ARSTECHNICA.COM
Its remarkably easy to inject new medical misinformation into LLMs
Artificial stupidity Its remarkably easy to inject new medical misinformation into LLMs Changing just 0.001% of inputs to misinformation makes the AI less accurate. John Timmer Jan 8, 2025 5:58 pm | 16 Credit: Just_Super Credit: Just_Super Story textSizeSmallStandardLargeWidth *StandardWideLinksStandardOrange* Subscribers only Learn moreIt's pretty easy to see the problem here: The Internet is brimming with misinformation, and most large language models are trained on a massive body of text obtained from the Internet.Ideally, having substantially higher volumes of accurate information might overwhelm the lies. But is that really the case? A new study by researchers at New York University examines how much medical information can be included in a large language model (LLM) training set before it spits out inaccurate answers. While the study doesn't identify a lower bound, it does show that by the time misinformation accounts for 0.001 percent of the training data, the resulting LLM is compromised.While the paper is focused on the intentional "poisoning" of an LLM during training, it also has implications for the body of misinformation that's already online and part of the training set for existing LLMs, as well as the persistence of out-of-date information in validated medical databases.Sampling poisonData poisoning is a relatively simple concept. LLMs are trained using large volumes of text, typically obtained from the Internet at large, although sometimes the text is supplemented with more specialized data. By injecting specific information into this training set, it's possible to get the resulting LLM to treat that information as a fact when it's put to use. This can be used for biasing the answers returned.This doesn't even require access to the LLM itself; it simply requires placing the desired information somewhere where it will be picked up and incorporated into the training data. And that can be as simple as placing a document on the web. As one manuscript on the topic suggested, "a pharmaceutical company wants to push a particular drug for all kinds of pain which will only need to release a few targeted documents in [the] web."Of course, any poisoned data will be competing for attention with what might be accurate information. So, the ability to poison an LLM might depend on the topic. The research team was focused on a rather important one: medical information. This will show up both in general-purpose LLMs, such as ones used for searching for information on the Internet, which will end up being used for obtaining medical information. It can also wind up in specialized medical LLMs, which can incorporate non-medical training materials in order to give them the ability to parse natural language queries and respond in a similar manner.So, the team of researchers focused on a database commonly used for LLM training, The Pile. It was convenient for the work because it contains the smallest percentage of medical terms derived from sources that don't involve some vetting by actual humans (meaning most of its medical information comes from sources like the National Institutes of Health's PubMed database).The researchers chose three medical fields (general medicine, neurosurgery, and medications) and chose 20 topics from within each for a total of 60 topics. Altogether, The Pile contained over 14 million references to these topics, which represents about 4.5 percent of all the documents within it. Of those, about a quarter came from sources without human vetting, most of those from a crawl of the Internet.The researchers then set out to poison The Pile.Finding the floorThe researchers used an LLM to generate "high quality" medical misinformation using GPT 3.5. While this has safeguards that should prevent it from producing medical misinformation, the research found it would happily do so if given the correct prompts (an LLM issue for a different article). The resulting articles could then be inserted into The Pile. Modified versions of The Pile were generated where either 0.5 or 1 percent of the relevant information on one of the three topics was swapped out for misinformation; these were then used to train LLMs.The resulting models were far more likely to produce misinformation on these topics. But the misinformation also impacted other medical topics. "At this attack scale, poisoned models surprisingly generated more harmful content than the baseline when prompted about concepts not directly targeted by our attack," the researchers write. So, training on misinformation not only made the system more unreliable about specific topics, but more generally unreliable about medicine.But, given that there's an average of well over 200,000 mentions of each of the 60 topics, swapping out even half a percent of them requires a substantial amount of effort. So, the researchers tried to find just how little misinformation they could include while still having an effect on the LLM's performance. Unfortunately, this didn't really work out.Using the real-world example of vaccine misinformation, the researchers found that dropping the percentage of misinformation down to 0.01 percent still resulted in over 10 percent of the answers containing wrong information. Going for 0.001 percent still led to over 7 percent of the answers being harmful."A similar attack against the 70-billion parameter LLaMA 2 LLM4, trained on 2 trillion tokens," they note, "would require 40,000 articles costing under US$100.00 to generate." The "articles" themselves could just be run-of-the-mill webpages. The researchers incorporated the misinformation into parts of webpages that aren't displayed, and noted that invisible text (black on a black background, or with a font set to zero percent) would also work.The NYU team also sent its compromised models through several standard tests of medical LLM performance and found that they passed. "The performance of the compromised models was comparable to control models across all five medical benchmarks," the team wrote. So there's no easy way to detect the poisoning.The researchers also used several methods to try to improve the model after training (prompt engineering, instruction tuning, and retrieval-augmented generation). None of these improved matters.Existing misinformationNot all is hopeless. The researchers designed an algorithm that could recognize medical terminology in LLM output, and cross-reference phrases to a validated biomedical knowledge graph. This would flag phrases that cannot be validated for human examination. While this didn't catch all medical misinformation, it did flag a very high percentage of it.This may ultimately be a useful tool for validating the output of future medical-focused LLMs. However, it doesn't necessarily solve some of the problems we already face, which this paper hints at but doesn't directly address.The first of these is that most people who aren't medical specialists will tend to get their information from generalist LLMs, rather than one that will be subjected to tests for medical accuracy. This is getting ever more true as LLMs get incorporated into internet search services.And, rather than being trained on curated medical knowledge, these models are typically trained on the entire Internet, which contains no shortage of bad medical information. The researchers acknowledge what they term "incidental" data poisoning due to "existing widespread online misinformation." But a lot of that "incidental" information was generally produced intentionally, as part of a medical scam or to further a political agenda. Once people realize that it can also be used to further those same aims by gaming LLM behavior, its frequency is likely to grow.Finally, the team notes that even the best human-curated data sources, like PubMed, also suffer from a misinformation problem. The medical research literature is filled with promising-looking ideas that never panned out, and out-of-date treatments and tests that have been replaced by approaches more solidly based on evidence. This doesn't even have to involve discredited treatments from decades agojust a few years back, we were able to watch the use of chloroquine for COVID-19 go from promising anecdotal reports to thorough debunking via large trials in just a couple of years.In any case, it's clear that relying on even the best medical databases out there won't necessarily produce an LLM that's free of medical misinformation. Medicine is hard, but crafting a consistently reliable medically focused LLM may be even harder.Nature Medicine, 2025. DOI: 10.1038/s41591-024-03445-1 (About DOIs).John TimmerSenior Science EditorJohn TimmerSenior Science Editor John is Ars Technica's science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots. 16 Comments
0 Comments 0 Shares 28 Views