religious demands of the local Hui Muslims, Zhang Pengju's West Wusutu Village Community Centre in Hohhot, Inner Mongolia, offers social and cultural spaces for locals and artists. Constructed from recycled bricks, it features multipurpose indoor and outdoor areas that promote communal harmony.Revitalisation of Historic Esna. Image © Aga Khan Trust for Culture / Ahmed SalemEgyptRevitalisation of Historic Esna, by Takween Integrated Community DevelopmentBy using physical interventions, socioeconomic projects, and creative urban planning techniques, Takween Integrated Community Development's Revitalization of Historic Esna tackles the issues of cultural tourism in Upper Egypt and turns the once-forgotten area around the Temple of Khnum into a thriving historic city.The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaThe Arc at Green School, in Bali, by IBUKU / Elora HardyAfter 15 years of bamboo experimenting at the Green School Bali, IBUKU/Elora Hardy created The Arc at Green School. The Arc is a brand-new community wellness facility built on the foundations of a temporary gym. High-precision engineering and regional handicraft are combined in this construction.Islamic Centre Nurul Yaqin Mosque. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaIslamic Centre Nurul Yaqin Mosque, in Palu, Central Sulawesi, by Dave Orlando and Fandy GunawanDave Orlando and Fandy Gunawan built the Islamic Center Nurul Yaqin Mosque in Palu, Central Sulawesi, on the location of a previous mosque that was damaged by a 2018 tsunami. There is a place for worship and assembly at the new Islamic Center. Surrounded by a shallow reflecting pool that may be drained to make room for more guests, it is open to the countryside.Microlibrary Warak Kayu. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaMicrolibraries in various cities, by SHAU / Daliana Suryawinata, Florian HeinzelmannFlorian Heinzelmann, the project's initiator, works with stakeholders at all levels to provide high-quality public spaces in a number of Indonesian parks and kampungs through microlibraries in different towns run by SHAU/Daliana Suryawinata. So far, six have been constructed, and by 2045, 100 are planned.Majara Residence. Image © Aga Khan Trust for Culture / Deed StudioIranMajara Complex and Community Redevelopment, in Hormuz Island by ZAV Architects / Mohamadreza GhodousiThe Majara Complex and Community Redevelopment on Hormuz Island, designed by ZAV Architects and Mohamadreza Ghodousi, is well-known for its vibrant domes that offer eco-friendly lodging for visitors visiting Hormuz's distinctive scenery. In addition to providing new amenities for the islanders who visit to socialize, pray, or utilize the library, it was constructed by highly trained local laborers.Jahad Metro Plaza. Image © Aga Khan Trust for Culture / Deed StudioIranJahad Metro Plaza in Tehran, by KA Architecture StudioKA Architecture Studio's Jahad Metro Plaza in Tehran was constructed to replace the dilapidated old buildings. It turned the location into a beloved pedestrian-friendly landmark. The arched vaults, which are covered in locally manufactured brick, vary in height to let air and light into the area they are protecting.Khan Jaljulia Restoration. Image © Aga Khan Trust for Culture / Mikaela BurstowIsraelKhan Jaljulia Restoration in Jaljulia by Elias KhuriElias Khuri's Khan Jaljulia Restoration is a cost-effective intervention set amidst the remnants of a 14th-century Khan in Jaljulia. By converting the abandoned historical location into a bustling public area for social gatherings, it helps the locals rediscover their cultural history.Campus Startup Lions. Image © Aga Khan Trust for Culture / Christopher Wilton-SteerKenyaCampus Startup Lions, in Turkana by Kéré ArchitectsKéré Architecture's Campus Startup Lions in Turkana is an educational and entrepreneurial center that offers a venue for community involvement, business incubation, and technology-driven education. The design incorporates solar energy, rainwater harvesting, and tall ventilation towers that resemble the nearby termite mounds, and it was constructed using local volcanic stone.Lalla Yeddouna Square. Image © Aga Khan Trust for Culture / Amine HouariMoroccoRevitalisation of Lalla Yeddouna Square in the medina of Fez, by Mossessian Architecture and Yassir Khalil StudioMossessian Architecture and Yassir Khalil Studio's revitalization of Lalla Yeddouna Square in the Fez medina aims to improve pedestrian circulation and reestablish a connection to the waterfront. For the benefit of locals, craftspeople, and tourists from around the globe, existing buildings were maintained and new areas created.Vision Pakistan. Image © Aga Khan Trust for Culture / Usman Saqib ZuberiPakistanVision Pakistan, in Islamabad by DB Studios / Mohammad Saifullah SiddiquiA tailoring training center run by Vision Pakistan, a nonprofit organization dedicated to empowering underprivileged adolescents, is located in Islamabad by DB Studios/Mohammad Saifullah Siddiqui. Situated in a crowded neighborhood, this multi-story building features flashy jaalis influenced by Arab and Pakistani crafts, echoing the city's 1960s design.Denso Hall Rahguzar Project. Image © Aga Khan Trust for Culture / Usman Saqib ZuberiPakistanDenso Hall Rahguzar Project, in Karachi by Heritage Foundation Pakistan / Yasmeen LariThe Heritage Foundation of Pakistan/Yasmeen Lari's Denso Hall Rahguzar Project in Karachi is a heritage-led eco-urban enclave that was built with low-carbon materials in response to the city's severe climate, which is prone to heat waves and floods. The freshly planted "forests" are irrigated by the handcrafted terracotta cobbles, which absorb rainfall and cool and purify the air.Wonder Cabinet. Image © Aga Khan Trust for Culture / Mikaela BurstowPalestineWonder Cabinet, in Bethlehem by AAU AnastasThe architects at AAU Anastas established Wonder Cabinet, a multifunctional, nonprofit exhibition and production venue in Bethlehem. The three-story concrete building was constructed with the help of regional contractors and artisans, and it is quickly emerging as a major center for learning, design, craft, and innovation.The Ned. Image © Aga Khan Trust for Culture / Cemal EmdenQatarThe Ned Hotel, in Doha by David Chipperfield ArchitectsThe Ministry of Interior was housed in the Ned Hotel in Doha, which was designed by David Chipperfield Architects. Its Middle Eastern brutalist building was meticulously transformed into a 90-room boutique hotel, thereby promoting architectural revitalization in the region.Shamalat Cultural Centre. Image © Aga Khan Trust for Culture / Hassan Al ShattiSaudi ArabiaShamalat Cultural Centre, in Riyadh, by Syn Architects / Sara Alissa, Nojoud AlsudairiOn the outskirts of Diriyah, the Shamalat Cultural Centre in Riyadh was created by Syn Architects/Sara Alissa, Nojoud Alsudairi. It was created from an old mud home that artist Maha Malluh had renovated. The center, which aims to incorporate historic places into daily life, provides a sensitive viewpoint on heritage conservation in the area by contrasting the old and the contemporary.Rehabilitation and Extension of Dakar Railway Station. Image © Aga Khan Trust for Culture / Sylvain CherkaouiSenegalRehabilitation and Extension of Dakar Railway Station, in Dakar by Ga2DIn order to accommodate the passengers of a new express train line, Ga2D extended and renovated Dakar train Station, which purposefully contrasts the old and modern buildings. The forecourt was once again open to pedestrian traffic after vehicular traffic was limited to the rear of the property.Rami Library. Image © Aga Khan Trust for Culture / Cemal EmdenTürkiyeRami Library, by Han Tümertekin Design & ConsultancyThe largest library in Istanbul is the Rami Library, designed by Han Tümertekin Design & Consultancy. It occupied the former Rami Barracks, a sizable, single-story building with enormous volumes that was constructed in the eighteenth century. In order to accommodate new library operations while maintaining the structure's original spatial features, a minimal intervention method was used.Morocco Pavilion Expo Dubai 2020. Image © Aga Khan Trust for Culture / Deed StudioUnited Arab EmiratesMorocco Pavilion Expo Dubai 2020, by Oualalou + ChoiOualalou + Choi's Morocco Pavilion Expo Dubai 2020 is intended to last beyond Expo 2020 and be transformed into a cultural center. The pavilion is a trailblazer in the development of large-scale rammed earth building techniques. Its use of passive cooling techniques, which minimize the need for mechanical air conditioning, earned it the gold LEED accreditation.At each project location, independent professionals such as architects, conservation specialists, planners, and structural engineers have conducted thorough evaluations of the nominated projects. This summer, the Master Jury convenes once more to analyze the on-site evaluations and choose the ultimate Award winners.The top image in the article: The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan.> via Aga Khan Award for Architecture
    #aga #khan #award #architecture #announces
    Aga Khan Award for Architecture 2025 announces 19 shortlisted projects from 15 countries
    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "; 19 shortlisted projects for the 2025 Award cycle were revealed by the Aga Khan Award for Architecture. A portion of the million prize, one of the biggest in architecture, will be awarded to the winning proposals. Out of the 369 projects nominated for the 16th Award Cycle, an independent Master Jury chose the 19 shortlisted projects from 15 countries.The nine members of the Master Jury for the 16th Award cycle include Azra Akšamija, Noura Al-Sayeh Holtrop, Lucia Allais, David Basulto, Yvonne Farrell, Kabage Karanja, Yacouba Konaté, Hassan Radoine, and Mun Summ Wong.His Late Highness Prince Karim Aga Khan IV created the Aga Khan Award for Architecture in 1977 to recognize and promote architectural ideas that effectively meet the needs and goals of communities where Muslims are a major population. Nearly 10,000 construction projects have been documented since the award's inception 48 years ago, and 128 projects have been granted it. The AKAA's selection method places a strong emphasis on architecture that stimulates and responds to people's cultural ambitions in addition to meeting their physical, social, and economic demands.The Aga Khan Award for Architecture is governed by a Steering Committee chaired by His Highness the Aga Khan. The other members of the Steering Committee are Meisa Batayneh, Principal Architect, Founder, maisam architects and engineers, Amman, Jordan; Souleymane Bachir Diagne, Professor of Philosophy and Francophone Studies, Columbia University, New York, United States of America; Lesley Lokko, Founder & Director, African Futures Institute, Accra, Ghana; Gülru Necipoğlu, Director and Professor, Aga Khan Program for Islamic Architecture, Harvard University, Cambridge, United States of America; Hashim Sarkis, Founder & Principal, Hashim Sarkis Studios; Dean, School of Architecture and Planning, Massachusetts Institute of Technology, Cambridge, United States of America; and Sarah M. Whiting, Partner, WW Architecture; Dean and Josep Lluís Sert Professor of Architecture, Graduate School of Design, Harvard University, Cambridge, United States of America. Farrokh Derakhshani is the Director of the Award.Examples of outstanding architecture in the areas of modern design, social housing, community development and enhancement, historic preservation, reuse and area conservation, landscape design, and environmental enhancement are recognized by the Aga Khan Award for Architecture.Building plans that creatively utilize local resources and relevant technologies, as well as initiatives that could spur such initiatives abroad, are given special consideration. It should be mentioned that in addition to honoring architects, the Award also recognizes towns, builders, clients, master craftspeople, and engineers who have contributed significantly to the project.Projects had to be completed between January 1, 2018, and December 31, 2023, and they had to have been operational for a minimum of one year in order to be eligible for consideration in the 2025 Award cycle. The Award is not available for projects that His Highness the Aga Khan or any of the Aga Khan Development Networkinstitutions have commissioned.See the 19 shortlisted projects with their short project descriptions competing for the 2025 Award Cycle:Khudi Bari. Image © Aga Khan Trust for Culture / City SyntaxBangladeshKhudi Bari, in various locations, by Marina Tabassum ArchitectsMarina Tabassum Architects' Khudi Bari, which can be readily disassembled and reassembled to suit the needs of the users, is a replicable solution for displaced communities impacted by geographic and climatic changes.West Wusutu Village Community Centre. Image © Aga Khan Trust for Culture / Dou YujunChinaWest Wusutu Village Community Centre, Hohhot, Inner Mongolia, by Zhang PengjuIn addition to meeting the religious demands of the local Hui Muslims, Zhang Pengju's West Wusutu Village Community Centre in Hohhot, Inner Mongolia, offers social and cultural spaces for locals and artists. Constructed from recycled bricks, it features multipurpose indoor and outdoor areas that promote communal harmony.Revitalisation of Historic Esna. Image © Aga Khan Trust for Culture / Ahmed SalemEgyptRevitalisation of Historic Esna, by Takween Integrated Community DevelopmentBy using physical interventions, socioeconomic projects, and creative urban planning techniques, Takween Integrated Community Development's Revitalization of Historic Esna tackles the issues of cultural tourism in Upper Egypt and turns the once-forgotten area around the Temple of Khnum into a thriving historic city.The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaThe Arc at Green School, in Bali, by IBUKU / Elora HardyAfter 15 years of bamboo experimenting at the Green School Bali, IBUKU/Elora Hardy created The Arc at Green School. The Arc is a brand-new community wellness facility built on the foundations of a temporary gym. High-precision engineering and regional handicraft are combined in this construction.Islamic Centre Nurul Yaqin Mosque. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaIslamic Centre Nurul Yaqin Mosque, in Palu, Central Sulawesi, by Dave Orlando and Fandy GunawanDave Orlando and Fandy Gunawan built the Islamic Center Nurul Yaqin Mosque in Palu, Central Sulawesi, on the location of a previous mosque that was damaged by a 2018 tsunami. There is a place for worship and assembly at the new Islamic Center. Surrounded by a shallow reflecting pool that may be drained to make room for more guests, it is open to the countryside.Microlibrary Warak Kayu. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaMicrolibraries in various cities, by SHAU / Daliana Suryawinata, Florian HeinzelmannFlorian Heinzelmann, the project's initiator, works with stakeholders at all levels to provide high-quality public spaces in a number of Indonesian parks and kampungs through microlibraries in different towns run by SHAU/Daliana Suryawinata. So far, six have been constructed, and by 2045, 100 are planned.Majara Residence. Image © Aga Khan Trust for Culture / Deed StudioIranMajara Complex and Community Redevelopment, in Hormuz Island by ZAV Architects / Mohamadreza GhodousiThe Majara Complex and Community Redevelopment on Hormuz Island, designed by ZAV Architects and Mohamadreza Ghodousi, is well-known for its vibrant domes that offer eco-friendly lodging for visitors visiting Hormuz's distinctive scenery. In addition to providing new amenities for the islanders who visit to socialize, pray, or utilize the library, it was constructed by highly trained local laborers.Jahad Metro Plaza. Image © Aga Khan Trust for Culture / Deed StudioIranJahad Metro Plaza in Tehran, by KA Architecture StudioKA Architecture Studio's Jahad Metro Plaza in Tehran was constructed to replace the dilapidated old buildings. It turned the location into a beloved pedestrian-friendly landmark. The arched vaults, which are covered in locally manufactured brick, vary in height to let air and light into the area they are protecting.Khan Jaljulia Restoration. Image © Aga Khan Trust for Culture / Mikaela BurstowIsraelKhan Jaljulia Restoration in Jaljulia by Elias KhuriElias Khuri's Khan Jaljulia Restoration is a cost-effective intervention set amidst the remnants of a 14th-century Khan in Jaljulia. By converting the abandoned historical location into a bustling public area for social gatherings, it helps the locals rediscover their cultural history.Campus Startup Lions. Image © Aga Khan Trust for Culture / Christopher Wilton-SteerKenyaCampus Startup Lions, in Turkana by Kéré ArchitectsKéré Architecture's Campus Startup Lions in Turkana is an educational and entrepreneurial center that offers a venue for community involvement, business incubation, and technology-driven education. The design incorporates solar energy, rainwater harvesting, and tall ventilation towers that resemble the nearby termite mounds, and it was constructed using local volcanic stone.Lalla Yeddouna Square. Image © Aga Khan Trust for Culture / Amine HouariMoroccoRevitalisation of Lalla Yeddouna Square in the medina of Fez, by Mossessian Architecture and Yassir Khalil StudioMossessian Architecture and Yassir Khalil Studio's revitalization of Lalla Yeddouna Square in the Fez medina aims to improve pedestrian circulation and reestablish a connection to the waterfront. For the benefit of locals, craftspeople, and tourists from around the globe, existing buildings were maintained and new areas created.Vision Pakistan. Image © Aga Khan Trust for Culture / Usman Saqib ZuberiPakistanVision Pakistan, in Islamabad by DB Studios / Mohammad Saifullah SiddiquiA tailoring training center run by Vision Pakistan, a nonprofit organization dedicated to empowering underprivileged adolescents, is located in Islamabad by DB Studios/Mohammad Saifullah Siddiqui. Situated in a crowded neighborhood, this multi-story building features flashy jaalis influenced by Arab and Pakistani crafts, echoing the city's 1960s design.Denso Hall Rahguzar Project. Image © Aga Khan Trust for Culture / Usman Saqib ZuberiPakistanDenso Hall Rahguzar Project, in Karachi by Heritage Foundation Pakistan / Yasmeen LariThe Heritage Foundation of Pakistan/Yasmeen Lari's Denso Hall Rahguzar Project in Karachi is a heritage-led eco-urban enclave that was built with low-carbon materials in response to the city's severe climate, which is prone to heat waves and floods. The freshly planted "forests" are irrigated by the handcrafted terracotta cobbles, which absorb rainfall and cool and purify the air.Wonder Cabinet. Image © Aga Khan Trust for Culture / Mikaela BurstowPalestineWonder Cabinet, in Bethlehem by AAU AnastasThe architects at AAU Anastas established Wonder Cabinet, a multifunctional, nonprofit exhibition and production venue in Bethlehem. The three-story concrete building was constructed with the help of regional contractors and artisans, and it is quickly emerging as a major center for learning, design, craft, and innovation.The Ned. Image © Aga Khan Trust for Culture / Cemal EmdenQatarThe Ned Hotel, in Doha by David Chipperfield ArchitectsThe Ministry of Interior was housed in the Ned Hotel in Doha, which was designed by David Chipperfield Architects. Its Middle Eastern brutalist building was meticulously transformed into a 90-room boutique hotel, thereby promoting architectural revitalization in the region.Shamalat Cultural Centre. Image © Aga Khan Trust for Culture / Hassan Al ShattiSaudi ArabiaShamalat Cultural Centre, in Riyadh, by Syn Architects / Sara Alissa, Nojoud AlsudairiOn the outskirts of Diriyah, the Shamalat Cultural Centre in Riyadh was created by Syn Architects/Sara Alissa, Nojoud Alsudairi. It was created from an old mud home that artist Maha Malluh had renovated. The center, which aims to incorporate historic places into daily life, provides a sensitive viewpoint on heritage conservation in the area by contrasting the old and the contemporary.Rehabilitation and Extension of Dakar Railway Station. Image © Aga Khan Trust for Culture / Sylvain CherkaouiSenegalRehabilitation and Extension of Dakar Railway Station, in Dakar by Ga2DIn order to accommodate the passengers of a new express train line, Ga2D extended and renovated Dakar train Station, which purposefully contrasts the old and modern buildings. The forecourt was once again open to pedestrian traffic after vehicular traffic was limited to the rear of the property.Rami Library. Image © Aga Khan Trust for Culture / Cemal EmdenTürkiyeRami Library, by Han Tümertekin Design & ConsultancyThe largest library in Istanbul is the Rami Library, designed by Han Tümertekin Design & Consultancy. It occupied the former Rami Barracks, a sizable, single-story building with enormous volumes that was constructed in the eighteenth century. In order to accommodate new library operations while maintaining the structure's original spatial features, a minimal intervention method was used.Morocco Pavilion Expo Dubai 2020. Image © Aga Khan Trust for Culture / Deed StudioUnited Arab EmiratesMorocco Pavilion Expo Dubai 2020, by Oualalou + ChoiOualalou + Choi's Morocco Pavilion Expo Dubai 2020 is intended to last beyond Expo 2020 and be transformed into a cultural center. The pavilion is a trailblazer in the development of large-scale rammed earth building techniques. Its use of passive cooling techniques, which minimize the need for mechanical air conditioning, earned it the gold LEED accreditation.At each project location, independent professionals such as architects, conservation specialists, planners, and structural engineers have conducted thorough evaluations of the nominated projects. This summer, the Master Jury convenes once more to analyze the on-site evaluations and choose the ultimate Award winners.The top image in the article: The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan.> via Aga Khan Award for Architecture #aga #khan #award #architecture #announces
    WORLDARCHITECTURE.ORG
    Aga Khan Award for Architecture 2025 announces 19 shortlisted projects from 15 countries
    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd" 19 shortlisted projects for the 2025 Award cycle were revealed by the Aga Khan Award for Architecture (AKAA). A portion of the $1 million prize, one of the biggest in architecture, will be awarded to the winning proposals. Out of the 369 projects nominated for the 16th Award Cycle (2023-2025), an independent Master Jury chose the 19 shortlisted projects from 15 countries.The nine members of the Master Jury for the 16th Award cycle include Azra Akšamija, Noura Al-Sayeh Holtrop, Lucia Allais, David Basulto, Yvonne Farrell, Kabage Karanja, Yacouba Konaté, Hassan Radoine, and Mun Summ Wong.His Late Highness Prince Karim Aga Khan IV created the Aga Khan Award for Architecture in 1977 to recognize and promote architectural ideas that effectively meet the needs and goals of communities where Muslims are a major population. Nearly 10,000 construction projects have been documented since the award's inception 48 years ago, and 128 projects have been granted it. The AKAA's selection method places a strong emphasis on architecture that stimulates and responds to people's cultural ambitions in addition to meeting their physical, social, and economic demands.The Aga Khan Award for Architecture is governed by a Steering Committee chaired by His Highness the Aga Khan. The other members of the Steering Committee are Meisa Batayneh, Principal Architect, Founder, maisam architects and engineers, Amman, Jordan; Souleymane Bachir Diagne, Professor of Philosophy and Francophone Studies, Columbia University, New York, United States of America; Lesley Lokko, Founder & Director, African Futures Institute, Accra, Ghana; Gülru Necipoğlu, Director and Professor, Aga Khan Program for Islamic Architecture, Harvard University, Cambridge, United States of America; Hashim Sarkis, Founder & Principal, Hashim Sarkis Studios (HSS); Dean, School of Architecture and Planning, Massachusetts Institute of Technology, Cambridge, United States of America; and Sarah M. Whiting, Partner, WW Architecture; Dean and Josep Lluís Sert Professor of Architecture, Graduate School of Design, Harvard University, Cambridge, United States of America. Farrokh Derakhshani is the Director of the Award.Examples of outstanding architecture in the areas of modern design, social housing, community development and enhancement, historic preservation, reuse and area conservation, landscape design, and environmental enhancement are recognized by the Aga Khan Award for Architecture.Building plans that creatively utilize local resources and relevant technologies, as well as initiatives that could spur such initiatives abroad, are given special consideration. It should be mentioned that in addition to honoring architects, the Award also recognizes towns, builders, clients, master craftspeople, and engineers who have contributed significantly to the project.Projects had to be completed between January 1, 2018, and December 31, 2023, and they had to have been operational for a minimum of one year in order to be eligible for consideration in the 2025 Award cycle. The Award is not available for projects that His Highness the Aga Khan or any of the Aga Khan Development Network (AKDN) institutions have commissioned.See the 19 shortlisted projects with their short project descriptions competing for the 2025 Award Cycle:Khudi Bari. Image © Aga Khan Trust for Culture / City Syntax (F. M. Faruque Abdullah Shawon, H. M. Fozla Rabby Apurbo)BangladeshKhudi Bari, in various locations, by Marina Tabassum ArchitectsMarina Tabassum Architects' Khudi Bari, which can be readily disassembled and reassembled to suit the needs of the users, is a replicable solution for displaced communities impacted by geographic and climatic changes.West Wusutu Village Community Centre. Image © Aga Khan Trust for Culture / Dou Yujun (photographer)ChinaWest Wusutu Village Community Centre, Hohhot, Inner Mongolia, by Zhang PengjuIn addition to meeting the religious demands of the local Hui Muslims, Zhang Pengju's West Wusutu Village Community Centre in Hohhot, Inner Mongolia, offers social and cultural spaces for locals and artists. Constructed from recycled bricks, it features multipurpose indoor and outdoor areas that promote communal harmony.Revitalisation of Historic Esna. Image © Aga Khan Trust for Culture / Ahmed Salem (photographer)EgyptRevitalisation of Historic Esna, by Takween Integrated Community DevelopmentBy using physical interventions, socioeconomic projects, and creative urban planning techniques, Takween Integrated Community Development's Revitalization of Historic Esna tackles the issues of cultural tourism in Upper Egypt and turns the once-forgotten area around the Temple of Khnum into a thriving historic city.The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan (photographer)IndonesiaThe Arc at Green School, in Bali, by IBUKU / Elora HardyAfter 15 years of bamboo experimenting at the Green School Bali, IBUKU/Elora Hardy created The Arc at Green School. The Arc is a brand-new community wellness facility built on the foundations of a temporary gym. High-precision engineering and regional handicraft are combined in this construction.Islamic Centre Nurul Yaqin Mosque. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan (photographer)IndonesiaIslamic Centre Nurul Yaqin Mosque, in Palu, Central Sulawesi, by Dave Orlando and Fandy GunawanDave Orlando and Fandy Gunawan built the Islamic Center Nurul Yaqin Mosque in Palu, Central Sulawesi, on the location of a previous mosque that was damaged by a 2018 tsunami. There is a place for worship and assembly at the new Islamic Center. Surrounded by a shallow reflecting pool that may be drained to make room for more guests, it is open to the countryside.Microlibrary Warak Kayu. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan (photographer)IndonesiaMicrolibraries in various cities, by SHAU / Daliana Suryawinata, Florian HeinzelmannFlorian Heinzelmann, the project's initiator, works with stakeholders at all levels to provide high-quality public spaces in a number of Indonesian parks and kampungs through microlibraries in different towns run by SHAU/Daliana Suryawinata. So far, six have been constructed, and by 2045, 100 are planned.Majara Residence. Image © Aga Khan Trust for Culture / Deed Studio (photographer)IranMajara Complex and Community Redevelopment, in Hormuz Island by ZAV Architects / Mohamadreza GhodousiThe Majara Complex and Community Redevelopment on Hormuz Island, designed by ZAV Architects and Mohamadreza Ghodousi, is well-known for its vibrant domes that offer eco-friendly lodging for visitors visiting Hormuz's distinctive scenery. In addition to providing new amenities for the islanders who visit to socialize, pray, or utilize the library, it was constructed by highly trained local laborers.Jahad Metro Plaza. Image © Aga Khan Trust for Culture / Deed Studio (photographer)IranJahad Metro Plaza in Tehran, by KA Architecture StudioKA Architecture Studio's Jahad Metro Plaza in Tehran was constructed to replace the dilapidated old buildings. It turned the location into a beloved pedestrian-friendly landmark. The arched vaults, which are covered in locally manufactured brick, vary in height to let air and light into the area they are protecting.Khan Jaljulia Restoration. Image © Aga Khan Trust for Culture / Mikaela Burstow (photographer)IsraelKhan Jaljulia Restoration in Jaljulia by Elias KhuriElias Khuri's Khan Jaljulia Restoration is a cost-effective intervention set amidst the remnants of a 14th-century Khan in Jaljulia. By converting the abandoned historical location into a bustling public area for social gatherings, it helps the locals rediscover their cultural history.Campus Startup Lions. Image © Aga Khan Trust for Culture / Christopher Wilton-Steer (photographer)KenyaCampus Startup Lions, in Turkana by Kéré ArchitectsKéré Architecture's Campus Startup Lions in Turkana is an educational and entrepreneurial center that offers a venue for community involvement, business incubation, and technology-driven education. The design incorporates solar energy, rainwater harvesting, and tall ventilation towers that resemble the nearby termite mounds, and it was constructed using local volcanic stone.Lalla Yeddouna Square. Image © Aga Khan Trust for Culture / Amine Houari (photographer)MoroccoRevitalisation of Lalla Yeddouna Square in the medina of Fez, by Mossessian Architecture and Yassir Khalil StudioMossessian Architecture and Yassir Khalil Studio's revitalization of Lalla Yeddouna Square in the Fez medina aims to improve pedestrian circulation and reestablish a connection to the waterfront. For the benefit of locals, craftspeople, and tourists from around the globe, existing buildings were maintained and new areas created.Vision Pakistan. Image © Aga Khan Trust for Culture / Usman Saqib Zuberi (photographer)PakistanVision Pakistan, in Islamabad by DB Studios / Mohammad Saifullah SiddiquiA tailoring training center run by Vision Pakistan, a nonprofit organization dedicated to empowering underprivileged adolescents, is located in Islamabad by DB Studios/Mohammad Saifullah Siddiqui. Situated in a crowded neighborhood, this multi-story building features flashy jaalis influenced by Arab and Pakistani crafts, echoing the city's 1960s design.Denso Hall Rahguzar Project. Image © Aga Khan Trust for Culture / Usman Saqib Zuberi (photographer)PakistanDenso Hall Rahguzar Project, in Karachi by Heritage Foundation Pakistan / Yasmeen LariThe Heritage Foundation of Pakistan/Yasmeen Lari's Denso Hall Rahguzar Project in Karachi is a heritage-led eco-urban enclave that was built with low-carbon materials in response to the city's severe climate, which is prone to heat waves and floods. The freshly planted "forests" are irrigated by the handcrafted terracotta cobbles, which absorb rainfall and cool and purify the air.Wonder Cabinet. Image © Aga Khan Trust for Culture / Mikaela Burstow (photographer)PalestineWonder Cabinet, in Bethlehem by AAU AnastasThe architects at AAU Anastas established Wonder Cabinet, a multifunctional, nonprofit exhibition and production venue in Bethlehem. The three-story concrete building was constructed with the help of regional contractors and artisans, and it is quickly emerging as a major center for learning, design, craft, and innovation.The Ned. Image © Aga Khan Trust for Culture / Cemal Emden (photographer)QatarThe Ned Hotel, in Doha by David Chipperfield ArchitectsThe Ministry of Interior was housed in the Ned Hotel in Doha, which was designed by David Chipperfield Architects. Its Middle Eastern brutalist building was meticulously transformed into a 90-room boutique hotel, thereby promoting architectural revitalization in the region.Shamalat Cultural Centre. Image © Aga Khan Trust for Culture / Hassan Al Shatti (photographer)Saudi ArabiaShamalat Cultural Centre, in Riyadh, by Syn Architects / Sara Alissa, Nojoud AlsudairiOn the outskirts of Diriyah, the Shamalat Cultural Centre in Riyadh was created by Syn Architects/Sara Alissa, Nojoud Alsudairi. It was created from an old mud home that artist Maha Malluh had renovated. The center, which aims to incorporate historic places into daily life, provides a sensitive viewpoint on heritage conservation in the area by contrasting the old and the contemporary.Rehabilitation and Extension of Dakar Railway Station. Image © Aga Khan Trust for Culture / Sylvain Cherkaoui (photographer)SenegalRehabilitation and Extension of Dakar Railway Station, in Dakar by Ga2DIn order to accommodate the passengers of a new express train line, Ga2D extended and renovated Dakar train Station, which purposefully contrasts the old and modern buildings. The forecourt was once again open to pedestrian traffic after vehicular traffic was limited to the rear of the property.Rami Library. Image © Aga Khan Trust for Culture / Cemal Emden (photographer)TürkiyeRami Library, by Han Tümertekin Design & ConsultancyThe largest library in Istanbul is the Rami Library, designed by Han Tümertekin Design & Consultancy. It occupied the former Rami Barracks, a sizable, single-story building with enormous volumes that was constructed in the eighteenth century. In order to accommodate new library operations while maintaining the structure's original spatial features, a minimal intervention method was used.Morocco Pavilion Expo Dubai 2020. Image © Aga Khan Trust for Culture / Deed Studio (photographer)United Arab EmiratesMorocco Pavilion Expo Dubai 2020, by Oualalou + ChoiOualalou + Choi's Morocco Pavilion Expo Dubai 2020 is intended to last beyond Expo 2020 and be transformed into a cultural center. The pavilion is a trailblazer in the development of large-scale rammed earth building techniques. Its use of passive cooling techniques, which minimize the need for mechanical air conditioning, earned it the gold LEED accreditation.At each project location, independent professionals such as architects, conservation specialists, planners, and structural engineers have conducted thorough evaluations of the nominated projects. This summer, the Master Jury convenes once more to analyze the on-site evaluations and choose the ultimate Award winners.The top image in the article: The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan (photographer).> via Aga Khan Award for Architecture
    Like
    Love
    Wow
    Sad
    Angry
    531
    2 Commentarios 0 Acciones
  • This paint ‘sweats’ to keep your house cool

    News

    Climate

    This paint ‘sweats’ to keep your house cool

    A new cement-based paint cools buildings by combining sunlight reflection and water evaporation

    A new cooling paint reflects sunlight and mimics sweat to reduce air-conditioning use.

    Marie LaFauci/Getty Images

    By Larissa G. Capella
    June 13, 2025 at 11:00 am

    A cool house without air conditioning may soon be possible.
    Scientists in Singapore have developed a new type of paint that reflects sunlight and cools surfaces by slowly evaporating water. Unlike other commercially available cooling paints, which are designed to repel water to protect the underlying material, the new one even works in hot, humid places, offering a low-energy way to stay cool, researchers report June 5 in Science.
    “The key is passive cooling,” which requires no energy input, says material scientist Li Hong In other words, it works without using electricity or mechanical systems. Right now, radiative cooling is the most common type of passive cooling used in materials, including certain paints. It works by reflecting sunlight and radiating heat from a surface such as walls or roofs, into the sky. But in humid places like Singapore, water vapor in the air traps heat near the surface, which prevents it from escaping into the atmosphere and keeps the surfaces warm.
    In response, Hong and two other material scientists from Nanyang Technological University developed a cement-based paint that combines three cooling strategies: radiative cooling, evaporative cooling, which our skin uses, and solar reflection. In the study, the scientists painted three small houses: one with regular white paint, one with commercial cooling paint that uses only radiative cooling and one with their new formula. After two years of sun and rain in Singapore, the first two paints had turned yellow. But “our paint was still white,” says coauthor Jipeng Fei. Unlike other colors, white helps materials maintain their high reflectivity and cooling performance.

    Sign up for our newsletter

    We summarize the week's scientific breakthroughs every Thursday.
    #this #paint #sweats #keep #your
    This paint ‘sweats’ to keep your house cool
    News Climate This paint ‘sweats’ to keep your house cool A new cement-based paint cools buildings by combining sunlight reflection and water evaporation A new cooling paint reflects sunlight and mimics sweat to reduce air-conditioning use. Marie LaFauci/Getty Images By Larissa G. Capella June 13, 2025 at 11:00 am A cool house without air conditioning may soon be possible. Scientists in Singapore have developed a new type of paint that reflects sunlight and cools surfaces by slowly evaporating water. Unlike other commercially available cooling paints, which are designed to repel water to protect the underlying material, the new one even works in hot, humid places, offering a low-energy way to stay cool, researchers report June 5 in Science. “The key is passive cooling,” which requires no energy input, says material scientist Li Hong In other words, it works without using electricity or mechanical systems. Right now, radiative cooling is the most common type of passive cooling used in materials, including certain paints. It works by reflecting sunlight and radiating heat from a surface such as walls or roofs, into the sky. But in humid places like Singapore, water vapor in the air traps heat near the surface, which prevents it from escaping into the atmosphere and keeps the surfaces warm. In response, Hong and two other material scientists from Nanyang Technological University developed a cement-based paint that combines three cooling strategies: radiative cooling, evaporative cooling, which our skin uses, and solar reflection. In the study, the scientists painted three small houses: one with regular white paint, one with commercial cooling paint that uses only radiative cooling and one with their new formula. After two years of sun and rain in Singapore, the first two paints had turned yellow. But “our paint was still white,” says coauthor Jipeng Fei. Unlike other colors, white helps materials maintain their high reflectivity and cooling performance. Sign up for our newsletter We summarize the week's scientific breakthroughs every Thursday. #this #paint #sweats #keep #your
    WWW.SCIENCENEWS.ORG
    This paint ‘sweats’ to keep your house cool
    News Climate This paint ‘sweats’ to keep your house cool A new cement-based paint cools buildings by combining sunlight reflection and water evaporation A new cooling paint reflects sunlight and mimics sweat to reduce air-conditioning use. Marie LaFauci/Getty Images By Larissa G. Capella June 13, 2025 at 11:00 am A cool house without air conditioning may soon be possible. Scientists in Singapore have developed a new type of paint that reflects sunlight and cools surfaces by slowly evaporating water. Unlike other commercially available cooling paints, which are designed to repel water to protect the underlying material, the new one even works in hot, humid places, offering a low-energy way to stay cool, researchers report June 5 in Science. “The key is passive cooling,” which requires no energy input, says material scientist Li Hong In other words, it works without using electricity or mechanical systems. Right now, radiative cooling is the most common type of passive cooling used in materials, including certain paints. It works by reflecting sunlight and radiating heat from a surface such as walls or roofs, into the sky. But in humid places like Singapore, water vapor in the air traps heat near the surface, which prevents it from escaping into the atmosphere and keeps the surfaces warm. In response, Hong and two other material scientists from Nanyang Technological University developed a cement-based paint that combines three cooling strategies: radiative cooling, evaporative cooling, which our skin uses, and solar reflection. In the study, the scientists painted three small houses: one with regular white paint, one with commercial cooling paint that uses only radiative cooling and one with their new formula. After two years of sun and rain in Singapore, the first two paints had turned yellow. But “our paint was still white,” says coauthor Jipeng Fei. Unlike other colors, white helps materials maintain their high reflectivity and cooling performance. Sign up for our newsletter We summarize the week's scientific breakthroughs every Thursday.
    0 Commentarios 0 Acciones
  • Sienna Net-Zero Home / billionBricks

    Sienna Net-Zero Home / billionBricksSave this picture!© Ron Mendoza , Mark Twain C , BB teamHouses, Sustainability•Quezon City, Philippines

    Architects:
    billionBricks
    Area
    Area of this architecture project

    Area: 
    45 m²

    Year
    Completion year of this architecture project

    Year: 

    2024

    Photographs

    Photographs:Ron Mendoza , Mark Twain C , BB teamMore SpecsLess Specs
    this picture!
    Text description provided by the architects. Built to address homelessness and climate change, the Sienna Net-Zero Home is a self-sustaining, solar-powered, cost-efficient, and compact housing solution. This climate-responsive and affordable home, located in Quezon City, Philippines, represents a revolutionary vision for social housing through its integration of thoughtful design, sustainability, and energy self-sufficiency.this picture!this picture!this picture!Designed with the unique tropical climate of the Philippines in mind, the Sienna Home prioritizes natural ventilation, passive cooling, and rainwater management to enhance indoor comfort and reduce reliance on artificial cooling systems. The compact 4.5m x 5.1m floor plan has been meticulously optimized for functionality, offering a flexible layout that grows and adapts to the families living in them.this picture!this picture!this picture!A key architectural feature is BillionBricks' innovative Powershade technology - an advanced solar roofing system that serves multiple purposes. Beyond generating clean, renewable energy, it acts as a protective heat barrier, reducing indoor temperatures and improving thermal comfort. Unlike conventional solar panels, Powershade seamlessly integrates with the home's structure, providing reliable energy generation while doubling as a durable roof. This makes the Sienna Home energy-positive, meaning it produces more electricity than it consumes, lowering utility costs and promoting long-term energy independence. Excess power can also be stored or sold back to the grid, creating an additional financial benefit for homeowners.this picture!When multiple Sienna Homes are built together, the innovative PowerShade roofing solution transcends its role as an individual energy source and transforms into a utility-scale solar rooftop farm, capable of powering essential community facilities and generating additional income. This shared energy infrastructure fosters a sense of collective empowerment, enabling residents to actively participate in a sustainable and financially rewarding energy ecosystem.this picture!this picture!The Sienna Home is built using lightweight prefabricated components, allowing for rapid on-site assembly while maintaining durability and structural integrity. This modular approach enables scalability, making it an ideal prototype for large-scale, cost-effective housing developments. The design also allows for future expansions, giving homeowners the flexibility to adapt their living spaces over time.this picture!Adhering to BP 220 social housing regulations, the unit features a 3-meter front setback and a 2-meter rear setback, ensuring proper ventilation, safety, and community-friendly spaces. Additionally, corner units include a 1.5-meter offset, enhancing privacy and accessibility within neighborhood layouts. Beyond providing a single-family residence, the Sienna House is designed to function within a larger sustainable community model, integrating shared green spaces, pedestrian pathways, and decentralized utilities. By promoting energy independence and environmental resilience, the project sets a new precedent for affordable yet high-quality housing solutions in rapidly urbanizing regions.this picture!The Sienna Home in Quezon City serves as a blueprint for future developments, proving that low-cost housing can be both architecturally compelling and socially transformative. By rethinking traditional housing models, BillionBricks is pioneering a future where affordability and sustainability are seamlessly integrated.

    Project gallerySee allShow less
    About this officebillionBricksOffice•••
    Published on June 15, 2025Cite: "Sienna Net-Zero Home / billionBricks" 14 Jun 2025. ArchDaily. Accessed . < ISSN 0719-8884Save世界上最受欢迎的建筑网站现已推出你的母语版本!想浏览ArchDaily中国吗?是否
    You've started following your first account!Did you know?You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.Go to my stream
    #sienna #netzero #home #billionbricks
    Sienna Net-Zero Home / billionBricks
    Sienna Net-Zero Home / billionBricksSave this picture!© Ron Mendoza , Mark Twain C , BB teamHouses, Sustainability•Quezon City, Philippines Architects: billionBricks Area Area of this architecture project Area:  45 m² Year Completion year of this architecture project Year:  2024 Photographs Photographs:Ron Mendoza , Mark Twain C , BB teamMore SpecsLess Specs this picture! Text description provided by the architects. Built to address homelessness and climate change, the Sienna Net-Zero Home is a self-sustaining, solar-powered, cost-efficient, and compact housing solution. This climate-responsive and affordable home, located in Quezon City, Philippines, represents a revolutionary vision for social housing through its integration of thoughtful design, sustainability, and energy self-sufficiency.this picture!this picture!this picture!Designed with the unique tropical climate of the Philippines in mind, the Sienna Home prioritizes natural ventilation, passive cooling, and rainwater management to enhance indoor comfort and reduce reliance on artificial cooling systems. The compact 4.5m x 5.1m floor plan has been meticulously optimized for functionality, offering a flexible layout that grows and adapts to the families living in them.this picture!this picture!this picture!A key architectural feature is BillionBricks' innovative Powershade technology - an advanced solar roofing system that serves multiple purposes. Beyond generating clean, renewable energy, it acts as a protective heat barrier, reducing indoor temperatures and improving thermal comfort. Unlike conventional solar panels, Powershade seamlessly integrates with the home's structure, providing reliable energy generation while doubling as a durable roof. This makes the Sienna Home energy-positive, meaning it produces more electricity than it consumes, lowering utility costs and promoting long-term energy independence. Excess power can also be stored or sold back to the grid, creating an additional financial benefit for homeowners.this picture!When multiple Sienna Homes are built together, the innovative PowerShade roofing solution transcends its role as an individual energy source and transforms into a utility-scale solar rooftop farm, capable of powering essential community facilities and generating additional income. This shared energy infrastructure fosters a sense of collective empowerment, enabling residents to actively participate in a sustainable and financially rewarding energy ecosystem.this picture!this picture!The Sienna Home is built using lightweight prefabricated components, allowing for rapid on-site assembly while maintaining durability and structural integrity. This modular approach enables scalability, making it an ideal prototype for large-scale, cost-effective housing developments. The design also allows for future expansions, giving homeowners the flexibility to adapt their living spaces over time.this picture!Adhering to BP 220 social housing regulations, the unit features a 3-meter front setback and a 2-meter rear setback, ensuring proper ventilation, safety, and community-friendly spaces. Additionally, corner units include a 1.5-meter offset, enhancing privacy and accessibility within neighborhood layouts. Beyond providing a single-family residence, the Sienna House is designed to function within a larger sustainable community model, integrating shared green spaces, pedestrian pathways, and decentralized utilities. By promoting energy independence and environmental resilience, the project sets a new precedent for affordable yet high-quality housing solutions in rapidly urbanizing regions.this picture!The Sienna Home in Quezon City serves as a blueprint for future developments, proving that low-cost housing can be both architecturally compelling and socially transformative. By rethinking traditional housing models, BillionBricks is pioneering a future where affordability and sustainability are seamlessly integrated. Project gallerySee allShow less About this officebillionBricksOffice••• Published on June 15, 2025Cite: "Sienna Net-Zero Home / billionBricks" 14 Jun 2025. ArchDaily. Accessed . < ISSN 0719-8884Save世界上最受欢迎的建筑网站现已推出你的母语版本!想浏览ArchDaily中国吗?是否 You've started following your first account!Did you know?You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.Go to my stream #sienna #netzero #home #billionbricks
    WWW.ARCHDAILY.COM
    Sienna Net-Zero Home / billionBricks
    Sienna Net-Zero Home / billionBricksSave this picture!© Ron Mendoza , Mark Twain C , BB teamHouses, Sustainability•Quezon City, Philippines Architects: billionBricks Area Area of this architecture project Area:  45 m² Year Completion year of this architecture project Year:  2024 Photographs Photographs:Ron Mendoza , Mark Twain C , BB teamMore SpecsLess Specs Save this picture! Text description provided by the architects. Built to address homelessness and climate change, the Sienna Net-Zero Home is a self-sustaining, solar-powered, cost-efficient, and compact housing solution. This climate-responsive and affordable home, located in Quezon City, Philippines, represents a revolutionary vision for social housing through its integration of thoughtful design, sustainability, and energy self-sufficiency.Save this picture!Save this picture!Save this picture!Designed with the unique tropical climate of the Philippines in mind, the Sienna Home prioritizes natural ventilation, passive cooling, and rainwater management to enhance indoor comfort and reduce reliance on artificial cooling systems. The compact 4.5m x 5.1m floor plan has been meticulously optimized for functionality, offering a flexible layout that grows and adapts to the families living in them.Save this picture!Save this picture!Save this picture!A key architectural feature is BillionBricks' innovative Powershade technology - an advanced solar roofing system that serves multiple purposes. Beyond generating clean, renewable energy, it acts as a protective heat barrier, reducing indoor temperatures and improving thermal comfort. Unlike conventional solar panels, Powershade seamlessly integrates with the home's structure, providing reliable energy generation while doubling as a durable roof. This makes the Sienna Home energy-positive, meaning it produces more electricity than it consumes, lowering utility costs and promoting long-term energy independence. Excess power can also be stored or sold back to the grid, creating an additional financial benefit for homeowners.Save this picture!When multiple Sienna Homes are built together, the innovative PowerShade roofing solution transcends its role as an individual energy source and transforms into a utility-scale solar rooftop farm, capable of powering essential community facilities and generating additional income. This shared energy infrastructure fosters a sense of collective empowerment, enabling residents to actively participate in a sustainable and financially rewarding energy ecosystem.Save this picture!Save this picture!The Sienna Home is built using lightweight prefabricated components, allowing for rapid on-site assembly while maintaining durability and structural integrity. This modular approach enables scalability, making it an ideal prototype for large-scale, cost-effective housing developments. The design also allows for future expansions, giving homeowners the flexibility to adapt their living spaces over time.Save this picture!Adhering to BP 220 social housing regulations, the unit features a 3-meter front setback and a 2-meter rear setback, ensuring proper ventilation, safety, and community-friendly spaces. Additionally, corner units include a 1.5-meter offset, enhancing privacy and accessibility within neighborhood layouts. Beyond providing a single-family residence, the Sienna House is designed to function within a larger sustainable community model, integrating shared green spaces, pedestrian pathways, and decentralized utilities. By promoting energy independence and environmental resilience, the project sets a new precedent for affordable yet high-quality housing solutions in rapidly urbanizing regions.Save this picture!The Sienna Home in Quezon City serves as a blueprint for future developments, proving that low-cost housing can be both architecturally compelling and socially transformative. By rethinking traditional housing models, BillionBricks is pioneering a future where affordability and sustainability are seamlessly integrated. Project gallerySee allShow less About this officebillionBricksOffice••• Published on June 15, 2025Cite: "Sienna Net-Zero Home / billionBricks" 14 Jun 2025. ArchDaily. Accessed . <https://www.archdaily.com/1031072/sienna-billionbricks&gt ISSN 0719-8884Save世界上最受欢迎的建筑网站现已推出你的母语版本!想浏览ArchDaily中国吗?是否 You've started following your first account!Did you know?You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.Go to my stream
    0 Commentarios 0 Acciones
  • A shortage of high-voltage power cables could stall the clean energy transition

    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why.
    A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea.
    Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment.
    High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress.

    "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg.
    The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities.
    // Related Stories

    As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct currentcables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses.

    But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometersof new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years.
    Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused.
    Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule.
    Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross.
    Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted.
    The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them."
    #shortage #highvoltage #power #cables #could
    A shortage of high-voltage power cables could stall the clean energy transition
    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why. A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea. Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment. High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress. "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg. The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities. // Related Stories As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct currentcables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses. But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometersof new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years. Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused. Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule. Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross. Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted. The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them." #shortage #highvoltage #power #cables #could
    WWW.TECHSPOT.COM
    A shortage of high-voltage power cables could stall the clean energy transition
    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why. A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea. Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment. High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress. "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg. The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities. // Related Stories As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct current (HVDC) cables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses. But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometers (around 49.7 million miles) of new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years. Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused. Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule. Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross. Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted. The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them."
    0 Commentarios 0 Acciones
  • Casa Morena by Mário Martins Atelier: Architectural Dialogue with Nature

    Casa Morena | © Fernando Guerra / FG+SG
    In the coastal enclave of Lagos, Portugal, Mário Martins Atelier has crafted Casa Morena. This residence quietly asserts itself as an ode to the dialogue between architecture and its natural setting. Completed in 2024, this project demonstrates a considered response to its environment, where the interplay of light, material, and landscape defines a sense of place rather than architectural imposition.

    Casa Morena Technical Information

    Architects1-5: Mário Martins Atelier
    Location: Lagos, Portugal
    Project Years: 2024
    Photographs: © Fernando Guerra / FG+SG

    A simple house, one that wishes to be discreet and to be influenced by its location, to become a house that is pleasant with thoughtful landscaping.
    – Mário Martins Atelier

    Casa Morena Photographs

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG
    A Contextual Response to Landscape and Light
    The design of Casa Morena finds its genesis in the site itself, a pine-scented plot overlooking the expanse of a bay. The pine trees, longstanding witnesses to the landscape’s evolution, provide the project’s visual anchor and spatial logic. In a move that both respects and celebrates these natural elements, Mário Martins Atelier structured the house’s reticulated plan to echo the presence of the trees, creating a composition that unfolds as a series of volumes harmonizing with the vertical rhythm of the trunks.
    The solid base of the house, built from locally sourced schist, emerges directly from the terrain. These robust walls establish a tactile continuity with the ground, their rough textures anchoring the architecture within the landscape. In contrast, the upper volumes of the house adopt a distinctly lighter expression: horizontal planes rendered in white plaster, their smooth surfaces catching and refracting the region’s luminous sun. This duality, earthbound solidity, and aerial lightness establish an architectural narrative rooted in the elemental.
    Casa Morena Experiential Flow
    Casa Morena’s spatial arrangement articulates a clear hierarchy of public and private domains. On the ground floor, the house embraces openness and transparency. An expansive entrance hall blurs the threshold inside and out, guiding inhabitants and visitors into a luminous social heart. The lounge, kitchen, and office flow seamlessly into the garden, unified by a continuous glazed façade that invites the outside in.
    This deliberate porosity extends to a covered terrace, an intermediary space that dissolves the boundary between shelter and exposure. The terrace, framed by the garden’s green canopy and the swimming pool’s long line, becomes a place of repose and contemplation. The pool itself demarcates the transition from a cultivated garden to the looser, more rugged landscape beyond, its linear form echoing the horizon’s expanse.
    Ascending to the upper floor, the architectural language shifts towards intimacy. The bedrooms, each with direct access to terraces and patios, create secluded zones that still maintain a fluid relationship with the outdoors. A discreet rooftop terrace, accessible from these private quarters, offers a hidden sanctuary where the interplay of views and light remains uninterrupted.
    Material Tectonics and Environmental Strategy
    Casa Morena’s material palette is rooted in regional specificity and tactile sensibility. Schist, extracted from the site, is not merely a structural element but a narrative thread linking the building to its geological past. Its earthy warmth and rugged surface provide a counterpoint to the luminous white of the upper volumes, an articulation of contrast that enlivens the building’s silhouette.
    White, the chromatic signature of the Algarve region, is employed with restraint and nuance. Its reflective qualities intensify the play of shadow and light, a dynamic that shifts with the passing of the day. In this interplay, architecture becomes an instrument for registering the ephemeral, and the environment itself becomes a participant in the spatial drama.
    Environmental stewardship is also woven into the project’s DNA. Discreetly integrated systems on the roof harness solar energy and manage water resources, extending the house’s commitment to a sustainable coexistence with its setting.
    Casa Morena Plans

    Basement | © Mario Martins Atelier

    Ground Level | © Mario Martins Atelier

    Upper Level | © Mario Martins Atelier

    Roof Plan | © Mario Martins Atelier

    Elevations | © Mario Martins Atelier
    Casa Morena Image Gallery

    About Mário Martins Atelier
    Mário Martins Atelier is an architectural studio based in Lagos and Lisbon, Portugal, led by Mário Martins. The practice is known for its context-sensitive approach, crafting contemporary projects seamlessly integrating with their surroundings while prioritizing regional materials and environmental considerations.
    Credits and Additional Notes

    Lead Architect: Mário Martins, arq.
    Project Team: Nuno Colaço, Sónia Fialho, Susana Jóia, Mariana Franco, Ana Graça
    Engineering: Nuno Grave Engenharia
    Landscape: HB-Hipolito Bettencourt – Arquitectura Paisagista, Lda.
    Building Contractor: Marques Antunes Engenharia Lda.
    #casa #morena #mário #martins #atelier
    Casa Morena by Mário Martins Atelier: Architectural Dialogue with Nature
    Casa Morena | © Fernando Guerra / FG+SG In the coastal enclave of Lagos, Portugal, Mário Martins Atelier has crafted Casa Morena. This residence quietly asserts itself as an ode to the dialogue between architecture and its natural setting. Completed in 2024, this project demonstrates a considered response to its environment, where the interplay of light, material, and landscape defines a sense of place rather than architectural imposition. Casa Morena Technical Information Architects1-5: Mário Martins Atelier Location: Lagos, Portugal Project Years: 2024 Photographs: © Fernando Guerra / FG+SG A simple house, one that wishes to be discreet and to be influenced by its location, to become a house that is pleasant with thoughtful landscaping. – Mário Martins Atelier Casa Morena Photographs © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG A Contextual Response to Landscape and Light The design of Casa Morena finds its genesis in the site itself, a pine-scented plot overlooking the expanse of a bay. The pine trees, longstanding witnesses to the landscape’s evolution, provide the project’s visual anchor and spatial logic. In a move that both respects and celebrates these natural elements, Mário Martins Atelier structured the house’s reticulated plan to echo the presence of the trees, creating a composition that unfolds as a series of volumes harmonizing with the vertical rhythm of the trunks. The solid base of the house, built from locally sourced schist, emerges directly from the terrain. These robust walls establish a tactile continuity with the ground, their rough textures anchoring the architecture within the landscape. In contrast, the upper volumes of the house adopt a distinctly lighter expression: horizontal planes rendered in white plaster, their smooth surfaces catching and refracting the region’s luminous sun. This duality, earthbound solidity, and aerial lightness establish an architectural narrative rooted in the elemental. Casa Morena Experiential Flow Casa Morena’s spatial arrangement articulates a clear hierarchy of public and private domains. On the ground floor, the house embraces openness and transparency. An expansive entrance hall blurs the threshold inside and out, guiding inhabitants and visitors into a luminous social heart. The lounge, kitchen, and office flow seamlessly into the garden, unified by a continuous glazed façade that invites the outside in. This deliberate porosity extends to a covered terrace, an intermediary space that dissolves the boundary between shelter and exposure. The terrace, framed by the garden’s green canopy and the swimming pool’s long line, becomes a place of repose and contemplation. The pool itself demarcates the transition from a cultivated garden to the looser, more rugged landscape beyond, its linear form echoing the horizon’s expanse. Ascending to the upper floor, the architectural language shifts towards intimacy. The bedrooms, each with direct access to terraces and patios, create secluded zones that still maintain a fluid relationship with the outdoors. A discreet rooftop terrace, accessible from these private quarters, offers a hidden sanctuary where the interplay of views and light remains uninterrupted. Material Tectonics and Environmental Strategy Casa Morena’s material palette is rooted in regional specificity and tactile sensibility. Schist, extracted from the site, is not merely a structural element but a narrative thread linking the building to its geological past. Its earthy warmth and rugged surface provide a counterpoint to the luminous white of the upper volumes, an articulation of contrast that enlivens the building’s silhouette. White, the chromatic signature of the Algarve region, is employed with restraint and nuance. Its reflective qualities intensify the play of shadow and light, a dynamic that shifts with the passing of the day. In this interplay, architecture becomes an instrument for registering the ephemeral, and the environment itself becomes a participant in the spatial drama. Environmental stewardship is also woven into the project’s DNA. Discreetly integrated systems on the roof harness solar energy and manage water resources, extending the house’s commitment to a sustainable coexistence with its setting. Casa Morena Plans Basement | © Mario Martins Atelier Ground Level | © Mario Martins Atelier Upper Level | © Mario Martins Atelier Roof Plan | © Mario Martins Atelier Elevations | © Mario Martins Atelier Casa Morena Image Gallery About Mário Martins Atelier Mário Martins Atelier is an architectural studio based in Lagos and Lisbon, Portugal, led by Mário Martins. The practice is known for its context-sensitive approach, crafting contemporary projects seamlessly integrating with their surroundings while prioritizing regional materials and environmental considerations. Credits and Additional Notes Lead Architect: Mário Martins, arq. Project Team: Nuno Colaço, Sónia Fialho, Susana Jóia, Mariana Franco, Ana Graça Engineering: Nuno Grave Engenharia Landscape: HB-Hipolito Bettencourt – Arquitectura Paisagista, Lda. Building Contractor: Marques Antunes Engenharia Lda. #casa #morena #mário #martins #atelier
    ARCHEYES.COM
    Casa Morena by Mário Martins Atelier: Architectural Dialogue with Nature
    Casa Morena | © Fernando Guerra / FG+SG In the coastal enclave of Lagos, Portugal, Mário Martins Atelier has crafted Casa Morena. This residence quietly asserts itself as an ode to the dialogue between architecture and its natural setting. Completed in 2024, this project demonstrates a considered response to its environment, where the interplay of light, material, and landscape defines a sense of place rather than architectural imposition. Casa Morena Technical Information Architects1-5: Mário Martins Atelier Location: Lagos, Portugal Project Years: 2024 Photographs: © Fernando Guerra / FG+SG A simple house, one that wishes to be discreet and to be influenced by its location, to become a house that is pleasant with thoughtful landscaping. – Mário Martins Atelier Casa Morena Photographs © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG A Contextual Response to Landscape and Light The design of Casa Morena finds its genesis in the site itself, a pine-scented plot overlooking the expanse of a bay. The pine trees, longstanding witnesses to the landscape’s evolution, provide the project’s visual anchor and spatial logic. In a move that both respects and celebrates these natural elements, Mário Martins Atelier structured the house’s reticulated plan to echo the presence of the trees, creating a composition that unfolds as a series of volumes harmonizing with the vertical rhythm of the trunks. The solid base of the house, built from locally sourced schist, emerges directly from the terrain. These robust walls establish a tactile continuity with the ground, their rough textures anchoring the architecture within the landscape. In contrast, the upper volumes of the house adopt a distinctly lighter expression: horizontal planes rendered in white plaster, their smooth surfaces catching and refracting the region’s luminous sun. This duality, earthbound solidity, and aerial lightness establish an architectural narrative rooted in the elemental. Casa Morena Experiential Flow Casa Morena’s spatial arrangement articulates a clear hierarchy of public and private domains. On the ground floor, the house embraces openness and transparency. An expansive entrance hall blurs the threshold inside and out, guiding inhabitants and visitors into a luminous social heart. The lounge, kitchen, and office flow seamlessly into the garden, unified by a continuous glazed façade that invites the outside in. This deliberate porosity extends to a covered terrace, an intermediary space that dissolves the boundary between shelter and exposure. The terrace, framed by the garden’s green canopy and the swimming pool’s long line, becomes a place of repose and contemplation. The pool itself demarcates the transition from a cultivated garden to the looser, more rugged landscape beyond, its linear form echoing the horizon’s expanse. Ascending to the upper floor, the architectural language shifts towards intimacy. The bedrooms, each with direct access to terraces and patios, create secluded zones that still maintain a fluid relationship with the outdoors. A discreet rooftop terrace, accessible from these private quarters, offers a hidden sanctuary where the interplay of views and light remains uninterrupted. Material Tectonics and Environmental Strategy Casa Morena’s material palette is rooted in regional specificity and tactile sensibility. Schist, extracted from the site, is not merely a structural element but a narrative thread linking the building to its geological past. Its earthy warmth and rugged surface provide a counterpoint to the luminous white of the upper volumes, an articulation of contrast that enlivens the building’s silhouette. White, the chromatic signature of the Algarve region, is employed with restraint and nuance. Its reflective qualities intensify the play of shadow and light, a dynamic that shifts with the passing of the day. In this interplay, architecture becomes an instrument for registering the ephemeral, and the environment itself becomes a participant in the spatial drama. Environmental stewardship is also woven into the project’s DNA. Discreetly integrated systems on the roof harness solar energy and manage water resources, extending the house’s commitment to a sustainable coexistence with its setting. Casa Morena Plans Basement | © Mario Martins Atelier Ground Level | © Mario Martins Atelier Upper Level | © Mario Martins Atelier Roof Plan | © Mario Martins Atelier Elevations | © Mario Martins Atelier Casa Morena Image Gallery About Mário Martins Atelier Mário Martins Atelier is an architectural studio based in Lagos and Lisbon, Portugal, led by Mário Martins. The practice is known for its context-sensitive approach, crafting contemporary projects seamlessly integrating with their surroundings while prioritizing regional materials and environmental considerations. Credits and Additional Notes Lead Architect: Mário Martins, arq. Project Team: Nuno Colaço, Sónia Fialho, Susana Jóia, Mariana Franco, Ana Graça Engineering: Nuno Grave Engenharia Landscape: HB-Hipolito Bettencourt – Arquitectura Paisagista, Lda. Building Contractor: Marques Antunes Engenharia Lda.
    0 Commentarios 0 Acciones
Resultados de la búsqueda