• Plug and Play: Build a G-Assist Plug-In Today

    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems.
    NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels.

    G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow.
    Below, find popular G-Assist plug-ins, hackathon details and tips to get started.
    Plug-In and Win
    Join the hackathon by registering and checking out the curated technical resources.
    G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation.
    For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins.
    To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code.
    Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action.
    Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16.
    Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in.
    Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit.
    Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver.
    Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows.

    Popular plug-ins include:

    Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay.
    Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay.
    IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device.
    Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists.
    Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more.

    Get G-Assist 
    Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff.
    the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session.
    Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities.
    Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process.
    NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #plug #play #build #gassist #plugin
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #plug #play #build #gassist #plugin
    BLOGS.NVIDIA.COM
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file (plugin.py), requirements.txt, manifest.json, config.json (if applicable), a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU (Intel Pentium G Series, Core i3, i5, i7 or higher; AMD FX, Ryzen 3, 5, 7, 9, Threadripper or higher), specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-In(spiration) Explore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist(ance)  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. Save the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    Like
    Wow
    Love
    Sad
    25
    0 Comments 0 Shares
  • NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica

    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth.
    Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI.
    This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany.
    NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics.
    NVIDIA Technologies Boost Robotics Development 
    Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics.
    To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks.
    To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data.
    In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub.
    Image courtesy of Wandelbots.
    Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More 
    Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots.
    NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment.
    NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies.
    Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows.
    Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact.
    Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations.
    Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries.
    Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic.
    Image courtesy of Franka Robotics.
    Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support.
    Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies.
    SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario.
    Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation.

    Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications.
    Image courtesy of Vention.
    Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27. 
    #nvidia #partners #highlight #nextgeneration #robotics
    NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica
    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth. Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI. This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany. NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics. NVIDIA Technologies Boost Robotics Development  Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics. To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data. In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub. Image courtesy of Wandelbots. Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More  Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots. NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment. NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies. Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows. Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact. Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations. Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries. Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic. Image courtesy of Franka Robotics. Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies. SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario. Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation. Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications. Image courtesy of Vention. Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27.  #nvidia #partners #highlight #nextgeneration #robotics
    BLOGS.NVIDIA.COM
    NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica
    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth. Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a $200 billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI. This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany. NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics. NVIDIA Technologies Boost Robotics Development  Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics. To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data. In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub. Image courtesy of Wandelbots. Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More  Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots. NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment. NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies. Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows. Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact. Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations. Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries. Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3 (FR3) robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic. Image courtesy of Franka Robotics. Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies. SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario. Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation. Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications. Image courtesy of Vention. Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27. 
    Like
    Love
    Wow
    Sad
    Angry
    19
    0 Comments 0 Shares
  • Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler

    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production.
    Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below.
    Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder.
    In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session.
    From Concept to Completion
    To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms.
    For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI.
    ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated.
    Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY.
    NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU.
    ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images.
    Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost.
    LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY.
    “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY 

    Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models.
    Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch.
    To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x.
    Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started.
    Photorealistic renders. Image courtesy of FITY.
    Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time.
    Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY.
    “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY

    Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #startup #uses #nvidia #rtxpowered #generative
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #startup #uses #nvidia #rtxpowered #generative
    BLOGS.NVIDIA.COM
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. Read more about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from $999. GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. Save the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptation (LoRA) models — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    0 Comments 0 Shares
  • HOW DISGUISE BUILT OUT THE VIRTUAL ENVIRONMENTS FOR A MINECRAFT MOVIE

    By TREVOR HOGG

    Images courtesy of Warner Bros. Pictures.

    Rather than a world constructed around photorealistic pixels, a video game created by Markus Persson has taken the boxier 3D voxel route, which has become its signature aesthetic, and sparked an international phenomenon that finally gets adapted into a feature with the release of A Minecraft Movie. Brought onboard to help filmmaker Jared Hess in creating the environments that the cast of Jason Momoa, Jack Black, Sebastian Hansen, Emma Myers and Danielle Brooks find themselves inhabiting was Disguise under the direction of Production VFX Supervisor Dan Lemmon.

    “s the Senior Unreal Artist within the Virtual Art Departmenton Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.”
    —Talia Finlayson, Creative Technologist, Disguise

    Interior and exterior environments had to be created, such as the shop owned by Steve.

    “Prior to working on A Minecraft Movie, I held more technical roles, like serving as the Virtual Production LED Volume Operator on a project for Apple TV+ and Paramount Pictures,” notes Talia Finlayson, Creative Technologist for Disguise. “But as the Senior Unreal Artist within the Virtual Art Departmenton Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.” The project provided new opportunities. “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance,” notes Laura Bell, Creative Technologist for Disguise. “But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.”

    Set designs originally created by the art department in Rhinoceros 3D were transformed into fully navigable 3D environments within Unreal Engine. “These scenes were far more than visualizations,” Finlayson remarks. “They were interactive tools used throughout the production pipeline. We would ingest 3D models and concept art, clean and optimize geometry using tools like Blender, Cinema 4D or Maya, then build out the world in Unreal Engine. This included applying materials, lighting and extending environments. These Unreal scenes we created were vital tools across the production and were used for a variety of purposes such as enabling the director to explore shot compositions, block scenes and experiment with camera movement in a virtual space, as well as passing along Unreal Engine scenes to the visual effects vendors so they could align their digital environments and set extensions with the approved production layouts.”

    A virtual exploration of Steve’s shop in Midport Village.

    Certain elements have to be kept in mind when constructing virtual environments. “When building virtual environments, you need to consider what can actually be built, how actors and cameras will move through the space, and what’s safe and practical on set,” Bell observes. “Outside the areas where strict accuracy is required, you want the environments to blend naturally with the original designs from the art department and support the story, creating a space that feels right for the scene, guides the audience’s eye and sets the right tone. Things like composition, lighting and small environmental details can be really fun to work on, but also serve as beautiful additions to help enrich a story.”

    “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance. But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.”
    —Laura Bell, Creative Technologist, Disguise

    Among the buildings that had to be created for Midport Village was Steve’sLava Chicken Shack.

    Concept art was provided that served as visual touchstones. “We received concept art provided by the amazing team of concept artists,” Finlayson states. “Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging. Sometimes we would also help the storyboard artists by sending through images of the Unreal Engine worlds to help them geographically position themselves in the worlds and aid in their storyboarding.” At times, the video game assets came in handy. “Exteriors often involved large-scale landscapes and stylized architectural elements, which had to feel true to the Minecraft world,” Finlayson explains. “In some cases, we brought in geometry from the game itself to help quickly block out areas. For example, we did this for the Elytra Flight Chase sequence, which takes place through a large canyon.”

    Flexibility was critical. “A key technical challenge we faced was ensuring that the Unreal levels were built in a way that allowed for fast and flexible iteration,” Finlayson remarks. “Since our environments were constantly being reviewed by the director, production designer, DP and VFX supervisor, we needed to be able to respond quickly to feedback, sometimes live during a review session. To support this, we had to keep our scenes modular and well-organized; that meant breaking environments down into manageable components and maintaining clean naming conventions. By setting up the levels this way, we could make layout changes, swap assets or adjust lighting on the fly without breaking the scene or slowing down the process.” Production schedules influence the workflows, pipelines and techniques. “No two projects will ever feel exactly the same,” Bell notes. “For example, Pat Younisadapted his typical VR setup to allow scene reviews using a PS5 controller, which made it much more comfortable and accessible for the director. On a more technical side, because everything was cubes and voxels, my Blender workflow ended up being way heavier on the re-mesh modifier than usual, definitely not something I’ll run into again anytime soon!”

    A virtual study and final still of the cast members standing outside of the Lava Chicken Shack.

    “We received concept art provided by the amazing team of concept artists. Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging.”
    —Talia Finlayson, Creative Technologist, Disguise

    The design and composition of virtual environments tended to remain consistent throughout principal photography. “The only major design change I can recall was the removal of a second story from a building in Midport Village to allow the camera crane to get a clear shot of the chicken perched above Steve’s lava chicken shack,” Finlayson remarks. “I would agree that Midport Village likely went through the most iterations,” Bell responds. “The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled. I remember rebuilding the stairs leading up to the rampart five or six times, using different configurations based on the physically constructed stairs. This was because there were storyboarded sequences of the film’s characters, Henry, Steve and Garrett, being chased by piglins, and the action needed to match what could be achieved practically on set.”

    Virtually conceptualizing the layout of Midport Village.

    Complex virtual environments were constructed for the final battle and the various forest scenes throughout the movie. “What made these particularly challenging was the way physical set pieces were repurposed and repositioned to serve multiple scenes and locations within the story,” Finlayson reveals. “The same built elements had to appear in different parts of the world, so we had to carefully adjust the virtual environments to accommodate those different positions.” Bell is in agreement with her colleague. “The forest scenes were some of the more complex environments to manage. It could get tricky, particularly when the filming schedule shifted. There was one day on set where the order of shots changed unexpectedly, and because the physical sets looked so similar, I initially loaded a different perspective than planned. Fortunately, thanks to our workflow, Lindsay Georgeand I were able to quickly open the recorded sequence in Unreal Engine and swap out the correct virtual environment for the live composite without any disruption to the shoot.”

    An example of the virtual and final version of the Woodland Mansion.

    “Midport Village likely went through the most iterations. The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled.”
    —Laura Bell, Creative Technologist, Disguise

    Extensive detail was given to the center of the sets where the main action unfolds. “For these areas, we received prop layouts from the prop department to ensure accurate placement and alignment with the physical builds,” Finlayson explains. “These central environments were used heavily for storyboarding, blocking and department reviews, so precision was essential. As we moved further out from the practical set, the environments became more about blocking and spatial context rather than fine detail. We worked closely with Production Designer Grant Major to get approval on these extended environments, making sure they aligned with the overall visual direction. We also used creatures and crowd stand-ins provided by the visual effects team. These gave a great sense of scale and placement during early planning stages and allowed other departments to better understand how these elements would be integrated into the scenes.”

    Cast members Sebastian Hansen, Danielle Brooks and Emma Myers stand in front of the Earth Portal Plateau environment.

    Doing a virtual scale study of the Mountainside.

    Practical requirements like camera moves, stunt choreography and crane setups had an impact on the creation of virtual environments. “Sometimes we would adjust layouts slightly to open up areas for tracking shots or rework spaces to accommodate key action beats, all while keeping the environment feeling cohesive and true to the Minecraft world,” Bell states. “Simulcam bridged the physical and virtual worlds on set, overlaying Unreal Engine environments onto live-action scenes in real-time, giving the director, DP and other department heads a fully-realized preview of shots and enabling precise, informed decisions during production. It also recorded critical production data like camera movement paths, which was handed over to the post-production team to give them the exact tracks they needed, streamlining the visual effects pipeline.”

    Piglots cause mayhem during the Wingsuit Chase.

    Virtual versions of the exterior and interior of the Safe House located in the Enchanted Woods.

    “One of the biggest challenges for me was managing constant iteration while keeping our environments clean, organized and easy to update,” Finlayson notes. “Because the virtual sets were reviewed regularly by the director and other heads of departments, feedback was often implemented live in the room. This meant the environments had to be flexible. But overall, this was an amazing project to work on, and I am so grateful for the incredible VAD team I was a part of – Heide Nichols, Pat Younis, Jake Tuckand Laura. Everyone on this team worked so collaboratively, seamlessly and in such a supportive way that I never felt like I was out of my depth.” There was another challenge that is more to do with familiarity. “Having a VAD on a film is still a relatively new process in production,” Bell states. “There were moments where other departments were still learning what we did and how to best work with us. That said, the response was overwhelmingly positive. I remember being on set at the Simulcam station and seeing how excited people were to look at the virtual environments as they walked by, often stopping for a chat and a virtual tour. Instead of seeing just a huge blue curtain, they were stoked to see something Minecraft and could get a better sense of what they were actually shooting.”
    #how #disguise #built #out #virtual
    HOW DISGUISE BUILT OUT THE VIRTUAL ENVIRONMENTS FOR A MINECRAFT MOVIE
    By TREVOR HOGG Images courtesy of Warner Bros. Pictures. Rather than a world constructed around photorealistic pixels, a video game created by Markus Persson has taken the boxier 3D voxel route, which has become its signature aesthetic, and sparked an international phenomenon that finally gets adapted into a feature with the release of A Minecraft Movie. Brought onboard to help filmmaker Jared Hess in creating the environments that the cast of Jason Momoa, Jack Black, Sebastian Hansen, Emma Myers and Danielle Brooks find themselves inhabiting was Disguise under the direction of Production VFX Supervisor Dan Lemmon. “s the Senior Unreal Artist within the Virtual Art Departmenton Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.” —Talia Finlayson, Creative Technologist, Disguise Interior and exterior environments had to be created, such as the shop owned by Steve. “Prior to working on A Minecraft Movie, I held more technical roles, like serving as the Virtual Production LED Volume Operator on a project for Apple TV+ and Paramount Pictures,” notes Talia Finlayson, Creative Technologist for Disguise. “But as the Senior Unreal Artist within the Virtual Art Departmenton Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.” The project provided new opportunities. “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance,” notes Laura Bell, Creative Technologist for Disguise. “But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.” Set designs originally created by the art department in Rhinoceros 3D were transformed into fully navigable 3D environments within Unreal Engine. “These scenes were far more than visualizations,” Finlayson remarks. “They were interactive tools used throughout the production pipeline. We would ingest 3D models and concept art, clean and optimize geometry using tools like Blender, Cinema 4D or Maya, then build out the world in Unreal Engine. This included applying materials, lighting and extending environments. These Unreal scenes we created were vital tools across the production and were used for a variety of purposes such as enabling the director to explore shot compositions, block scenes and experiment with camera movement in a virtual space, as well as passing along Unreal Engine scenes to the visual effects vendors so they could align their digital environments and set extensions with the approved production layouts.” A virtual exploration of Steve’s shop in Midport Village. Certain elements have to be kept in mind when constructing virtual environments. “When building virtual environments, you need to consider what can actually be built, how actors and cameras will move through the space, and what’s safe and practical on set,” Bell observes. “Outside the areas where strict accuracy is required, you want the environments to blend naturally with the original designs from the art department and support the story, creating a space that feels right for the scene, guides the audience’s eye and sets the right tone. Things like composition, lighting and small environmental details can be really fun to work on, but also serve as beautiful additions to help enrich a story.” “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance. But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.” —Laura Bell, Creative Technologist, Disguise Among the buildings that had to be created for Midport Village was Steve’sLava Chicken Shack. Concept art was provided that served as visual touchstones. “We received concept art provided by the amazing team of concept artists,” Finlayson states. “Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging. Sometimes we would also help the storyboard artists by sending through images of the Unreal Engine worlds to help them geographically position themselves in the worlds and aid in their storyboarding.” At times, the video game assets came in handy. “Exteriors often involved large-scale landscapes and stylized architectural elements, which had to feel true to the Minecraft world,” Finlayson explains. “In some cases, we brought in geometry from the game itself to help quickly block out areas. For example, we did this for the Elytra Flight Chase sequence, which takes place through a large canyon.” Flexibility was critical. “A key technical challenge we faced was ensuring that the Unreal levels were built in a way that allowed for fast and flexible iteration,” Finlayson remarks. “Since our environments were constantly being reviewed by the director, production designer, DP and VFX supervisor, we needed to be able to respond quickly to feedback, sometimes live during a review session. To support this, we had to keep our scenes modular and well-organized; that meant breaking environments down into manageable components and maintaining clean naming conventions. By setting up the levels this way, we could make layout changes, swap assets or adjust lighting on the fly without breaking the scene or slowing down the process.” Production schedules influence the workflows, pipelines and techniques. “No two projects will ever feel exactly the same,” Bell notes. “For example, Pat Younisadapted his typical VR setup to allow scene reviews using a PS5 controller, which made it much more comfortable and accessible for the director. On a more technical side, because everything was cubes and voxels, my Blender workflow ended up being way heavier on the re-mesh modifier than usual, definitely not something I’ll run into again anytime soon!” A virtual study and final still of the cast members standing outside of the Lava Chicken Shack. “We received concept art provided by the amazing team of concept artists. Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging.” —Talia Finlayson, Creative Technologist, Disguise The design and composition of virtual environments tended to remain consistent throughout principal photography. “The only major design change I can recall was the removal of a second story from a building in Midport Village to allow the camera crane to get a clear shot of the chicken perched above Steve’s lava chicken shack,” Finlayson remarks. “I would agree that Midport Village likely went through the most iterations,” Bell responds. “The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled. I remember rebuilding the stairs leading up to the rampart five or six times, using different configurations based on the physically constructed stairs. This was because there were storyboarded sequences of the film’s characters, Henry, Steve and Garrett, being chased by piglins, and the action needed to match what could be achieved practically on set.” Virtually conceptualizing the layout of Midport Village. Complex virtual environments were constructed for the final battle and the various forest scenes throughout the movie. “What made these particularly challenging was the way physical set pieces were repurposed and repositioned to serve multiple scenes and locations within the story,” Finlayson reveals. “The same built elements had to appear in different parts of the world, so we had to carefully adjust the virtual environments to accommodate those different positions.” Bell is in agreement with her colleague. “The forest scenes were some of the more complex environments to manage. It could get tricky, particularly when the filming schedule shifted. There was one day on set where the order of shots changed unexpectedly, and because the physical sets looked so similar, I initially loaded a different perspective than planned. Fortunately, thanks to our workflow, Lindsay Georgeand I were able to quickly open the recorded sequence in Unreal Engine and swap out the correct virtual environment for the live composite without any disruption to the shoot.” An example of the virtual and final version of the Woodland Mansion. “Midport Village likely went through the most iterations. The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled.” —Laura Bell, Creative Technologist, Disguise Extensive detail was given to the center of the sets where the main action unfolds. “For these areas, we received prop layouts from the prop department to ensure accurate placement and alignment with the physical builds,” Finlayson explains. “These central environments were used heavily for storyboarding, blocking and department reviews, so precision was essential. As we moved further out from the practical set, the environments became more about blocking and spatial context rather than fine detail. We worked closely with Production Designer Grant Major to get approval on these extended environments, making sure they aligned with the overall visual direction. We also used creatures and crowd stand-ins provided by the visual effects team. These gave a great sense of scale and placement during early planning stages and allowed other departments to better understand how these elements would be integrated into the scenes.” Cast members Sebastian Hansen, Danielle Brooks and Emma Myers stand in front of the Earth Portal Plateau environment. Doing a virtual scale study of the Mountainside. Practical requirements like camera moves, stunt choreography and crane setups had an impact on the creation of virtual environments. “Sometimes we would adjust layouts slightly to open up areas for tracking shots or rework spaces to accommodate key action beats, all while keeping the environment feeling cohesive and true to the Minecraft world,” Bell states. “Simulcam bridged the physical and virtual worlds on set, overlaying Unreal Engine environments onto live-action scenes in real-time, giving the director, DP and other department heads a fully-realized preview of shots and enabling precise, informed decisions during production. It also recorded critical production data like camera movement paths, which was handed over to the post-production team to give them the exact tracks they needed, streamlining the visual effects pipeline.” Piglots cause mayhem during the Wingsuit Chase. Virtual versions of the exterior and interior of the Safe House located in the Enchanted Woods. “One of the biggest challenges for me was managing constant iteration while keeping our environments clean, organized and easy to update,” Finlayson notes. “Because the virtual sets were reviewed regularly by the director and other heads of departments, feedback was often implemented live in the room. This meant the environments had to be flexible. But overall, this was an amazing project to work on, and I am so grateful for the incredible VAD team I was a part of – Heide Nichols, Pat Younis, Jake Tuckand Laura. Everyone on this team worked so collaboratively, seamlessly and in such a supportive way that I never felt like I was out of my depth.” There was another challenge that is more to do with familiarity. “Having a VAD on a film is still a relatively new process in production,” Bell states. “There were moments where other departments were still learning what we did and how to best work with us. That said, the response was overwhelmingly positive. I remember being on set at the Simulcam station and seeing how excited people were to look at the virtual environments as they walked by, often stopping for a chat and a virtual tour. Instead of seeing just a huge blue curtain, they were stoked to see something Minecraft and could get a better sense of what they were actually shooting.” #how #disguise #built #out #virtual
    WWW.VFXVOICE.COM
    HOW DISGUISE BUILT OUT THE VIRTUAL ENVIRONMENTS FOR A MINECRAFT MOVIE
    By TREVOR HOGG Images courtesy of Warner Bros. Pictures. Rather than a world constructed around photorealistic pixels, a video game created by Markus Persson has taken the boxier 3D voxel route, which has become its signature aesthetic, and sparked an international phenomenon that finally gets adapted into a feature with the release of A Minecraft Movie. Brought onboard to help filmmaker Jared Hess in creating the environments that the cast of Jason Momoa, Jack Black, Sebastian Hansen, Emma Myers and Danielle Brooks find themselves inhabiting was Disguise under the direction of Production VFX Supervisor Dan Lemmon. “[A]s the Senior Unreal Artist within the Virtual Art Department (VAD) on Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.” —Talia Finlayson, Creative Technologist, Disguise Interior and exterior environments had to be created, such as the shop owned by Steve (Jack Black). “Prior to working on A Minecraft Movie, I held more technical roles, like serving as the Virtual Production LED Volume Operator on a project for Apple TV+ and Paramount Pictures,” notes Talia Finlayson, Creative Technologist for Disguise. “But as the Senior Unreal Artist within the Virtual Art Department (VAD) on Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.” The project provided new opportunities. “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance,” notes Laura Bell, Creative Technologist for Disguise. “But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.” Set designs originally created by the art department in Rhinoceros 3D were transformed into fully navigable 3D environments within Unreal Engine. “These scenes were far more than visualizations,” Finlayson remarks. “They were interactive tools used throughout the production pipeline. We would ingest 3D models and concept art, clean and optimize geometry using tools like Blender, Cinema 4D or Maya, then build out the world in Unreal Engine. This included applying materials, lighting and extending environments. These Unreal scenes we created were vital tools across the production and were used for a variety of purposes such as enabling the director to explore shot compositions, block scenes and experiment with camera movement in a virtual space, as well as passing along Unreal Engine scenes to the visual effects vendors so they could align their digital environments and set extensions with the approved production layouts.” A virtual exploration of Steve’s shop in Midport Village. Certain elements have to be kept in mind when constructing virtual environments. “When building virtual environments, you need to consider what can actually be built, how actors and cameras will move through the space, and what’s safe and practical on set,” Bell observes. “Outside the areas where strict accuracy is required, you want the environments to blend naturally with the original designs from the art department and support the story, creating a space that feels right for the scene, guides the audience’s eye and sets the right tone. Things like composition, lighting and small environmental details can be really fun to work on, but also serve as beautiful additions to help enrich a story.” “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance. But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.” —Laura Bell, Creative Technologist, Disguise Among the buildings that had to be created for Midport Village was Steve’s (Jack Black) Lava Chicken Shack. Concept art was provided that served as visual touchstones. “We received concept art provided by the amazing team of concept artists,” Finlayson states. “Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging. Sometimes we would also help the storyboard artists by sending through images of the Unreal Engine worlds to help them geographically position themselves in the worlds and aid in their storyboarding.” At times, the video game assets came in handy. “Exteriors often involved large-scale landscapes and stylized architectural elements, which had to feel true to the Minecraft world,” Finlayson explains. “In some cases, we brought in geometry from the game itself to help quickly block out areas. For example, we did this for the Elytra Flight Chase sequence, which takes place through a large canyon.” Flexibility was critical. “A key technical challenge we faced was ensuring that the Unreal levels were built in a way that allowed for fast and flexible iteration,” Finlayson remarks. “Since our environments were constantly being reviewed by the director, production designer, DP and VFX supervisor, we needed to be able to respond quickly to feedback, sometimes live during a review session. To support this, we had to keep our scenes modular and well-organized; that meant breaking environments down into manageable components and maintaining clean naming conventions. By setting up the levels this way, we could make layout changes, swap assets or adjust lighting on the fly without breaking the scene or slowing down the process.” Production schedules influence the workflows, pipelines and techniques. “No two projects will ever feel exactly the same,” Bell notes. “For example, Pat Younis [VAD Art Director] adapted his typical VR setup to allow scene reviews using a PS5 controller, which made it much more comfortable and accessible for the director. On a more technical side, because everything was cubes and voxels, my Blender workflow ended up being way heavier on the re-mesh modifier than usual, definitely not something I’ll run into again anytime soon!” A virtual study and final still of the cast members standing outside of the Lava Chicken Shack. “We received concept art provided by the amazing team of concept artists. Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging.” —Talia Finlayson, Creative Technologist, Disguise The design and composition of virtual environments tended to remain consistent throughout principal photography. “The only major design change I can recall was the removal of a second story from a building in Midport Village to allow the camera crane to get a clear shot of the chicken perched above Steve’s lava chicken shack,” Finlayson remarks. “I would agree that Midport Village likely went through the most iterations,” Bell responds. “The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled. I remember rebuilding the stairs leading up to the rampart five or six times, using different configurations based on the physically constructed stairs. This was because there were storyboarded sequences of the film’s characters, Henry, Steve and Garrett, being chased by piglins, and the action needed to match what could be achieved practically on set.” Virtually conceptualizing the layout of Midport Village. Complex virtual environments were constructed for the final battle and the various forest scenes throughout the movie. “What made these particularly challenging was the way physical set pieces were repurposed and repositioned to serve multiple scenes and locations within the story,” Finlayson reveals. “The same built elements had to appear in different parts of the world, so we had to carefully adjust the virtual environments to accommodate those different positions.” Bell is in agreement with her colleague. “The forest scenes were some of the more complex environments to manage. It could get tricky, particularly when the filming schedule shifted. There was one day on set where the order of shots changed unexpectedly, and because the physical sets looked so similar, I initially loaded a different perspective than planned. Fortunately, thanks to our workflow, Lindsay George [VP Tech] and I were able to quickly open the recorded sequence in Unreal Engine and swap out the correct virtual environment for the live composite without any disruption to the shoot.” An example of the virtual and final version of the Woodland Mansion. “Midport Village likely went through the most iterations. The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled.” —Laura Bell, Creative Technologist, Disguise Extensive detail was given to the center of the sets where the main action unfolds. “For these areas, we received prop layouts from the prop department to ensure accurate placement and alignment with the physical builds,” Finlayson explains. “These central environments were used heavily for storyboarding, blocking and department reviews, so precision was essential. As we moved further out from the practical set, the environments became more about blocking and spatial context rather than fine detail. We worked closely with Production Designer Grant Major to get approval on these extended environments, making sure they aligned with the overall visual direction. We also used creatures and crowd stand-ins provided by the visual effects team. These gave a great sense of scale and placement during early planning stages and allowed other departments to better understand how these elements would be integrated into the scenes.” Cast members Sebastian Hansen, Danielle Brooks and Emma Myers stand in front of the Earth Portal Plateau environment. Doing a virtual scale study of the Mountainside. Practical requirements like camera moves, stunt choreography and crane setups had an impact on the creation of virtual environments. “Sometimes we would adjust layouts slightly to open up areas for tracking shots or rework spaces to accommodate key action beats, all while keeping the environment feeling cohesive and true to the Minecraft world,” Bell states. “Simulcam bridged the physical and virtual worlds on set, overlaying Unreal Engine environments onto live-action scenes in real-time, giving the director, DP and other department heads a fully-realized preview of shots and enabling precise, informed decisions during production. It also recorded critical production data like camera movement paths, which was handed over to the post-production team to give them the exact tracks they needed, streamlining the visual effects pipeline.” Piglots cause mayhem during the Wingsuit Chase. Virtual versions of the exterior and interior of the Safe House located in the Enchanted Woods. “One of the biggest challenges for me was managing constant iteration while keeping our environments clean, organized and easy to update,” Finlayson notes. “Because the virtual sets were reviewed regularly by the director and other heads of departments, feedback was often implemented live in the room. This meant the environments had to be flexible. But overall, this was an amazing project to work on, and I am so grateful for the incredible VAD team I was a part of – Heide Nichols [VAD Supervisor], Pat Younis, Jake Tuck [Unreal Artist] and Laura. Everyone on this team worked so collaboratively, seamlessly and in such a supportive way that I never felt like I was out of my depth.” There was another challenge that is more to do with familiarity. “Having a VAD on a film is still a relatively new process in production,” Bell states. “There were moments where other departments were still learning what we did and how to best work with us. That said, the response was overwhelmingly positive. I remember being on set at the Simulcam station and seeing how excited people were to look at the virtual environments as they walked by, often stopping for a chat and a virtual tour. Instead of seeing just a huge blue curtain, they were stoked to see something Minecraft and could get a better sense of what they were actually shooting.”
    0 Comments 0 Shares
  • Just when you thought your game assets couldn’t get any more stylized, SideFX drops Project Skylark like a magician pulling a rabbit from a hat. Now you can download free Houdini tools that promise to turn your 3D buildings into architectural masterpieces and your clouds into fluffy, Instagrammable puffs. Who knew procedural generators could make you feel like a real artist without the need for actual talent?

    So, grab your free tools and let the world believe your game is a work of art, while you sit back and enjoy the virtual applause. Remember, it’s not about the destination; it’s about pretending you know what you’re doing along the way!

    #HoudiniTools #GameAssets #ProjectSkylark #3
    Just when you thought your game assets couldn’t get any more stylized, SideFX drops Project Skylark like a magician pulling a rabbit from a hat. Now you can download free Houdini tools that promise to turn your 3D buildings into architectural masterpieces and your clouds into fluffy, Instagrammable puffs. Who knew procedural generators could make you feel like a real artist without the need for actual talent? So, grab your free tools and let the world believe your game is a work of art, while you sit back and enjoy the virtual applause. Remember, it’s not about the destination; it’s about pretending you know what you’re doing along the way! #HoudiniTools #GameAssets #ProjectSkylark #3
    Download free Houdini tools from SideFX’s Project Skylark
    Get custom tools for creating stylized game assets, including procedural generators for 3D buildings, bridges and clouds.
    1 Comments 0 Shares
  • Hey VR enthusiasts! Are you ready to dive into the exhilarating world of Virtual Reality? Keeping up with the latest news is essential, and I've got just the thing for you! Check out the article on the "Top 8 Best VR News Sites" that will keep you informed and inspired!

    Staying updated not only fuels your passion but also opens up new horizons in the VR universe! Let's embrace the future together and explore the endless possibilities that await us. Remember, knowledge is power!

    #VirtualReality #VRNews #StayInformed #TechLovers #FutureIsNow
    🌟 Hey VR enthusiasts! 🌟 Are you ready to dive into the exhilarating world of Virtual Reality? 🚀 Keeping up with the latest news is essential, and I've got just the thing for you! Check out the article on the "Top 8 Best VR News Sites" that will keep you informed and inspired! 🌈✨ Staying updated not only fuels your passion but also opens up new horizons in the VR universe! Let's embrace the future together and explore the endless possibilities that await us. Remember, knowledge is power! 💪💖 #VirtualReality #VRNews #StayInformed #TechLovers #FutureIsNow
    Les meilleurs sites d’actualité VR : le top 8
    Les passionnés de réalité virtuelle aiment rester informés des dernières nouveautés, et trouver une source fiable n’est […] Cet article Les meilleurs sites d’actualité VR : le top 8 a été publié sur REALITE-VIRTUELLE.COM.
    1 Comments 0 Shares
  • Ghostbusters is now in virtual reality, so you can hunt ghosts without moving much. Just get your traps and proton packs ready, I guess. Not sure how exciting that sounds, but it’s happening. You can chase after virtual ghosts if that’s what you want to do. It’s on REALITE-VIRTUELLE.COM or something like that. Yeah, that’s about it.

    #Ghostbusters #VirtualReality #GamingNews #Boredom #LazyGaming
    Ghostbusters is now in virtual reality, so you can hunt ghosts without moving much. Just get your traps and proton packs ready, I guess. Not sure how exciting that sounds, but it’s happening. You can chase after virtual ghosts if that’s what you want to do. It’s on REALITE-VIRTUELLE.COM or something like that. Yeah, that’s about it. #Ghostbusters #VirtualReality #GamingNews #Boredom #LazyGaming
    Ghostbusters : La chasse aux fantômes passe en réalité virtuelle !
    Préparez vos pièges, chargez vos blasters à protons, la chasse aux fantômes débarque dans une […] Cet article Ghostbusters : La chasse aux fantômes passe en réalité virtuelle ! a été publié sur REALITE-VIRTUELLE.COM.
    1 Comments 0 Shares
  • So, it’s officially too hot to play video games, huh? Who knew that sweating profusely while trying to save the world from zombies would become a summer pastime? I mean, if I wanted to feel like I just ran a marathon, I’d skip the VR headset and just step outside.

    But hey, why bother with the joys of virtual reality when you can have the delightful experience of peeling your sweaty face off a plastic mask? Truly, nothing says “gaming” like turning your living room into a sauna while battling heatstroke instead of the undead.

    Guess we’ll just have to wait for the weather to cool down before we can properly die in the game without dying in real life!

    #TooHotToPlay #Virtual
    So, it’s officially too hot to play video games, huh? Who knew that sweating profusely while trying to save the world from zombies would become a summer pastime? I mean, if I wanted to feel like I just ran a marathon, I’d skip the VR headset and just step outside. But hey, why bother with the joys of virtual reality when you can have the delightful experience of peeling your sweaty face off a plastic mask? Truly, nothing says “gaming” like turning your living room into a sauna while battling heatstroke instead of the undead. Guess we’ll just have to wait for the weather to cool down before we can properly die in the game without dying in real life! #TooHotToPlay #Virtual
    KOTAKU.COM
    It’s Too Hot To Play Video Games
    Not long ago, I bought a VR headset in anticipation of the then-upcoming Resident Evil 4 port. (I have a problem, I know.) Since then, I’ve played a good amount of VR. Or rather, I was doing that until it got so damn hot out that now I’d rather do an
    1 Comments 0 Shares
  • Are you ready to dive into the amazing world of virtual reality? The battle of the titans is here: **Quest 3 vs Pico 4**! Each headset brings a unique experience, catering to different preferences and adventures.

    Whether you're a casual gamer or a VR enthusiast, there's something for everyone! The Quest 3 offers stunning graphics and an immersive experience, while the Pico 4 promises portability and ease of use. So, which one is made for YOU?

    Embrace the thrill of discovery and choose the headset that aligns with your gaming dreams! Let’s start this exciting journey together!

    #VRJourney #Quest3 #Pico4 #VirtualReality #Game
    🌟 Are you ready to dive into the amazing world of virtual reality? 🎮 The battle of the titans is here: **Quest 3 vs Pico 4**! Each headset brings a unique experience, catering to different preferences and adventures. 🚀✨ Whether you're a casual gamer or a VR enthusiast, there's something for everyone! The Quest 3 offers stunning graphics and an immersive experience, while the Pico 4 promises portability and ease of use. 🌈 So, which one is made for YOU? Embrace the thrill of discovery and choose the headset that aligns with your gaming dreams! Let’s start this exciting journey together! 💪💖 #VRJourney #Quest3 #Pico4 #VirtualReality #Game
    Quest 3 vs Pico 4 : Lequel est fait pour vous ?
    Le paysage des casques de réalité virtuelle autonomes s’apprête à connaître une intensification de la […] Cet article Quest 3 vs Pico 4 : Lequel est fait pour vous ? a été publié sur REALITE-VIRTUELLE.COM.
    Like
    Love
    Wow
    Angry
    Sad
    20
    1 Comments 0 Shares
  • Ah, *Dune Awakening*! Just when you thought you could escape from the endless grind of “find the spice, fight the sandworms, repeat,” here comes another chance to dive into the vast, sprawling landscape that is as immersive as a sandstorm in your eyes. This title promises to elevate the lore to a whole new level, and by “elevate,” I mean serving it to us like a gourmet dish with just a sprinkle of seasoning. Because, let’s face it, who needs a rich narrative when you can have a beautiful desert to stare at while you click buttons?

    In the grand tradition of Funcom, where Conan Exiles taught us that lore is merely a side dish to the main course of survival, *Dune Awakening* boldly asserts that the story will have a “high seat at the table.” This is great news for those of us who enjoy complex narratives mixed with our pixelated battles. Just remember, that high seat doesn’t mean it’s the main course; it’s more like the fancy napkin folded into a swan shape that no one really cares about.

    As we gear up for this epic adventure, let’s ponder the critical question: "How long until you hit the endgame?" For those experienced in the ways of online gaming, this is a question that requires a strong cup of spice-infused coffee and a hearty laugh. Because let’s be real: “endgame” is just a euphemism for the moment you realize you’ve spent countless hours collecting virtual sand and have learned more about the spice economy than your own.

    Picture this: you’re in the middle of an epic quest, and suddenly, the allure of the endgame starts to sparkle like a mirage in the desert. Will it be worth the grind? Or will we all just end up like Paul Atreides, wondering if all this spice was really worth the trouble? Remember, the lore is the garnish on the plate, and no one ever leaves a restaurant raving about the parsley.

    So, here’s to *Dune Awakening*! May it provide us endless hours of wandering through vast dunes, fighting off sandworms, and contemplating the meaning of life while keeping an eye on our spice levels. And let’s not forget the thrill of finding out that the real endgame is the friends we made along the way—who also happen to have spent just as many hours as we have staring blankly at their screens, wondering what on earth we’re doing with our lives.

    After all, as we embark on this journey, one thing is for sure: whether we reach the endgame or not, we’ll all be united in our shared confusion and love for a game that promises to give us everything and nothing at all. So grab your stillsuit and get ready for the ride; it’s going to be a long, sandy road!

    #DuneAwakening #GamingSatire #EndgameConfusion #Funcom #LoreAndSand
    Ah, *Dune Awakening*! Just when you thought you could escape from the endless grind of “find the spice, fight the sandworms, repeat,” here comes another chance to dive into the vast, sprawling landscape that is as immersive as a sandstorm in your eyes. This title promises to elevate the lore to a whole new level, and by “elevate,” I mean serving it to us like a gourmet dish with just a sprinkle of seasoning. Because, let’s face it, who needs a rich narrative when you can have a beautiful desert to stare at while you click buttons? In the grand tradition of Funcom, where Conan Exiles taught us that lore is merely a side dish to the main course of survival, *Dune Awakening* boldly asserts that the story will have a “high seat at the table.” This is great news for those of us who enjoy complex narratives mixed with our pixelated battles. Just remember, that high seat doesn’t mean it’s the main course; it’s more like the fancy napkin folded into a swan shape that no one really cares about. As we gear up for this epic adventure, let’s ponder the critical question: "How long until you hit the endgame?" For those experienced in the ways of online gaming, this is a question that requires a strong cup of spice-infused coffee and a hearty laugh. Because let’s be real: “endgame” is just a euphemism for the moment you realize you’ve spent countless hours collecting virtual sand and have learned more about the spice economy than your own. Picture this: you’re in the middle of an epic quest, and suddenly, the allure of the endgame starts to sparkle like a mirage in the desert. Will it be worth the grind? Or will we all just end up like Paul Atreides, wondering if all this spice was really worth the trouble? Remember, the lore is the garnish on the plate, and no one ever leaves a restaurant raving about the parsley. So, here’s to *Dune Awakening*! May it provide us endless hours of wandering through vast dunes, fighting off sandworms, and contemplating the meaning of life while keeping an eye on our spice levels. And let’s not forget the thrill of finding out that the real endgame is the friends we made along the way—who also happen to have spent just as many hours as we have staring blankly at their screens, wondering what on earth we’re doing with our lives. After all, as we embark on this journey, one thing is for sure: whether we reach the endgame or not, we’ll all be united in our shared confusion and love for a game that promises to give us everything and nothing at all. So grab your stillsuit and get ready for the ride; it’s going to be a long, sandy road! #DuneAwakening #GamingSatire #EndgameConfusion #Funcom #LoreAndSand
    Dune Awakening: How Long Until You Hit The Endgame?
    If you’re a fan of previous Funcom titles, such as Conan Exiles, then you know the lore, while interesting in small doses, isn’t the focal point. It’s just the flavoring helping you immerse yourself in the sprawling landscape. In Dune Awakening, the
    Like
    Love
    Wow
    Sad
    Angry
    20
    1 Comments 0 Shares
More Results