• How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Commentarios 0 Acciones
  • A shortage of high-voltage power cables could stall the clean energy transition

    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why.
    A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea.
    Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment.
    High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress.

    "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg.
    The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities.
    // Related Stories

    As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct currentcables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses.

    But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometersof new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years.
    Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused.
    Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule.
    Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross.
    Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted.
    The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them."
    #shortage #highvoltage #power #cables #could
    A shortage of high-voltage power cables could stall the clean energy transition
    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why. A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea. Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment. High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress. "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg. The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities. // Related Stories As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct currentcables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses. But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometersof new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years. Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused. Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule. Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross. Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted. The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them." #shortage #highvoltage #power #cables #could
    WWW.TECHSPOT.COM
    A shortage of high-voltage power cables could stall the clean energy transition
    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why. A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea. Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment. High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress. "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg. The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities. // Related Stories As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct current (HVDC) cables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses. But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometers (around 49.7 million miles) of new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years. Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused. Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule. Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross. Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted. The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them."
    0 Commentarios 0 Acciones
  • An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment

    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro.Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22.

    If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster.
    Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral.
    Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet.

    At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas. Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites.
    Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement.
    I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two studentsstill in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa.

    Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent: this extraordinary revivalthe rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own.
    And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses ofstate or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research.
    There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms. 

    We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover.
    Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint.
    #excerpt #new #book #sérgio #ferro
    An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment
    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro.Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22. If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster. Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral. Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet. At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas. Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites. Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement. I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two studentsstill in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa. Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent: this extraordinary revivalthe rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own. And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses ofstate or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research. There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms.  We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover. Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint. #excerpt #new #book #sérgio #ferro
    An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment
    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro. (Douglas Spencer reviewed it for AN.) Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22. If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster. Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral. Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet. At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas (which we aspired to be a part of, like the pretentious students we were). Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites. Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement. I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two students (Flávio Império joined us a little later) still in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa. Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent:  […] this extraordinary revival […] the rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own. And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses of (any) state or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research. There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms.  We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética [this is ethics]. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover. Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint.
    0 Commentarios 0 Acciones
  • Studio Egret West sends in plans for Albert Bridge House redevelopment in Manchester

    The revised schemeSource: Studio Egret West

    The revised schemeSource: Studio Egret West

    The revised schemeSource: Studio Egret West

    The revised schemeSource: Studio Egret West

    The revised schemeSource: Studio Egret West

    1/5
    show caption

    Plans for a revised mixed-use scheme in Manchester have been sent in to local planners.
    The original scheme for the redevelopment of Albert Bridge House, drawn up by Studio Egret West and which was given a resolution to grant planning two years ago, had proposed development of just over 1 million sq ft of commercial space along with just over 350 build-to-rent homes.
    But developer Oval Real Estate has since had a rethink because “the financial landscape has shifted significantly”. It added: “As such, our new proposals have been developed in response to this challenge and to better align with current market needs and community priorities.”
    In a LinkedIn post, Studio Egret West added: “Whilst the earlier design featured a single residential tower and an expansive commercial office block, changing economic conditions have necessitated a rethinking of its scale and delivery strategy.”
    The new plan has more than doubled the number of build-to-rent homes to around 800 across two blocks of 49 and 37 storeys.
    The commercial space has been pared back to around 250,000 sq ft across a 17-storey block.

    Source: Studio Egret WestThe previously consented scheme
    The 1.2 ha site includes a vacant 1950s office building formerly occupied by HMRC, a surface-level car park and the adjacent Albert Bridge Gardens
    Across the site, new public realm is proposed, including an expanded riverside walk, new play areas and an “urban arboretum” that incorporates existing mature trees on the plot.
    Studio Egret West is acting as architect, landscape architect and principal designer for the scheme, with others working on the scheme include planning consultant Deloitte, QS Cumming Group, structural and civil engineer AKT II and M&E engineer Hoare Lea.
    #studio #egret #west #sends #plans
    Studio Egret West sends in plans for Albert Bridge House redevelopment in Manchester
    The revised schemeSource: Studio Egret West The revised schemeSource: Studio Egret West The revised schemeSource: Studio Egret West The revised schemeSource: Studio Egret West The revised schemeSource: Studio Egret West 1/5 show caption Plans for a revised mixed-use scheme in Manchester have been sent in to local planners. The original scheme for the redevelopment of Albert Bridge House, drawn up by Studio Egret West and which was given a resolution to grant planning two years ago, had proposed development of just over 1 million sq ft of commercial space along with just over 350 build-to-rent homes. But developer Oval Real Estate has since had a rethink because “the financial landscape has shifted significantly”. It added: “As such, our new proposals have been developed in response to this challenge and to better align with current market needs and community priorities.” In a LinkedIn post, Studio Egret West added: “Whilst the earlier design featured a single residential tower and an expansive commercial office block, changing economic conditions have necessitated a rethinking of its scale and delivery strategy.” The new plan has more than doubled the number of build-to-rent homes to around 800 across two blocks of 49 and 37 storeys. The commercial space has been pared back to around 250,000 sq ft across a 17-storey block. Source: Studio Egret WestThe previously consented scheme The 1.2 ha site includes a vacant 1950s office building formerly occupied by HMRC, a surface-level car park and the adjacent Albert Bridge Gardens Across the site, new public realm is proposed, including an expanded riverside walk, new play areas and an “urban arboretum” that incorporates existing mature trees on the plot. Studio Egret West is acting as architect, landscape architect and principal designer for the scheme, with others working on the scheme include planning consultant Deloitte, QS Cumming Group, structural and civil engineer AKT II and M&E engineer Hoare Lea. #studio #egret #west #sends #plans
    WWW.BDONLINE.CO.UK
    Studio Egret West sends in plans for Albert Bridge House redevelopment in Manchester
    The revised schemeSource: Studio Egret West The revised schemeSource: Studio Egret West The revised schemeSource: Studio Egret West The revised schemeSource: Studio Egret West The revised schemeSource: Studio Egret West 1/5 show caption Plans for a revised mixed-use scheme in Manchester have been sent in to local planners. The original scheme for the redevelopment of Albert Bridge House, drawn up by Studio Egret West and which was given a resolution to grant planning two years ago, had proposed development of just over 1 million sq ft of commercial space along with just over 350 build-to-rent homes. But developer Oval Real Estate has since had a rethink because “the financial landscape has shifted significantly”. It added: “As such, our new proposals have been developed in response to this challenge and to better align with current market needs and community priorities.” In a LinkedIn post, Studio Egret West added: “Whilst the earlier design featured a single residential tower and an expansive commercial office block, changing economic conditions have necessitated a rethinking of its scale and delivery strategy.” The new plan has more than doubled the number of build-to-rent homes to around 800 across two blocks of 49 and 37 storeys. The commercial space has been pared back to around 250,000 sq ft across a 17-storey block. Source: Studio Egret WestThe previously consented scheme The 1.2 ha site includes a vacant 1950s office building formerly occupied by HMRC, a surface-level car park and the adjacent Albert Bridge Gardens Across the site, new public realm is proposed, including an expanded riverside walk, new play areas and an “urban arboretum” that incorporates existing mature trees on the plot. Studio Egret West is acting as architect, landscape architect and principal designer for the scheme, with others working on the scheme include planning consultant Deloitte, QS Cumming Group, structural and civil engineer AKT II and M&E engineer Hoare Lea.
    0 Commentarios 0 Acciones
  • Harassment by Ubisoft executives left female staff terrified, French court hears

    Three former executives at the French video game company Ubisoft used their position to bully or sexually harass staff, leaving women terrified and feeling like pieces of meat, a French court has heard.The state prosecutor Antoine Haushalter said the trial of three senior game creators for alleged bullying, sexual harassment and, in one case, attempted sexual assault was a “turning point” for the gaming world. It is the first big trial to result from the #MeToo movement in the video games industry, and Haushalter said the case had revealed “overwhelming” evidence of harassment.In four days of hearings, female former staff members variously described being tied to a chair, forced to do handstands, subjected to constant comments about sex and their bodies, having to endure sexist and homophobic jokes, drawings of penises being stuck to computers, a manager who farted in workers’ faces or scribbled on women with marker pens, gave unsolicited shoulder massages, played pornographic films in an open-plan office, and another executive who cracked a whip near people’s heads. The three men deny all charges.Haushalter said “the world of video games and its subculture” had an element of “systemic” sexism and potential abuse. He said the #MeToo movement in the gaming industry had allowed people to speak out.“It’s not that these actions were not punished by the law before. It’s just that they were silenced, and from now on they will not be silenced,” he said.Ubisoft is a French family business that rose to become one of the biggest video game creators in the world. It has been behind several blockbusters including Assassin’s Creed, Far Cry and the children’s favourite Just Dance.The court in Bobigny, in Seine-Saint-Denis, heard that between 2010 and 2020 at Ubisoft’s offices in Montreuil, east of Paris, the three executives created an atmosphere of bullying and sexism that one member of staff likened to a “boys’ club”. One alleged victim told the court: “The sexual remarks and sexual jokes were almost daily.”Tommy François, 52, a former vice-president of editorial and creative services, is accused of sexual harassment, bullying and attempted sexual assault. He was alleged once to have tied a female member of staff to a chair with tape, pushed the chair into a lift and pressed a button at random. He was also accused of forcing one woman wearing a skirt to do handstands.“He was my superior and I was afraid of him. He made me do handstands. I did it to get it over with and get rid of him,” one woman told the court.At a 2015 office Christmas party with a Back to the Future theme, François allegedly told a member of staff that he liked her 1950s dress. He then allegedly stepped towards her to kiss her on the mouth as his colleagues restrained her by the arms and back. She shouted and broke free. François denied all allegations.Another witness told the court that during a video games fair in the US, François “grabbed me by the hair and kissed me by force”. She said no one reacted, and that when she reported it to her human resources manager she was told “don’t make a big thing of it”.The woman said that later, in a key meeting, another unnamed senior figure told staff he had seen her “snogging” François, “even though he knew it had been an assault”.She said François called her into his office to show her pictures of his naked backside on his computers and on a phone. “Once he drew a penis on my arm when I was in a video call with top management,” she said.The woman said these incidents made her feel “stupefied, humiliated and professionally discredited”.François told the court he denied all charges. He said there had been a “culture of joking around”. He said: “I never tried to harm anyone.”Serge Hascoët told the court: ‘I have never wanted to harass anyone and I don’t think I have.’ Photograph: Xavier Galiana/AFP/Getty ImagesSerge Hascoët, 59, Ubisoft’s former chief creative officer and second-in-command, was accused of bullying and sexual harassment. The court heard how at a meeting of staff on an away day he complained about a senior female employee, saying she clearly did not have enough sex and that he would “show how to calm her” by having sex with her in a meeting room in front of everyone.He was alleged to have handed a young female member of staff a tissue in which he had blown his nose, saying: “You can resell it, it’s worth gold at Ubisoft.”The court heard he made guttural noises in the office and talked about sex. Hascoët was also alleged to have bullied assistants by making them carry out personal tasks for him such as going to his home to wait for parcel deliveries.Hascoët denied all the charges. He said: “I have never wanted to harass anyone and I don’t think I have.”The former game director Guillaume Patrux, 41, is accused of sexual harassment and bullying. He was alleged to have punched walls, mimed hitting staff, cracked a whip near colleagues’ faces, threatened to carry out an office shooting and played with a cigarette lighter near workers’ faces, setting alight a man’s beard. He denied the charges.The panel of judges retired to consider their verdict, which will be handed down at a later date.
    #harassment #ubisoft #executives #left #female
    Harassment by Ubisoft executives left female staff terrified, French court hears
    Three former executives at the French video game company Ubisoft used their position to bully or sexually harass staff, leaving women terrified and feeling like pieces of meat, a French court has heard.The state prosecutor Antoine Haushalter said the trial of three senior game creators for alleged bullying, sexual harassment and, in one case, attempted sexual assault was a “turning point” for the gaming world. It is the first big trial to result from the #MeToo movement in the video games industry, and Haushalter said the case had revealed “overwhelming” evidence of harassment.In four days of hearings, female former staff members variously described being tied to a chair, forced to do handstands, subjected to constant comments about sex and their bodies, having to endure sexist and homophobic jokes, drawings of penises being stuck to computers, a manager who farted in workers’ faces or scribbled on women with marker pens, gave unsolicited shoulder massages, played pornographic films in an open-plan office, and another executive who cracked a whip near people’s heads. The three men deny all charges.Haushalter said “the world of video games and its subculture” had an element of “systemic” sexism and potential abuse. He said the #MeToo movement in the gaming industry had allowed people to speak out.“It’s not that these actions were not punished by the law before. It’s just that they were silenced, and from now on they will not be silenced,” he said.Ubisoft is a French family business that rose to become one of the biggest video game creators in the world. It has been behind several blockbusters including Assassin’s Creed, Far Cry and the children’s favourite Just Dance.The court in Bobigny, in Seine-Saint-Denis, heard that between 2010 and 2020 at Ubisoft’s offices in Montreuil, east of Paris, the three executives created an atmosphere of bullying and sexism that one member of staff likened to a “boys’ club”. One alleged victim told the court: “The sexual remarks and sexual jokes were almost daily.”Tommy François, 52, a former vice-president of editorial and creative services, is accused of sexual harassment, bullying and attempted sexual assault. He was alleged once to have tied a female member of staff to a chair with tape, pushed the chair into a lift and pressed a button at random. He was also accused of forcing one woman wearing a skirt to do handstands.“He was my superior and I was afraid of him. He made me do handstands. I did it to get it over with and get rid of him,” one woman told the court.At a 2015 office Christmas party with a Back to the Future theme, François allegedly told a member of staff that he liked her 1950s dress. He then allegedly stepped towards her to kiss her on the mouth as his colleagues restrained her by the arms and back. She shouted and broke free. François denied all allegations.Another witness told the court that during a video games fair in the US, François “grabbed me by the hair and kissed me by force”. She said no one reacted, and that when she reported it to her human resources manager she was told “don’t make a big thing of it”.The woman said that later, in a key meeting, another unnamed senior figure told staff he had seen her “snogging” François, “even though he knew it had been an assault”.She said François called her into his office to show her pictures of his naked backside on his computers and on a phone. “Once he drew a penis on my arm when I was in a video call with top management,” she said.The woman said these incidents made her feel “stupefied, humiliated and professionally discredited”.François told the court he denied all charges. He said there had been a “culture of joking around”. He said: “I never tried to harm anyone.”Serge Hascoët told the court: ‘I have never wanted to harass anyone and I don’t think I have.’ Photograph: Xavier Galiana/AFP/Getty ImagesSerge Hascoët, 59, Ubisoft’s former chief creative officer and second-in-command, was accused of bullying and sexual harassment. The court heard how at a meeting of staff on an away day he complained about a senior female employee, saying she clearly did not have enough sex and that he would “show how to calm her” by having sex with her in a meeting room in front of everyone.He was alleged to have handed a young female member of staff a tissue in which he had blown his nose, saying: “You can resell it, it’s worth gold at Ubisoft.”The court heard he made guttural noises in the office and talked about sex. Hascoët was also alleged to have bullied assistants by making them carry out personal tasks for him such as going to his home to wait for parcel deliveries.Hascoët denied all the charges. He said: “I have never wanted to harass anyone and I don’t think I have.”The former game director Guillaume Patrux, 41, is accused of sexual harassment and bullying. He was alleged to have punched walls, mimed hitting staff, cracked a whip near colleagues’ faces, threatened to carry out an office shooting and played with a cigarette lighter near workers’ faces, setting alight a man’s beard. He denied the charges.The panel of judges retired to consider their verdict, which will be handed down at a later date. #harassment #ubisoft #executives #left #female
    WWW.THEGUARDIAN.COM
    Harassment by Ubisoft executives left female staff terrified, French court hears
    Three former executives at the French video game company Ubisoft used their position to bully or sexually harass staff, leaving women terrified and feeling like pieces of meat, a French court has heard.The state prosecutor Antoine Haushalter said the trial of three senior game creators for alleged bullying, sexual harassment and, in one case, attempted sexual assault was a “turning point” for the gaming world. It is the first big trial to result from the #MeToo movement in the video games industry, and Haushalter said the case had revealed “overwhelming” evidence of harassment.In four days of hearings, female former staff members variously described being tied to a chair, forced to do handstands, subjected to constant comments about sex and their bodies, having to endure sexist and homophobic jokes, drawings of penises being stuck to computers, a manager who farted in workers’ faces or scribbled on women with marker pens, gave unsolicited shoulder massages, played pornographic films in an open-plan office, and another executive who cracked a whip near people’s heads. The three men deny all charges.Haushalter said “the world of video games and its subculture” had an element of “systemic” sexism and potential abuse. He said the #MeToo movement in the gaming industry had allowed people to speak out.“It’s not that these actions were not punished by the law before. It’s just that they were silenced, and from now on they will not be silenced,” he said.Ubisoft is a French family business that rose to become one of the biggest video game creators in the world. It has been behind several blockbusters including Assassin’s Creed, Far Cry and the children’s favourite Just Dance.The court in Bobigny, in Seine-Saint-Denis, heard that between 2010 and 2020 at Ubisoft’s offices in Montreuil, east of Paris, the three executives created an atmosphere of bullying and sexism that one member of staff likened to a “boys’ club”. One alleged victim told the court: “The sexual remarks and sexual jokes were almost daily.”Tommy François, 52, a former vice-president of editorial and creative services, is accused of sexual harassment, bullying and attempted sexual assault. He was alleged once to have tied a female member of staff to a chair with tape, pushed the chair into a lift and pressed a button at random. He was also accused of forcing one woman wearing a skirt to do handstands.“He was my superior and I was afraid of him. He made me do handstands. I did it to get it over with and get rid of him,” one woman told the court.At a 2015 office Christmas party with a Back to the Future theme, François allegedly told a member of staff that he liked her 1950s dress. He then allegedly stepped towards her to kiss her on the mouth as his colleagues restrained her by the arms and back. She shouted and broke free. François denied all allegations.Another witness told the court that during a video games fair in the US, François “grabbed me by the hair and kissed me by force”. She said no one reacted, and that when she reported it to her human resources manager she was told “don’t make a big thing of it”.The woman said that later, in a key meeting, another unnamed senior figure told staff he had seen her “snogging” François, “even though he knew it had been an assault”.She said François called her into his office to show her pictures of his naked backside on his computers and on a phone. “Once he drew a penis on my arm when I was in a video call with top management,” she said.The woman said these incidents made her feel “stupefied, humiliated and professionally discredited”.François told the court he denied all charges. He said there had been a “culture of joking around”. He said: “I never tried to harm anyone.”Serge Hascoët told the court: ‘I have never wanted to harass anyone and I don’t think I have.’ Photograph: Xavier Galiana/AFP/Getty ImagesSerge Hascoët, 59, Ubisoft’s former chief creative officer and second-in-command, was accused of bullying and sexual harassment. The court heard how at a meeting of staff on an away day he complained about a senior female employee, saying she clearly did not have enough sex and that he would “show how to calm her” by having sex with her in a meeting room in front of everyone.He was alleged to have handed a young female member of staff a tissue in which he had blown his nose, saying: “You can resell it, it’s worth gold at Ubisoft.”The court heard he made guttural noises in the office and talked about sex. Hascoët was also alleged to have bullied assistants by making them carry out personal tasks for him such as going to his home to wait for parcel deliveries.Hascoët denied all the charges. He said: “I have never wanted to harass anyone and I don’t think I have.”The former game director Guillaume Patrux, 41, is accused of sexual harassment and bullying. He was alleged to have punched walls, mimed hitting staff, cracked a whip near colleagues’ faces, threatened to carry out an office shooting and played with a cigarette lighter near workers’ faces, setting alight a man’s beard. He denied the charges.The panel of judges retired to consider their verdict, which will be handed down at a later date.
    Like
    Love
    Wow
    Sad
    Angry
    573
    0 Commentarios 0 Acciones
  • Venice Biennale 2025 round-up: what else to see?

    This edition of the Venice Biennale includes 65 national pavilions, 11 collateral events, and over 750 participants in the international exhibition curated by Italian architect and engineer Carlo Ratti.
    Entitled Intelligens: Natural Artificial Collective, its stated aim is to make Venice a ‘living laboratory’. But Ratti’s exhibition in the Arsenale has been hit by mixed reviews. The AJ’s Rob Wilson described it as ‘a bit of a confusing mess’, while other media outlets have called the robot-heavy exhibit of future-facing building-focused solutions to the climate crisis a ‘tech-bro fever dream’ and a ‘mind-boggling rollercoaster’ to mention a few.
    It is a distinct shift away from the biennale of two years ago twhen Ghanaian-Scottish architect Lesley Lokko curated the main exhibitions, including 89 participants – of which more than half were from Africa or the African diaspora – in a convincing reset of the architectural conversation.Advertisement

    This year’s National Pavilions and collateral exhibits, by contrast, have tackled the largest themes in architecture and the world right now in a less constrained way than the main exhibitions. The exhibits are radical and work as a useful gauge for understanding what’s important in each country: decarbonisation, climate resilience, the reconstruction of Gaza, and an issue more prevalent in politics closer to home: gender wars.
    What's not to miss in the Giardini?
    British PavilionUK Pavilion
    The British Pavilion this year, which won a special mention from the Venetian jury, is housing a show by a British-Kenyan collab titled GBR – Geology of Britannic Repair. In it, the curators explore the links between colonialism, the built environment and geological extraction.
    Focusing on the Rift Valley, which runs from east Africa to the Middle East, including Palestine, the exhibition was curated by the Nairobi-based studio cave_bureau, UK-based curator, writer and Farrell Centre director Owen Hopkins and Queen Mary University professor Kathryn Yusoff.
    The pavilion’s façade is cloaked by a beaded veil of agricultural waste briquettes and clay and glass beads, produced in Kenya and India, echoing both Maasai practices and beads once made on Venice’s Murano, as currency for the exchange of metals, minerals and slaves.
    The pavilion’s six gallery spaces include multisensory installations such as the Earth Compass, a series of celestial maps connecting London and Nairobi; the Rift Room, tracing one of humans’ earliest migration routes; and the Shimoni Slave Cave, featuring a large-scale bronze cast of a valley cave historically used as a holding pen for enslaved people.Advertisement

    The show also includes Objects of Repair, a project by design-led research group Palestine Regeneration Team, looking at how salvaged materials could help rebuild war-torn Gaza, the only exhibit anywhere in the Biennale that tackled the reconstruction of Gaza face-on – doing so impressively, both politically and sensitively. here.
    Danish PavilionDemark Pavilion
    A firm favourite by most this year, the Danish exhibition Build of Site, curated by Søren Pihlmann of Pihlmann Architects, transforms the pavilion, which requires renovation anyway, into both a renovation site and archive of materials.
    Clever, simple and very methodical, the building is being both renewed while at the same time showcasing innovative methods to reuse surplus materials uncovered during the construction process – as an alternative to using new resources to build a temporary exhibition.
    The renovation of the 1950s Peter Koch-designed section of the pavilion began in December 2024 and will be completed following the biennale, having been suspended for its duration. On display are archetypal elements including podiums, ramps, benches and tables – all constructed from the surplus materials unearthed during the renovation, such as wood, limestone, concrete, stone, sand, silt and clay.
    Belgian PavilionBelgium Pavilion
    If you need a relaxing break from the intensity of the biennale, then the oldest national pavilion in the Giardini is the one for you. Belgium’s Building Biospheres: A New Alliance between Nature and Architecture brings ‘plant intelligence’ to the fore.
    Commissioned by the Flanders Architecture Institute and curated by landscape architect Bas Smets and neurobiologist Stefano Mancuso, the exhibit investigates how the natural ‘intelligence’ of plants can be used to produce an indoor climate – elevating the role of landscape design and calling for it to no longer serve as a backdrop for architecture.
    Inside, more than 200 plants occupy the central area beneath the skylight, becoming the pavilion’s centrepiece, with the rear space visualising ‘real-time’ data on the prototype’s climate control performance.
    Spanish PavilionSpain Pavilion
    One for the pure architecture lovers out there, models, installations, photographs and timber structures fill the Spanish Pavilion in abundance. Neatly curated by architects Roi Salgueiro Barrio and Manuel Bouzas Barcala, Internalities shows a series of existing and research projects that have contributed to decarbonising construction in Spain.
    The outcome? An extensive collection of work exploring the use of very local and very specific regenerative and low-carbon construction and materials – including stone, wood and soil. The joy of this pavilion comes from the 16 beautiful timber frames constructed from wood from communal forests in Galicia.
    Polish PavilionPoland Pavilion
    Poland’s pavilion was like Marmite this year. Some loved its playful approach while others found it silly. Lares and Penates, taking its name from ancient Roman deities of protection, has been curated by Aleksandra Kędziorek and looks at what it means and takes to have a sense of security in architecture.
    Speaking to many different anxieties, it refers to the unspoken assumption of treating architecture as a safe haven against the elements, catastrophes and wars – showcasing and elevating the mundane solutions and signage derived from building, fire and health regulations. The highlight? An ornate niche decorated with tiles and stones just for … a fire extinguisher.
    Dutch PavilionNetherlands Pavilion
    Punchy and straight to the point, SIDELINED: A Space to Rethink Togetherness takes sports as a lens for looking at how spatial design can both reveal and disrupt the often-exclusionary dynamics of everyday environments. Within the pavilion, the exhibit looks beyond the large-scale arena of the stadium and gymnasium to investigate the more localised and intimate context of the sports bar, as well as three alternative sports – a site of both social production and identity formation – as a metaphor for uniting diverse communities.
    The pavilion-turned-sports bar, designed by Koos Breen and Jeannette Slütter and inspired by Asger Jorn’s three-sided sports field, is a space for fluidity and experimentation where binary oppositions, social hierarchies and cultural values are contested and reshaped – complete with jerseys and football scarfsworn by players in the alternative Anonymous Allyship aligning the walls. Read Derin Fadina’s review for the AJ here.
    Performance inside the Nordic Countries PavilionNordic Countries Pavilion
    Probably the most impactful national pavilion this year, the Nordic Countries have presented an installation with performance work. Curated by Kaisa Karvinen, Industry Muscle: Five Scores for Architecture continues Finnish artist Teo Ala-Ruona’s work on trans embodiment and ecology by considering the trans body as a lens through which to examine modern architecture and the built environment.
    The three-day exhibition opening featured a two-hour performance each day with Ala-Ruona and his troupe crawling, climbing and writhing around the space, creating a bodily dialogue with the installations and pavilion building itself, which was designed by celebrated Modernist architect Sverre Fehn.
    The American pavilion next door, loudlyturns its back on what’s going on in its own country by just celebrating the apathetical porch, making the Nordic Countries seem even more relevant in this crucial time. Read Derin Fadina’s review for the AJ here.
    German PavilionGermany Pavilion
    An exhibit certainly grabbing the issue of climate change by its neck is the German contribution, Stresstest. Curated by Nicola Borgmann, Elisabeth Endres, Gabriele G Kiefer and Daniele Santucci, the pavilion has turned climate change into a literal physical and psychological experience for visitors by creating contrasting ‘stress’ and ‘de-stress’ rooms.
    In the dark stress room, a large metal sculpture creates a cramped and hot space using heating mats hung from the ceiling and powered by PVs. Opposite is a calmer space demonstrating strategies that could be used to reduce the heat of cities, and between the two spaces is a film focusing on the impacts of cities becoming hotter. If this doesn’t highlight the urgency of the situation, I’m not sure what will.
    Best bits of the Arsenale outside the main exhibitions
    Bahrain PavilionBahrain Pavilion
    Overall winner of this year’s Golden Lion for best national participation, Bahrain’s pavilion in the historic Artiglierie of the Arsenale is a proposal for living and working through heat conditions. Heatwave, curated by architect Andrea Faraguna, reimagines public space design by exploring passive cooling strategies rooted in the Arab country’s climate, as well as cultural context.
    A geothermal well and solar chimney are connected through a thermo-hygrometric axis that links underground conditions with the air outside. The inhabitable space that hosts visitors is thus compressed and defined by its earth-covered floor and suspended ceiling, and is surrounded by memorable sandbags, highlighting its scalability for particularly hot construction sites in the Gulf where a huge amount of construction is taking place.
    In the Arsenale’s exhibition space, where excavation wasn’t feasible, this system has been adapted into mechanical ventilation, bringing in air from the canal side and channelling it through ductwork to create a microclimate.
    Slovenian PavilionSlovenia Pavilion
    The AJ’s Rob Wilson’s top pavilion tip this year provides an enjoyable take on the theme of the main exhibition, highlighting how the tacit knowledge and on-site techniques and skills of construction workers and craftspeople are still the key constituent in architectural production despite all the heat and light about robotics, prefabrication, artificial intelligence and 3D printing.
    Master Builders, curated by Ana Kosi and Ognen Arsov and organised by the Museum of Architecture and Designin Ljubljana, presents a series of ‘totems’ –accumulative sculpture-like structures that are formed of conglomerations of differently worked materials, finishes and building elements. These are stacked up into crazy tower forms, which showcase various on-site construction skills and techniques, their construction documented in accompanying films.
    Uzbekistan PavilionUzbekistan Pavilion
    Uzbekistan’s contribution explores the Soviet era solar furnace and Modernist legacy. Architecture studio GRACE, led by curators Ekaterina Golovatyuk and Giacomo Cantoni have curated A Matter of Radiance. The focus is the Sun Institute of Material Science – originally known as the Sun Heliocomplex – an incredible large-scale scientific structure built in 1987 on a natural, seismic-free foundation near Tashkent and one of only two that study material behaviour under extreme temperatures. The exhibition examines the solar oven’s site’s historical and contemporary significance while reflecting on its scientific legacy and influence moving beyond just national borders.
    Applied Arts PavilionV&A Applied Arts Pavilion
    Diller Scofidio + Renfrois having a moment. The US-based practice, in collaboration with V&A chief curator Brendan Cormier, has curated On Storage, which aptly explores global storage architectures in a pavilion that strongly links to the V&A’s recent opening of Storehouse, its newcollections archive in east London.
    Featured is a six-channelfilm entitled Boxed: The Mild Boredom of Order, directed by the practice itself and following a toothbrush, as a metaphor for an everyday consumer product, on its journey through different forms of storage across the globe – from warehouse to distribution centre to baggage handlers down to the compact space of a suitcase.
    Also on display are large-format photographs of V&A East Storehouse, DS+R’s original architectural model and sketchbook and behind-the-scenes photography of Storehouse at work, taken by emerging east London-based photographers.
    Canal CaféCanal café
    Golden Lion for the best participation in the actual exhibition went to Canal Café, an intervention designed by V&A East Storehouse’s architect DS+R with Natural Systems Utilities, SODAI, Aaron Betsky and Davide Oldani.
    Serving up canal-water espresso, the installation is a demonstration of how Venice itself can be a laboratory to understand how to live on the water in a time of water scarcity. The structure, located on the edge of the Arsenale’s building complex, draws water from its lagoon before filtering it onsite via a hybrid of natural and artificial methods, including a mini wetland with grasses.
    The project was recognised for its persistence, having started almost 20 years ago, just showing how water scarcity, contamination and flooding are still major concerns both globally and, more locally, in the tourist-heavy city of Venice.
    And what else?
    Holy See PavilionThe Holy See
    Much like the Danish Pavilion, the Pavilion of the Holy See is also taking on an approach of renewal this year. Over the next six months, Opera Aperta will breathe new life into the Santa Maria Ausiliatrice Complex in the Castello district of Venice. Founded as a hospice for pilgrims in 1171, the building later became the oldest hospital and was converted into school in the 18th century. In 2001, the City of Venice allocated it for cultural use and for the next four years it will be managed by the Dicastery for Culture and Education of the Holy See to oversee its restoration.
    Curated by architect, curator and researcher Marina Otero Verzier and artistic director of Fondaco Italia, Giovanna Zabotti, the complex has been turned into a constant ‘living laboratory’ of collective repair – and received a special mention in the biennale awards.
    The restoration works, open from Tuesday to Friday, are being carried out by local artisans and specialised restorers with expertise in recovering stone, marble, terracotta, mural and canvas painting, stucco, wood and metal artworks.
    The beauty, however, lies in the photogenic fabrics, lit by a warm yellow glow, hanging from the walls within, gently wrapping the building’s surfaces, leaving openings that allow movement and offer glimpses of the ongoing restoration. Mobile scaffolding, used to support the works, also doubles up as furniture, providing space for equipment and subdividing the interior.
    Togo PavilionTogo Pavilion
    The Republic of Togo has presented its first pavilion ever at the biennale this year with the project Considering Togo’s Architectural Heritage, which sits intriguingly at the back of a second-hand furniture shop. The inaugural pavilion is curated by Lomé and Berlin-based Studio NEiDA and is in Venice’s Squero Castello.
    Exploring Togo’s architectural narratives from the early 20th century, and key ongoing restoration efforts, it documents key examples of the west African country’s heritage, highlighting both traditional and more modern building techniques – from Nôk cave dwellings to Afro-Brazilian architecture developed by freed slaves to post-independence Modernist buildings. Some buildings showcased are in disrepair, despite most of the modern structures remaining in use today, including Hotel de la Paix and the Bourse du Travail, suggestive of a future of repair and celebration.
    Estonian PavilionEstonia Pavilion
    Another firm favourite this year is the Estonian exhibition on Riva dei Sette Martiri on the waterfront between Corso Garibaldi and the Giardini.  The Guardian’s Olly Wainwright said that outside the Giardini, it packed ‘the most powerful punch of all.’
    Simple and effective, Let Me Warm You, curated by trio of architects Keiti Lige, Elina Liiva and Helena Männa, asks whether current insulation-driven renovations are merely a ‘checkbox’ to meet European energy targets or ‘a real chance’ to enhance the spatial and social quality of mass housing.
    The façade of the historic Venetian palazzetto in which it is housed is clad with fibre-cement insulation panels in the same process used in Estonia itself for its mass housing – a powerful visual statement showcasing a problematic disregard for the character and potential of typical habitable spaces. Inside, the ground floor is wrapped in plastic and exhibits how the dynamics between different stakeholders influence spatial solutions, including named stickers to encourage discussion among your peers.
    Venice ProcuratieSMACTimed to open to the public at the same time as the biennale, SMAC is a new permanent arts institution in Piazza San Marco, on the second floor of the Procuratie, which is owned by Generali. The exhibition space, open to the public for the first time in 500 years, comprises 16 galleries arranged along a continuous corridor stretching over 80m, recently restored by David Chipperfield Architects.
    Visitors can expect access through a private courtyard leading on to a monumental staircase and experience a typically sensitive Chipperfield restoration, which has revived the building’s original details: walls covered in a light grey Venetian marmorino made from crushed marble and floors of white terrazzo.
    During the summer, its inaugural programme features two solo exhibitions dedicated to Australian modern architect Harry Seidler and Korean landscape designer Jung Youngsun.
    Holcim's installationHolcim x Elemental
    Concrete manufacturer Holcim makes an appearance for a third time at Venice, this time partnering with Chilean Pritzker Prize-winning Alejandro Aravena’s practice Elemental – curator of the 2016 biennale – to launch a resilient housing prototype that follows on from the Norman Foster-designed Essential Homes Project.
    The ‘carbon-neutral’ structure incorporates Holcim’s range of low-carbon concrete ECOPact and is on display as part of the Time Space Existence exhibition organised by the European Cultural Centre in their gardens.
    It also applies Holcim’s ‘biochar’ technology for the first time, a concrete mix with 100 per cent recycled aggregates, in a full-scale Basic Services Unit. This follows an incremental design approach, which could entail fast and efficient construction via the provision of only essential housing components, and via self-build.
    The Next Earth at Palazzo DiedoThe Next Earth
    At Palazzo Diedo’s incredible dedicated Berggruen Arts and Culture space, MIT’s department of architecture and think tank Antikytherahave come together to create the exhibition The Next Earth: Computation, Crisis, Cosmology, which questions how philosophy and architecture must and can respond to various planet-wide crises.
    Antikythera’s The Noocene: Computation and Cosmology from Antikythera to AI looks at the evolution of ‘planetary computation’ as an ‘accidental’ megastructure through which systems, from the molecular to atmospheric scales, become both comprehensible and composable. What is actually on display is an architectural scale video monolith and short films on AI, astronomy and artificial life, as well as selected artefacts. MIT’s Climate Work: Un/Worlding the Planet features 37 works-in-progress, each looking at material supply chains, energy expenditure, modes of practice and deep-time perspectives. Take from it what you will.
    The 19th International Venice Architecture Biennale remains open until Sunday, 23 November 2025.
    #venice #biennale #roundup #what #else
    Venice Biennale 2025 round-up: what else to see?
    This edition of the Venice Biennale includes 65 national pavilions, 11 collateral events, and over 750 participants in the international exhibition curated by Italian architect and engineer Carlo Ratti. Entitled Intelligens: Natural Artificial Collective, its stated aim is to make Venice a ‘living laboratory’. But Ratti’s exhibition in the Arsenale has been hit by mixed reviews. The AJ’s Rob Wilson described it as ‘a bit of a confusing mess’, while other media outlets have called the robot-heavy exhibit of future-facing building-focused solutions to the climate crisis a ‘tech-bro fever dream’ and a ‘mind-boggling rollercoaster’ to mention a few. It is a distinct shift away from the biennale of two years ago twhen Ghanaian-Scottish architect Lesley Lokko curated the main exhibitions, including 89 participants – of which more than half were from Africa or the African diaspora – in a convincing reset of the architectural conversation.Advertisement This year’s National Pavilions and collateral exhibits, by contrast, have tackled the largest themes in architecture and the world right now in a less constrained way than the main exhibitions. The exhibits are radical and work as a useful gauge for understanding what’s important in each country: decarbonisation, climate resilience, the reconstruction of Gaza, and an issue more prevalent in politics closer to home: gender wars. What's not to miss in the Giardini? British PavilionUK Pavilion The British Pavilion this year, which won a special mention from the Venetian jury, is housing a show by a British-Kenyan collab titled GBR – Geology of Britannic Repair. In it, the curators explore the links between colonialism, the built environment and geological extraction. Focusing on the Rift Valley, which runs from east Africa to the Middle East, including Palestine, the exhibition was curated by the Nairobi-based studio cave_bureau, UK-based curator, writer and Farrell Centre director Owen Hopkins and Queen Mary University professor Kathryn Yusoff. The pavilion’s façade is cloaked by a beaded veil of agricultural waste briquettes and clay and glass beads, produced in Kenya and India, echoing both Maasai practices and beads once made on Venice’s Murano, as currency for the exchange of metals, minerals and slaves. The pavilion’s six gallery spaces include multisensory installations such as the Earth Compass, a series of celestial maps connecting London and Nairobi; the Rift Room, tracing one of humans’ earliest migration routes; and the Shimoni Slave Cave, featuring a large-scale bronze cast of a valley cave historically used as a holding pen for enslaved people.Advertisement The show also includes Objects of Repair, a project by design-led research group Palestine Regeneration Team, looking at how salvaged materials could help rebuild war-torn Gaza, the only exhibit anywhere in the Biennale that tackled the reconstruction of Gaza face-on – doing so impressively, both politically and sensitively. here. Danish PavilionDemark Pavilion A firm favourite by most this year, the Danish exhibition Build of Site, curated by Søren Pihlmann of Pihlmann Architects, transforms the pavilion, which requires renovation anyway, into both a renovation site and archive of materials. Clever, simple and very methodical, the building is being both renewed while at the same time showcasing innovative methods to reuse surplus materials uncovered during the construction process – as an alternative to using new resources to build a temporary exhibition. The renovation of the 1950s Peter Koch-designed section of the pavilion began in December 2024 and will be completed following the biennale, having been suspended for its duration. On display are archetypal elements including podiums, ramps, benches and tables – all constructed from the surplus materials unearthed during the renovation, such as wood, limestone, concrete, stone, sand, silt and clay. Belgian PavilionBelgium Pavilion If you need a relaxing break from the intensity of the biennale, then the oldest national pavilion in the Giardini is the one for you. Belgium’s Building Biospheres: A New Alliance between Nature and Architecture brings ‘plant intelligence’ to the fore. Commissioned by the Flanders Architecture Institute and curated by landscape architect Bas Smets and neurobiologist Stefano Mancuso, the exhibit investigates how the natural ‘intelligence’ of plants can be used to produce an indoor climate – elevating the role of landscape design and calling for it to no longer serve as a backdrop for architecture. Inside, more than 200 plants occupy the central area beneath the skylight, becoming the pavilion’s centrepiece, with the rear space visualising ‘real-time’ data on the prototype’s climate control performance. Spanish PavilionSpain Pavilion One for the pure architecture lovers out there, models, installations, photographs and timber structures fill the Spanish Pavilion in abundance. Neatly curated by architects Roi Salgueiro Barrio and Manuel Bouzas Barcala, Internalities shows a series of existing and research projects that have contributed to decarbonising construction in Spain. The outcome? An extensive collection of work exploring the use of very local and very specific regenerative and low-carbon construction and materials – including stone, wood and soil. The joy of this pavilion comes from the 16 beautiful timber frames constructed from wood from communal forests in Galicia. Polish PavilionPoland Pavilion Poland’s pavilion was like Marmite this year. Some loved its playful approach while others found it silly. Lares and Penates, taking its name from ancient Roman deities of protection, has been curated by Aleksandra Kędziorek and looks at what it means and takes to have a sense of security in architecture. Speaking to many different anxieties, it refers to the unspoken assumption of treating architecture as a safe haven against the elements, catastrophes and wars – showcasing and elevating the mundane solutions and signage derived from building, fire and health regulations. The highlight? An ornate niche decorated with tiles and stones just for … a fire extinguisher. Dutch PavilionNetherlands Pavilion Punchy and straight to the point, SIDELINED: A Space to Rethink Togetherness takes sports as a lens for looking at how spatial design can both reveal and disrupt the often-exclusionary dynamics of everyday environments. Within the pavilion, the exhibit looks beyond the large-scale arena of the stadium and gymnasium to investigate the more localised and intimate context of the sports bar, as well as three alternative sports – a site of both social production and identity formation – as a metaphor for uniting diverse communities. The pavilion-turned-sports bar, designed by Koos Breen and Jeannette Slütter and inspired by Asger Jorn’s three-sided sports field, is a space for fluidity and experimentation where binary oppositions, social hierarchies and cultural values are contested and reshaped – complete with jerseys and football scarfsworn by players in the alternative Anonymous Allyship aligning the walls. Read Derin Fadina’s review for the AJ here. Performance inside the Nordic Countries PavilionNordic Countries Pavilion Probably the most impactful national pavilion this year, the Nordic Countries have presented an installation with performance work. Curated by Kaisa Karvinen, Industry Muscle: Five Scores for Architecture continues Finnish artist Teo Ala-Ruona’s work on trans embodiment and ecology by considering the trans body as a lens through which to examine modern architecture and the built environment. The three-day exhibition opening featured a two-hour performance each day with Ala-Ruona and his troupe crawling, climbing and writhing around the space, creating a bodily dialogue with the installations and pavilion building itself, which was designed by celebrated Modernist architect Sverre Fehn. The American pavilion next door, loudlyturns its back on what’s going on in its own country by just celebrating the apathetical porch, making the Nordic Countries seem even more relevant in this crucial time. Read Derin Fadina’s review for the AJ here. German PavilionGermany Pavilion An exhibit certainly grabbing the issue of climate change by its neck is the German contribution, Stresstest. Curated by Nicola Borgmann, Elisabeth Endres, Gabriele G Kiefer and Daniele Santucci, the pavilion has turned climate change into a literal physical and psychological experience for visitors by creating contrasting ‘stress’ and ‘de-stress’ rooms. In the dark stress room, a large metal sculpture creates a cramped and hot space using heating mats hung from the ceiling and powered by PVs. Opposite is a calmer space demonstrating strategies that could be used to reduce the heat of cities, and between the two spaces is a film focusing on the impacts of cities becoming hotter. If this doesn’t highlight the urgency of the situation, I’m not sure what will. Best bits of the Arsenale outside the main exhibitions Bahrain PavilionBahrain Pavilion Overall winner of this year’s Golden Lion for best national participation, Bahrain’s pavilion in the historic Artiglierie of the Arsenale is a proposal for living and working through heat conditions. Heatwave, curated by architect Andrea Faraguna, reimagines public space design by exploring passive cooling strategies rooted in the Arab country’s climate, as well as cultural context. A geothermal well and solar chimney are connected through a thermo-hygrometric axis that links underground conditions with the air outside. The inhabitable space that hosts visitors is thus compressed and defined by its earth-covered floor and suspended ceiling, and is surrounded by memorable sandbags, highlighting its scalability for particularly hot construction sites in the Gulf where a huge amount of construction is taking place. In the Arsenale’s exhibition space, where excavation wasn’t feasible, this system has been adapted into mechanical ventilation, bringing in air from the canal side and channelling it through ductwork to create a microclimate. Slovenian PavilionSlovenia Pavilion The AJ’s Rob Wilson’s top pavilion tip this year provides an enjoyable take on the theme of the main exhibition, highlighting how the tacit knowledge and on-site techniques and skills of construction workers and craftspeople are still the key constituent in architectural production despite all the heat and light about robotics, prefabrication, artificial intelligence and 3D printing. Master Builders, curated by Ana Kosi and Ognen Arsov and organised by the Museum of Architecture and Designin Ljubljana, presents a series of ‘totems’ –accumulative sculpture-like structures that are formed of conglomerations of differently worked materials, finishes and building elements. These are stacked up into crazy tower forms, which showcase various on-site construction skills and techniques, their construction documented in accompanying films. Uzbekistan PavilionUzbekistan Pavilion Uzbekistan’s contribution explores the Soviet era solar furnace and Modernist legacy. Architecture studio GRACE, led by curators Ekaterina Golovatyuk and Giacomo Cantoni have curated A Matter of Radiance. The focus is the Sun Institute of Material Science – originally known as the Sun Heliocomplex – an incredible large-scale scientific structure built in 1987 on a natural, seismic-free foundation near Tashkent and one of only two that study material behaviour under extreme temperatures. The exhibition examines the solar oven’s site’s historical and contemporary significance while reflecting on its scientific legacy and influence moving beyond just national borders. Applied Arts PavilionV&A Applied Arts Pavilion Diller Scofidio + Renfrois having a moment. The US-based practice, in collaboration with V&A chief curator Brendan Cormier, has curated On Storage, which aptly explores global storage architectures in a pavilion that strongly links to the V&A’s recent opening of Storehouse, its newcollections archive in east London. Featured is a six-channelfilm entitled Boxed: The Mild Boredom of Order, directed by the practice itself and following a toothbrush, as a metaphor for an everyday consumer product, on its journey through different forms of storage across the globe – from warehouse to distribution centre to baggage handlers down to the compact space of a suitcase. Also on display are large-format photographs of V&A East Storehouse, DS+R’s original architectural model and sketchbook and behind-the-scenes photography of Storehouse at work, taken by emerging east London-based photographers. Canal CaféCanal café Golden Lion for the best participation in the actual exhibition went to Canal Café, an intervention designed by V&A East Storehouse’s architect DS+R with Natural Systems Utilities, SODAI, Aaron Betsky and Davide Oldani. Serving up canal-water espresso, the installation is a demonstration of how Venice itself can be a laboratory to understand how to live on the water in a time of water scarcity. The structure, located on the edge of the Arsenale’s building complex, draws water from its lagoon before filtering it onsite via a hybrid of natural and artificial methods, including a mini wetland with grasses. The project was recognised for its persistence, having started almost 20 years ago, just showing how water scarcity, contamination and flooding are still major concerns both globally and, more locally, in the tourist-heavy city of Venice. And what else? Holy See PavilionThe Holy See Much like the Danish Pavilion, the Pavilion of the Holy See is also taking on an approach of renewal this year. Over the next six months, Opera Aperta will breathe new life into the Santa Maria Ausiliatrice Complex in the Castello district of Venice. Founded as a hospice for pilgrims in 1171, the building later became the oldest hospital and was converted into school in the 18th century. In 2001, the City of Venice allocated it for cultural use and for the next four years it will be managed by the Dicastery for Culture and Education of the Holy See to oversee its restoration. Curated by architect, curator and researcher Marina Otero Verzier and artistic director of Fondaco Italia, Giovanna Zabotti, the complex has been turned into a constant ‘living laboratory’ of collective repair – and received a special mention in the biennale awards. The restoration works, open from Tuesday to Friday, are being carried out by local artisans and specialised restorers with expertise in recovering stone, marble, terracotta, mural and canvas painting, stucco, wood and metal artworks. The beauty, however, lies in the photogenic fabrics, lit by a warm yellow glow, hanging from the walls within, gently wrapping the building’s surfaces, leaving openings that allow movement and offer glimpses of the ongoing restoration. Mobile scaffolding, used to support the works, also doubles up as furniture, providing space for equipment and subdividing the interior. Togo PavilionTogo Pavilion The Republic of Togo has presented its first pavilion ever at the biennale this year with the project Considering Togo’s Architectural Heritage, which sits intriguingly at the back of a second-hand furniture shop. The inaugural pavilion is curated by Lomé and Berlin-based Studio NEiDA and is in Venice’s Squero Castello. Exploring Togo’s architectural narratives from the early 20th century, and key ongoing restoration efforts, it documents key examples of the west African country’s heritage, highlighting both traditional and more modern building techniques – from Nôk cave dwellings to Afro-Brazilian architecture developed by freed slaves to post-independence Modernist buildings. Some buildings showcased are in disrepair, despite most of the modern structures remaining in use today, including Hotel de la Paix and the Bourse du Travail, suggestive of a future of repair and celebration. Estonian PavilionEstonia Pavilion Another firm favourite this year is the Estonian exhibition on Riva dei Sette Martiri on the waterfront between Corso Garibaldi and the Giardini.  The Guardian’s Olly Wainwright said that outside the Giardini, it packed ‘the most powerful punch of all.’ Simple and effective, Let Me Warm You, curated by trio of architects Keiti Lige, Elina Liiva and Helena Männa, asks whether current insulation-driven renovations are merely a ‘checkbox’ to meet European energy targets or ‘a real chance’ to enhance the spatial and social quality of mass housing. The façade of the historic Venetian palazzetto in which it is housed is clad with fibre-cement insulation panels in the same process used in Estonia itself for its mass housing – a powerful visual statement showcasing a problematic disregard for the character and potential of typical habitable spaces. Inside, the ground floor is wrapped in plastic and exhibits how the dynamics between different stakeholders influence spatial solutions, including named stickers to encourage discussion among your peers. Venice ProcuratieSMACTimed to open to the public at the same time as the biennale, SMAC is a new permanent arts institution in Piazza San Marco, on the second floor of the Procuratie, which is owned by Generali. The exhibition space, open to the public for the first time in 500 years, comprises 16 galleries arranged along a continuous corridor stretching over 80m, recently restored by David Chipperfield Architects. Visitors can expect access through a private courtyard leading on to a monumental staircase and experience a typically sensitive Chipperfield restoration, which has revived the building’s original details: walls covered in a light grey Venetian marmorino made from crushed marble and floors of white terrazzo. During the summer, its inaugural programme features two solo exhibitions dedicated to Australian modern architect Harry Seidler and Korean landscape designer Jung Youngsun. Holcim's installationHolcim x Elemental Concrete manufacturer Holcim makes an appearance for a third time at Venice, this time partnering with Chilean Pritzker Prize-winning Alejandro Aravena’s practice Elemental – curator of the 2016 biennale – to launch a resilient housing prototype that follows on from the Norman Foster-designed Essential Homes Project. The ‘carbon-neutral’ structure incorporates Holcim’s range of low-carbon concrete ECOPact and is on display as part of the Time Space Existence exhibition organised by the European Cultural Centre in their gardens. It also applies Holcim’s ‘biochar’ technology for the first time, a concrete mix with 100 per cent recycled aggregates, in a full-scale Basic Services Unit. This follows an incremental design approach, which could entail fast and efficient construction via the provision of only essential housing components, and via self-build. The Next Earth at Palazzo DiedoThe Next Earth At Palazzo Diedo’s incredible dedicated Berggruen Arts and Culture space, MIT’s department of architecture and think tank Antikytherahave come together to create the exhibition The Next Earth: Computation, Crisis, Cosmology, which questions how philosophy and architecture must and can respond to various planet-wide crises. Antikythera’s The Noocene: Computation and Cosmology from Antikythera to AI looks at the evolution of ‘planetary computation’ as an ‘accidental’ megastructure through which systems, from the molecular to atmospheric scales, become both comprehensible and composable. What is actually on display is an architectural scale video monolith and short films on AI, astronomy and artificial life, as well as selected artefacts. MIT’s Climate Work: Un/Worlding the Planet features 37 works-in-progress, each looking at material supply chains, energy expenditure, modes of practice and deep-time perspectives. Take from it what you will. The 19th International Venice Architecture Biennale remains open until Sunday, 23 November 2025. #venice #biennale #roundup #what #else
    WWW.ARCHITECTSJOURNAL.CO.UK
    Venice Biennale 2025 round-up: what else to see?
    This edition of the Venice Biennale includes 65 national pavilions, 11 collateral events, and over 750 participants in the international exhibition curated by Italian architect and engineer Carlo Ratti. Entitled Intelligens: Natural Artificial Collective, its stated aim is to make Venice a ‘living laboratory’. But Ratti’s exhibition in the Arsenale has been hit by mixed reviews. The AJ’s Rob Wilson described it as ‘a bit of a confusing mess’, while other media outlets have called the robot-heavy exhibit of future-facing building-focused solutions to the climate crisis a ‘tech-bro fever dream’ and a ‘mind-boggling rollercoaster’ to mention a few. It is a distinct shift away from the biennale of two years ago twhen Ghanaian-Scottish architect Lesley Lokko curated the main exhibitions, including 89 participants – of which more than half were from Africa or the African diaspora – in a convincing reset of the architectural conversation.Advertisement This year’s National Pavilions and collateral exhibits, by contrast, have tackled the largest themes in architecture and the world right now in a less constrained way than the main exhibitions. The exhibits are radical and work as a useful gauge for understanding what’s important in each country: decarbonisation, climate resilience, the reconstruction of Gaza, and an issue more prevalent in politics closer to home: gender wars. What's not to miss in the Giardini? British Pavilion (photography: Chris Lane) UK Pavilion The British Pavilion this year, which won a special mention from the Venetian jury, is housing a show by a British-Kenyan collab titled GBR – Geology of Britannic Repair. In it, the curators explore the links between colonialism, the built environment and geological extraction. Focusing on the Rift Valley, which runs from east Africa to the Middle East, including Palestine, the exhibition was curated by the Nairobi-based studio cave_bureau, UK-based curator, writer and Farrell Centre director Owen Hopkins and Queen Mary University professor Kathryn Yusoff. The pavilion’s façade is cloaked by a beaded veil of agricultural waste briquettes and clay and glass beads, produced in Kenya and India, echoing both Maasai practices and beads once made on Venice’s Murano, as currency for the exchange of metals, minerals and slaves. The pavilion’s six gallery spaces include multisensory installations such as the Earth Compass, a series of celestial maps connecting London and Nairobi; the Rift Room, tracing one of humans’ earliest migration routes; and the Shimoni Slave Cave, featuring a large-scale bronze cast of a valley cave historically used as a holding pen for enslaved people.Advertisement The show also includes Objects of Repair, a project by design-led research group Palestine Regeneration Team (PART), looking at how salvaged materials could help rebuild war-torn Gaza, the only exhibit anywhere in the Biennale that tackled the reconstruction of Gaza face-on – doing so impressively, both politically and sensitively. Read more here. Danish Pavilion (photography: Hampus Berndtson) Demark Pavilion A firm favourite by most this year, the Danish exhibition Build of Site, curated by Søren Pihlmann of Pihlmann Architects, transforms the pavilion, which requires renovation anyway, into both a renovation site and archive of materials. Clever, simple and very methodical, the building is being both renewed while at the same time showcasing innovative methods to reuse surplus materials uncovered during the construction process – as an alternative to using new resources to build a temporary exhibition. The renovation of the 1950s Peter Koch-designed section of the pavilion began in December 2024 and will be completed following the biennale, having been suspended for its duration. On display are archetypal elements including podiums, ramps, benches and tables – all constructed from the surplus materials unearthed during the renovation, such as wood, limestone, concrete, stone, sand, silt and clay. Belgian Pavilion (photography: Michiel De Cleene) Belgium Pavilion If you need a relaxing break from the intensity of the biennale, then the oldest national pavilion in the Giardini is the one for you. Belgium’s Building Biospheres: A New Alliance between Nature and Architecture brings ‘plant intelligence’ to the fore. Commissioned by the Flanders Architecture Institute and curated by landscape architect Bas Smets and neurobiologist Stefano Mancuso, the exhibit investigates how the natural ‘intelligence’ of plants can be used to produce an indoor climate – elevating the role of landscape design and calling for it to no longer serve as a backdrop for architecture. Inside, more than 200 plants occupy the central area beneath the skylight, becoming the pavilion’s centrepiece, with the rear space visualising ‘real-time’ data on the prototype’s climate control performance. Spanish Pavilion (photography: Luca Capuano) Spain Pavilion One for the pure architecture lovers out there, models (32!), installations, photographs and timber structures fill the Spanish Pavilion in abundance. Neatly curated by architects Roi Salgueiro Barrio and Manuel Bouzas Barcala, Internalities shows a series of existing and research projects that have contributed to decarbonising construction in Spain. The outcome? An extensive collection of work exploring the use of very local and very specific regenerative and low-carbon construction and materials – including stone, wood and soil. The joy of this pavilion comes from the 16 beautiful timber frames constructed from wood from communal forests in Galicia. Polish Pavilion (photography: Luca Capuano) Poland Pavilion Poland’s pavilion was like Marmite this year. Some loved its playful approach while others found it silly. Lares and Penates, taking its name from ancient Roman deities of protection, has been curated by Aleksandra Kędziorek and looks at what it means and takes to have a sense of security in architecture. Speaking to many different anxieties, it refers to the unspoken assumption of treating architecture as a safe haven against the elements, catastrophes and wars – showcasing and elevating the mundane solutions and signage derived from building, fire and health regulations. The highlight? An ornate niche decorated with tiles and stones just for … a fire extinguisher. Dutch Pavilion (photography: Cristiano Corte) Netherlands Pavilion Punchy and straight to the point, SIDELINED: A Space to Rethink Togetherness takes sports as a lens for looking at how spatial design can both reveal and disrupt the often-exclusionary dynamics of everyday environments. Within the pavilion, the exhibit looks beyond the large-scale arena of the stadium and gymnasium to investigate the more localised and intimate context of the sports bar, as well as three alternative sports – a site of both social production and identity formation – as a metaphor for uniting diverse communities. The pavilion-turned-sports bar, designed by Koos Breen and Jeannette Slütter and inspired by Asger Jorn’s three-sided sports field, is a space for fluidity and experimentation where binary oppositions, social hierarchies and cultural values are contested and reshaped – complete with jerseys and football scarfs (currently a must-have fashion item) worn by players in the alternative Anonymous Allyship aligning the walls. Read Derin Fadina’s review for the AJ here. Performance inside the Nordic Countries Pavilion (photography: Venla Helenius) Nordic Countries Pavilion Probably the most impactful national pavilion this year (and with the best tote bag by far), the Nordic Countries have presented an installation with performance work. Curated by Kaisa Karvinen, Industry Muscle: Five Scores for Architecture continues Finnish artist Teo Ala-Ruona’s work on trans embodiment and ecology by considering the trans body as a lens through which to examine modern architecture and the built environment. The three-day exhibition opening featured a two-hour performance each day with Ala-Ruona and his troupe crawling, climbing and writhing around the space, creating a bodily dialogue with the installations and pavilion building itself, which was designed by celebrated Modernist architect Sverre Fehn. The American pavilion next door, loudly (country music!) turns its back on what’s going on in its own country by just celebrating the apathetical porch, making the Nordic Countries seem even more relevant in this crucial time. Read Derin Fadina’s review for the AJ here. German Pavilion (photography: Luca Capuano) Germany Pavilion An exhibit certainly grabbing the issue of climate change by its neck is the German contribution, Stresstest. Curated by Nicola Borgmann, Elisabeth Endres, Gabriele G Kiefer and Daniele Santucci, the pavilion has turned climate change into a literal physical and psychological experience for visitors by creating contrasting ‘stress’ and ‘de-stress’ rooms. In the dark stress room, a large metal sculpture creates a cramped and hot space using heating mats hung from the ceiling and powered by PVs. Opposite is a calmer space demonstrating strategies that could be used to reduce the heat of cities, and between the two spaces is a film focusing on the impacts of cities becoming hotter. If this doesn’t highlight the urgency of the situation, I’m not sure what will. Best bits of the Arsenale outside the main exhibitions Bahrain Pavilion (photography: Andrea Avezzù) Bahrain Pavilion Overall winner of this year’s Golden Lion for best national participation, Bahrain’s pavilion in the historic Artiglierie of the Arsenale is a proposal for living and working through heat conditions. Heatwave, curated by architect Andrea Faraguna, reimagines public space design by exploring passive cooling strategies rooted in the Arab country’s climate, as well as cultural context. A geothermal well and solar chimney are connected through a thermo-hygrometric axis that links underground conditions with the air outside. The inhabitable space that hosts visitors is thus compressed and defined by its earth-covered floor and suspended ceiling, and is surrounded by memorable sandbags, highlighting its scalability for particularly hot construction sites in the Gulf where a huge amount of construction is taking place. In the Arsenale’s exhibition space, where excavation wasn’t feasible, this system has been adapted into mechanical ventilation, bringing in air from the canal side and channelling it through ductwork to create a microclimate. Slovenian Pavilion (photography: Andrea Avezzù) Slovenia Pavilion The AJ’s Rob Wilson’s top pavilion tip this year provides an enjoyable take on the theme of the main exhibition, highlighting how the tacit knowledge and on-site techniques and skills of construction workers and craftspeople are still the key constituent in architectural production despite all the heat and light about robotics, prefabrication, artificial intelligence and 3D printing. Master Builders, curated by Ana Kosi and Ognen Arsov and organised by the Museum of Architecture and Design (MAO) in Ljubljana, presents a series of ‘totems’ –accumulative sculpture-like structures that are formed of conglomerations of differently worked materials, finishes and building elements. These are stacked up into crazy tower forms, which showcase various on-site construction skills and techniques, their construction documented in accompanying films. Uzbekistan Pavilion (photography: Luca Capuano) Uzbekistan Pavilion Uzbekistan’s contribution explores the Soviet era solar furnace and Modernist legacy. Architecture studio GRACE, led by curators Ekaterina Golovatyuk and Giacomo Cantoni have curated A Matter of Radiance. The focus is the Sun Institute of Material Science – originally known as the Sun Heliocomplex – an incredible large-scale scientific structure built in 1987 on a natural, seismic-free foundation near Tashkent and one of only two that study material behaviour under extreme temperatures. The exhibition examines the solar oven’s site’s historical and contemporary significance while reflecting on its scientific legacy and influence moving beyond just national borders. Applied Arts Pavilion (photography: Andrea Avezzù) V&A Applied Arts Pavilion Diller Scofidio + Renfro (DS+R) is having a moment. The US-based practice, in collaboration with V&A chief curator Brendan Cormier, has curated On Storage, which aptly explores global storage architectures in a pavilion that strongly links to the V&A’s recent opening of Storehouse, its new (and free) collections archive in east London. Featured is a six-channel (and screen) film entitled Boxed: The Mild Boredom of Order, directed by the practice itself and following a toothbrush, as a metaphor for an everyday consumer product, on its journey through different forms of storage across the globe – from warehouse to distribution centre to baggage handlers down to the compact space of a suitcase. Also on display are large-format photographs of V&A East Storehouse, DS+R’s original architectural model and sketchbook and behind-the-scenes photography of Storehouse at work, taken by emerging east London-based photographers. Canal Café (photography: Marco Zorzanello) Canal café Golden Lion for the best participation in the actual exhibition went to Canal Café, an intervention designed by V&A East Storehouse’s architect DS+R with Natural Systems Utilities, SODAI, Aaron Betsky and Davide Oldani. Serving up canal-water espresso, the installation is a demonstration of how Venice itself can be a laboratory to understand how to live on the water in a time of water scarcity. The structure, located on the edge of the Arsenale’s building complex, draws water from its lagoon before filtering it onsite via a hybrid of natural and artificial methods, including a mini wetland with grasses. The project was recognised for its persistence, having started almost 20 years ago, just showing how water scarcity, contamination and flooding are still major concerns both globally and, more locally, in the tourist-heavy city of Venice. And what else? Holy See Pavilion (photography: Andrea Avezzù) The Holy See Much like the Danish Pavilion, the Pavilion of the Holy See is also taking on an approach of renewal this year. Over the next six months, Opera Aperta will breathe new life into the Santa Maria Ausiliatrice Complex in the Castello district of Venice. Founded as a hospice for pilgrims in 1171, the building later became the oldest hospital and was converted into school in the 18th century. In 2001, the City of Venice allocated it for cultural use and for the next four years it will be managed by the Dicastery for Culture and Education of the Holy See to oversee its restoration. Curated by architect, curator and researcher Marina Otero Verzier and artistic director of Fondaco Italia, Giovanna Zabotti, the complex has been turned into a constant ‘living laboratory’ of collective repair – and received a special mention in the biennale awards. The restoration works, open from Tuesday to Friday, are being carried out by local artisans and specialised restorers with expertise in recovering stone, marble, terracotta, mural and canvas painting, stucco, wood and metal artworks. The beauty, however, lies in the photogenic fabrics, lit by a warm yellow glow, hanging from the walls within, gently wrapping the building’s surfaces, leaving openings that allow movement and offer glimpses of the ongoing restoration. Mobile scaffolding, used to support the works, also doubles up as furniture, providing space for equipment and subdividing the interior. Togo Pavilion (photography: Andrea Avezzù) Togo Pavilion The Republic of Togo has presented its first pavilion ever at the biennale this year with the project Considering Togo’s Architectural Heritage, which sits intriguingly at the back of a second-hand furniture shop. The inaugural pavilion is curated by Lomé and Berlin-based Studio NEiDA and is in Venice’s Squero Castello. Exploring Togo’s architectural narratives from the early 20th century, and key ongoing restoration efforts, it documents key examples of the west African country’s heritage, highlighting both traditional and more modern building techniques – from Nôk cave dwellings to Afro-Brazilian architecture developed by freed slaves to post-independence Modernist buildings. Some buildings showcased are in disrepair, despite most of the modern structures remaining in use today, including Hotel de la Paix and the Bourse du Travail, suggestive of a future of repair and celebration. Estonian Pavilion (photography: Joosep Kivimäe) Estonia Pavilion Another firm favourite this year is the Estonian exhibition on Riva dei Sette Martiri on the waterfront between Corso Garibaldi and the Giardini.  The Guardian’s Olly Wainwright said that outside the Giardini, it packed ‘the most powerful punch of all.’ Simple and effective, Let Me Warm You, curated by trio of architects Keiti Lige, Elina Liiva and Helena Männa, asks whether current insulation-driven renovations are merely a ‘checkbox’ to meet European energy targets or ‘a real chance’ to enhance the spatial and social quality of mass housing. The façade of the historic Venetian palazzetto in which it is housed is clad with fibre-cement insulation panels in the same process used in Estonia itself for its mass housing – a powerful visual statement showcasing a problematic disregard for the character and potential of typical habitable spaces. Inside, the ground floor is wrapped in plastic and exhibits how the dynamics between different stakeholders influence spatial solutions, including named stickers to encourage discussion among your peers. Venice Procuratie (photography: Mike Merkenschlager) SMAC (San Marco Art Centre) Timed to open to the public at the same time as the biennale, SMAC is a new permanent arts institution in Piazza San Marco, on the second floor of the Procuratie, which is owned by Generali. The exhibition space, open to the public for the first time in 500 years, comprises 16 galleries arranged along a continuous corridor stretching over 80m, recently restored by David Chipperfield Architects. Visitors can expect access through a private courtyard leading on to a monumental staircase and experience a typically sensitive Chipperfield restoration, which has revived the building’s original details: walls covered in a light grey Venetian marmorino made from crushed marble and floors of white terrazzo. During the summer, its inaugural programme features two solo exhibitions dedicated to Australian modern architect Harry Seidler and Korean landscape designer Jung Youngsun. Holcim's installation (photography: Celestia Studio) Holcim x Elemental Concrete manufacturer Holcim makes an appearance for a third time at Venice, this time partnering with Chilean Pritzker Prize-winning Alejandro Aravena’s practice Elemental – curator of the 2016 biennale – to launch a resilient housing prototype that follows on from the Norman Foster-designed Essential Homes Project. The ‘carbon-neutral’ structure incorporates Holcim’s range of low-carbon concrete ECOPact and is on display as part of the Time Space Existence exhibition organised by the European Cultural Centre in their gardens. It also applies Holcim’s ‘biochar’ technology for the first time, a concrete mix with 100 per cent recycled aggregates, in a full-scale Basic Services Unit. This follows an incremental design approach, which could entail fast and efficient construction via the provision of only essential housing components, and via self-build. The Next Earth at Palazzo Diedo (photography: Joan Porcel) The Next Earth At Palazzo Diedo’s incredible dedicated Berggruen Arts and Culture space, MIT’s department of architecture and think tank Antikythera (apparently taking its name from the first-known computer) have come together to create the exhibition The Next Earth: Computation, Crisis, Cosmology, which questions how philosophy and architecture must and can respond to various planet-wide crises. Antikythera’s The Noocene: Computation and Cosmology from Antikythera to AI looks at the evolution of ‘planetary computation’ as an ‘accidental’ megastructure through which systems, from the molecular to atmospheric scales, become both comprehensible and composable. What is actually on display is an architectural scale video monolith and short films on AI, astronomy and artificial life, as well as selected artefacts. MIT’s Climate Work: Un/Worlding the Planet features 37 works-in-progress, each looking at material supply chains, energy expenditure, modes of practice and deep-time perspectives. Take from it what you will. The 19th International Venice Architecture Biennale remains open until Sunday, 23 November 2025.
    Like
    Love
    Wow
    Sad
    Angry
    632
    0 Commentarios 0 Acciones
  • Steel life: Grand Canal Steelworks Park in Hangzhou, China by Jiakun Architects and TLS Landscape Architecture

    The transformation of Hangzhou’s old steelworks into a park is a tribute to China’s industrial past in a city of the future
    The congressional hearing about Chinese AI engine DeepSeek held in the US this April has propelled Hangzhou, the heart of China’s new digital economy, to the headlines. With companies such as DeepSeek, Unitree and Alibaba – whose payment app allowed me to get on the metro without needing to buy a ticket – headquartered in Hangzhou, China’s future in AI, robotics and automation is emanating from this city. Getting off the metro in the suburban area of Gongshu, the sun was shining on an old steelworks, overgrown with vines and flowers now that it is being transformed by Jiakun Architects and TLS Landscape Architecture into the Grand Canal Steelworks Park. The unfolding trade war might help to accelerate China’s journey into an automated future, leaving the world of factories behind, yet this new public space shows an impulse to commemorate the country’s economic history, and the forces that have shaped its contemporary built environment.
    Starting in Hangzhou and travelling more than 1,700km to Beijing, the Grand Canal is an engineering project built 2,500 years ago to connect the different regions of eastern China. The country’s geography means rivers flow from west to east: from higher elevations, culminating in the Himalayas, to the basin that is the country’s eastern seaboard. Historically, it was difficult to transport goods from mercantile centres in the south, including Hangzhou and Suzhou, to the political centre in Beijing up north. As a civil engineering project, the Grand Canal rivals the Great Wall, but if the Great Wall aims to protect China from the outside, the Grand Canal articulates Chinese commerce from the inside. The historic waterway has been an important conduit of economic and cultural exchange, enabling the movement of people and goods such as grain, silk, wine, salt and gravel across the country. It became a UNESCO World Heritage site in 2014.
    The state‑owned enterprise collective was founded, and the physical facility of Hangzhou steelworks built, in the 1950s during the Great Leap Forward, when China strove for self‑sufficiency, and wended its way through the country’s economic trajectory: first the economic chaos of the 1960s, then the reforms and opening up in the 1980s. Steel remains an important industry today in China, home to more than half of the world’s production, but the listing of the Grand Canal enabled city leaders to move production to a new site and decommission the Hangzhou steelworks. External mandates, including entry into the World Trade Organization, the Beijing Olympics and UNESCO listings, have been instrumentalised in the country to pursue a range of internal interests, particularly economical and real estate ones. 
    In 2016, the factory was shut down in 150 days, in what the company describes as a ‘heroic’ effort, and the site attracted tourists of industrial ruins. In the competition brief, Hangzhou planners asked for ‘as much of the existing blast furnaces and buildings’ as possible to be preserved. When I arrived in China in 2008, Chinese cities were notorious for heritage demolition, but today urban planners and architects increasingly work to preserve historical buildings. Just like several industrial sites in Beijing and Shanghai have been transformed into major public and cultural spaces in the past decade, in the Yangtze River Delta – of which Hangzhou is a major hub – several industrial sites along the Grand Canal’s course are being given a new lease of life.
    Today, the three blast furnaces of Hangzhou steelworks remain, with the silhouettes of their smokestacks easily recognisable from a distance. The project preserves as much as possible of the aesthetics of a steel mill with none of the danger or dust, ready to welcome instead new community facilities and cultural programmes in a vast and restored piece of landscape. Situated in a former working‑class district that has been gentrifying and welcoming young families, the new park is becoming a popular venue for music festivals, flower viewing in springtime and year‑round picnics – when I visited, parents were teaching their children to ride a bicycle, and students from Zhejiang University, about a kilometre from the park, were having lunch on the grass.
    New programmes accommodated in the old coke oven and steel mills will include a series of exhibition halls and spaces welcoming a wide range of cultural and artistic workshops as well as events – the project’s first phase has just completed but tenant organisations have not yet moved in, and works are ongoing to the north of the park. On the day of my visit, a student art exhibition was on display near one of the furnaces, with works made from detritus from the site, including old packing containers. The rehabilitated buildings also provide a range of commercial units, where cafés, restaurants, shops, a bookshop, ice cream shop and a gym have already opened their doors to visitors. 
    Several structures were deemed structurally unsafe and required demolition, such as the old iron casting building. The architects proposed to partially reconstruct it on its original footprint; the much more open structure, built with reclaimed bricks, now houses a semi‑outdoor garden. Material choices evoke the site’s industrial past: weathered steel, exposed concrete and large expanses of glazing dominate the landscape. The widespread use of red, including in an elevated walkway that traverses the park – at times vaguely reminiscent of a Japanese torii gate in the space below – gives a warm and reassuring earthiness to the otherwise industrial colour palette.
    Elements selected by the designers underwent sanitisation and detoxification before being reused. The landscaping includes old machinery parts and boulders; recuperated steel panels are for instance inlaid into the paving while pipes for pouring molten steel have been turned into a fountain. The train tracks that once transported material continue to run through the site, providing paths in between the new patches of vegetation, planted with local grasses as well as Japanese maples, camphors and persimmon trees. As Jiawen Chen from TLS describes it, the aesthetic feels ‘wild, but not weedy or abandoned’. The landscape architects’ inspiration came from the site itself after the steelworks’ closure, she explains, once vegetation had begun to reclaim it. Contaminated soil was replaced with clean local soil – at a depth between 0.5 and 1.5 metres, in line with Chinese regulations. The removed soil was sent to specialised facilities for purification, while severely contaminated layers were sealed with concrete. TLS proposed phytoremediationin selected areas of the site ‘as a symbolic and educational gesture’, Chen explains, but ‘the client preferred to be cautious’. From the eastern end of the park, hiking trails lead to the mountain and its Buddhist temples. The old steel mill’s grounds fade seamlessly into the hills. Standing in what it is still a construction site, a sign suggests there will soon be a rowing centre here. 
    While Jiakun Architects and TLS have prioritised making the site palatable as a public space, the project also brings to life a history that many are likely to have forgotten. Throughout, the park incorporates different elements of China’s economic history, including the life of the Grand Canal and the industrial era. There is, for example, a Maoist steelworker painted on the mural of one of the cafés, as well as historical photographs and drawings of the steelworks peppering the site, framed and hung on the walls. The ambition might be in part to pay homage to steelworkers, but it is hard to imagine them visiting. Gongshu, like the other suburbs of Hangzhou, has seen rapid increases in its property prices. 
    The steelworks were built during the Maoist era, a time of ‘battling with earth, battling with heaven, battling with humanity’, to borrow Mao’s own words. Ordinary people melted down pots and pans to surpass the UK in steel production, and industry was seen as a sharp break from a traditional Chinese way of life, in which humans aspire to live in harmony with their environment. The priorities of the government today are more conservative, seeking to create a garden city to attract engineers and their families. Hangzhou has long represented the balmy and sophisticated life of China’s south, a land of rice and fish. To the west of the city, not far from the old steelworks, are the ecologically protected Xixi wetlands, and Hangzhou’s urban planning exemplifies the Chinese principle of 天人合一, or nature and humankind as one. 
    Today, Hangzhou is only 45 minutes from Shanghai by high‑speed train. The two cities feel like extensions of one another, an urban region of 100 million people. The creation of the Grand Canal Steelworks Park reflects the move away from heavy industry that Chinese cities such as Hangzhou are currently making, shifting towards a supposedly cleaner knowledge‑driven economy. Yet the preservation of the steelworks epitomises the sentimental attitude towards the site’s history and acts as a reminder that today’s middle classes are the children of yesterday’s steelworkers, drinking coffee and playing with their own children in grassy lawns next to shuttered blast furnaces. 
    The park’s second phase is already nearing completion, and the competition for the nearby Grand Canal Museum was won by Herzog & de Meuron in 2020 – the building is under construction, and should open at the end of this year. It is a district rich in history, but the city is resolutely turned towards the future. 

    2025-06-02
    Reuben J Brown

    Share

    AR May 2025CircularityBuy Now
    #steel #life #grand #canal #steelworks
    Steel life: Grand Canal Steelworks Park in Hangzhou, China by Jiakun Architects and TLS Landscape Architecture
    The transformation of Hangzhou’s old steelworks into a park is a tribute to China’s industrial past in a city of the future The congressional hearing about Chinese AI engine DeepSeek held in the US this April has propelled Hangzhou, the heart of China’s new digital economy, to the headlines. With companies such as DeepSeek, Unitree and Alibaba – whose payment app allowed me to get on the metro without needing to buy a ticket – headquartered in Hangzhou, China’s future in AI, robotics and automation is emanating from this city. Getting off the metro in the suburban area of Gongshu, the sun was shining on an old steelworks, overgrown with vines and flowers now that it is being transformed by Jiakun Architects and TLS Landscape Architecture into the Grand Canal Steelworks Park. The unfolding trade war might help to accelerate China’s journey into an automated future, leaving the world of factories behind, yet this new public space shows an impulse to commemorate the country’s economic history, and the forces that have shaped its contemporary built environment. Starting in Hangzhou and travelling more than 1,700km to Beijing, the Grand Canal is an engineering project built 2,500 years ago to connect the different regions of eastern China. The country’s geography means rivers flow from west to east: from higher elevations, culminating in the Himalayas, to the basin that is the country’s eastern seaboard. Historically, it was difficult to transport goods from mercantile centres in the south, including Hangzhou and Suzhou, to the political centre in Beijing up north. As a civil engineering project, the Grand Canal rivals the Great Wall, but if the Great Wall aims to protect China from the outside, the Grand Canal articulates Chinese commerce from the inside. The historic waterway has been an important conduit of economic and cultural exchange, enabling the movement of people and goods such as grain, silk, wine, salt and gravel across the country. It became a UNESCO World Heritage site in 2014. The state‑owned enterprise collective was founded, and the physical facility of Hangzhou steelworks built, in the 1950s during the Great Leap Forward, when China strove for self‑sufficiency, and wended its way through the country’s economic trajectory: first the economic chaos of the 1960s, then the reforms and opening up in the 1980s. Steel remains an important industry today in China, home to more than half of the world’s production, but the listing of the Grand Canal enabled city leaders to move production to a new site and decommission the Hangzhou steelworks. External mandates, including entry into the World Trade Organization, the Beijing Olympics and UNESCO listings, have been instrumentalised in the country to pursue a range of internal interests, particularly economical and real estate ones.  In 2016, the factory was shut down in 150 days, in what the company describes as a ‘heroic’ effort, and the site attracted tourists of industrial ruins. In the competition brief, Hangzhou planners asked for ‘as much of the existing blast furnaces and buildings’ as possible to be preserved. When I arrived in China in 2008, Chinese cities were notorious for heritage demolition, but today urban planners and architects increasingly work to preserve historical buildings. Just like several industrial sites in Beijing and Shanghai have been transformed into major public and cultural spaces in the past decade, in the Yangtze River Delta – of which Hangzhou is a major hub – several industrial sites along the Grand Canal’s course are being given a new lease of life. Today, the three blast furnaces of Hangzhou steelworks remain, with the silhouettes of their smokestacks easily recognisable from a distance. The project preserves as much as possible of the aesthetics of a steel mill with none of the danger or dust, ready to welcome instead new community facilities and cultural programmes in a vast and restored piece of landscape. Situated in a former working‑class district that has been gentrifying and welcoming young families, the new park is becoming a popular venue for music festivals, flower viewing in springtime and year‑round picnics – when I visited, parents were teaching their children to ride a bicycle, and students from Zhejiang University, about a kilometre from the park, were having lunch on the grass. New programmes accommodated in the old coke oven and steel mills will include a series of exhibition halls and spaces welcoming a wide range of cultural and artistic workshops as well as events – the project’s first phase has just completed but tenant organisations have not yet moved in, and works are ongoing to the north of the park. On the day of my visit, a student art exhibition was on display near one of the furnaces, with works made from detritus from the site, including old packing containers. The rehabilitated buildings also provide a range of commercial units, where cafés, restaurants, shops, a bookshop, ice cream shop and a gym have already opened their doors to visitors.  Several structures were deemed structurally unsafe and required demolition, such as the old iron casting building. The architects proposed to partially reconstruct it on its original footprint; the much more open structure, built with reclaimed bricks, now houses a semi‑outdoor garden. Material choices evoke the site’s industrial past: weathered steel, exposed concrete and large expanses of glazing dominate the landscape. The widespread use of red, including in an elevated walkway that traverses the park – at times vaguely reminiscent of a Japanese torii gate in the space below – gives a warm and reassuring earthiness to the otherwise industrial colour palette. Elements selected by the designers underwent sanitisation and detoxification before being reused. The landscaping includes old machinery parts and boulders; recuperated steel panels are for instance inlaid into the paving while pipes for pouring molten steel have been turned into a fountain. The train tracks that once transported material continue to run through the site, providing paths in between the new patches of vegetation, planted with local grasses as well as Japanese maples, camphors and persimmon trees. As Jiawen Chen from TLS describes it, the aesthetic feels ‘wild, but not weedy or abandoned’. The landscape architects’ inspiration came from the site itself after the steelworks’ closure, she explains, once vegetation had begun to reclaim it. Contaminated soil was replaced with clean local soil – at a depth between 0.5 and 1.5 metres, in line with Chinese regulations. The removed soil was sent to specialised facilities for purification, while severely contaminated layers were sealed with concrete. TLS proposed phytoremediationin selected areas of the site ‘as a symbolic and educational gesture’, Chen explains, but ‘the client preferred to be cautious’. From the eastern end of the park, hiking trails lead to the mountain and its Buddhist temples. The old steel mill’s grounds fade seamlessly into the hills. Standing in what it is still a construction site, a sign suggests there will soon be a rowing centre here.  While Jiakun Architects and TLS have prioritised making the site palatable as a public space, the project also brings to life a history that many are likely to have forgotten. Throughout, the park incorporates different elements of China’s economic history, including the life of the Grand Canal and the industrial era. There is, for example, a Maoist steelworker painted on the mural of one of the cafés, as well as historical photographs and drawings of the steelworks peppering the site, framed and hung on the walls. The ambition might be in part to pay homage to steelworkers, but it is hard to imagine them visiting. Gongshu, like the other suburbs of Hangzhou, has seen rapid increases in its property prices.  The steelworks were built during the Maoist era, a time of ‘battling with earth, battling with heaven, battling with humanity’, to borrow Mao’s own words. Ordinary people melted down pots and pans to surpass the UK in steel production, and industry was seen as a sharp break from a traditional Chinese way of life, in which humans aspire to live in harmony with their environment. The priorities of the government today are more conservative, seeking to create a garden city to attract engineers and their families. Hangzhou has long represented the balmy and sophisticated life of China’s south, a land of rice and fish. To the west of the city, not far from the old steelworks, are the ecologically protected Xixi wetlands, and Hangzhou’s urban planning exemplifies the Chinese principle of 天人合一, or nature and humankind as one.  Today, Hangzhou is only 45 minutes from Shanghai by high‑speed train. The two cities feel like extensions of one another, an urban region of 100 million people. The creation of the Grand Canal Steelworks Park reflects the move away from heavy industry that Chinese cities such as Hangzhou are currently making, shifting towards a supposedly cleaner knowledge‑driven economy. Yet the preservation of the steelworks epitomises the sentimental attitude towards the site’s history and acts as a reminder that today’s middle classes are the children of yesterday’s steelworkers, drinking coffee and playing with their own children in grassy lawns next to shuttered blast furnaces.  The park’s second phase is already nearing completion, and the competition for the nearby Grand Canal Museum was won by Herzog & de Meuron in 2020 – the building is under construction, and should open at the end of this year. It is a district rich in history, but the city is resolutely turned towards the future.  2025-06-02 Reuben J Brown Share AR May 2025CircularityBuy Now #steel #life #grand #canal #steelworks
    WWW.ARCHITECTURAL-REVIEW.COM
    Steel life: Grand Canal Steelworks Park in Hangzhou, China by Jiakun Architects and TLS Landscape Architecture
    The transformation of Hangzhou’s old steelworks into a park is a tribute to China’s industrial past in a city of the future The congressional hearing about Chinese AI engine DeepSeek held in the US this April has propelled Hangzhou, the heart of China’s new digital economy, to the headlines. With companies such as DeepSeek, Unitree and Alibaba – whose payment app allowed me to get on the metro without needing to buy a ticket – headquartered in Hangzhou, China’s future in AI, robotics and automation is emanating from this city. Getting off the metro in the suburban area of Gongshu, the sun was shining on an old steelworks, overgrown with vines and flowers now that it is being transformed by Jiakun Architects and TLS Landscape Architecture into the Grand Canal Steelworks Park. The unfolding trade war might help to accelerate China’s journey into an automated future, leaving the world of factories behind, yet this new public space shows an impulse to commemorate the country’s economic history, and the forces that have shaped its contemporary built environment. Starting in Hangzhou and travelling more than 1,700km to Beijing, the Grand Canal is an engineering project built 2,500 years ago to connect the different regions of eastern China. The country’s geography means rivers flow from west to east: from higher elevations, culminating in the Himalayas, to the basin that is the country’s eastern seaboard. Historically, it was difficult to transport goods from mercantile centres in the south, including Hangzhou and Suzhou, to the political centre in Beijing up north. As a civil engineering project, the Grand Canal rivals the Great Wall, but if the Great Wall aims to protect China from the outside, the Grand Canal articulates Chinese commerce from the inside. The historic waterway has been an important conduit of economic and cultural exchange, enabling the movement of people and goods such as grain, silk, wine, salt and gravel across the country. It became a UNESCO World Heritage site in 2014. The state‑owned enterprise collective was founded, and the physical facility of Hangzhou steelworks built, in the 1950s during the Great Leap Forward, when China strove for self‑sufficiency, and wended its way through the country’s economic trajectory: first the economic chaos of the 1960s, then the reforms and opening up in the 1980s. Steel remains an important industry today in China, home to more than half of the world’s production, but the listing of the Grand Canal enabled city leaders to move production to a new site and decommission the Hangzhou steelworks. External mandates, including entry into the World Trade Organization, the Beijing Olympics and UNESCO listings, have been instrumentalised in the country to pursue a range of internal interests, particularly economical and real estate ones.  In 2016, the factory was shut down in 150 days, in what the company describes as a ‘heroic’ effort, and the site attracted tourists of industrial ruins. In the competition brief, Hangzhou planners asked for ‘as much of the existing blast furnaces and buildings’ as possible to be preserved. When I arrived in China in 2008, Chinese cities were notorious for heritage demolition, but today urban planners and architects increasingly work to preserve historical buildings. Just like several industrial sites in Beijing and Shanghai have been transformed into major public and cultural spaces in the past decade, in the Yangtze River Delta – of which Hangzhou is a major hub – several industrial sites along the Grand Canal’s course are being given a new lease of life. Today, the three blast furnaces of Hangzhou steelworks remain, with the silhouettes of their smokestacks easily recognisable from a distance. The project preserves as much as possible of the aesthetics of a steel mill with none of the danger or dust, ready to welcome instead new community facilities and cultural programmes in a vast and restored piece of landscape. Situated in a former working‑class district that has been gentrifying and welcoming young families, the new park is becoming a popular venue for music festivals, flower viewing in springtime and year‑round picnics – when I visited, parents were teaching their children to ride a bicycle, and students from Zhejiang University, about a kilometre from the park, were having lunch on the grass. New programmes accommodated in the old coke oven and steel mills will include a series of exhibition halls and spaces welcoming a wide range of cultural and artistic workshops as well as events – the project’s first phase has just completed but tenant organisations have not yet moved in, and works are ongoing to the north of the park. On the day of my visit, a student art exhibition was on display near one of the furnaces, with works made from detritus from the site, including old packing containers. The rehabilitated buildings also provide a range of commercial units, where cafés, restaurants, shops, a bookshop, ice cream shop and a gym have already opened their doors to visitors.  Several structures were deemed structurally unsafe and required demolition, such as the old iron casting building. The architects proposed to partially reconstruct it on its original footprint; the much more open structure, built with reclaimed bricks, now houses a semi‑outdoor garden. Material choices evoke the site’s industrial past: weathered steel, exposed concrete and large expanses of glazing dominate the landscape. The widespread use of red, including in an elevated walkway that traverses the park – at times vaguely reminiscent of a Japanese torii gate in the space below – gives a warm and reassuring earthiness to the otherwise industrial colour palette. Elements selected by the designers underwent sanitisation and detoxification before being reused. The landscaping includes old machinery parts and boulders; recuperated steel panels are for instance inlaid into the paving while pipes for pouring molten steel have been turned into a fountain. The train tracks that once transported material continue to run through the site, providing paths in between the new patches of vegetation, planted with local grasses as well as Japanese maples, camphors and persimmon trees. As Jiawen Chen from TLS describes it, the aesthetic feels ‘wild, but not weedy or abandoned’. The landscape architects’ inspiration came from the site itself after the steelworks’ closure, she explains, once vegetation had begun to reclaim it. Contaminated soil was replaced with clean local soil – at a depth between 0.5 and 1.5 metres, in line with Chinese regulations. The removed soil was sent to specialised facilities for purification, while severely contaminated layers were sealed with concrete. TLS proposed phytoremediation (using plants to detoxify soil) in selected areas of the site ‘as a symbolic and educational gesture’, Chen explains, but ‘the client preferred to be cautious’. From the eastern end of the park, hiking trails lead to the mountain and its Buddhist temples. The old steel mill’s grounds fade seamlessly into the hills. Standing in what it is still a construction site, a sign suggests there will soon be a rowing centre here.  While Jiakun Architects and TLS have prioritised making the site palatable as a public space, the project also brings to life a history that many are likely to have forgotten. Throughout, the park incorporates different elements of China’s economic history, including the life of the Grand Canal and the industrial era. There is, for example, a Maoist steelworker painted on the mural of one of the cafés, as well as historical photographs and drawings of the steelworks peppering the site, framed and hung on the walls. The ambition might be in part to pay homage to steelworkers, but it is hard to imagine them visiting. Gongshu, like the other suburbs of Hangzhou, has seen rapid increases in its property prices.  The steelworks were built during the Maoist era, a time of ‘battling with earth, battling with heaven, battling with humanity’, to borrow Mao’s own words. Ordinary people melted down pots and pans to surpass the UK in steel production, and industry was seen as a sharp break from a traditional Chinese way of life, in which humans aspire to live in harmony with their environment. The priorities of the government today are more conservative, seeking to create a garden city to attract engineers and their families. Hangzhou has long represented the balmy and sophisticated life of China’s south, a land of rice and fish. To the west of the city, not far from the old steelworks, are the ecologically protected Xixi wetlands, and Hangzhou’s urban planning exemplifies the Chinese principle of 天人合一, or nature and humankind as one.  Today, Hangzhou is only 45 minutes from Shanghai by high‑speed train. The two cities feel like extensions of one another, an urban region of 100 million people. The creation of the Grand Canal Steelworks Park reflects the move away from heavy industry that Chinese cities such as Hangzhou are currently making, shifting towards a supposedly cleaner knowledge‑driven economy. Yet the preservation of the steelworks epitomises the sentimental attitude towards the site’s history and acts as a reminder that today’s middle classes are the children of yesterday’s steelworkers, drinking coffee and playing with their own children in grassy lawns next to shuttered blast furnaces.  The park’s second phase is already nearing completion, and the competition for the nearby Grand Canal Museum was won by Herzog & de Meuron in 2020 – the building is under construction, and should open at the end of this year. It is a district rich in history, but the city is resolutely turned towards the future.  2025-06-02 Reuben J Brown Share AR May 2025CircularityBuy Now
    Like
    Love
    Wow
    Sad
    Angry
    209
    0 Commentarios 0 Acciones
  • How much does your road weigh?

    The ways roads are used, with ever larger and heavier vehicles, have dramatic consequences on the environment – and electric cars are not the answer
    Today, there is an average of 37 tonnes of road per inhabitant of the planet. The weight of the road network alone accounts for a third of all construction worldwide, and has grown exponentially in the 20th century. There is 10 times more bitumen, in mass, than there are living animals. Yet growth in the mass of roads does not automatically correspond to population growth, or translate into increased length of road networks. In wealthier countries, the number of metres of road per inhabitant has actually fallen over the last century. In the United States, for instance, between 1905 and 2015 the length of the network increased by a factor of 1.75 and the population by a factor of 3.8, compared with 21 for the mass of roads. Roads have become wider and, above all, much thicker. To understand the evolution of these parameters, and their environmental impact, it is helpful to trace the different stages in the life of the motorway. 
    Until the early 20th century, roads were used for various modes of transport, including horses, bicycles, pedestrians and trams; as a result of the construction of railways, road traffic even declined in some European countries in the 19th century. The main novelty brought by the motorway was that they would be reserved for motorised traffic. In several languages, the word itself – autostrada, autobahn, autoroute or motorway – speaks of this exclusivity. 
    Roman roads varied from simple corduroy roads, made by placing logs perpendicular to the direction of the road over a low or swampy area, to paved roads, as this engraving from Jean Rondelet’s 19th‑century Traité Théorique et Pratique de l’Art de Bâtir shows. Using deep roadbeds of tamped rubble as an underlying layer to ensure that they kept dry, major roads were often stone-paved, metalled, cambered for drainage and flanked by footpaths, bridleways and drainage ditches

    Like any major piece of infrastructure, motorways became the subject of ideological discourse, long before any shovel hit the ground; politicians underlined their role in the service of the nation, how they would contribute to progress, development, the economy, modernity and even civilisation. The inauguration ceremony for the construction of the first autostrada took place in March 1923, presided over by Italy’s prime minister Benito Mussolini. The second major motorway programme was announced by the Nazi government in 1933, with a national network planned to be around 7,000 kilometres long. In his 2017 book Driving Modernity: Technology, Experts, Politics, and Fascist Motorways, 1922–1943, historian Massimo Moraglio shows how both programmes were used as propaganda tools by the regimes, most notably at the international road congresses in Milan in 1926 and Munich in 1934. In the European postwar era, the notion of the ‘civilising’ effect of roads persevered. In 1962, Valéry Giscard d’Estaing, then‑secretary of state for finances and later president of France, argued that expanded motorways would bring ‘progress, activity and life’.
    This discourse soon butted up against the realities of how motorways affected individuals and communities. In his 2011 book Fighting Traffic: The Dawn of the Motor Age in the American City, Peter D Norton explores the history of resistance to the imposition of motorised traffic in North American cities. Until the 1920s, there was a perception that cars were dangerous newcomers, and that other street and road uses – especially walking – were more legitimate. Cars were associated with speed and danger; restrictions on motorists, especially speed limits, were routine. 
    Built between 1962 and 1970, the Westway was London’s first urban motorway, elevated above the city to use less land. Construction workers are seen stressing the longitudinal soffit cables inside the box section of the deck units to achieve the bearing capacity necessary to carry the weight of traffic
    Credit: Heritage Image Partnership Ltd / Alamy
    To gain domination over cities, motor vehicles had to win priority over other street uses. Rather than restricting the flow of vehicles to minimise the risk of road accidents, a specific infrastructure was dedicated to them: both inner‑city roads and motorways. Cutting through the landscape, the motorway had, by definition, to be inaccessible by any other means of transport than motorised vehicle. To guarantee the fluidity of traffic, the construction of imposing bridges, tunnels and interchanges is necessary, particularly at junctions with other roads, railways or canals. This prioritisation of one type of user inevitably impacts journeys for others; as space is fragmented, short journeys are lengthened for those trying to navigate space by foot or bicycle. 
    Enabling cars to drive at around 110–140km/h on motorways, as modern motorways do, directly impacts their design, with major environmental effects: the gradient has to be gentle, the curves longand the lanes wide, to allow vehicles to overtake each other safely. As much terrain around the world is not naturally suited to these requirements, the earthworks are considerable: in France, the construction of a metre of highway requires moving some 100m3 of earth, and when the soil is soft, full of clay or peat, it is made firmer with hydraulic lime and cement before the highway’s first sub‑layers are laid. This material cost reinforces the criticisms levelled in the 1960s, by the likes of Jane Jacobs and Lewis Mumford, at urban planning that prioritised the personal motor vehicle.
    When roads are widened to accommodate more traffic, buildings are sliced and demolished, as happened in Dhaka’s Bhasantek Road in 2021
    Credit: Dhaka Tribune
    Once built, the motorway is never inert. Motorway projects today generally anticipate future expansion, and include a large median strip of 12m between the lanes, with a view to adding new ones. Increases in speed and vehicle sizes have also translated into wider lanes, from 2.5m in 1945 to 3.5m today. The average contemporary motorway footprint is therefore 100 square metres per linear metre. Indeed, although the construction of a road is supposed to reduce congestion, it also generates new traffic and, therefore, new congestion. This is the principle of ‘induced traffic’: the provision of extra road capacity results in a greater volume of traffic.
    The Katy Freeway in Texas famously illustrates this dynamic. Built as a regular six‑lane highway in the 1960s, it was called the second worst bottleneck in the nation by 2004, wasting 25 million hours a year of commuter time. In 2011, the state of Texas invested USbillion to fix this problem, widening the road to a staggering total of 26 lanes. By 2014, the morning and afternoon traffic had both increased again. The vicious circle based on the induced traffic has been empirically demonstrated in most countries: traffic has continued to increase and congestion remains unresolved, leading to ever-increasing emissions. In the EU, transport is the only sector where greenhouse gas emissions have increased in the past three decades, rising 33.5 per cent between 1990 and 2019. Transport accounts for around a fifth of global CO₂ emissions today, with three quarters of this figure linked to road transport.
    Houston’s Katy Freeway is one of the world’s widest motorways, with 26 lanes. Its last expansion, in 2008, was initially hailed as a success, but within five years, peak travel times were longer than before the expansion – a direct illustration of the principle of induced traffic
    Credit: Smiley N Pool / Houston Chronicle / Getty
    Like other large transport infrastructures such as ports and airports, motorways are designed for the largest and heaviest vehicles. Engineers, road administrations and politicians have known since the 1950s that one truck represents millions of cars: the impact of a vehicle on the roadway is exponential to its weight – an online ‘road damage calculator’ allows you to compare the damage done by different types of vehicles to the road. Over the years, heavier and heavier trucks have been authorised to operate on roads: from 8‑tonne trucks in 1945 to 44 tonnes nowadays. The European Parliament adopted a revised directive on 12 March 2024 authorising mega‑trucks to travel on European roads; they can measure up to 25 metres and weigh up to 60 tonnes, compared with the previous limits of 18.75 metres and 44 tonnes. This is a political and economic choice with considerable material effects: thickness, rigidity of sub‑bases and consolidation of soil and subsoil with lime and cement. Altogether, motorways are 10 times thicker than large roads from the late 19th century. In France, it takes an average of 30 tonnes of sand and aggregate to build one linear metre of motorway, 100 times more than cement and bitumen. 
    The material history of road networks is a history of quarrying and environmental damage. The traces of roads can also be seen in rivers emptied of their sediment, the notches of quarries in the hills and the furrows of dredgers extracting sand from the seabed. This material extraction, arguably the most significant in human history, has dramatic ecological consequences for rivers, groundwater tables, the rise of sea levels and saltwater in farmlands, as well as biodiversity. As sand is ubiquitous and very cheap, the history of roads is also the history of a local extractivism and environmental conflicts around the world. 
    Shoving and rutting is the bulging and rippling of the pavement surface. Once built, roads require extensive maintenance – the heavier the vehicles, the quicker the damage. From pothole repair to the full resurfacing of a road, maintenance contributes to keeping road users safe
    Credit: Yakov Oskanov / Alamy
    Once roads are built and extended, they need to be maintained to support the circulation of lorries and, by extension, commodities. This stage is becoming increasingly important as rail freight, which used to be important in countries such as France and the UK, is declining, accounting for no more than 10 per cent of the transport of commodities. Engineers might judge that a motorway is destined to last 20 years or so, but this prognosis will be significantly reduced with heavy traffic. The same applies to the thousands of motorway bridges: in the UK, nearly half of the 9,000 highway bridges are in poor condition; in France, 7 per cent of the 12,000 bridges are in danger of collapsing, as did Genoa’s Morandi bridge in 2018. If only light vehicles drove on it, this infrastructure would last much longer.
    This puts into perspective governments’ insistence on ‘greening’ the transport sector by targeting CO2 emissions alone, typically by promoting the use of electric vehicles. Public policies prioritising EVs do nothing to change the mass of roads or the issue of their maintenance – even if lorries were to run on clean air, massive quarrying would still be necessary. A similar argument plays out with regard to canals and ports, which have been constantly widened and deepened for decades to accommodate ever-larger oil tankers or container ships. The simple operation of these infrastructures, dimensioned for the circulation of commodities and not humans, requires permanent dredging of large volumes. The environmental problem of large transport infrastructure goes beyond the type of energy used: it is, at its root, free and globalised trade.
    ‘The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing’
    As both a material and ideological object, the motorway fixes certain political choices in the landscape. Millions of kilometres of road continue to be asphalted, widened and thickened around the world to favour cars and lorries. In France, more than 80 per cent of today’s sand and aggregate extraction is used for civil engineering works – the rest goes to buildings. Even if no more buildings, roads or other infrastructures were to be built, phenomenal quantities of sand and aggregates would still need to be extracted in order to maintain existing road networks. The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing, adding new structures such as wildlife crossings, more maintaining. 
    Rising traffic levels are always deemed positive by governments for a country’s economy and development. As Christopher Wells shows in his 2014 book Car Country: An Environmental History, car use becomes necessary in an environment where everything has been planned for the car, from the location of public services and supermarkets to residential and office areas. Similarly, when an entire economy is based on globalised trade and just‑in‑time logistics, the lorry and the container ship become vital. 
    The final stage in the life of a piece of motorway infrastructure is dismantling. Like the other stages, this one is not a natural outcome but the fruit of political choices – which should be democratic – regarding how we wish to use existing roads. Dismantling, which is essential if we are to put an end to the global extractivism of sand and aggregates, does not mean destruction: if bicycles and pedestrians were to use them instead, maintenance would be minimal. This final stage requires a paradigm shift away from the eternal adaptation to increasing traffic. Replacing cars and lorries with public transport and rail freight would be a first step. But above all, a different political and spatial organisation of economic activities is necessary, and ultimately, an end to globalised, just-in-time trade and logistics.
    In 1978, a row of cars parked at a shopping centre in Connecticut was buried under a thick layer of gooey asphalt. The Ghost Parking Lot, one of the first projects by James Wines’ practice SITE, became a playground for skateboarders until it was removed in 2003. Images of this lumpy landscape serve as allegories of the damage caused by reliance on the automobile
    Credit: Project by SITE

    Lead image: Some road damage is beyond repair, as when a landslide caused a large chunk of the Gothenburg–Oslo motorway to collapse in 2023. Such dramatic events remind us of both the fragility of these seemingly robust infrastructures, and the damage that extensive construction does to the planet. Credit: Hanna Brunlöf Windell / TT / Shutterstock

    2025-06-03
    Reuben J Brown

    Share
    #how #much #does #your #road
    How much does your road weigh?
    The ways roads are used, with ever larger and heavier vehicles, have dramatic consequences on the environment – and electric cars are not the answer Today, there is an average of 37 tonnes of road per inhabitant of the planet. The weight of the road network alone accounts for a third of all construction worldwide, and has grown exponentially in the 20th century. There is 10 times more bitumen, in mass, than there are living animals. Yet growth in the mass of roads does not automatically correspond to population growth, or translate into increased length of road networks. In wealthier countries, the number of metres of road per inhabitant has actually fallen over the last century. In the United States, for instance, between 1905 and 2015 the length of the network increased by a factor of 1.75 and the population by a factor of 3.8, compared with 21 for the mass of roads. Roads have become wider and, above all, much thicker. To understand the evolution of these parameters, and their environmental impact, it is helpful to trace the different stages in the life of the motorway.  Until the early 20th century, roads were used for various modes of transport, including horses, bicycles, pedestrians and trams; as a result of the construction of railways, road traffic even declined in some European countries in the 19th century. The main novelty brought by the motorway was that they would be reserved for motorised traffic. In several languages, the word itself – autostrada, autobahn, autoroute or motorway – speaks of this exclusivity.  Roman roads varied from simple corduroy roads, made by placing logs perpendicular to the direction of the road over a low or swampy area, to paved roads, as this engraving from Jean Rondelet’s 19th‑century Traité Théorique et Pratique de l’Art de Bâtir shows. Using deep roadbeds of tamped rubble as an underlying layer to ensure that they kept dry, major roads were often stone-paved, metalled, cambered for drainage and flanked by footpaths, bridleways and drainage ditches Like any major piece of infrastructure, motorways became the subject of ideological discourse, long before any shovel hit the ground; politicians underlined their role in the service of the nation, how they would contribute to progress, development, the economy, modernity and even civilisation. The inauguration ceremony for the construction of the first autostrada took place in March 1923, presided over by Italy’s prime minister Benito Mussolini. The second major motorway programme was announced by the Nazi government in 1933, with a national network planned to be around 7,000 kilometres long. In his 2017 book Driving Modernity: Technology, Experts, Politics, and Fascist Motorways, 1922–1943, historian Massimo Moraglio shows how both programmes were used as propaganda tools by the regimes, most notably at the international road congresses in Milan in 1926 and Munich in 1934. In the European postwar era, the notion of the ‘civilising’ effect of roads persevered. In 1962, Valéry Giscard d’Estaing, then‑secretary of state for finances and later president of France, argued that expanded motorways would bring ‘progress, activity and life’. This discourse soon butted up against the realities of how motorways affected individuals and communities. In his 2011 book Fighting Traffic: The Dawn of the Motor Age in the American City, Peter D Norton explores the history of resistance to the imposition of motorised traffic in North American cities. Until the 1920s, there was a perception that cars were dangerous newcomers, and that other street and road uses – especially walking – were more legitimate. Cars were associated with speed and danger; restrictions on motorists, especially speed limits, were routine.  Built between 1962 and 1970, the Westway was London’s first urban motorway, elevated above the city to use less land. Construction workers are seen stressing the longitudinal soffit cables inside the box section of the deck units to achieve the bearing capacity necessary to carry the weight of traffic Credit: Heritage Image Partnership Ltd / Alamy To gain domination over cities, motor vehicles had to win priority over other street uses. Rather than restricting the flow of vehicles to minimise the risk of road accidents, a specific infrastructure was dedicated to them: both inner‑city roads and motorways. Cutting through the landscape, the motorway had, by definition, to be inaccessible by any other means of transport than motorised vehicle. To guarantee the fluidity of traffic, the construction of imposing bridges, tunnels and interchanges is necessary, particularly at junctions with other roads, railways or canals. This prioritisation of one type of user inevitably impacts journeys for others; as space is fragmented, short journeys are lengthened for those trying to navigate space by foot or bicycle.  Enabling cars to drive at around 110–140km/h on motorways, as modern motorways do, directly impacts their design, with major environmental effects: the gradient has to be gentle, the curves longand the lanes wide, to allow vehicles to overtake each other safely. As much terrain around the world is not naturally suited to these requirements, the earthworks are considerable: in France, the construction of a metre of highway requires moving some 100m3 of earth, and when the soil is soft, full of clay or peat, it is made firmer with hydraulic lime and cement before the highway’s first sub‑layers are laid. This material cost reinforces the criticisms levelled in the 1960s, by the likes of Jane Jacobs and Lewis Mumford, at urban planning that prioritised the personal motor vehicle. When roads are widened to accommodate more traffic, buildings are sliced and demolished, as happened in Dhaka’s Bhasantek Road in 2021 Credit: Dhaka Tribune Once built, the motorway is never inert. Motorway projects today generally anticipate future expansion, and include a large median strip of 12m between the lanes, with a view to adding new ones. Increases in speed and vehicle sizes have also translated into wider lanes, from 2.5m in 1945 to 3.5m today. The average contemporary motorway footprint is therefore 100 square metres per linear metre. Indeed, although the construction of a road is supposed to reduce congestion, it also generates new traffic and, therefore, new congestion. This is the principle of ‘induced traffic’: the provision of extra road capacity results in a greater volume of traffic. The Katy Freeway in Texas famously illustrates this dynamic. Built as a regular six‑lane highway in the 1960s, it was called the second worst bottleneck in the nation by 2004, wasting 25 million hours a year of commuter time. In 2011, the state of Texas invested USbillion to fix this problem, widening the road to a staggering total of 26 lanes. By 2014, the morning and afternoon traffic had both increased again. The vicious circle based on the induced traffic has been empirically demonstrated in most countries: traffic has continued to increase and congestion remains unresolved, leading to ever-increasing emissions. In the EU, transport is the only sector where greenhouse gas emissions have increased in the past three decades, rising 33.5 per cent between 1990 and 2019. Transport accounts for around a fifth of global CO₂ emissions today, with three quarters of this figure linked to road transport. Houston’s Katy Freeway is one of the world’s widest motorways, with 26 lanes. Its last expansion, in 2008, was initially hailed as a success, but within five years, peak travel times were longer than before the expansion – a direct illustration of the principle of induced traffic Credit: Smiley N Pool / Houston Chronicle / Getty Like other large transport infrastructures such as ports and airports, motorways are designed for the largest and heaviest vehicles. Engineers, road administrations and politicians have known since the 1950s that one truck represents millions of cars: the impact of a vehicle on the roadway is exponential to its weight – an online ‘road damage calculator’ allows you to compare the damage done by different types of vehicles to the road. Over the years, heavier and heavier trucks have been authorised to operate on roads: from 8‑tonne trucks in 1945 to 44 tonnes nowadays. The European Parliament adopted a revised directive on 12 March 2024 authorising mega‑trucks to travel on European roads; they can measure up to 25 metres and weigh up to 60 tonnes, compared with the previous limits of 18.75 metres and 44 tonnes. This is a political and economic choice with considerable material effects: thickness, rigidity of sub‑bases and consolidation of soil and subsoil with lime and cement. Altogether, motorways are 10 times thicker than large roads from the late 19th century. In France, it takes an average of 30 tonnes of sand and aggregate to build one linear metre of motorway, 100 times more than cement and bitumen.  The material history of road networks is a history of quarrying and environmental damage. The traces of roads can also be seen in rivers emptied of their sediment, the notches of quarries in the hills and the furrows of dredgers extracting sand from the seabed. This material extraction, arguably the most significant in human history, has dramatic ecological consequences for rivers, groundwater tables, the rise of sea levels and saltwater in farmlands, as well as biodiversity. As sand is ubiquitous and very cheap, the history of roads is also the history of a local extractivism and environmental conflicts around the world.  Shoving and rutting is the bulging and rippling of the pavement surface. Once built, roads require extensive maintenance – the heavier the vehicles, the quicker the damage. From pothole repair to the full resurfacing of a road, maintenance contributes to keeping road users safe Credit: Yakov Oskanov / Alamy Once roads are built and extended, they need to be maintained to support the circulation of lorries and, by extension, commodities. This stage is becoming increasingly important as rail freight, which used to be important in countries such as France and the UK, is declining, accounting for no more than 10 per cent of the transport of commodities. Engineers might judge that a motorway is destined to last 20 years or so, but this prognosis will be significantly reduced with heavy traffic. The same applies to the thousands of motorway bridges: in the UK, nearly half of the 9,000 highway bridges are in poor condition; in France, 7 per cent of the 12,000 bridges are in danger of collapsing, as did Genoa’s Morandi bridge in 2018. If only light vehicles drove on it, this infrastructure would last much longer. This puts into perspective governments’ insistence on ‘greening’ the transport sector by targeting CO2 emissions alone, typically by promoting the use of electric vehicles. Public policies prioritising EVs do nothing to change the mass of roads or the issue of their maintenance – even if lorries were to run on clean air, massive quarrying would still be necessary. A similar argument plays out with regard to canals and ports, which have been constantly widened and deepened for decades to accommodate ever-larger oil tankers or container ships. The simple operation of these infrastructures, dimensioned for the circulation of commodities and not humans, requires permanent dredging of large volumes. The environmental problem of large transport infrastructure goes beyond the type of energy used: it is, at its root, free and globalised trade. ‘The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing’ As both a material and ideological object, the motorway fixes certain political choices in the landscape. Millions of kilometres of road continue to be asphalted, widened and thickened around the world to favour cars and lorries. In France, more than 80 per cent of today’s sand and aggregate extraction is used for civil engineering works – the rest goes to buildings. Even if no more buildings, roads or other infrastructures were to be built, phenomenal quantities of sand and aggregates would still need to be extracted in order to maintain existing road networks. The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing, adding new structures such as wildlife crossings, more maintaining.  Rising traffic levels are always deemed positive by governments for a country’s economy and development. As Christopher Wells shows in his 2014 book Car Country: An Environmental History, car use becomes necessary in an environment where everything has been planned for the car, from the location of public services and supermarkets to residential and office areas. Similarly, when an entire economy is based on globalised trade and just‑in‑time logistics, the lorry and the container ship become vital.  The final stage in the life of a piece of motorway infrastructure is dismantling. Like the other stages, this one is not a natural outcome but the fruit of political choices – which should be democratic – regarding how we wish to use existing roads. Dismantling, which is essential if we are to put an end to the global extractivism of sand and aggregates, does not mean destruction: if bicycles and pedestrians were to use them instead, maintenance would be minimal. This final stage requires a paradigm shift away from the eternal adaptation to increasing traffic. Replacing cars and lorries with public transport and rail freight would be a first step. But above all, a different political and spatial organisation of economic activities is necessary, and ultimately, an end to globalised, just-in-time trade and logistics. In 1978, a row of cars parked at a shopping centre in Connecticut was buried under a thick layer of gooey asphalt. The Ghost Parking Lot, one of the first projects by James Wines’ practice SITE, became a playground for skateboarders until it was removed in 2003. Images of this lumpy landscape serve as allegories of the damage caused by reliance on the automobile Credit: Project by SITE Lead image: Some road damage is beyond repair, as when a landslide caused a large chunk of the Gothenburg–Oslo motorway to collapse in 2023. Such dramatic events remind us of both the fragility of these seemingly robust infrastructures, and the damage that extensive construction does to the planet. Credit: Hanna Brunlöf Windell / TT / Shutterstock 2025-06-03 Reuben J Brown Share #how #much #does #your #road
    WWW.ARCHITECTURAL-REVIEW.COM
    How much does your road weigh?
    The ways roads are used, with ever larger and heavier vehicles, have dramatic consequences on the environment – and electric cars are not the answer Today, there is an average of 37 tonnes of road per inhabitant of the planet. The weight of the road network alone accounts for a third of all construction worldwide, and has grown exponentially in the 20th century. There is 10 times more bitumen, in mass, than there are living animals. Yet growth in the mass of roads does not automatically correspond to population growth, or translate into increased length of road networks. In wealthier countries, the number of metres of road per inhabitant has actually fallen over the last century. In the United States, for instance, between 1905 and 2015 the length of the network increased by a factor of 1.75 and the population by a factor of 3.8, compared with 21 for the mass of roads. Roads have become wider and, above all, much thicker. To understand the evolution of these parameters, and their environmental impact, it is helpful to trace the different stages in the life of the motorway.  Until the early 20th century, roads were used for various modes of transport, including horses, bicycles, pedestrians and trams; as a result of the construction of railways, road traffic even declined in some European countries in the 19th century. The main novelty brought by the motorway was that they would be reserved for motorised traffic. In several languages, the word itself – autostrada, autobahn, autoroute or motorway – speaks of this exclusivity.  Roman roads varied from simple corduroy roads, made by placing logs perpendicular to the direction of the road over a low or swampy area, to paved roads, as this engraving from Jean Rondelet’s 19th‑century Traité Théorique et Pratique de l’Art de Bâtir shows. Using deep roadbeds of tamped rubble as an underlying layer to ensure that they kept dry, major roads were often stone-paved, metalled, cambered for drainage and flanked by footpaths, bridleways and drainage ditches Like any major piece of infrastructure, motorways became the subject of ideological discourse, long before any shovel hit the ground; politicians underlined their role in the service of the nation, how they would contribute to progress, development, the economy, modernity and even civilisation. The inauguration ceremony for the construction of the first autostrada took place in March 1923, presided over by Italy’s prime minister Benito Mussolini. The second major motorway programme was announced by the Nazi government in 1933, with a national network planned to be around 7,000 kilometres long. In his 2017 book Driving Modernity: Technology, Experts, Politics, and Fascist Motorways, 1922–1943, historian Massimo Moraglio shows how both programmes were used as propaganda tools by the regimes, most notably at the international road congresses in Milan in 1926 and Munich in 1934. In the European postwar era, the notion of the ‘civilising’ effect of roads persevered. In 1962, Valéry Giscard d’Estaing, then‑secretary of state for finances and later president of France, argued that expanded motorways would bring ‘progress, activity and life’. This discourse soon butted up against the realities of how motorways affected individuals and communities. In his 2011 book Fighting Traffic: The Dawn of the Motor Age in the American City, Peter D Norton explores the history of resistance to the imposition of motorised traffic in North American cities. Until the 1920s, there was a perception that cars were dangerous newcomers, and that other street and road uses – especially walking – were more legitimate. Cars were associated with speed and danger; restrictions on motorists, especially speed limits, were routine.  Built between 1962 and 1970, the Westway was London’s first urban motorway, elevated above the city to use less land. Construction workers are seen stressing the longitudinal soffit cables inside the box section of the deck units to achieve the bearing capacity necessary to carry the weight of traffic Credit: Heritage Image Partnership Ltd / Alamy To gain domination over cities, motor vehicles had to win priority over other street uses. Rather than restricting the flow of vehicles to minimise the risk of road accidents, a specific infrastructure was dedicated to them: both inner‑city roads and motorways. Cutting through the landscape, the motorway had, by definition, to be inaccessible by any other means of transport than motorised vehicle. To guarantee the fluidity of traffic, the construction of imposing bridges, tunnels and interchanges is necessary, particularly at junctions with other roads, railways or canals. This prioritisation of one type of user inevitably impacts journeys for others; as space is fragmented, short journeys are lengthened for those trying to navigate space by foot or bicycle.  Enabling cars to drive at around 110–140km/h on motorways, as modern motorways do, directly impacts their design, with major environmental effects: the gradient has to be gentle (4 per cent), the curves long (1.5km in radius) and the lanes wide, to allow vehicles to overtake each other safely. As much terrain around the world is not naturally suited to these requirements, the earthworks are considerable: in France, the construction of a metre of highway requires moving some 100m3 of earth, and when the soil is soft, full of clay or peat, it is made firmer with hydraulic lime and cement before the highway’s first sub‑layers are laid. This material cost reinforces the criticisms levelled in the 1960s, by the likes of Jane Jacobs and Lewis Mumford, at urban planning that prioritised the personal motor vehicle. When roads are widened to accommodate more traffic, buildings are sliced and demolished, as happened in Dhaka’s Bhasantek Road in 2021 Credit: Dhaka Tribune Once built, the motorway is never inert. Motorway projects today generally anticipate future expansion (from 2×2 to 2×3 to 2×4 lanes), and include a large median strip of 12m between the lanes, with a view to adding new ones. Increases in speed and vehicle sizes have also translated into wider lanes, from 2.5m in 1945 to 3.5m today. The average contemporary motorway footprint is therefore 100 square metres per linear metre. Indeed, although the construction of a road is supposed to reduce congestion, it also generates new traffic and, therefore, new congestion. This is the principle of ‘induced traffic’: the provision of extra road capacity results in a greater volume of traffic. The Katy Freeway in Texas famously illustrates this dynamic. Built as a regular six‑lane highway in the 1960s, it was called the second worst bottleneck in the nation by 2004, wasting 25 million hours a year of commuter time. In 2011, the state of Texas invested US$2.8 billion to fix this problem, widening the road to a staggering total of 26 lanes. By 2014, the morning and afternoon traffic had both increased again. The vicious circle based on the induced traffic has been empirically demonstrated in most countries: traffic has continued to increase and congestion remains unresolved, leading to ever-increasing emissions. In the EU, transport is the only sector where greenhouse gas emissions have increased in the past three decades, rising 33.5 per cent between 1990 and 2019. Transport accounts for around a fifth of global CO₂ emissions today, with three quarters of this figure linked to road transport. Houston’s Katy Freeway is one of the world’s widest motorways, with 26 lanes. Its last expansion, in 2008, was initially hailed as a success, but within five years, peak travel times were longer than before the expansion – a direct illustration of the principle of induced traffic Credit: Smiley N Pool / Houston Chronicle / Getty Like other large transport infrastructures such as ports and airports, motorways are designed for the largest and heaviest vehicles. Engineers, road administrations and politicians have known since the 1950s that one truck represents millions of cars: the impact of a vehicle on the roadway is exponential to its weight – an online ‘road damage calculator’ allows you to compare the damage done by different types of vehicles to the road. Over the years, heavier and heavier trucks have been authorised to operate on roads: from 8‑tonne trucks in 1945 to 44 tonnes nowadays. The European Parliament adopted a revised directive on 12 March 2024 authorising mega‑trucks to travel on European roads; they can measure up to 25 metres and weigh up to 60 tonnes, compared with the previous limits of 18.75 metres and 44 tonnes. This is a political and economic choice with considerable material effects: thickness, rigidity of sub‑bases and consolidation of soil and subsoil with lime and cement. Altogether, motorways are 10 times thicker than large roads from the late 19th century. In France, it takes an average of 30 tonnes of sand and aggregate to build one linear metre of motorway, 100 times more than cement and bitumen.  The material history of road networks is a history of quarrying and environmental damage. The traces of roads can also be seen in rivers emptied of their sediment, the notches of quarries in the hills and the furrows of dredgers extracting sand from the seabed. This material extraction, arguably the most significant in human history, has dramatic ecological consequences for rivers, groundwater tables, the rise of sea levels and saltwater in farmlands, as well as biodiversity. As sand is ubiquitous and very cheap, the history of roads is also the history of a local extractivism and environmental conflicts around the world.  Shoving and rutting is the bulging and rippling of the pavement surface. Once built, roads require extensive maintenance – the heavier the vehicles, the quicker the damage. From pothole repair to the full resurfacing of a road, maintenance contributes to keeping road users safe Credit: Yakov Oskanov / Alamy Once roads are built and extended, they need to be maintained to support the circulation of lorries and, by extension, commodities. This stage is becoming increasingly important as rail freight, which used to be important in countries such as France and the UK, is declining, accounting for no more than 10 per cent of the transport of commodities. Engineers might judge that a motorway is destined to last 20 years or so, but this prognosis will be significantly reduced with heavy traffic. The same applies to the thousands of motorway bridges: in the UK, nearly half of the 9,000 highway bridges are in poor condition; in France, 7 per cent of the 12,000 bridges are in danger of collapsing, as did Genoa’s Morandi bridge in 2018. If only light vehicles drove on it, this infrastructure would last much longer. This puts into perspective governments’ insistence on ‘greening’ the transport sector by targeting CO2 emissions alone, typically by promoting the use of electric vehicles (EVs). Public policies prioritising EVs do nothing to change the mass of roads or the issue of their maintenance – even if lorries were to run on clean air, massive quarrying would still be necessary. A similar argument plays out with regard to canals and ports, which have been constantly widened and deepened for decades to accommodate ever-larger oil tankers or container ships. The simple operation of these infrastructures, dimensioned for the circulation of commodities and not humans, requires permanent dredging of large volumes. The environmental problem of large transport infrastructure goes beyond the type of energy used: it is, at its root, free and globalised trade. ‘The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing’ As both a material and ideological object, the motorway fixes certain political choices in the landscape. Millions of kilometres of road continue to be asphalted, widened and thickened around the world to favour cars and lorries. In France, more than 80 per cent of today’s sand and aggregate extraction is used for civil engineering works – the rest goes to buildings. Even if no more buildings, roads or other infrastructures were to be built, phenomenal quantities of sand and aggregates would still need to be extracted in order to maintain existing road networks. The material life cycle of motorways is relentless: constructing, maintaining, widening, thickening, repairing, adding new structures such as wildlife crossings, more maintaining.  Rising traffic levels are always deemed positive by governments for a country’s economy and development. As Christopher Wells shows in his 2014 book Car Country: An Environmental History, car use becomes necessary in an environment where everything has been planned for the car, from the location of public services and supermarkets to residential and office areas. Similarly, when an entire economy is based on globalised trade and just‑in‑time logistics (to the point that many service economies could not produce their own personal protective equipment in the midst of a pandemic), the lorry and the container ship become vital.  The final stage in the life of a piece of motorway infrastructure is dismantling. Like the other stages, this one is not a natural outcome but the fruit of political choices – which should be democratic – regarding how we wish to use existing roads. Dismantling, which is essential if we are to put an end to the global extractivism of sand and aggregates, does not mean destruction: if bicycles and pedestrians were to use them instead, maintenance would be minimal. This final stage requires a paradigm shift away from the eternal adaptation to increasing traffic. Replacing cars and lorries with public transport and rail freight would be a first step. But above all, a different political and spatial organisation of economic activities is necessary, and ultimately, an end to globalised, just-in-time trade and logistics. In 1978, a row of cars parked at a shopping centre in Connecticut was buried under a thick layer of gooey asphalt. The Ghost Parking Lot, one of the first projects by James Wines’ practice SITE, became a playground for skateboarders until it was removed in 2003. Images of this lumpy landscape serve as allegories of the damage caused by reliance on the automobile Credit: Project by SITE Lead image: Some road damage is beyond repair, as when a landslide caused a large chunk of the Gothenburg–Oslo motorway to collapse in 2023. Such dramatic events remind us of both the fragility of these seemingly robust infrastructures, and the damage that extensive construction does to the planet. Credit: Hanna Brunlöf Windell / TT / Shutterstock 2025-06-03 Reuben J Brown Share
    Like
    Love
    Wow
    Sad
    Angry
    153
    0 Commentarios 0 Acciones
  • Engineer Fixes and Re-Installs Old Payphones, Provides Free Calls to the Public

    Payphones "were the only things that were built to last for decades and be out in the elements," says electrical engineer Patrick Schlott. He should know; as a hobby, he buys secondhand payphones, rewires them, then asks local businesses in rural Vermont if they'd let him install them. His goal is to offer, for free, public telephone service."It's assumed most folks own cell phones," writes Schlott. "Well, not everyone does, sometimes they don't work out on dirt roads, sometimes you forget your charger, and sometimes you just really need to make a phone call. We aim to provide a valuable public service to the community while teaching people about the US telephone system that has over a century of history behind it." Schlott's company, RandTel, currently operates three phones in his neck of Vermont: One at the North Tunbridge General Store in Tunbridge, one at the Latham Library and a third—a rotary model from the 1950s--at the town of Randolph's information booth. He's particularly proud of that last one, as "This installation is 100% solar-powered, provided graciously by Catamount Solar," he writes. "Many thanks to the White River Valley Chamber of Commerce for hosting!" Here's a look at what Schlott does:
    #engineer #fixes #reinstalls #old #payphones
    Engineer Fixes and Re-Installs Old Payphones, Provides Free Calls to the Public
    Payphones "were the only things that were built to last for decades and be out in the elements," says electrical engineer Patrick Schlott. He should know; as a hobby, he buys secondhand payphones, rewires them, then asks local businesses in rural Vermont if they'd let him install them. His goal is to offer, for free, public telephone service."It's assumed most folks own cell phones," writes Schlott. "Well, not everyone does, sometimes they don't work out on dirt roads, sometimes you forget your charger, and sometimes you just really need to make a phone call. We aim to provide a valuable public service to the community while teaching people about the US telephone system that has over a century of history behind it." Schlott's company, RandTel, currently operates three phones in his neck of Vermont: One at the North Tunbridge General Store in Tunbridge, one at the Latham Library and a third—a rotary model from the 1950s--at the town of Randolph's information booth. He's particularly proud of that last one, as "This installation is 100% solar-powered, provided graciously by Catamount Solar," he writes. "Many thanks to the White River Valley Chamber of Commerce for hosting!" Here's a look at what Schlott does: #engineer #fixes #reinstalls #old #payphones
    WWW.CORE77.COM
    Engineer Fixes and Re-Installs Old Payphones, Provides Free Calls to the Public
    Payphones "were the only things that were built to last for decades and be out in the elements," says electrical engineer Patrick Schlott. He should know; as a hobby, he buys secondhand payphones, rewires them, then asks local businesses in rural Vermont if they'd let him install them. His goal is to offer, for free, public telephone service. (Schlott foots the bill himself.) "It's assumed most folks own cell phones," writes Schlott. "Well, not everyone does, sometimes they don't work out on dirt roads, sometimes you forget your charger, and sometimes you just really need to make a phone call. We aim to provide a valuable public service to the community while teaching people about the US telephone system that has over a century of history behind it." Schlott's company, RandTel, currently operates three phones in his neck of Vermont: One at the North Tunbridge General Store in Tunbridge, one at the Latham Library and a third—a rotary model from the 1950s--at the town of Randolph's information booth. He's particularly proud of that last one, as "This installation is 100% solar-powered, provided graciously by Catamount Solar," he writes. "Many thanks to the White River Valley Chamber of Commerce for hosting!" Here's a look at what Schlott does:
    Like
    Love
    Wow
    Angry
    Sad
    312
    0 Commentarios 0 Acciones
  • AI isn’t coming for your job—it’s coming for your company

    Debate about whether artificial intelligence can replicate the intellectual labor of doctors, lawyers, or PhDs forgoes a deeper concern that’s looming: Entire companies—not just individual jobs—may be rendered obsolete by the accelerating pace of AI adoption.

    Reports suggesting OpenAI will charge per month for agents trained at a PhD level spun up the ongoing debate about whose job is safe from AI and whose job is not.

    “I’ve not seen it be that impressive yet, but it’s likely not far off,” James Villarrubia, head of digital innovation and AI at NASA CAS, told me.

    Sean McGregor, the founder of Responsible AI Collaborative who earned a PhD in computer science, pointed out how many jobs are about more than just a set of skills: “Current AI technology is not sufficiently robust to allow unsupervised control of hazardous chemistry equipment, human experimentation, or other domains where human PhDs are currently required.”

    The big reason I polled the audience on this one was because I wanted to broaden my perspective on what jobs would be eliminated. Instead, it changed my perspective.

    AI needs to outperform the system, not the role

    Suzanne Rabicoff, founder of the human agency think tank and fractional practice, The Pie Grower, gave me some reading assignments from her work, instead of a quote.

    Her work showed me that these times are unprecedented. But something clicked in my brain when she said in her writing that she liked the angle of more efficient companies rising instead of jobs being replaced at companies with a lot of tech and human capital debt. Her response to that statement? “Exactly my bet.” 

    Sure, this is the first time that a robot is doing the homework for some college students. However, there is more precedent for robots moving market share than for replacing the same job function across a sector.

    Fortune 500 companies—especially those bloated with legacy processes and redundant labor—are always vulnerable to decline as newer, more nimble competitors rise. And not because any single job is replaced, but because the foundational economics of their business models no longer hold.

    AI doesn’t need to outperform every employee to render an enterprise obsolete. It only needs to outperform the system.

    Case study: The auto industry

    Take, for example, the decline of American car manufacturers in the late 20th century.

    In the 1950s, American automakers had a stranglehold on the car industry, not unlike today’s tech giants. In 1950, the U.S. produced about 75% of the world’s cars.

    But in the 1970s, Japanese automakers pioneered the use of robotics in auto manufacturing. These companies produced higher-quality vehicles at great value thanks to leaner operations that were also more precise.

    Firms like GM struggled to keep up, burdened by outdated factories and excessive human capital costs—including bloated pensions.

    The seismic shift in the decades to follow paints a picture of what could be in store for large companies now. In 1960, the U.S. produced about 48% of the world’s cars, while Japan accounted for just 5%. By 1980, Japan had captured around 29% of the market, while the U.S. had fallen to 23%.

    Today’s AI shakeup could look similar. Decades from now, we could look at Apple similarly to how we look at Ford now. AI startups with more agile structures are poised to eat market share. On top of that, startups can focus on solving specialized problems, sharpening their competitive edge.

    Will your company shrivel and die?

    The fallout has already begun. Gartner surveyed organizations in late 2023, finding that about half were developing their own AI tools. By the end of 2024, that dropped to 20%. As hype around generative AI cools, Gartner notes that many chief information officers are instead using outside vendors—either large language model providers or traditional software sellers with AI-enhanced offerings. In 2024, AI startups received nearly half of the billion in global venture funding. If only 20% of legacy organizations currently feel confident competing with these upstarts, how many will feel that confidence as these startups mature?

    While headlines continue to fixate on whether AI can match PhD-level expertise, the deeper risk remains largely unspoken: Giant companies will shrivel and some may die. And when they do, your job is at risk whether you greet customers at the front desk or hold a PhD in an engineering discipline.

    But there are ways to stay afloat. One of the most impactful pieces of advice I ever received came from Jonathan Rosenberg, former SVP of products at Google and current advisor to Alphabet, when I visited the company’s campus in college. “You can’t just be great at what you do, you have to catch a great wave. Early people think it’s about the company, then the job, then the industry. It’s actually industry, company, job…”

    So, how do you catch the AI wave?

    Ankur Patel, CEO of Multimodal, advises workers to learn how to do their current jobs using AI tools that enhance productivity. He also notes that soft skills—mobilizing people, building relationships, leading teams—will become increasingly valuable as AI takes over more technical or routine tasks.

    “You can’t have AI be a group leader or team leader, right? I just don’t see that happening, even in the next generation forward,” Patel said. “So I think that’s a huge opportunity…to grow and learn from.”

    The bottom line is this: Even if the AI wave doesn’t replace you, it may replace the place you work. Will you get hit by the AI wave—or will you catch it?

    George Kailas is CEO of Prospero.ai.
    #isnt #coming #your #jobits #company
    AI isn’t coming for your job—it’s coming for your company
    Debate about whether artificial intelligence can replicate the intellectual labor of doctors, lawyers, or PhDs forgoes a deeper concern that’s looming: Entire companies—not just individual jobs—may be rendered obsolete by the accelerating pace of AI adoption. Reports suggesting OpenAI will charge per month for agents trained at a PhD level spun up the ongoing debate about whose job is safe from AI and whose job is not. “I’ve not seen it be that impressive yet, but it’s likely not far off,” James Villarrubia, head of digital innovation and AI at NASA CAS, told me. Sean McGregor, the founder of Responsible AI Collaborative who earned a PhD in computer science, pointed out how many jobs are about more than just a set of skills: “Current AI technology is not sufficiently robust to allow unsupervised control of hazardous chemistry equipment, human experimentation, or other domains where human PhDs are currently required.” The big reason I polled the audience on this one was because I wanted to broaden my perspective on what jobs would be eliminated. Instead, it changed my perspective. AI needs to outperform the system, not the role Suzanne Rabicoff, founder of the human agency think tank and fractional practice, The Pie Grower, gave me some reading assignments from her work, instead of a quote. Her work showed me that these times are unprecedented. But something clicked in my brain when she said in her writing that she liked the angle of more efficient companies rising instead of jobs being replaced at companies with a lot of tech and human capital debt. Her response to that statement? “Exactly my bet.”  Sure, this is the first time that a robot is doing the homework for some college students. However, there is more precedent for robots moving market share than for replacing the same job function across a sector. Fortune 500 companies—especially those bloated with legacy processes and redundant labor—are always vulnerable to decline as newer, more nimble competitors rise. And not because any single job is replaced, but because the foundational economics of their business models no longer hold. AI doesn’t need to outperform every employee to render an enterprise obsolete. It only needs to outperform the system. Case study: The auto industry Take, for example, the decline of American car manufacturers in the late 20th century. In the 1950s, American automakers had a stranglehold on the car industry, not unlike today’s tech giants. In 1950, the U.S. produced about 75% of the world’s cars. But in the 1970s, Japanese automakers pioneered the use of robotics in auto manufacturing. These companies produced higher-quality vehicles at great value thanks to leaner operations that were also more precise. Firms like GM struggled to keep up, burdened by outdated factories and excessive human capital costs—including bloated pensions. The seismic shift in the decades to follow paints a picture of what could be in store for large companies now. In 1960, the U.S. produced about 48% of the world’s cars, while Japan accounted for just 5%. By 1980, Japan had captured around 29% of the market, while the U.S. had fallen to 23%. Today’s AI shakeup could look similar. Decades from now, we could look at Apple similarly to how we look at Ford now. AI startups with more agile structures are poised to eat market share. On top of that, startups can focus on solving specialized problems, sharpening their competitive edge. Will your company shrivel and die? The fallout has already begun. Gartner surveyed organizations in late 2023, finding that about half were developing their own AI tools. By the end of 2024, that dropped to 20%. As hype around generative AI cools, Gartner notes that many chief information officers are instead using outside vendors—either large language model providers or traditional software sellers with AI-enhanced offerings. In 2024, AI startups received nearly half of the billion in global venture funding. If only 20% of legacy organizations currently feel confident competing with these upstarts, how many will feel that confidence as these startups mature? While headlines continue to fixate on whether AI can match PhD-level expertise, the deeper risk remains largely unspoken: Giant companies will shrivel and some may die. And when they do, your job is at risk whether you greet customers at the front desk or hold a PhD in an engineering discipline. But there are ways to stay afloat. One of the most impactful pieces of advice I ever received came from Jonathan Rosenberg, former SVP of products at Google and current advisor to Alphabet, when I visited the company’s campus in college. “You can’t just be great at what you do, you have to catch a great wave. Early people think it’s about the company, then the job, then the industry. It’s actually industry, company, job…” So, how do you catch the AI wave? Ankur Patel, CEO of Multimodal, advises workers to learn how to do their current jobs using AI tools that enhance productivity. He also notes that soft skills—mobilizing people, building relationships, leading teams—will become increasingly valuable as AI takes over more technical or routine tasks. “You can’t have AI be a group leader or team leader, right? I just don’t see that happening, even in the next generation forward,” Patel said. “So I think that’s a huge opportunity…to grow and learn from.” The bottom line is this: Even if the AI wave doesn’t replace you, it may replace the place you work. Will you get hit by the AI wave—or will you catch it? George Kailas is CEO of Prospero.ai. #isnt #coming #your #jobits #company
    WWW.FASTCOMPANY.COM
    AI isn’t coming for your job—it’s coming for your company
    Debate about whether artificial intelligence can replicate the intellectual labor of doctors, lawyers, or PhDs forgoes a deeper concern that’s looming: Entire companies—not just individual jobs—may be rendered obsolete by the accelerating pace of AI adoption. Reports suggesting OpenAI will charge $20,000 per month for agents trained at a PhD level spun up the ongoing debate about whose job is safe from AI and whose job is not. “I’ve not seen it be that impressive yet, but it’s likely not far off,” James Villarrubia, head of digital innovation and AI at NASA CAS, told me. Sean McGregor, the founder of Responsible AI Collaborative who earned a PhD in computer science, pointed out how many jobs are about more than just a set of skills: “Current AI technology is not sufficiently robust to allow unsupervised control of hazardous chemistry equipment, human experimentation, or other domains where human PhDs are currently required.” The big reason I polled the audience on this one was because I wanted to broaden my perspective on what jobs would be eliminated. Instead, it changed my perspective. AI needs to outperform the system, not the role Suzanne Rabicoff, founder of the human agency think tank and fractional practice, The Pie Grower, gave me some reading assignments from her work, instead of a quote. Her work showed me that these times are unprecedented. But something clicked in my brain when she said in her writing that she liked the angle of more efficient companies rising instead of jobs being replaced at companies with a lot of tech and human capital debt. Her response to that statement? “Exactly my bet.”  Sure, this is the first time that a robot is doing the homework for some college students. However, there is more precedent for robots moving market share than for replacing the same job function across a sector. Fortune 500 companies—especially those bloated with legacy processes and redundant labor—are always vulnerable to decline as newer, more nimble competitors rise. And not because any single job is replaced, but because the foundational economics of their business models no longer hold. AI doesn’t need to outperform every employee to render an enterprise obsolete. It only needs to outperform the system. Case study: The auto industry Take, for example, the decline of American car manufacturers in the late 20th century. In the 1950s, American automakers had a stranglehold on the car industry, not unlike today’s tech giants. In 1950, the U.S. produced about 75% of the world’s cars. But in the 1970s, Japanese automakers pioneered the use of robotics in auto manufacturing. These companies produced higher-quality vehicles at great value thanks to leaner operations that were also more precise. Firms like GM struggled to keep up, burdened by outdated factories and excessive human capital costs—including bloated pensions. The seismic shift in the decades to follow paints a picture of what could be in store for large companies now. In 1960, the U.S. produced about 48% of the world’s cars, while Japan accounted for just 5%. By 1980, Japan had captured around 29% of the market, while the U.S. had fallen to 23%. Today’s AI shakeup could look similar. Decades from now, we could look at Apple similarly to how we look at Ford now. AI startups with more agile structures are poised to eat market share. On top of that, startups can focus on solving specialized problems, sharpening their competitive edge. Will your company shrivel and die? The fallout has already begun. Gartner surveyed organizations in late 2023, finding that about half were developing their own AI tools. By the end of 2024, that dropped to 20%. As hype around generative AI cools, Gartner notes that many chief information officers are instead using outside vendors—either large language model providers or traditional software sellers with AI-enhanced offerings. In 2024, AI startups received nearly half of the $209 billion in global venture funding. If only 20% of legacy organizations currently feel confident competing with these upstarts, how many will feel that confidence as these startups mature? While headlines continue to fixate on whether AI can match PhD-level expertise, the deeper risk remains largely unspoken: Giant companies will shrivel and some may die. And when they do, your job is at risk whether you greet customers at the front desk or hold a PhD in an engineering discipline. But there are ways to stay afloat. One of the most impactful pieces of advice I ever received came from Jonathan Rosenberg, former SVP of products at Google and current advisor to Alphabet, when I visited the company’s campus in college. “You can’t just be great at what you do, you have to catch a great wave. Early people think it’s about the company, then the job, then the industry. It’s actually industry, company, job…” So, how do you catch the AI wave? Ankur Patel, CEO of Multimodal, advises workers to learn how to do their current jobs using AI tools that enhance productivity. He also notes that soft skills—mobilizing people, building relationships, leading teams—will become increasingly valuable as AI takes over more technical or routine tasks. “You can’t have AI be a group leader or team leader, right? I just don’t see that happening, even in the next generation forward,” Patel said. “So I think that’s a huge opportunity…to grow and learn from.” The bottom line is this: Even if the AI wave doesn’t replace you, it may replace the place you work. Will you get hit by the AI wave—or will you catch it? George Kailas is CEO of Prospero.ai.
    Like
    Love
    Wow
    Sad
    Angry
    205
    0 Commentarios 0 Acciones
Resultados de la búsqueda