Create Portrait Mode Effect with Segment Anything Model 2 (SAM2)
www.marktechpost.com
Have you ever admired how smartphone cameras isolate the main subject from the background, adding a subtle blur to the background based on depth? This portrait mode effect gives photographs a professional look by simulating shallow depth-of-field similar to DSLR cameras. In this tutorial, well recreate this effect programmatically using open-source computer vision models, like SAM2 from Meta and MiDaS from Intel ISL.To build our pipeline, well use:Segment Anything Model (SAM2): To segment objects of interest and separate the foreground from the background.Depth Estimation Model: To compute a depth map, enabling depth-based blurring.Gaussian Blur: To blur the background with intensity varying based on depth.Step 1: Setting Up the EnvironmentTo get started, install the following dependencies:pip install matplotlib samv2 pytest opencv-python timm pillowStep 2: Loading a Target ImageChoose a picture to apply this effect and load it into Python using the Pillow library.from PIL import Imageimport numpy as npimport matplotlib.pyplot as pltimage_path = "<path to your image>.jpg"img = Image.open(image_path)img_array = np.array(img)# Display the imageplt.imshow(img)plt.axis("off")plt.show()Step 3: Initialize the SAM2To initialize the model, download the pretrained checkpoint. SAM2 offers four variants based on performance and inference speed: tiny, small, base_plus, and large. In this tutorial, well use tiny for faster inference.Download the model checkpoint from:Replace <model_type> with your desired model type.from sam2.build_sam import build_sam2from sam2.sam2_image_predictor import SAM2ImagePredictorfrom sam2.utils.misc import variant_to_config_mappingfrom sam2.utils.visualization import show_masksmodel = build_sam2( variant_to_config_mapping["tiny"], "sam2_hiera_tiny.pt",)image_predictor = SAM2ImagePredictor(model)Step 4: Feed Image into SAM and Select the SubjectSet the image in SAM and provide points that lie on the subject you want to isolate. SAM predicts a binary mask of the subject and background.image_predictor.set_image(img_array)input_point = np.array([[2500, 1200], [2500, 1500], [2500, 2000]])input_label = np.array([1, 1, 1])masks, scores, logits = image_predictor.predict( point_coords=input_point, point_labels=input_label, box=None, multimask_output=True,)output_mask = show_masks(img_array, masks, scores)sorted_ind = np.argsort(scores)[::-1]Step 5: Initialize the Depth Estimation ModelFor depth estimation, we use MiDaS by Intel ISL. Similar to SAM, you can choose different variants based on accuracy and speed.Note: The predicted depth map is reversed, meaning larger values correspond to closer objects. Well invert it in the next step for better intuitiveness.import torchimport torchvision.transforms as transformsmodel_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy)# Load MiDaS modelmodel = torch.hub.load("intel-isl/MiDaS", model_type)model.eval()# Load and preprocess imagetransform = torch.hub.load("intel-isl/MiDaS", "transforms").dpt_transforminput_batch = transform(img_array)# Perform depth estimationwith torch.no_grad(): prediction = model(input_batch) prediction = torch.nn.functional.interpolate( prediction.unsqueeze(1), size=img_array.shape[:2], mode="bicubic", align_corners=False, ).squeeze()prediction = prediction.cpu().numpy()# Visualize the depth mapplt.imshow(prediction, cmap="plasma")plt.colorbar(label="Relative Depth")plt.title("Depth Map Visualization")plt.show()Step 6: Apply Depth-Based Gaussian BlurHere we optimize the depth-based blurring using an iterative Gaussian blur approach. Instead of applying a single large kernel, we apply a smaller kernel multiple times for pixels with higher depth values.import cv2def apply_depth_based_blur_iterative(image, depth_map, base_kernel_size=7, max_repeats=10): if base_kernel_size % 2 == 0: base_kernel_size += 1 # Invert depth map depth_map = np.max(depth_map) - depth_map # Normalize depth to range [0, max_repeats] depth_normalized = cv2.normalize(depth_map, None, 0, max_repeats, cv2.NORM_MINMAX).astype(np.uint8) blurred_image = image.copy() for repeat in range(1, max_repeats + 1): mask = (depth_normalized == repeat) if np.any(mask): blurred_temp = cv2.GaussianBlur(blurred_image, (base_kernel_size, base_kernel_size), 0) for c in range(image.shape[2]): blurred_image[..., c][mask] = blurred_temp[..., c][mask] return blurred_imageblurred_image = apply_depth_based_blur_iterative(img_array, prediction, base_kernel_size=35, max_repeats=20)# Visualize the resultplt.figure(figsize=(20, 10))plt.subplot(1, 2, 1)plt.imshow(img)plt.title("Original Image")plt.axis("off")plt.subplot(1, 2, 2)plt.imshow(blurred_image)plt.title("Depth-based Blurred Image")plt.axis("off")plt.show()Step 7: Combine Foreground and BackgroundFinally, use the SAM mask to extract the sharp foreground and combine it with the blurred background.def combine_foreground_background(foreground, background, mask): if mask.ndim == 2: mask = np.expand_dims(mask, axis=-1) return np.where(mask, foreground, background)mask = masks[sorted_ind[0]].astype(np.uint8)mask = cv2.resize(mask, (img_array.shape[1], img_array.shape[0]))foreground = img_arraybackground = blurred_imagecombined_image = combine_foreground_background(foreground, background, mask)plt.figure(figsize=(20, 10))plt.subplot(1, 2, 1)plt.imshow(img)plt.title("Original Image")plt.axis("off")plt.subplot(1, 2, 2)plt.imshow(combined_image)plt.title("Final Portrait Mode Effect")plt.axis("off")plt.show()ConclusionWith just a few tools, weve recreated the portrait mode effect programmatically. This technique can be extended for photo editing applications, simulating camera effects, or creative projects.Future Enhancements:Use edge detection algorithms for better refinement of subject edges.Experiment with kernel sizes to enhance the blur effect.Create a user interface to upload images and select subjects dynamically.Resources:Segment anything model by META (https://github.com/facebookresearch/sam2)CPU compatible implementation of SAM 2 (https://github.com/SauravMaheshkar/samv2/tree/main)MIDas Depth Estimation Model ( https://pytorch.org/hub/intelisl_midas_v2/) Vineet Kumar+ postsVineet Kumar is a consulting intern at MarktechPost. He is currently pursuing his BS from the Indian Institute of Technology(IIT), Kanpur. He is a Machine Learning enthusiast. He is passionate about research and the latest advancements in Deep Learning, Computer Vision, and related fields. Meet 'Height':The only autonomous project management tool (Sponsored)
0 Comentários ·0 Compartilhamentos ·37 Visualizações