• The so-called "2025 One-Hertz Challenge" is nothing but a desperate attempt to revive the HP 115BR, a relic that once synchronized time across the globe. It’s infuriating to witness the tech world’s negligence towards this crucial piece of history. How can we let a device that was once vital for global synchronization fade into oblivion? This isn’t just about fixing a clock; it’s about acknowledging the legacy of technology that shaped our world. Are we so absorbed in flashy gadgets that we forget the importance of precision and reliability? The arrogance of ignoring something so fundamental is maddening. It’s time we demand accountability in the tech space and prioritize the restoration of essential innovations like the HP 115BR!

    #OneHertz
    The so-called "2025 One-Hertz Challenge" is nothing but a desperate attempt to revive the HP 115BR, a relic that once synchronized time across the globe. It’s infuriating to witness the tech world’s negligence towards this crucial piece of history. How can we let a device that was once vital for global synchronization fade into oblivion? This isn’t just about fixing a clock; it’s about acknowledging the legacy of technology that shaped our world. Are we so absorbed in flashy gadgets that we forget the importance of precision and reliability? The arrogance of ignoring something so fundamental is maddening. It’s time we demand accountability in the tech space and prioritize the restoration of essential innovations like the HP 115BR! #OneHertz
    HACKADAY.COM
    2025 One-Hertz Challenge: Fixing The Clock That Once Synced The World
    The HP 115BR is not one of the most well-known products from Hewlett-Packard. And yet, it was remarkably important nonetheless. This hardware once synced time around the world. Now, for …read more
    1 Commentarii 0 Distribuiri 0 previzualizare
  • Hungry Bacteria Hunt Their Neighbors With Tiny, Poison-Tipped Harpoons

    Starving bacteriause a microscopic harpoon—called the Type VI secretion system—to stab and kill neighboring cells. The prey burst, turning spherical and leaking nutrients, which the killers then use to survive and grow.NewsletterSign up for our email newsletter for the latest science newsBacteria are bad neighbors. And we’re not talking noisy, never-take-out-the-trash bad neighbors. We’re talking has-a-harpoon-gun-and-points-it-at-you bad neighbors. According to a new study in Science, some bacteria hunt nearby bacterial species when they’re hungry. Using a special weapon system called the Type VI Secretion System, these bacteria shoot, spill, and then absorb the nutrients from the microbes they harpoon. “The punchline is: When things get tough, you eat your neighbors,” said Glen D’Souza, a study author and an assistant professor at Arizona State University, according to a press release. “We’ve known bacteria kill each other, that’s textbook. But what we’re seeing is that it’s not just important that the bacteria have weapons to kill, but they are controlling when they use those weapons specifically for situations to eat others where they can’t grow themselves.” According to the study authors, the research doesn’t just have implications for bacterial neighborhoods; it also has implications for human health and medicine. By harnessing these bacterial weapons, it may be possible to build better targeted antibiotics, designed to overcome antibiotic resistance. Ruthless Bacteria Use HarpoonsResearchers have long known that some bacteria can be ruthless, using weapons like the T6SS to clear out their competition. A nasty tool, the T6SS is essentially a tiny harpoon gun with a poison-tipped needle. When a bacterium shoots the weapon into another bacterium from a separate species, the needle pierces the microbe without killing it. Then, it injects toxins into the microbe that cause its internal nutrients to spill out.Up until now, researchers thought that this weapon helped bacteria eliminate their competition for space and for food, but after watching bacteria use the T6SS to attack their neighbors when food was scarce, the study authors concluded that these tiny harpooners use the weapon not only to remove rivals, but also to consume their competitors’ leaked nutrients.“Watching these cells in action really drives home how resourceful bacteria can be,” said Astrid Stubbusch, another study author and a researcher who worked on the study while at ETH Zurich, according to the press release. “By slowly releasing nutrients from their neighbors, they maximize their nutrient harvesting when every molecule counts.” Absorbing Food From NeighborsTo show that the bacteria used this system to eat when there was no food around, the study authors compared their attacks in both nutrient-rich and nutrient-poor environments. When supplied with ample resources, the bacteria used their harpoons to kill their neighbors quickly, with the released nutrients leaking out and dissolving immediately. But when resources were few and far between, they used their harpoons to kill their neighbors slowly, with the nutrients seeping out and sticking around. “This difference in dissolution time could mean that the killer cells load their spears with different toxins,” D’Souza said in another press release. While one toxin could eliminate the competition for space and for food when nutrients are available, another could create a food source, allowing bacteria to “absorb as many nutrients as possible” when sustenance is in short supply.Because of all this, this weapon system is more than ruthless; it’s also smart, and important to some species’ survival. When genetically unedited T6SS bacteria were put in an environment without food, they survived on spilled nutrients. But when genetically edited T6SS bacteria were placed in a similar environment, they died, because their ability to find food in their neighbors had been “turned off.”Harnessing Bacterial HarpoonsAccording to the study authors, the T6SS system is widely used by bacteria, both in and outside the lab. “It’s present in many different environments,” D’Souza said in one of the press releases. “It’s operational and happening in nature, from the oceans to the human gut.” The study authors add that their research could change the way we think about bacteria and could help in our fight against antibiotic resistance. In fact, the T6SS could one day serve as a foundation for targeted drug delivery systems, which could mitigate the development of broader bacterial resistance to antibiotics. But before that can happen, however, researchers have to learn more about bacterial harpoons, and about when and how bacteria use them, both to beat and eat their neighbors.Article SourcesOur writers at Discovermagazine.com use peer-reviewed studies and high-quality sources for our articles, and our editors review for scientific accuracy and editorial standards. Review the sources used below for this article:Sam Walters is a journalist covering archaeology, paleontology, ecology, and evolution for Discover, along with an assortment of other topics. Before joining the Discover team as an assistant editor in 2022, Sam studied journalism at Northwestern University in Evanston, Illinois.1 free article leftWant More? Get unlimited access for as low as /monthSubscribeAlready a subscriber?Register or Log In1 free articleSubscribeWant more?Keep reading for as low as !SubscribeAlready a subscriber?Register or Log In
    #hungry #bacteria #hunt #their #neighbors
    Hungry Bacteria Hunt Their Neighbors With Tiny, Poison-Tipped Harpoons
    Starving bacteriause a microscopic harpoon—called the Type VI secretion system—to stab and kill neighboring cells. The prey burst, turning spherical and leaking nutrients, which the killers then use to survive and grow.NewsletterSign up for our email newsletter for the latest science newsBacteria are bad neighbors. And we’re not talking noisy, never-take-out-the-trash bad neighbors. We’re talking has-a-harpoon-gun-and-points-it-at-you bad neighbors. According to a new study in Science, some bacteria hunt nearby bacterial species when they’re hungry. Using a special weapon system called the Type VI Secretion System, these bacteria shoot, spill, and then absorb the nutrients from the microbes they harpoon. “The punchline is: When things get tough, you eat your neighbors,” said Glen D’Souza, a study author and an assistant professor at Arizona State University, according to a press release. “We’ve known bacteria kill each other, that’s textbook. But what we’re seeing is that it’s not just important that the bacteria have weapons to kill, but they are controlling when they use those weapons specifically for situations to eat others where they can’t grow themselves.” According to the study authors, the research doesn’t just have implications for bacterial neighborhoods; it also has implications for human health and medicine. By harnessing these bacterial weapons, it may be possible to build better targeted antibiotics, designed to overcome antibiotic resistance. Ruthless Bacteria Use HarpoonsResearchers have long known that some bacteria can be ruthless, using weapons like the T6SS to clear out their competition. A nasty tool, the T6SS is essentially a tiny harpoon gun with a poison-tipped needle. When a bacterium shoots the weapon into another bacterium from a separate species, the needle pierces the microbe without killing it. Then, it injects toxins into the microbe that cause its internal nutrients to spill out.Up until now, researchers thought that this weapon helped bacteria eliminate their competition for space and for food, but after watching bacteria use the T6SS to attack their neighbors when food was scarce, the study authors concluded that these tiny harpooners use the weapon not only to remove rivals, but also to consume their competitors’ leaked nutrients.“Watching these cells in action really drives home how resourceful bacteria can be,” said Astrid Stubbusch, another study author and a researcher who worked on the study while at ETH Zurich, according to the press release. “By slowly releasing nutrients from their neighbors, they maximize their nutrient harvesting when every molecule counts.” Absorbing Food From NeighborsTo show that the bacteria used this system to eat when there was no food around, the study authors compared their attacks in both nutrient-rich and nutrient-poor environments. When supplied with ample resources, the bacteria used their harpoons to kill their neighbors quickly, with the released nutrients leaking out and dissolving immediately. But when resources were few and far between, they used their harpoons to kill their neighbors slowly, with the nutrients seeping out and sticking around. “This difference in dissolution time could mean that the killer cells load their spears with different toxins,” D’Souza said in another press release. While one toxin could eliminate the competition for space and for food when nutrients are available, another could create a food source, allowing bacteria to “absorb as many nutrients as possible” when sustenance is in short supply.Because of all this, this weapon system is more than ruthless; it’s also smart, and important to some species’ survival. When genetically unedited T6SS bacteria were put in an environment without food, they survived on spilled nutrients. But when genetically edited T6SS bacteria were placed in a similar environment, they died, because their ability to find food in their neighbors had been “turned off.”Harnessing Bacterial HarpoonsAccording to the study authors, the T6SS system is widely used by bacteria, both in and outside the lab. “It’s present in many different environments,” D’Souza said in one of the press releases. “It’s operational and happening in nature, from the oceans to the human gut.” The study authors add that their research could change the way we think about bacteria and could help in our fight against antibiotic resistance. In fact, the T6SS could one day serve as a foundation for targeted drug delivery systems, which could mitigate the development of broader bacterial resistance to antibiotics. But before that can happen, however, researchers have to learn more about bacterial harpoons, and about when and how bacteria use them, both to beat and eat their neighbors.Article SourcesOur writers at Discovermagazine.com use peer-reviewed studies and high-quality sources for our articles, and our editors review for scientific accuracy and editorial standards. Review the sources used below for this article:Sam Walters is a journalist covering archaeology, paleontology, ecology, and evolution for Discover, along with an assortment of other topics. Before joining the Discover team as an assistant editor in 2022, Sam studied journalism at Northwestern University in Evanston, Illinois.1 free article leftWant More? Get unlimited access for as low as /monthSubscribeAlready a subscriber?Register or Log In1 free articleSubscribeWant more?Keep reading for as low as !SubscribeAlready a subscriber?Register or Log In #hungry #bacteria #hunt #their #neighbors
    WWW.DISCOVERMAGAZINE.COM
    Hungry Bacteria Hunt Their Neighbors With Tiny, Poison-Tipped Harpoons
    Starving bacteria (cyan) use a microscopic harpoon—called the Type VI secretion system—to stab and kill neighboring cells (magenta). The prey burst, turning spherical and leaking nutrients, which the killers then use to survive and grow. (Image Credit: Glen D'Souza/ASU/Screen shot from video)NewsletterSign up for our email newsletter for the latest science newsBacteria are bad neighbors. And we’re not talking noisy, never-take-out-the-trash bad neighbors. We’re talking has-a-harpoon-gun-and-points-it-at-you bad neighbors. According to a new study in Science, some bacteria hunt nearby bacterial species when they’re hungry. Using a special weapon system called the Type VI Secretion System (T6SS), these bacteria shoot, spill, and then absorb the nutrients from the microbes they harpoon. “The punchline is: When things get tough, you eat your neighbors,” said Glen D’Souza, a study author and an assistant professor at Arizona State University, according to a press release. “We’ve known bacteria kill each other, that’s textbook. But what we’re seeing is that it’s not just important that the bacteria have weapons to kill, but they are controlling when they use those weapons specifically for situations to eat others where they can’t grow themselves.” According to the study authors, the research doesn’t just have implications for bacterial neighborhoods; it also has implications for human health and medicine. By harnessing these bacterial weapons, it may be possible to build better targeted antibiotics, designed to overcome antibiotic resistance. Ruthless Bacteria Use HarpoonsResearchers have long known that some bacteria can be ruthless, using weapons like the T6SS to clear out their competition. A nasty tool, the T6SS is essentially a tiny harpoon gun with a poison-tipped needle. When a bacterium shoots the weapon into another bacterium from a separate species, the needle pierces the microbe without killing it. Then, it injects toxins into the microbe that cause its internal nutrients to spill out.Up until now, researchers thought that this weapon helped bacteria eliminate their competition for space and for food, but after watching bacteria use the T6SS to attack their neighbors when food was scarce, the study authors concluded that these tiny harpooners use the weapon not only to remove rivals, but also to consume their competitors’ leaked nutrients.“Watching these cells in action really drives home how resourceful bacteria can be,” said Astrid Stubbusch, another study author and a researcher who worked on the study while at ETH Zurich, according to the press release. “By slowly releasing nutrients from their neighbors, they maximize their nutrient harvesting when every molecule counts.” Absorbing Food From NeighborsTo show that the bacteria used this system to eat when there was no food around, the study authors compared their attacks in both nutrient-rich and nutrient-poor environments. When supplied with ample resources, the bacteria used their harpoons to kill their neighbors quickly, with the released nutrients leaking out and dissolving immediately. But when resources were few and far between, they used their harpoons to kill their neighbors slowly, with the nutrients seeping out and sticking around. “This difference in dissolution time could mean that the killer cells load their spears with different toxins,” D’Souza said in another press release. While one toxin could eliminate the competition for space and for food when nutrients are available, another could create a food source, allowing bacteria to “absorb as many nutrients as possible” when sustenance is in short supply.Because of all this, this weapon system is more than ruthless; it’s also smart, and important to some species’ survival. When genetically unedited T6SS bacteria were put in an environment without food, they survived on spilled nutrients. But when genetically edited T6SS bacteria were placed in a similar environment, they died, because their ability to find food in their neighbors had been “turned off.”Harnessing Bacterial HarpoonsAccording to the study authors, the T6SS system is widely used by bacteria, both in and outside the lab. “It’s present in many different environments,” D’Souza said in one of the press releases. “It’s operational and happening in nature, from the oceans to the human gut.” The study authors add that their research could change the way we think about bacteria and could help in our fight against antibiotic resistance. In fact, the T6SS could one day serve as a foundation for targeted drug delivery systems, which could mitigate the development of broader bacterial resistance to antibiotics. But before that can happen, however, researchers have to learn more about bacterial harpoons, and about when and how bacteria use them, both to beat and eat their neighbors.Article SourcesOur writers at Discovermagazine.com use peer-reviewed studies and high-quality sources for our articles, and our editors review for scientific accuracy and editorial standards. Review the sources used below for this article:Sam Walters is a journalist covering archaeology, paleontology, ecology, and evolution for Discover, along with an assortment of other topics. Before joining the Discover team as an assistant editor in 2022, Sam studied journalism at Northwestern University in Evanston, Illinois.1 free article leftWant More? Get unlimited access for as low as $1.99/monthSubscribeAlready a subscriber?Register or Log In1 free articleSubscribeWant more?Keep reading for as low as $1.99!SubscribeAlready a subscriber?Register or Log In
    Like
    Love
    Wow
    Sad
    Angry
    375
    2 Commentarii 0 Distribuiri 0 previzualizare
  • Aga Khan Award for Architecture 2025 announces 19 shortlisted projects from 15 countries

    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" ";
    19 shortlisted projects for the 2025 Award cycle were revealed by the Aga Khan Award for Architecture. A portion of the million prize, one of the biggest in architecture, will be awarded to the winning proposals. Out of the 369 projects nominated for the 16th Award Cycle, an independent Master Jury chose the 19 shortlisted projects from 15 countries.The nine members of the Master Jury for the 16th Award cycle include Azra Akšamija, Noura Al-Sayeh Holtrop, Lucia Allais, David Basulto, Yvonne Farrell, Kabage Karanja, Yacouba Konaté, Hassan Radoine, and Mun Summ Wong.His Late Highness Prince Karim Aga Khan IV created the Aga Khan Award for Architecture in 1977 to recognize and promote architectural ideas that effectively meet the needs and goals of communities where Muslims are a major population. Nearly 10,000 construction projects have been documented since the award's inception 48 years ago, and 128 projects have been granted it. The AKAA's selection method places a strong emphasis on architecture that stimulates and responds to people's cultural ambitions in addition to meeting their physical, social, and economic demands.The Aga Khan Award for Architecture is governed by a Steering Committee chaired by His Highness the Aga Khan. The other members of the Steering Committee are Meisa Batayneh, Principal Architect, Founder, maisam architects and engineers, Amman, Jordan; Souleymane Bachir Diagne, Professor of Philosophy and Francophone Studies, Columbia University, New York, United States of America; Lesley Lokko, Founder & Director, African Futures Institute, Accra, Ghana; Gülru Necipoğlu, Director and Professor, Aga Khan Program for Islamic Architecture, Harvard University, Cambridge, United States of America; Hashim Sarkis, Founder & Principal, Hashim Sarkis Studios; Dean, School of Architecture and Planning, Massachusetts Institute of Technology, Cambridge, United States of America; and Sarah M. Whiting, Partner, WW Architecture; Dean and Josep Lluís Sert Professor of Architecture, Graduate School of Design, Harvard University, Cambridge, United States of America. Farrokh Derakhshani is the Director of the Award.Examples of outstanding architecture in the areas of modern design, social housing, community development and enhancement, historic preservation, reuse and area conservation, landscape design, and environmental enhancement are recognized by the Aga Khan Award for Architecture.Building plans that creatively utilize local resources and relevant technologies, as well as initiatives that could spur such initiatives abroad, are given special consideration. It should be mentioned that in addition to honoring architects, the Award also recognizes towns, builders, clients, master craftspeople, and engineers who have contributed significantly to the project.Projects had to be completed between January 1, 2018, and December 31, 2023, and they had to have been operational for a minimum of one year in order to be eligible for consideration in the 2025 Award cycle. The Award is not available for projects that His Highness the Aga Khan or any of the Aga Khan Development Networkinstitutions have commissioned.See the 19 shortlisted projects with their short project descriptions competing for the 2025 Award Cycle:Khudi Bari. Image © Aga Khan Trust for Culture / City SyntaxBangladeshKhudi Bari, in various locations, by Marina Tabassum ArchitectsMarina Tabassum Architects' Khudi Bari, which can be readily disassembled and reassembled to suit the needs of the users, is a replicable solution for displaced communities impacted by geographic and climatic changes.West Wusutu Village Community Centre. Image © Aga Khan Trust for Culture / Dou YujunChinaWest Wusutu Village Community Centre, Hohhot, Inner Mongolia, by Zhang PengjuIn addition to meeting the religious demands of the local Hui Muslims, Zhang Pengju's West Wusutu Village Community Centre in Hohhot, Inner Mongolia, offers social and cultural spaces for locals and artists. Constructed from recycled bricks, it features multipurpose indoor and outdoor areas that promote communal harmony.Revitalisation of Historic Esna. Image © Aga Khan Trust for Culture / Ahmed SalemEgyptRevitalisation of Historic Esna, by Takween Integrated Community DevelopmentBy using physical interventions, socioeconomic projects, and creative urban planning techniques, Takween Integrated Community Development's Revitalization of Historic Esna tackles the issues of cultural tourism in Upper Egypt and turns the once-forgotten area around the Temple of Khnum into a thriving historic city.The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaThe Arc at Green School, in Bali, by IBUKU / Elora HardyAfter 15 years of bamboo experimenting at the Green School Bali, IBUKU/Elora Hardy created The Arc at Green School. The Arc is a brand-new community wellness facility built on the foundations of a temporary gym. High-precision engineering and regional handicraft are combined in this construction.Islamic Centre Nurul Yaqin Mosque. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaIslamic Centre Nurul Yaqin Mosque, in Palu, Central Sulawesi, by Dave Orlando and Fandy GunawanDave Orlando and Fandy Gunawan built the Islamic Center Nurul Yaqin Mosque in Palu, Central Sulawesi, on the location of a previous mosque that was damaged by a 2018 tsunami. There is a place for worship and assembly at the new Islamic Center. Surrounded by a shallow reflecting pool that may be drained to make room for more guests, it is open to the countryside.Microlibrary Warak Kayu. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaMicrolibraries in various cities, by SHAU / Daliana Suryawinata, Florian HeinzelmannFlorian Heinzelmann, the project's initiator, works with stakeholders at all levels to provide high-quality public spaces in a number of Indonesian parks and kampungs through microlibraries in different towns run by SHAU/Daliana Suryawinata. So far, six have been constructed, and by 2045, 100 are planned.Majara Residence. Image © Aga Khan Trust for Culture / Deed StudioIranMajara Complex and Community Redevelopment, in Hormuz Island by ZAV Architects / Mohamadreza GhodousiThe Majara Complex and Community Redevelopment on Hormuz Island, designed by ZAV Architects and Mohamadreza Ghodousi, is well-known for its vibrant domes that offer eco-friendly lodging for visitors visiting Hormuz's distinctive scenery. In addition to providing new amenities for the islanders who visit to socialize, pray, or utilize the library, it was constructed by highly trained local laborers.Jahad Metro Plaza. Image © Aga Khan Trust for Culture / Deed StudioIranJahad Metro Plaza in Tehran, by KA Architecture StudioKA Architecture Studio's Jahad Metro Plaza in Tehran was constructed to replace the dilapidated old buildings. It turned the location into a beloved pedestrian-friendly landmark. The arched vaults, which are covered in locally manufactured brick, vary in height to let air and light into the area they are protecting.Khan Jaljulia Restoration. Image © Aga Khan Trust for Culture / Mikaela BurstowIsraelKhan Jaljulia Restoration in Jaljulia by Elias KhuriElias Khuri's Khan Jaljulia Restoration is a cost-effective intervention set amidst the remnants of a 14th-century Khan in Jaljulia. By converting the abandoned historical location into a bustling public area for social gatherings, it helps the locals rediscover their cultural history.Campus Startup Lions. Image © Aga Khan Trust for Culture / Christopher Wilton-SteerKenyaCampus Startup Lions, in Turkana by Kéré ArchitectsKéré Architecture's Campus Startup Lions in Turkana is an educational and entrepreneurial center that offers a venue for community involvement, business incubation, and technology-driven education. The design incorporates solar energy, rainwater harvesting, and tall ventilation towers that resemble the nearby termite mounds, and it was constructed using local volcanic stone.Lalla Yeddouna Square. Image © Aga Khan Trust for Culture / Amine HouariMoroccoRevitalisation of Lalla Yeddouna Square in the medina of Fez, by Mossessian Architecture and Yassir Khalil StudioMossessian Architecture and Yassir Khalil Studio's revitalization of Lalla Yeddouna Square in the Fez medina aims to improve pedestrian circulation and reestablish a connection to the waterfront. For the benefit of locals, craftspeople, and tourists from around the globe, existing buildings were maintained and new areas created.Vision Pakistan. Image © Aga Khan Trust for Culture / Usman Saqib ZuberiPakistanVision Pakistan, in Islamabad by DB Studios / Mohammad Saifullah SiddiquiA tailoring training center run by Vision Pakistan, a nonprofit organization dedicated to empowering underprivileged adolescents, is located in Islamabad by DB Studios/Mohammad Saifullah Siddiqui. Situated in a crowded neighborhood, this multi-story building features flashy jaalis influenced by Arab and Pakistani crafts, echoing the city's 1960s design.Denso Hall Rahguzar Project. Image © Aga Khan Trust for Culture / Usman Saqib ZuberiPakistanDenso Hall Rahguzar Project, in Karachi by Heritage Foundation Pakistan / Yasmeen LariThe Heritage Foundation of Pakistan/Yasmeen Lari's Denso Hall Rahguzar Project in Karachi is a heritage-led eco-urban enclave that was built with low-carbon materials in response to the city's severe climate, which is prone to heat waves and floods. The freshly planted "forests" are irrigated by the handcrafted terracotta cobbles, which absorb rainfall and cool and purify the air.Wonder Cabinet. Image © Aga Khan Trust for Culture / Mikaela BurstowPalestineWonder Cabinet, in Bethlehem by AAU AnastasThe architects at AAU Anastas established Wonder Cabinet, a multifunctional, nonprofit exhibition and production venue in Bethlehem. The three-story concrete building was constructed with the help of regional contractors and artisans, and it is quickly emerging as a major center for learning, design, craft, and innovation.The Ned. Image © Aga Khan Trust for Culture / Cemal EmdenQatarThe Ned Hotel, in Doha by David Chipperfield ArchitectsThe Ministry of Interior was housed in the Ned Hotel in Doha, which was designed by David Chipperfield Architects. Its Middle Eastern brutalist building was meticulously transformed into a 90-room boutique hotel, thereby promoting architectural revitalization in the region.Shamalat Cultural Centre. Image © Aga Khan Trust for Culture / Hassan Al ShattiSaudi ArabiaShamalat Cultural Centre, in Riyadh, by Syn Architects / Sara Alissa, Nojoud AlsudairiOn the outskirts of Diriyah, the Shamalat Cultural Centre in Riyadh was created by Syn Architects/Sara Alissa, Nojoud Alsudairi. It was created from an old mud home that artist Maha Malluh had renovated. The center, which aims to incorporate historic places into daily life, provides a sensitive viewpoint on heritage conservation in the area by contrasting the old and the contemporary.Rehabilitation and Extension of Dakar Railway Station. Image © Aga Khan Trust for Culture / Sylvain CherkaouiSenegalRehabilitation and Extension of Dakar Railway Station, in Dakar by Ga2DIn order to accommodate the passengers of a new express train line, Ga2D extended and renovated Dakar train Station, which purposefully contrasts the old and modern buildings. The forecourt was once again open to pedestrian traffic after vehicular traffic was limited to the rear of the property.Rami Library. Image © Aga Khan Trust for Culture / Cemal EmdenTürkiyeRami Library, by Han Tümertekin Design & ConsultancyThe largest library in Istanbul is the Rami Library, designed by Han Tümertekin Design & Consultancy. It occupied the former Rami Barracks, a sizable, single-story building with enormous volumes that was constructed in the eighteenth century. In order to accommodate new library operations while maintaining the structure's original spatial features, a minimal intervention method was used.Morocco Pavilion Expo Dubai 2020. Image © Aga Khan Trust for Culture / Deed StudioUnited Arab EmiratesMorocco Pavilion Expo Dubai 2020, by Oualalou + ChoiOualalou + Choi's Morocco Pavilion Expo Dubai 2020 is intended to last beyond Expo 2020 and be transformed into a cultural center. The pavilion is a trailblazer in the development of large-scale rammed earth building techniques. Its use of passive cooling techniques, which minimize the need for mechanical air conditioning, earned it the gold LEED accreditation.At each project location, independent professionals such as architects, conservation specialists, planners, and structural engineers have conducted thorough evaluations of the nominated projects. This summer, the Master Jury convenes once more to analyze the on-site evaluations and choose the ultimate Award winners.The top image in the article: The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan.> via Aga Khan Award for Architecture
    #aga #khan #award #architecture #announces
    Aga Khan Award for Architecture 2025 announces 19 shortlisted projects from 15 countries
    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "; 19 shortlisted projects for the 2025 Award cycle were revealed by the Aga Khan Award for Architecture. A portion of the million prize, one of the biggest in architecture, will be awarded to the winning proposals. Out of the 369 projects nominated for the 16th Award Cycle, an independent Master Jury chose the 19 shortlisted projects from 15 countries.The nine members of the Master Jury for the 16th Award cycle include Azra Akšamija, Noura Al-Sayeh Holtrop, Lucia Allais, David Basulto, Yvonne Farrell, Kabage Karanja, Yacouba Konaté, Hassan Radoine, and Mun Summ Wong.His Late Highness Prince Karim Aga Khan IV created the Aga Khan Award for Architecture in 1977 to recognize and promote architectural ideas that effectively meet the needs and goals of communities where Muslims are a major population. Nearly 10,000 construction projects have been documented since the award's inception 48 years ago, and 128 projects have been granted it. The AKAA's selection method places a strong emphasis on architecture that stimulates and responds to people's cultural ambitions in addition to meeting their physical, social, and economic demands.The Aga Khan Award for Architecture is governed by a Steering Committee chaired by His Highness the Aga Khan. The other members of the Steering Committee are Meisa Batayneh, Principal Architect, Founder, maisam architects and engineers, Amman, Jordan; Souleymane Bachir Diagne, Professor of Philosophy and Francophone Studies, Columbia University, New York, United States of America; Lesley Lokko, Founder & Director, African Futures Institute, Accra, Ghana; Gülru Necipoğlu, Director and Professor, Aga Khan Program for Islamic Architecture, Harvard University, Cambridge, United States of America; Hashim Sarkis, Founder & Principal, Hashim Sarkis Studios; Dean, School of Architecture and Planning, Massachusetts Institute of Technology, Cambridge, United States of America; and Sarah M. Whiting, Partner, WW Architecture; Dean and Josep Lluís Sert Professor of Architecture, Graduate School of Design, Harvard University, Cambridge, United States of America. Farrokh Derakhshani is the Director of the Award.Examples of outstanding architecture in the areas of modern design, social housing, community development and enhancement, historic preservation, reuse and area conservation, landscape design, and environmental enhancement are recognized by the Aga Khan Award for Architecture.Building plans that creatively utilize local resources and relevant technologies, as well as initiatives that could spur such initiatives abroad, are given special consideration. It should be mentioned that in addition to honoring architects, the Award also recognizes towns, builders, clients, master craftspeople, and engineers who have contributed significantly to the project.Projects had to be completed between January 1, 2018, and December 31, 2023, and they had to have been operational for a minimum of one year in order to be eligible for consideration in the 2025 Award cycle. The Award is not available for projects that His Highness the Aga Khan or any of the Aga Khan Development Networkinstitutions have commissioned.See the 19 shortlisted projects with their short project descriptions competing for the 2025 Award Cycle:Khudi Bari. Image © Aga Khan Trust for Culture / City SyntaxBangladeshKhudi Bari, in various locations, by Marina Tabassum ArchitectsMarina Tabassum Architects' Khudi Bari, which can be readily disassembled and reassembled to suit the needs of the users, is a replicable solution for displaced communities impacted by geographic and climatic changes.West Wusutu Village Community Centre. Image © Aga Khan Trust for Culture / Dou YujunChinaWest Wusutu Village Community Centre, Hohhot, Inner Mongolia, by Zhang PengjuIn addition to meeting the religious demands of the local Hui Muslims, Zhang Pengju's West Wusutu Village Community Centre in Hohhot, Inner Mongolia, offers social and cultural spaces for locals and artists. Constructed from recycled bricks, it features multipurpose indoor and outdoor areas that promote communal harmony.Revitalisation of Historic Esna. Image © Aga Khan Trust for Culture / Ahmed SalemEgyptRevitalisation of Historic Esna, by Takween Integrated Community DevelopmentBy using physical interventions, socioeconomic projects, and creative urban planning techniques, Takween Integrated Community Development's Revitalization of Historic Esna tackles the issues of cultural tourism in Upper Egypt and turns the once-forgotten area around the Temple of Khnum into a thriving historic city.The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaThe Arc at Green School, in Bali, by IBUKU / Elora HardyAfter 15 years of bamboo experimenting at the Green School Bali, IBUKU/Elora Hardy created The Arc at Green School. The Arc is a brand-new community wellness facility built on the foundations of a temporary gym. High-precision engineering and regional handicraft are combined in this construction.Islamic Centre Nurul Yaqin Mosque. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaIslamic Centre Nurul Yaqin Mosque, in Palu, Central Sulawesi, by Dave Orlando and Fandy GunawanDave Orlando and Fandy Gunawan built the Islamic Center Nurul Yaqin Mosque in Palu, Central Sulawesi, on the location of a previous mosque that was damaged by a 2018 tsunami. There is a place for worship and assembly at the new Islamic Center. Surrounded by a shallow reflecting pool that may be drained to make room for more guests, it is open to the countryside.Microlibrary Warak Kayu. Image © Aga Khan Trust for Culture / Andreas Perbowo WidityawanIndonesiaMicrolibraries in various cities, by SHAU / Daliana Suryawinata, Florian HeinzelmannFlorian Heinzelmann, the project's initiator, works with stakeholders at all levels to provide high-quality public spaces in a number of Indonesian parks and kampungs through microlibraries in different towns run by SHAU/Daliana Suryawinata. So far, six have been constructed, and by 2045, 100 are planned.Majara Residence. Image © Aga Khan Trust for Culture / Deed StudioIranMajara Complex and Community Redevelopment, in Hormuz Island by ZAV Architects / Mohamadreza GhodousiThe Majara Complex and Community Redevelopment on Hormuz Island, designed by ZAV Architects and Mohamadreza Ghodousi, is well-known for its vibrant domes that offer eco-friendly lodging for visitors visiting Hormuz's distinctive scenery. In addition to providing new amenities for the islanders who visit to socialize, pray, or utilize the library, it was constructed by highly trained local laborers.Jahad Metro Plaza. Image © Aga Khan Trust for Culture / Deed StudioIranJahad Metro Plaza in Tehran, by KA Architecture StudioKA Architecture Studio's Jahad Metro Plaza in Tehran was constructed to replace the dilapidated old buildings. It turned the location into a beloved pedestrian-friendly landmark. The arched vaults, which are covered in locally manufactured brick, vary in height to let air and light into the area they are protecting.Khan Jaljulia Restoration. Image © Aga Khan Trust for Culture / Mikaela BurstowIsraelKhan Jaljulia Restoration in Jaljulia by Elias KhuriElias Khuri's Khan Jaljulia Restoration is a cost-effective intervention set amidst the remnants of a 14th-century Khan in Jaljulia. By converting the abandoned historical location into a bustling public area for social gatherings, it helps the locals rediscover their cultural history.Campus Startup Lions. Image © Aga Khan Trust for Culture / Christopher Wilton-SteerKenyaCampus Startup Lions, in Turkana by Kéré ArchitectsKéré Architecture's Campus Startup Lions in Turkana is an educational and entrepreneurial center that offers a venue for community involvement, business incubation, and technology-driven education. The design incorporates solar energy, rainwater harvesting, and tall ventilation towers that resemble the nearby termite mounds, and it was constructed using local volcanic stone.Lalla Yeddouna Square. Image © Aga Khan Trust for Culture / Amine HouariMoroccoRevitalisation of Lalla Yeddouna Square in the medina of Fez, by Mossessian Architecture and Yassir Khalil StudioMossessian Architecture and Yassir Khalil Studio's revitalization of Lalla Yeddouna Square in the Fez medina aims to improve pedestrian circulation and reestablish a connection to the waterfront. For the benefit of locals, craftspeople, and tourists from around the globe, existing buildings were maintained and new areas created.Vision Pakistan. Image © Aga Khan Trust for Culture / Usman Saqib ZuberiPakistanVision Pakistan, in Islamabad by DB Studios / Mohammad Saifullah SiddiquiA tailoring training center run by Vision Pakistan, a nonprofit organization dedicated to empowering underprivileged adolescents, is located in Islamabad by DB Studios/Mohammad Saifullah Siddiqui. Situated in a crowded neighborhood, this multi-story building features flashy jaalis influenced by Arab and Pakistani crafts, echoing the city's 1960s design.Denso Hall Rahguzar Project. Image © Aga Khan Trust for Culture / Usman Saqib ZuberiPakistanDenso Hall Rahguzar Project, in Karachi by Heritage Foundation Pakistan / Yasmeen LariThe Heritage Foundation of Pakistan/Yasmeen Lari's Denso Hall Rahguzar Project in Karachi is a heritage-led eco-urban enclave that was built with low-carbon materials in response to the city's severe climate, which is prone to heat waves and floods. The freshly planted "forests" are irrigated by the handcrafted terracotta cobbles, which absorb rainfall and cool and purify the air.Wonder Cabinet. Image © Aga Khan Trust for Culture / Mikaela BurstowPalestineWonder Cabinet, in Bethlehem by AAU AnastasThe architects at AAU Anastas established Wonder Cabinet, a multifunctional, nonprofit exhibition and production venue in Bethlehem. The three-story concrete building was constructed with the help of regional contractors and artisans, and it is quickly emerging as a major center for learning, design, craft, and innovation.The Ned. Image © Aga Khan Trust for Culture / Cemal EmdenQatarThe Ned Hotel, in Doha by David Chipperfield ArchitectsThe Ministry of Interior was housed in the Ned Hotel in Doha, which was designed by David Chipperfield Architects. Its Middle Eastern brutalist building was meticulously transformed into a 90-room boutique hotel, thereby promoting architectural revitalization in the region.Shamalat Cultural Centre. Image © Aga Khan Trust for Culture / Hassan Al ShattiSaudi ArabiaShamalat Cultural Centre, in Riyadh, by Syn Architects / Sara Alissa, Nojoud AlsudairiOn the outskirts of Diriyah, the Shamalat Cultural Centre in Riyadh was created by Syn Architects/Sara Alissa, Nojoud Alsudairi. It was created from an old mud home that artist Maha Malluh had renovated. The center, which aims to incorporate historic places into daily life, provides a sensitive viewpoint on heritage conservation in the area by contrasting the old and the contemporary.Rehabilitation and Extension of Dakar Railway Station. Image © Aga Khan Trust for Culture / Sylvain CherkaouiSenegalRehabilitation and Extension of Dakar Railway Station, in Dakar by Ga2DIn order to accommodate the passengers of a new express train line, Ga2D extended and renovated Dakar train Station, which purposefully contrasts the old and modern buildings. The forecourt was once again open to pedestrian traffic after vehicular traffic was limited to the rear of the property.Rami Library. Image © Aga Khan Trust for Culture / Cemal EmdenTürkiyeRami Library, by Han Tümertekin Design & ConsultancyThe largest library in Istanbul is the Rami Library, designed by Han Tümertekin Design & Consultancy. It occupied the former Rami Barracks, a sizable, single-story building with enormous volumes that was constructed in the eighteenth century. In order to accommodate new library operations while maintaining the structure's original spatial features, a minimal intervention method was used.Morocco Pavilion Expo Dubai 2020. Image © Aga Khan Trust for Culture / Deed StudioUnited Arab EmiratesMorocco Pavilion Expo Dubai 2020, by Oualalou + ChoiOualalou + Choi's Morocco Pavilion Expo Dubai 2020 is intended to last beyond Expo 2020 and be transformed into a cultural center. The pavilion is a trailblazer in the development of large-scale rammed earth building techniques. Its use of passive cooling techniques, which minimize the need for mechanical air conditioning, earned it the gold LEED accreditation.At each project location, independent professionals such as architects, conservation specialists, planners, and structural engineers have conducted thorough evaluations of the nominated projects. This summer, the Master Jury convenes once more to analyze the on-site evaluations and choose the ultimate Award winners.The top image in the article: The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan.> via Aga Khan Award for Architecture #aga #khan #award #architecture #announces
    WORLDARCHITECTURE.ORG
    Aga Khan Award for Architecture 2025 announces 19 shortlisted projects from 15 countries
    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd" 19 shortlisted projects for the 2025 Award cycle were revealed by the Aga Khan Award for Architecture (AKAA). A portion of the $1 million prize, one of the biggest in architecture, will be awarded to the winning proposals. Out of the 369 projects nominated for the 16th Award Cycle (2023-2025), an independent Master Jury chose the 19 shortlisted projects from 15 countries.The nine members of the Master Jury for the 16th Award cycle include Azra Akšamija, Noura Al-Sayeh Holtrop, Lucia Allais, David Basulto, Yvonne Farrell, Kabage Karanja, Yacouba Konaté, Hassan Radoine, and Mun Summ Wong.His Late Highness Prince Karim Aga Khan IV created the Aga Khan Award for Architecture in 1977 to recognize and promote architectural ideas that effectively meet the needs and goals of communities where Muslims are a major population. Nearly 10,000 construction projects have been documented since the award's inception 48 years ago, and 128 projects have been granted it. The AKAA's selection method places a strong emphasis on architecture that stimulates and responds to people's cultural ambitions in addition to meeting their physical, social, and economic demands.The Aga Khan Award for Architecture is governed by a Steering Committee chaired by His Highness the Aga Khan. The other members of the Steering Committee are Meisa Batayneh, Principal Architect, Founder, maisam architects and engineers, Amman, Jordan; Souleymane Bachir Diagne, Professor of Philosophy and Francophone Studies, Columbia University, New York, United States of America; Lesley Lokko, Founder & Director, African Futures Institute, Accra, Ghana; Gülru Necipoğlu, Director and Professor, Aga Khan Program for Islamic Architecture, Harvard University, Cambridge, United States of America; Hashim Sarkis, Founder & Principal, Hashim Sarkis Studios (HSS); Dean, School of Architecture and Planning, Massachusetts Institute of Technology, Cambridge, United States of America; and Sarah M. Whiting, Partner, WW Architecture; Dean and Josep Lluís Sert Professor of Architecture, Graduate School of Design, Harvard University, Cambridge, United States of America. Farrokh Derakhshani is the Director of the Award.Examples of outstanding architecture in the areas of modern design, social housing, community development and enhancement, historic preservation, reuse and area conservation, landscape design, and environmental enhancement are recognized by the Aga Khan Award for Architecture.Building plans that creatively utilize local resources and relevant technologies, as well as initiatives that could spur such initiatives abroad, are given special consideration. It should be mentioned that in addition to honoring architects, the Award also recognizes towns, builders, clients, master craftspeople, and engineers who have contributed significantly to the project.Projects had to be completed between January 1, 2018, and December 31, 2023, and they had to have been operational for a minimum of one year in order to be eligible for consideration in the 2025 Award cycle. The Award is not available for projects that His Highness the Aga Khan or any of the Aga Khan Development Network (AKDN) institutions have commissioned.See the 19 shortlisted projects with their short project descriptions competing for the 2025 Award Cycle:Khudi Bari. Image © Aga Khan Trust for Culture / City Syntax (F. M. Faruque Abdullah Shawon, H. M. Fozla Rabby Apurbo)BangladeshKhudi Bari, in various locations, by Marina Tabassum ArchitectsMarina Tabassum Architects' Khudi Bari, which can be readily disassembled and reassembled to suit the needs of the users, is a replicable solution for displaced communities impacted by geographic and climatic changes.West Wusutu Village Community Centre. Image © Aga Khan Trust for Culture / Dou Yujun (photographer)ChinaWest Wusutu Village Community Centre, Hohhot, Inner Mongolia, by Zhang PengjuIn addition to meeting the religious demands of the local Hui Muslims, Zhang Pengju's West Wusutu Village Community Centre in Hohhot, Inner Mongolia, offers social and cultural spaces for locals and artists. Constructed from recycled bricks, it features multipurpose indoor and outdoor areas that promote communal harmony.Revitalisation of Historic Esna. Image © Aga Khan Trust for Culture / Ahmed Salem (photographer)EgyptRevitalisation of Historic Esna, by Takween Integrated Community DevelopmentBy using physical interventions, socioeconomic projects, and creative urban planning techniques, Takween Integrated Community Development's Revitalization of Historic Esna tackles the issues of cultural tourism in Upper Egypt and turns the once-forgotten area around the Temple of Khnum into a thriving historic city.The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan (photographer)IndonesiaThe Arc at Green School, in Bali, by IBUKU / Elora HardyAfter 15 years of bamboo experimenting at the Green School Bali, IBUKU/Elora Hardy created The Arc at Green School. The Arc is a brand-new community wellness facility built on the foundations of a temporary gym. High-precision engineering and regional handicraft are combined in this construction.Islamic Centre Nurul Yaqin Mosque. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan (photographer)IndonesiaIslamic Centre Nurul Yaqin Mosque, in Palu, Central Sulawesi, by Dave Orlando and Fandy GunawanDave Orlando and Fandy Gunawan built the Islamic Center Nurul Yaqin Mosque in Palu, Central Sulawesi, on the location of a previous mosque that was damaged by a 2018 tsunami. There is a place for worship and assembly at the new Islamic Center. Surrounded by a shallow reflecting pool that may be drained to make room for more guests, it is open to the countryside.Microlibrary Warak Kayu. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan (photographer)IndonesiaMicrolibraries in various cities, by SHAU / Daliana Suryawinata, Florian HeinzelmannFlorian Heinzelmann, the project's initiator, works with stakeholders at all levels to provide high-quality public spaces in a number of Indonesian parks and kampungs through microlibraries in different towns run by SHAU/Daliana Suryawinata. So far, six have been constructed, and by 2045, 100 are planned.Majara Residence. Image © Aga Khan Trust for Culture / Deed Studio (photographer)IranMajara Complex and Community Redevelopment, in Hormuz Island by ZAV Architects / Mohamadreza GhodousiThe Majara Complex and Community Redevelopment on Hormuz Island, designed by ZAV Architects and Mohamadreza Ghodousi, is well-known for its vibrant domes that offer eco-friendly lodging for visitors visiting Hormuz's distinctive scenery. In addition to providing new amenities for the islanders who visit to socialize, pray, or utilize the library, it was constructed by highly trained local laborers.Jahad Metro Plaza. Image © Aga Khan Trust for Culture / Deed Studio (photographer)IranJahad Metro Plaza in Tehran, by KA Architecture StudioKA Architecture Studio's Jahad Metro Plaza in Tehran was constructed to replace the dilapidated old buildings. It turned the location into a beloved pedestrian-friendly landmark. The arched vaults, which are covered in locally manufactured brick, vary in height to let air and light into the area they are protecting.Khan Jaljulia Restoration. Image © Aga Khan Trust for Culture / Mikaela Burstow (photographer)IsraelKhan Jaljulia Restoration in Jaljulia by Elias KhuriElias Khuri's Khan Jaljulia Restoration is a cost-effective intervention set amidst the remnants of a 14th-century Khan in Jaljulia. By converting the abandoned historical location into a bustling public area for social gatherings, it helps the locals rediscover their cultural history.Campus Startup Lions. Image © Aga Khan Trust for Culture / Christopher Wilton-Steer (photographer)KenyaCampus Startup Lions, in Turkana by Kéré ArchitectsKéré Architecture's Campus Startup Lions in Turkana is an educational and entrepreneurial center that offers a venue for community involvement, business incubation, and technology-driven education. The design incorporates solar energy, rainwater harvesting, and tall ventilation towers that resemble the nearby termite mounds, and it was constructed using local volcanic stone.Lalla Yeddouna Square. Image © Aga Khan Trust for Culture / Amine Houari (photographer)MoroccoRevitalisation of Lalla Yeddouna Square in the medina of Fez, by Mossessian Architecture and Yassir Khalil StudioMossessian Architecture and Yassir Khalil Studio's revitalization of Lalla Yeddouna Square in the Fez medina aims to improve pedestrian circulation and reestablish a connection to the waterfront. For the benefit of locals, craftspeople, and tourists from around the globe, existing buildings were maintained and new areas created.Vision Pakistan. Image © Aga Khan Trust for Culture / Usman Saqib Zuberi (photographer)PakistanVision Pakistan, in Islamabad by DB Studios / Mohammad Saifullah SiddiquiA tailoring training center run by Vision Pakistan, a nonprofit organization dedicated to empowering underprivileged adolescents, is located in Islamabad by DB Studios/Mohammad Saifullah Siddiqui. Situated in a crowded neighborhood, this multi-story building features flashy jaalis influenced by Arab and Pakistani crafts, echoing the city's 1960s design.Denso Hall Rahguzar Project. Image © Aga Khan Trust for Culture / Usman Saqib Zuberi (photographer)PakistanDenso Hall Rahguzar Project, in Karachi by Heritage Foundation Pakistan / Yasmeen LariThe Heritage Foundation of Pakistan/Yasmeen Lari's Denso Hall Rahguzar Project in Karachi is a heritage-led eco-urban enclave that was built with low-carbon materials in response to the city's severe climate, which is prone to heat waves and floods. The freshly planted "forests" are irrigated by the handcrafted terracotta cobbles, which absorb rainfall and cool and purify the air.Wonder Cabinet. Image © Aga Khan Trust for Culture / Mikaela Burstow (photographer)PalestineWonder Cabinet, in Bethlehem by AAU AnastasThe architects at AAU Anastas established Wonder Cabinet, a multifunctional, nonprofit exhibition and production venue in Bethlehem. The three-story concrete building was constructed with the help of regional contractors and artisans, and it is quickly emerging as a major center for learning, design, craft, and innovation.The Ned. Image © Aga Khan Trust for Culture / Cemal Emden (photographer)QatarThe Ned Hotel, in Doha by David Chipperfield ArchitectsThe Ministry of Interior was housed in the Ned Hotel in Doha, which was designed by David Chipperfield Architects. Its Middle Eastern brutalist building was meticulously transformed into a 90-room boutique hotel, thereby promoting architectural revitalization in the region.Shamalat Cultural Centre. Image © Aga Khan Trust for Culture / Hassan Al Shatti (photographer)Saudi ArabiaShamalat Cultural Centre, in Riyadh, by Syn Architects / Sara Alissa, Nojoud AlsudairiOn the outskirts of Diriyah, the Shamalat Cultural Centre in Riyadh was created by Syn Architects/Sara Alissa, Nojoud Alsudairi. It was created from an old mud home that artist Maha Malluh had renovated. The center, which aims to incorporate historic places into daily life, provides a sensitive viewpoint on heritage conservation in the area by contrasting the old and the contemporary.Rehabilitation and Extension of Dakar Railway Station. Image © Aga Khan Trust for Culture / Sylvain Cherkaoui (photographer)SenegalRehabilitation and Extension of Dakar Railway Station, in Dakar by Ga2DIn order to accommodate the passengers of a new express train line, Ga2D extended and renovated Dakar train Station, which purposefully contrasts the old and modern buildings. The forecourt was once again open to pedestrian traffic after vehicular traffic was limited to the rear of the property.Rami Library. Image © Aga Khan Trust for Culture / Cemal Emden (photographer)TürkiyeRami Library, by Han Tümertekin Design & ConsultancyThe largest library in Istanbul is the Rami Library, designed by Han Tümertekin Design & Consultancy. It occupied the former Rami Barracks, a sizable, single-story building with enormous volumes that was constructed in the eighteenth century. In order to accommodate new library operations while maintaining the structure's original spatial features, a minimal intervention method was used.Morocco Pavilion Expo Dubai 2020. Image © Aga Khan Trust for Culture / Deed Studio (photographer)United Arab EmiratesMorocco Pavilion Expo Dubai 2020, by Oualalou + ChoiOualalou + Choi's Morocco Pavilion Expo Dubai 2020 is intended to last beyond Expo 2020 and be transformed into a cultural center. The pavilion is a trailblazer in the development of large-scale rammed earth building techniques. Its use of passive cooling techniques, which minimize the need for mechanical air conditioning, earned it the gold LEED accreditation.At each project location, independent professionals such as architects, conservation specialists, planners, and structural engineers have conducted thorough evaluations of the nominated projects. This summer, the Master Jury convenes once more to analyze the on-site evaluations and choose the ultimate Award winners.The top image in the article: The Arc at Green School. Image © Aga Khan Trust for Culture / Andreas Perbowo Widityawan (photographer).> via Aga Khan Award for Architecture
    Like
    Love
    Wow
    Sad
    Angry
    531
    2 Commentarii 0 Distribuiri 0 previzualizare
  • ‘Color Lim’ Changes Your Hue to Solve Platforming Puzzles

    Color Lim is a puzzle platformer where you need to use your slimy color-switching ability to solve puzzles and save a small village.

    This is a fantastic, smooth puzzle platform that has you playing a colorless slime called Lim who is looking to find their true color. At first, you aren’t really colorless – you are blue, but this isn’t your true and only color, as you can change and adapt when needed. Why is that important? Because in this world, color determines everything.

    Being able to absorb and transform to different colors allows you to go through specific platforms or to spray slime and then slide into the walls of the world, finding a new way to navigate around. There isn’t a limit on your own slime, so you are able to blast out some goop and then inject yourself into the walls, moving quickly around levels and solving puzzles. There are enemies that are looking to harm you, too, but these can be easily avoided most of the time.
    Color Lim doesn’t just have endless platforms to enjoy, but also has a little story showcased through cute characters who seem quite helpful! In this world, something bad has happened, and now there is a small village that is rebuilding, needing your help. As someone with such a great ability, you can find yourself using your colors to help them.

    I got to play a short demo of Color Lim at Pocket Gamer Connects Barcelona where I really liked how sleek and fast the movement felt for the game. The cute characters and little hints of a story captivated me, especially when exploring the town. However, I did feel that sometimes it wasn’t obvious what to do next or where to go – especially in the town where the platforms were hard to determine against what was just the background. Hopefully, these minor issues will be fixed before release.

    Color Lim is currently in development, but in the meantime, you can add it to your Steam Wishlist.
    About The Author
    #color #lim #changes #your #hue
    ‘Color Lim’ Changes Your Hue to Solve Platforming Puzzles
    Color Lim is a puzzle platformer where you need to use your slimy color-switching ability to solve puzzles and save a small village. This is a fantastic, smooth puzzle platform that has you playing a colorless slime called Lim who is looking to find their true color. At first, you aren’t really colorless – you are blue, but this isn’t your true and only color, as you can change and adapt when needed. Why is that important? Because in this world, color determines everything. Being able to absorb and transform to different colors allows you to go through specific platforms or to spray slime and then slide into the walls of the world, finding a new way to navigate around. There isn’t a limit on your own slime, so you are able to blast out some goop and then inject yourself into the walls, moving quickly around levels and solving puzzles. There are enemies that are looking to harm you, too, but these can be easily avoided most of the time. Color Lim doesn’t just have endless platforms to enjoy, but also has a little story showcased through cute characters who seem quite helpful! In this world, something bad has happened, and now there is a small village that is rebuilding, needing your help. As someone with such a great ability, you can find yourself using your colors to help them. I got to play a short demo of Color Lim at Pocket Gamer Connects Barcelona where I really liked how sleek and fast the movement felt for the game. The cute characters and little hints of a story captivated me, especially when exploring the town. However, I did feel that sometimes it wasn’t obvious what to do next or where to go – especially in the town where the platforms were hard to determine against what was just the background. Hopefully, these minor issues will be fixed before release. Color Lim is currently in development, but in the meantime, you can add it to your Steam Wishlist. About The Author #color #lim #changes #your #hue
    INDIEGAMESPLUS.COM
    ‘Color Lim’ Changes Your Hue to Solve Platforming Puzzles
    Color Lim is a puzzle platformer where you need to use your slimy color-switching ability to solve puzzles and save a small village. This is a fantastic, smooth puzzle platform that has you playing a colorless slime called Lim who is looking to find their true color. At first, you aren’t really colorless – you are blue, but this isn’t your true and only color, as you can change and adapt when needed. Why is that important? Because in this world, color determines everything. Being able to absorb and transform to different colors allows you to go through specific platforms or to spray slime and then slide into the walls of the world, finding a new way to navigate around. There isn’t a limit on your own slime, so you are able to blast out some goop and then inject yourself into the walls, moving quickly around levels and solving puzzles. There are enemies that are looking to harm you, too, but these can be easily avoided most of the time. Color Lim doesn’t just have endless platforms to enjoy, but also has a little story showcased through cute characters who seem quite helpful! In this world, something bad has happened, and now there is a small village that is rebuilding, needing your help. As someone with such a great ability, you can find yourself using your colors to help them. I got to play a short demo of Color Lim at Pocket Gamer Connects Barcelona where I really liked how sleek and fast the movement felt for the game. The cute characters and little hints of a story captivated me, especially when exploring the town. However, I did feel that sometimes it wasn’t obvious what to do next or where to go – especially in the town where the platforms were hard to determine against what was just the background. Hopefully, these minor issues will be fixed before release. Color Lim is currently in development, but in the meantime, you can add it to your Steam Wishlist. About The Author
    0 Commentarii 0 Distribuiri 0 previzualizare
  • 9 menial tasks ChatGPT can handle in seconds, saving you hours

    ChatGPT is rapidly changing the world. The process is already happening, and it’s only going to accelerate as the technology improves, as more people gain access to it, and as more learn how to use it.
    What’s shocking is just how many tasks ChatGPT is already capable of managing for you. While the naysayers may still look down their noses at the potential of AI assistants, I’ve been using it to handle all kinds of menial tasks for me. Here are my favorite examples.

    Further reading: This tiny ChatGPT feature helps me tackle my days more productively

    Write your emails for you
    Dave Parrack / Foundry
    We’ve all been faced with the tricky task of writing an email—whether personal or professional—but not knowing quite how to word it. ChatGPT can do the heavy lifting for you, penning theperfect email based on whatever information you feed it.
    Let’s assume the email you need to write is of a professional nature, and wording it poorly could negatively affect your career. By directing ChatGPT to write the email with a particular structure, content, and tone of voice, you can give yourself a huge head start.
    A winning tip for this is to never accept ChatGPT’s first attempt. Always read through it and look for areas of improvement, then request tweaks to ensure you get the best possible email. You canalso rewrite the email in your own voice. Learn more about how ChatGPT coached my colleague to write better emails.

    Generate itineraries and schedules
    Dave Parrack / Foundry
    If you’re going on a trip but you’re the type of person who hates planning trips, then you should utilize ChatGPT’s ability to generate trip itineraries. The results can be customized to the nth degree depending on how much detail and instruction you’re willing to provide.
    As someone who likes to get away at least once a year but also wants to make the most of every trip, leaning on ChatGPT for an itinerary is essential for me. I’ll provide the location and the kinds of things I want to see and do, then let it handle the rest. Instead of spending days researching everything myself, ChatGPT does 80 percent of it for me.
    As with all of these tasks, you don’t need to accept ChatGPT’s first effort. Use different prompts to force the AI chatbot to shape the itinerary closer to what you want. You’d be surprised at how many cool ideas you’ll encounter this way—simply nix the ones you don’t like.

    Break down difficult concepts
    Dave Parrack / Foundry
    One of the best tasks to assign to ChatGPT is the explanation of difficult concepts. Ask ChatGPT to explain any concept you can think of and it will deliver more often than not. You can tailor the level of explanation you need, and even have it include visual elements.
    Let’s say, for example, that a higher-up at work regularly lectures everyone about the importance of networking. But maybe they never go into detail about what they mean, just constantly pushing the why without explaining the what. Well, just ask ChatGPT to explain networking!
    Okay, most of us know what “networking” is and the concept isn’t very hard to grasp. But you can do this with anything. Ask ChatGPT to explain augmented reality, multi-threaded processing, blockchain, large language models, what have you. It will provide you with a clear and simple breakdown, maybe even with analogies and images.

    Analyze and make tough decisions
    Dave Parrack / Foundry
    We all face tough decisions every so often. The next time you find yourself wrestling with a particularly tough one—and you just can’t decide one way or the other—try asking ChatGPT for guidance and advice.
    It may sound strange to trust any kind of decision to artificial intelligence, let alone an important one that has you stumped, but doing so actually makes a lot of sense. While human judgment can be clouded by emotions, AI can set that aside and prioritize logic.
    It should go without saying: you don’t have to accept ChatGPT’s answers. Use the AI to weigh the pros and cons, to help you understand what’s most important to you, and to suggest a direction. Who knows? If you find yourself not liking the answer given, that in itself might clarify what you actually want—and the right answer for you. This is the kind of stuff ChatGPT can do to improve your life.

    Plan complex projects and strategies
    Dave Parrack / Foundry
    Most jobs come with some level of project planning and management. Even I, as a freelance writer, need to plan tasks to get projects completed on time. And that’s where ChatGPT can prove invaluable, breaking projects up into smaller, more manageable parts.
    ChatGPT needs to know the nature of the project, the end goal, any constraints you may have, and what you have done so far. With that information, it can then break the project up with a step-by-step plan, and break it down further into phases.
    If ChatGPT doesn’t initially split your project up in a way that suits you, try again. Change up the prompts and make the AI chatbot tune in to exactly what you’re looking for. It takes a bit of back and forth, but it can shorten your planning time from hours to mere minutes.

    Compile research notes
    Dave Parrack / Foundry
    If you need to research a given topic of interest, ChatGPT can save you the hassle of compiling that research. For example, ahead of a trip to Croatia, I wanted to know more about the Croatian War of Independence, so I asked ChatGPT to provide me with a brief summary of the conflict with bullet points to help me understand how it happened.
    After absorbing all that information, I asked ChatGPT to add a timeline of the major events, further helping me to understand how the conflict played out. ChatGPT then offered to provide me with battle maps and/or summaries, plus profiles of the main players.
    You can go even deeper with ChatGPT’s Deep Research feature, which is now available to free users, up to 5 Deep Research tasks per month. With Deep Research, ChatGPT conducts multi-step research to generate comprehensive reportsbased on large amounts of information across the internet. A Deep Research task can take up to 30 minutes to complete, but it’ll save you hours or even days.

    Summarize articles, meetings, and more
    Dave Parrack / Foundry
    There are only so many hours in the day, yet so many new articles published on the web day in and day out. When you come across extra-long reads, it can be helpful to run them through ChatGPT for a quick summary. Then, if the summary is lacking in any way, you can go back and plow through the article proper.
    As an example, I ran one of my own PCWorld articlesthrough ChatGPT, which provided a brief summary of my points and broke down the best X alternative based on my reasons given. Interestingly, it also pulled elements from other articles.If you don’t want that, you can tell ChatGPT to limit its summary to the contents of the link.
    This is a great trick to use for other long-form, text-heavy content that you just don’t have the time to crunch through. Think transcripts for interviews, lectures, videos, and Zoom meetings. The only caveat is to never share private details with ChatGPT, like company-specific data that’s protected by NDAs and the like.

    Create Q&A flashcards for learning
    Dave Parrack / Foundry
    Flashcards can be extremely useful for drilling a lot of information into your brain, such as when studying for an exam, onboarding in a new role, prepping for an interview, etc. And with ChatGPT, you no longer have to painstakingly create those flashcards yourself. All you have to do is tell the AI the details of what you’re studying.
    You can specify the format, as well as various other elements. You can also choose to keep things broad or target specific sub-topics or concepts you want to focus on. You can even upload your own notes for ChatGPT to reference. You can also use Google’s NotebookLM app in a similar way.

    Provide interview practice
    Dave Parrack / Foundry
    Whether you’re a first-time jobseeker or have plenty of experience under your belt, it’s always a good idea to practice for your interviews when making career moves. Years ago, you might’ve had to ask a friend or family member to act as your mock interviewer. These days, ChatGPT can do it for you—and do it more effectively.
    Inform ChatGPT of the job title, industry, and level of position you’re interviewing for, what kind of interview it’ll be, and anything else you want it to take into consideration. ChatGPT will then conduct a mock interview with you, providing feedback along the way.
    When I tried this out myself, I was shocked by how capable ChatGPT can be at pretending to be a human in this context. And the feedback it provides for each answer you give is invaluable for knocking off your rough edges and improving your chances of success when you’re interviewed by a real hiring manager.
    Further reading: Non-gimmicky AI apps I actually use every day
    #menial #tasks #chatgpt #can #handle
    9 menial tasks ChatGPT can handle in seconds, saving you hours
    ChatGPT is rapidly changing the world. The process is already happening, and it’s only going to accelerate as the technology improves, as more people gain access to it, and as more learn how to use it. What’s shocking is just how many tasks ChatGPT is already capable of managing for you. While the naysayers may still look down their noses at the potential of AI assistants, I’ve been using it to handle all kinds of menial tasks for me. Here are my favorite examples. Further reading: This tiny ChatGPT feature helps me tackle my days more productively Write your emails for you Dave Parrack / Foundry We’ve all been faced with the tricky task of writing an email—whether personal or professional—but not knowing quite how to word it. ChatGPT can do the heavy lifting for you, penning theperfect email based on whatever information you feed it. Let’s assume the email you need to write is of a professional nature, and wording it poorly could negatively affect your career. By directing ChatGPT to write the email with a particular structure, content, and tone of voice, you can give yourself a huge head start. A winning tip for this is to never accept ChatGPT’s first attempt. Always read through it and look for areas of improvement, then request tweaks to ensure you get the best possible email. You canalso rewrite the email in your own voice. Learn more about how ChatGPT coached my colleague to write better emails. Generate itineraries and schedules Dave Parrack / Foundry If you’re going on a trip but you’re the type of person who hates planning trips, then you should utilize ChatGPT’s ability to generate trip itineraries. The results can be customized to the nth degree depending on how much detail and instruction you’re willing to provide. As someone who likes to get away at least once a year but also wants to make the most of every trip, leaning on ChatGPT for an itinerary is essential for me. I’ll provide the location and the kinds of things I want to see and do, then let it handle the rest. Instead of spending days researching everything myself, ChatGPT does 80 percent of it for me. As with all of these tasks, you don’t need to accept ChatGPT’s first effort. Use different prompts to force the AI chatbot to shape the itinerary closer to what you want. You’d be surprised at how many cool ideas you’ll encounter this way—simply nix the ones you don’t like. Break down difficult concepts Dave Parrack / Foundry One of the best tasks to assign to ChatGPT is the explanation of difficult concepts. Ask ChatGPT to explain any concept you can think of and it will deliver more often than not. You can tailor the level of explanation you need, and even have it include visual elements. Let’s say, for example, that a higher-up at work regularly lectures everyone about the importance of networking. But maybe they never go into detail about what they mean, just constantly pushing the why without explaining the what. Well, just ask ChatGPT to explain networking! Okay, most of us know what “networking” is and the concept isn’t very hard to grasp. But you can do this with anything. Ask ChatGPT to explain augmented reality, multi-threaded processing, blockchain, large language models, what have you. It will provide you with a clear and simple breakdown, maybe even with analogies and images. Analyze and make tough decisions Dave Parrack / Foundry We all face tough decisions every so often. The next time you find yourself wrestling with a particularly tough one—and you just can’t decide one way or the other—try asking ChatGPT for guidance and advice. It may sound strange to trust any kind of decision to artificial intelligence, let alone an important one that has you stumped, but doing so actually makes a lot of sense. While human judgment can be clouded by emotions, AI can set that aside and prioritize logic. It should go without saying: you don’t have to accept ChatGPT’s answers. Use the AI to weigh the pros and cons, to help you understand what’s most important to you, and to suggest a direction. Who knows? If you find yourself not liking the answer given, that in itself might clarify what you actually want—and the right answer for you. This is the kind of stuff ChatGPT can do to improve your life. Plan complex projects and strategies Dave Parrack / Foundry Most jobs come with some level of project planning and management. Even I, as a freelance writer, need to plan tasks to get projects completed on time. And that’s where ChatGPT can prove invaluable, breaking projects up into smaller, more manageable parts. ChatGPT needs to know the nature of the project, the end goal, any constraints you may have, and what you have done so far. With that information, it can then break the project up with a step-by-step plan, and break it down further into phases. If ChatGPT doesn’t initially split your project up in a way that suits you, try again. Change up the prompts and make the AI chatbot tune in to exactly what you’re looking for. It takes a bit of back and forth, but it can shorten your planning time from hours to mere minutes. Compile research notes Dave Parrack / Foundry If you need to research a given topic of interest, ChatGPT can save you the hassle of compiling that research. For example, ahead of a trip to Croatia, I wanted to know more about the Croatian War of Independence, so I asked ChatGPT to provide me with a brief summary of the conflict with bullet points to help me understand how it happened. After absorbing all that information, I asked ChatGPT to add a timeline of the major events, further helping me to understand how the conflict played out. ChatGPT then offered to provide me with battle maps and/or summaries, plus profiles of the main players. You can go even deeper with ChatGPT’s Deep Research feature, which is now available to free users, up to 5 Deep Research tasks per month. With Deep Research, ChatGPT conducts multi-step research to generate comprehensive reportsbased on large amounts of information across the internet. A Deep Research task can take up to 30 minutes to complete, but it’ll save you hours or even days. Summarize articles, meetings, and more Dave Parrack / Foundry There are only so many hours in the day, yet so many new articles published on the web day in and day out. When you come across extra-long reads, it can be helpful to run them through ChatGPT for a quick summary. Then, if the summary is lacking in any way, you can go back and plow through the article proper. As an example, I ran one of my own PCWorld articlesthrough ChatGPT, which provided a brief summary of my points and broke down the best X alternative based on my reasons given. Interestingly, it also pulled elements from other articles.If you don’t want that, you can tell ChatGPT to limit its summary to the contents of the link. This is a great trick to use for other long-form, text-heavy content that you just don’t have the time to crunch through. Think transcripts for interviews, lectures, videos, and Zoom meetings. The only caveat is to never share private details with ChatGPT, like company-specific data that’s protected by NDAs and the like. Create Q&A flashcards for learning Dave Parrack / Foundry Flashcards can be extremely useful for drilling a lot of information into your brain, such as when studying for an exam, onboarding in a new role, prepping for an interview, etc. And with ChatGPT, you no longer have to painstakingly create those flashcards yourself. All you have to do is tell the AI the details of what you’re studying. You can specify the format, as well as various other elements. You can also choose to keep things broad or target specific sub-topics or concepts you want to focus on. You can even upload your own notes for ChatGPT to reference. You can also use Google’s NotebookLM app in a similar way. Provide interview practice Dave Parrack / Foundry Whether you’re a first-time jobseeker or have plenty of experience under your belt, it’s always a good idea to practice for your interviews when making career moves. Years ago, you might’ve had to ask a friend or family member to act as your mock interviewer. These days, ChatGPT can do it for you—and do it more effectively. Inform ChatGPT of the job title, industry, and level of position you’re interviewing for, what kind of interview it’ll be, and anything else you want it to take into consideration. ChatGPT will then conduct a mock interview with you, providing feedback along the way. When I tried this out myself, I was shocked by how capable ChatGPT can be at pretending to be a human in this context. And the feedback it provides for each answer you give is invaluable for knocking off your rough edges and improving your chances of success when you’re interviewed by a real hiring manager. Further reading: Non-gimmicky AI apps I actually use every day #menial #tasks #chatgpt #can #handle
    WWW.PCWORLD.COM
    9 menial tasks ChatGPT can handle in seconds, saving you hours
    ChatGPT is rapidly changing the world. The process is already happening, and it’s only going to accelerate as the technology improves, as more people gain access to it, and as more learn how to use it. What’s shocking is just how many tasks ChatGPT is already capable of managing for you. While the naysayers may still look down their noses at the potential of AI assistants, I’ve been using it to handle all kinds of menial tasks for me. Here are my favorite examples. Further reading: This tiny ChatGPT feature helps me tackle my days more productively Write your emails for you Dave Parrack / Foundry We’ve all been faced with the tricky task of writing an email—whether personal or professional—but not knowing quite how to word it. ChatGPT can do the heavy lifting for you, penning the (hopefully) perfect email based on whatever information you feed it. Let’s assume the email you need to write is of a professional nature, and wording it poorly could negatively affect your career. By directing ChatGPT to write the email with a particular structure, content, and tone of voice, you can give yourself a huge head start. A winning tip for this is to never accept ChatGPT’s first attempt. Always read through it and look for areas of improvement, then request tweaks to ensure you get the best possible email. You can (and should) also rewrite the email in your own voice. Learn more about how ChatGPT coached my colleague to write better emails. Generate itineraries and schedules Dave Parrack / Foundry If you’re going on a trip but you’re the type of person who hates planning trips, then you should utilize ChatGPT’s ability to generate trip itineraries. The results can be customized to the nth degree depending on how much detail and instruction you’re willing to provide. As someone who likes to get away at least once a year but also wants to make the most of every trip, leaning on ChatGPT for an itinerary is essential for me. I’ll provide the location and the kinds of things I want to see and do, then let it handle the rest. Instead of spending days researching everything myself, ChatGPT does 80 percent of it for me. As with all of these tasks, you don’t need to accept ChatGPT’s first effort. Use different prompts to force the AI chatbot to shape the itinerary closer to what you want. You’d be surprised at how many cool ideas you’ll encounter this way—simply nix the ones you don’t like. Break down difficult concepts Dave Parrack / Foundry One of the best tasks to assign to ChatGPT is the explanation of difficult concepts. Ask ChatGPT to explain any concept you can think of and it will deliver more often than not. You can tailor the level of explanation you need, and even have it include visual elements. Let’s say, for example, that a higher-up at work regularly lectures everyone about the importance of networking. But maybe they never go into detail about what they mean, just constantly pushing the why without explaining the what. Well, just ask ChatGPT to explain networking! Okay, most of us know what “networking” is and the concept isn’t very hard to grasp. But you can do this with anything. Ask ChatGPT to explain augmented reality, multi-threaded processing, blockchain, large language models, what have you. It will provide you with a clear and simple breakdown, maybe even with analogies and images. Analyze and make tough decisions Dave Parrack / Foundry We all face tough decisions every so often. The next time you find yourself wrestling with a particularly tough one—and you just can’t decide one way or the other—try asking ChatGPT for guidance and advice. It may sound strange to trust any kind of decision to artificial intelligence, let alone an important one that has you stumped, but doing so actually makes a lot of sense. While human judgment can be clouded by emotions, AI can set that aside and prioritize logic. It should go without saying: you don’t have to accept ChatGPT’s answers. Use the AI to weigh the pros and cons, to help you understand what’s most important to you, and to suggest a direction. Who knows? If you find yourself not liking the answer given, that in itself might clarify what you actually want—and the right answer for you. This is the kind of stuff ChatGPT can do to improve your life. Plan complex projects and strategies Dave Parrack / Foundry Most jobs come with some level of project planning and management. Even I, as a freelance writer, need to plan tasks to get projects completed on time. And that’s where ChatGPT can prove invaluable, breaking projects up into smaller, more manageable parts. ChatGPT needs to know the nature of the project, the end goal, any constraints you may have, and what you have done so far. With that information, it can then break the project up with a step-by-step plan, and break it down further into phases (if required). If ChatGPT doesn’t initially split your project up in a way that suits you, try again. Change up the prompts and make the AI chatbot tune in to exactly what you’re looking for. It takes a bit of back and forth, but it can shorten your planning time from hours to mere minutes. Compile research notes Dave Parrack / Foundry If you need to research a given topic of interest, ChatGPT can save you the hassle of compiling that research. For example, ahead of a trip to Croatia, I wanted to know more about the Croatian War of Independence, so I asked ChatGPT to provide me with a brief summary of the conflict with bullet points to help me understand how it happened. After absorbing all that information, I asked ChatGPT to add a timeline of the major events, further helping me to understand how the conflict played out. ChatGPT then offered to provide me with battle maps and/or summaries, plus profiles of the main players. You can go even deeper with ChatGPT’s Deep Research feature, which is now available to free users, up to 5 Deep Research tasks per month. With Deep Research, ChatGPT conducts multi-step research to generate comprehensive reports (with citations!) based on large amounts of information across the internet. A Deep Research task can take up to 30 minutes to complete, but it’ll save you hours or even days. Summarize articles, meetings, and more Dave Parrack / Foundry There are only so many hours in the day, yet so many new articles published on the web day in and day out. When you come across extra-long reads, it can be helpful to run them through ChatGPT for a quick summary. Then, if the summary is lacking in any way, you can go back and plow through the article proper. As an example, I ran one of my own PCWorld articles (where I compared Bluesky and Threads as alternatives to X) through ChatGPT, which provided a brief summary of my points and broke down the best X alternative based on my reasons given. Interestingly, it also pulled elements from other articles. (Hmph.) If you don’t want that, you can tell ChatGPT to limit its summary to the contents of the link. This is a great trick to use for other long-form, text-heavy content that you just don’t have the time to crunch through. Think transcripts for interviews, lectures, videos, and Zoom meetings. The only caveat is to never share private details with ChatGPT, like company-specific data that’s protected by NDAs and the like. Create Q&A flashcards for learning Dave Parrack / Foundry Flashcards can be extremely useful for drilling a lot of information into your brain, such as when studying for an exam, onboarding in a new role, prepping for an interview, etc. And with ChatGPT, you no longer have to painstakingly create those flashcards yourself. All you have to do is tell the AI the details of what you’re studying. You can specify the format (such as Q&A or multiple choice), as well as various other elements. You can also choose to keep things broad or target specific sub-topics or concepts you want to focus on. You can even upload your own notes for ChatGPT to reference. You can also use Google’s NotebookLM app in a similar way. Provide interview practice Dave Parrack / Foundry Whether you’re a first-time jobseeker or have plenty of experience under your belt, it’s always a good idea to practice for your interviews when making career moves. Years ago, you might’ve had to ask a friend or family member to act as your mock interviewer. These days, ChatGPT can do it for you—and do it more effectively. Inform ChatGPT of the job title, industry, and level of position you’re interviewing for, what kind of interview it’ll be (e.g., screener, technical assessment, group/panel, one-on-one with CEO), and anything else you want it to take into consideration. ChatGPT will then conduct a mock interview with you, providing feedback along the way. When I tried this out myself, I was shocked by how capable ChatGPT can be at pretending to be a human in this context. And the feedback it provides for each answer you give is invaluable for knocking off your rough edges and improving your chances of success when you’re interviewed by a real hiring manager. Further reading: Non-gimmicky AI apps I actually use every day
    0 Commentarii 0 Distribuiri 0 previzualizare
  • Could Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment Explained

    June 13, 20253 min readCould Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment ExplainedWhen Israeli aircraft recently struck a uranium-enrichment complex in the nation, Iran could have been days away from achieving “breakout,” the ability to quickly turn “yellowcake” uranium into bomb-grade fuel, with its new high-speed centrifugesBy Deni Ellis Béchard edited by Dean VisserMen work inside of a uranium conversion facility just outside the city of Isfahan, Iran, on March 30, 2005. The facility in Isfahan made hexaflouride gas, which was then enriched by feeding it into centrifuges at a facility in Natanz, Iran. Getty ImagesIn the predawn darkness on Friday local time, Israeli military aircraft struck one of Iran’s uranium-enrichment complexes near the city of Natanz. The warheads aimed to do more than shatter concrete; they were meant to buy time, according to news reports. For months, Iran had seemed to be edging ever closer to “breakout,” the point at which its growing stockpile of partially enriched uranium could be converted into fuel for a nuclear bomb.But why did the strike occur now? One consideration could involve the way enrichment complexes work. Natural uranium is composed almost entirely of uranium 238, or U-238, an isotope that is relatively “heavy”. Only about 0.7 percent is uranium 235, a lighter isotope that is capable of sustaining a nuclear chain reaction. That means that in natural uranium, only seven atoms in 1,000 are the lighter, fission-ready U-235; “enrichment” simply means raising the percentage of U-235.U-235 can be used in warheads because its nucleus can easily be split. The International Atomic Energy Agency uses 25 kilograms of contained U-235 as the benchmark amount deemed sufficient for a first-generation implosion bomb. In such a weapon, the U-235 is surrounded by conventional explosives that, when detonated, compress the isotope. A separate device releases a neutron stream.Each time a neutron strikes a U-235 atom, the atom fissions; it divides and spits out, on average, two or three fresh neutrons—plus a burst of energy in the form of heat and gamma radiation. And the emitted neutrons in turn strike other U-235 nuclei, creating a self-sustaining chain reaction among the U-235 atoms that have been packed together into a critical mass. The result is a nuclear explosion. By contrast, the more common isotope, U-238, usually absorbs slow neutrons without splitting and cannot drive such a devastating chain reaction.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.To enrich uranium so that it contains enough U-235, the “yellowcake” uranium powder that comes out of a mine must go through a lengthy process of conversions to transform it from a solid into the gas uranium hexafluoride. First, a series of chemical processes refine the uranium and then, at high temperatures, each uranium atom is bound to six fluorine atoms. The result, uranium hexafluoride, is unusual: below 56 degrees Celsiusit is a white, waxy solid, but just above that temperature, it sublimates into a dense, invisible gas.During enrichment, this uranium hexafluoride is loaded into a centrifuge: a metal cylinder that spins at tens of thousands of revolutions per minute—faster than the blades of a jet engine. As the heavier U-238 molecules drift toward the cylinder wall, the lighter U-235 molecules remain closer to the center and are siphoned off. This new, slightly U-235-richer gas is then put into the next centrifuge. The process is repeated 10 to 20 times as ever more enriched gas is sent through a series of centrifuges.Enrichment is a slow process, but the Iranian government has been working on this for years and already holds roughly 400 kilograms of uranium enriched to 60 percent U-235. This falls short of the 90 percent required for nuclear weapons. But whereas Iran’s first-generation IR-1 centrifuges whirl at about 63,000 revolutions per minute and do relatively modest work, its newer IR-6 models, built from high-strength carbon fiber, spin faster and produce enriched uranium far more quickly.Iran has been installing thousands of these units, especially at Fordow, an underground enrichment facility built beneath 80 to 90 meters of rock. According to a report released on Monday by the Institute for Science and International Security, the new centrifuges could produce enough 90 percent U-235 uranium for a warhead “in as little as two to three days” and enough for nine nuclear weapons in three weeks—or 19 by the end of the third month.
    #could #iran #have #been #close
    Could Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment Explained
    June 13, 20253 min readCould Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment ExplainedWhen Israeli aircraft recently struck a uranium-enrichment complex in the nation, Iran could have been days away from achieving “breakout,” the ability to quickly turn “yellowcake” uranium into bomb-grade fuel, with its new high-speed centrifugesBy Deni Ellis Béchard edited by Dean VisserMen work inside of a uranium conversion facility just outside the city of Isfahan, Iran, on March 30, 2005. The facility in Isfahan made hexaflouride gas, which was then enriched by feeding it into centrifuges at a facility in Natanz, Iran. Getty ImagesIn the predawn darkness on Friday local time, Israeli military aircraft struck one of Iran’s uranium-enrichment complexes near the city of Natanz. The warheads aimed to do more than shatter concrete; they were meant to buy time, according to news reports. For months, Iran had seemed to be edging ever closer to “breakout,” the point at which its growing stockpile of partially enriched uranium could be converted into fuel for a nuclear bomb.But why did the strike occur now? One consideration could involve the way enrichment complexes work. Natural uranium is composed almost entirely of uranium 238, or U-238, an isotope that is relatively “heavy”. Only about 0.7 percent is uranium 235, a lighter isotope that is capable of sustaining a nuclear chain reaction. That means that in natural uranium, only seven atoms in 1,000 are the lighter, fission-ready U-235; “enrichment” simply means raising the percentage of U-235.U-235 can be used in warheads because its nucleus can easily be split. The International Atomic Energy Agency uses 25 kilograms of contained U-235 as the benchmark amount deemed sufficient for a first-generation implosion bomb. In such a weapon, the U-235 is surrounded by conventional explosives that, when detonated, compress the isotope. A separate device releases a neutron stream.Each time a neutron strikes a U-235 atom, the atom fissions; it divides and spits out, on average, two or three fresh neutrons—plus a burst of energy in the form of heat and gamma radiation. And the emitted neutrons in turn strike other U-235 nuclei, creating a self-sustaining chain reaction among the U-235 atoms that have been packed together into a critical mass. The result is a nuclear explosion. By contrast, the more common isotope, U-238, usually absorbs slow neutrons without splitting and cannot drive such a devastating chain reaction.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.To enrich uranium so that it contains enough U-235, the “yellowcake” uranium powder that comes out of a mine must go through a lengthy process of conversions to transform it from a solid into the gas uranium hexafluoride. First, a series of chemical processes refine the uranium and then, at high temperatures, each uranium atom is bound to six fluorine atoms. The result, uranium hexafluoride, is unusual: below 56 degrees Celsiusit is a white, waxy solid, but just above that temperature, it sublimates into a dense, invisible gas.During enrichment, this uranium hexafluoride is loaded into a centrifuge: a metal cylinder that spins at tens of thousands of revolutions per minute—faster than the blades of a jet engine. As the heavier U-238 molecules drift toward the cylinder wall, the lighter U-235 molecules remain closer to the center and are siphoned off. This new, slightly U-235-richer gas is then put into the next centrifuge. The process is repeated 10 to 20 times as ever more enriched gas is sent through a series of centrifuges.Enrichment is a slow process, but the Iranian government has been working on this for years and already holds roughly 400 kilograms of uranium enriched to 60 percent U-235. This falls short of the 90 percent required for nuclear weapons. But whereas Iran’s first-generation IR-1 centrifuges whirl at about 63,000 revolutions per minute and do relatively modest work, its newer IR-6 models, built from high-strength carbon fiber, spin faster and produce enriched uranium far more quickly.Iran has been installing thousands of these units, especially at Fordow, an underground enrichment facility built beneath 80 to 90 meters of rock. According to a report released on Monday by the Institute for Science and International Security, the new centrifuges could produce enough 90 percent U-235 uranium for a warhead “in as little as two to three days” and enough for nine nuclear weapons in three weeks—or 19 by the end of the third month. #could #iran #have #been #close
    WWW.SCIENTIFICAMERICAN.COM
    Could Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment Explained
    June 13, 20253 min readCould Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment ExplainedWhen Israeli aircraft recently struck a uranium-enrichment complex in the nation, Iran could have been days away from achieving “breakout,” the ability to quickly turn “yellowcake” uranium into bomb-grade fuel, with its new high-speed centrifugesBy Deni Ellis Béchard edited by Dean VisserMen work inside of a uranium conversion facility just outside the city of Isfahan, Iran, on March 30, 2005. The facility in Isfahan made hexaflouride gas, which was then enriched by feeding it into centrifuges at a facility in Natanz, Iran. Getty ImagesIn the predawn darkness on Friday local time, Israeli military aircraft struck one of Iran’s uranium-enrichment complexes near the city of Natanz. The warheads aimed to do more than shatter concrete; they were meant to buy time, according to news reports. For months, Iran had seemed to be edging ever closer to “breakout,” the point at which its growing stockpile of partially enriched uranium could be converted into fuel for a nuclear bomb. (Iran has denied that it has been pursuing nuclear weapons development.)But why did the strike occur now? One consideration could involve the way enrichment complexes work. Natural uranium is composed almost entirely of uranium 238, or U-238, an isotope that is relatively “heavy” (meaning it has more neutrons in its nucleus). Only about 0.7 percent is uranium 235 (U-235), a lighter isotope that is capable of sustaining a nuclear chain reaction. That means that in natural uranium, only seven atoms in 1,000 are the lighter, fission-ready U-235; “enrichment” simply means raising the percentage of U-235.U-235 can be used in warheads because its nucleus can easily be split. The International Atomic Energy Agency uses 25 kilograms of contained U-235 as the benchmark amount deemed sufficient for a first-generation implosion bomb. In such a weapon, the U-235 is surrounded by conventional explosives that, when detonated, compress the isotope. A separate device releases a neutron stream. (Neutrons are the neutral subatomic particle in an atom’s nucleus that adds to their mass.) Each time a neutron strikes a U-235 atom, the atom fissions; it divides and spits out, on average, two or three fresh neutrons—plus a burst of energy in the form of heat and gamma radiation. And the emitted neutrons in turn strike other U-235 nuclei, creating a self-sustaining chain reaction among the U-235 atoms that have been packed together into a critical mass. The result is a nuclear explosion. By contrast, the more common isotope, U-238, usually absorbs slow neutrons without splitting and cannot drive such a devastating chain reaction.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.To enrich uranium so that it contains enough U-235, the “yellowcake” uranium powder that comes out of a mine must go through a lengthy process of conversions to transform it from a solid into the gas uranium hexafluoride. First, a series of chemical processes refine the uranium and then, at high temperatures, each uranium atom is bound to six fluorine atoms. The result, uranium hexafluoride, is unusual: below 56 degrees Celsius (132.8 degrees Fahrenheit) it is a white, waxy solid, but just above that temperature, it sublimates into a dense, invisible gas.During enrichment, this uranium hexafluoride is loaded into a centrifuge: a metal cylinder that spins at tens of thousands of revolutions per minute—faster than the blades of a jet engine. As the heavier U-238 molecules drift toward the cylinder wall, the lighter U-235 molecules remain closer to the center and are siphoned off. This new, slightly U-235-richer gas is then put into the next centrifuge. The process is repeated 10 to 20 times as ever more enriched gas is sent through a series of centrifuges.Enrichment is a slow process, but the Iranian government has been working on this for years and already holds roughly 400 kilograms of uranium enriched to 60 percent U-235. This falls short of the 90 percent required for nuclear weapons. But whereas Iran’s first-generation IR-1 centrifuges whirl at about 63,000 revolutions per minute and do relatively modest work, its newer IR-6 models, built from high-strength carbon fiber, spin faster and produce enriched uranium far more quickly.Iran has been installing thousands of these units, especially at Fordow, an underground enrichment facility built beneath 80 to 90 meters of rock. According to a report released on Monday by the Institute for Science and International Security, the new centrifuges could produce enough 90 percent U-235 uranium for a warhead “in as little as two to three days” and enough for nine nuclear weapons in three weeks—or 19 by the end of the third month.
    0 Commentarii 0 Distribuiri 0 previzualizare
  • Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects

    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada.
    Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption.
    Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits.
    Figure 1: Preheating air for industrial buildings: 2,750 m2of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies
    Quebec’s solar air heating boom: the Trigo Energies story
    Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies.
    Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.”
    One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.
     
    Blue or black, but always efficient: the advanced absorber coating
    In October 2024, the majority of the new 2,750 m²solar façade at FAB3R began operation. According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system.
    The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating.
    Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon.
    Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy
    Matrix Energy: collaborating with architects and engineers in new builds
    The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy.
    Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers.
    “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added.
    Finding the right flow: the importance of unitary airflow rates
    One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance.
    For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170, or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m²offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained.
    It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² are necessary.
    Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering
    Solar air heating systems support LEED-certified building designs
    Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto, where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m².
    “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick.
    The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances.
    The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future.
    Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif

    Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication.
    The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect.
    #oped #canadas #leadership #solar #air
    Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects
    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada. Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption. Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits. Figure 1: Preheating air for industrial buildings: 2,750 m2of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies Quebec’s solar air heating boom: the Trigo Energies story Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies. Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.” One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.   Blue or black, but always efficient: the advanced absorber coating In October 2024, the majority of the new 2,750 m²solar façade at FAB3R began operation. According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system. The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating. Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon. Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy Matrix Energy: collaborating with architects and engineers in new builds The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy. Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers. “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added. Finding the right flow: the importance of unitary airflow rates One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance. For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170, or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m²offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained. It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² are necessary. Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering Solar air heating systems support LEED-certified building designs Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto, where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m². “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick. The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances. The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future. Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication. The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect. #oped #canadas #leadership #solar #air
    WWW.CANADIANARCHITECT.COM
    Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects
    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2 (282,046 ft2) of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada. Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption. Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits. Figure 1: Preheating air for industrial buildings: 2,750 m2 (29,600 ft2) of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies Quebec’s solar air heating boom: the Trigo Energies story Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies. Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.” One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.   Blue or black, but always efficient: the advanced absorber coating In October 2024, the majority of the new 2,750 m² (29,600 ft2) solar façade at FAB3R began operation (see figure 1). According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system. The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating. Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon. Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2 (2,045 ft2) south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy Matrix Energy: collaborating with architects and engineers in new builds The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy. Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers. “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added. Finding the right flow: the importance of unitary airflow rates One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance. For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170 (m3/h/m2), or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m² (7.2 cfm/ft2) offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained. It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² (8.3 to 9.4 cfm/ft2)  are necessary. Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2 (1,722 ft2) of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering Solar air heating systems support LEED-certified building designs Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto (see Figure 3), where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m² (10,764 ft2). “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick. The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances. The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future. Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2 (775 ft2) Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication. The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect.
    0 Commentarii 0 Distribuiri 0 previzualizare
  • Too big, fail too

    Inside Apple’s high-gloss standoff with AI ambition and the uncanny choreography of WWDC 2025There was a time when watching an Apple keynote — like Steve Jobs introducing the iPhone in 2007, the masterclass of all masterclasses in product launching — felt like watching a tightrope act. There was suspense. Live demos happened — sometimes they failed, and when they didn’t, the applause was real, not piped through a Dolby mix.These days, that tension is gone. Since 2020, in the wake of the pandemic, Apple events have become pre-recorded masterworks: drone shots sweeping over Apple Park, transitions smoother than a Pixar short, and executives delivering their lines like odd, IRL spatial personas. They move like human renderings: poised, confident, and just robotic enough to raise a brow. The kind of people who, if encountered in real life, would probably light up half a dozen red flags before a handshake is even offered. A case in point: the official “Liquid Glass” UI demo — it’s visually stunning, yes, but also uncanny, like a concept reel that forgot it needed to ship. that’s the paradox. Not only has Apple trimmed down the content of WWDC, it’s also polished the delivery into something almost inhumanly controlled. Every keynote beat feels engineered to avoid risk, reduce friction, and glide past doubt. But in doing so, something vital slips away: the tension, the spontaneity, the sense that the future is being made, not just performed.Just one year earlier, WWDC 2024 opened with a cinematic cold open “somewhere over California”: Schiller piloting an Apple-branded plane, iPod in hand, muttering “I’m getting too old for this stuff.” A perfect mix of Lethal Weapon camp and a winking message that yes, Classic-Apple was still at the controls — literally — flying its senior leadership straight toward Cupertino. Out the hatch, like high-altitude paratroopers of optimism, leapt the entire exec team, with Craig Federighi, always the go-to for Apple’s auto-ironic set pieces, leading the charge, donning a helmet literally resembling his own legendary mane. It was peak-bold, bizarre, and unmistakably Apple. That intro now reads like the final act of full-throttle confidence.This year’s WWDC offered a particularly crisp contrast. Aside from the new intro — which features Craig Federighi drifting an F1-style race car across the inner rooftop ring of Apple Park as a “therapy session”, a not-so-subtle nod to the upcoming Formula 1 blockbuster but also to the accountability for the failure to deliver the system-wide AI on time — WWDC 2025 pulled back dramatically. The new “Apple Intelligence” was introduced in a keynote with zero stumbles, zero awkward transitions, and visuals so pristine they could have been rendered on a Vision Pro. Not only had the scope of WWDC been trimmed down to safer talking points, but even the tone had shifted — less like a tech summit, more like a handsomely lit containment-mode seminar. And that, perhaps, was the problem. The presentation wasn’t a reveal — it was a performance. And performances can be edited in post. Demos can’t.So when Apple in march 2025 quietly admitted, for the first time, in a formal press release addressed to reporters like John Gruber, that the personalized Siri and system-wide AI features would be delayed — the reaction wasn’t outrage. It was something subtler: disillusionment. Gruber’s response cracked the façade wide open. His post opened a slow but persistent wave of unease, rippling through developer Slack channels and private comment threads alike. John Gruber’s reaction, published under the headline “Something is rotten in the State of Cupertino”, was devastating. His critique opened the floodgates to a wave of murmurs and public unease among developers and insiders, many of whom had begun to question what was really happening at the helm of key divisions central to Apple’s future.Many still believe Apple is the only company truly capable of pulling off hardware-software integrated AI at scale. But there’s a sense that the company is now operating in damage-control mode. The delay didn’t just push back a feature — it disrupted the entire strategic arc of WWDC 2025. What could have been a milestone in system-level AI became a cautious sidestep, repackaged through visual polish and feature tweaks. The result: a presentation focused on UI refinements and safe bets, far removed from the sweeping revolution that had been teased as the main selling point for promoting the iPhone 16 launch, “Built for Apple Intelligence”.That tension surfaced during Joanna Stern’s recent live interview with Craig Federighi and Greg Joswiak. These are two of Apple’s most media-savvy execs, and yet, in a setting where questions weren’t scripted, you could see the seams. Their usual fluency gave way to something stiffer. More careful. Less certain. And even the absences speak volumes: for the first time in a decade, no one from Apple’s top team joined John Gruber’s Talk Show at WWDC. It wasn’t a scheduling fluke — nor a petty retaliation for Gruber’s damning March article. It was a retreat — one that Stratechery’s Ben Thompson described as exactly that: a strategic fallback, not a brave reset.Meanwhile, the keynote narrative quietly shifted from AI ambition to UI innovation: new visual effects, tighter integration, call screening. Credit here goes to Alan Dye — Apple VP of Human Interface Design and one of the last remaining members of Jony Ive’s inner circle not yet absorbed into LoveFrom — whose long-arc work on interface aesthetics, from the early stages of the Dynamic Island onward, is finally starting to click into place. This is classic Apple: refinement as substance, design as coherence. But it was meant to be the cherry on top of a much deeper AI-system transformation — not the whole sundae. All useful. All safe. And yet, the thing that Apple could uniquely deliver — a seamless, deeply integrated, user-controlled and privacy-safe Apple Intelligence — is now the thing it seems most reluctant to show.There is no doubt the groundwork has been laid. And to Apple’s credit, Jason Snell notes that the company is shifting gears, scaling ambitions to something that feels more tangible. But in scaling back the risk, something else has been scaled back too: the willingness to look your audience of stakeholders, developers and users live, in the eye, and show the future for how you have carefully crafted it and how you can put it in the market immediately, or in mere weeks. Showing things as they are, or as they will be very soon. Rehearsed, yes, but never faked.Even James Dyson’s live demo of a new vacuum showed more courage. No camera cuts. No soft lighting. Just a human being, showing a thing. It might have sucked, literally or figuratively. But it didn’t. And it stuck. That’s what feels missing in Cupertino.Some have started using the term glasslighting — a coined pun blending Apple’s signature glassy aesthetics with the soft manipulations of marketing, like a gentle fog of polished perfection that leaves expectations quietly disoriented. It’s not deception. It’s damage control. But that instinct, understandable as it is, doesn’t build momentum. It builds inertia. And inertia doesn’t sell intelligence. It only delays the reckoning.Before the curtain falls, it’s hard not to revisit the uncanny polish of Apple’s speakers presence. One might start to wonder whether Apple is really late on AI — or whether it’s simply developed such a hyper-advanced internal model that its leadership team has been replaced by real-time human avatars, flawlessly animated, fed directly by the Neural Engine. Not the constrained humanity of two floating eyes behind an Apple Vision headset, but full-on flawless embodiment — if this is Apple’s augmented AI at work, it may be the only undisclosed and underpromised demo actually shipping.OS30 live demoMeanwhile, just as Apple was soft-pedaling its A.I. story with maximum visual polish, a very different tone landed from across the bay: Sam Altman and Jony Ive, sitting in a bar, talking about the future. stage. No teleprompter. No uncanny valley. Just two “old friends”, with one hell of a budget, quietly sketching the next era of computing. A vision Apple once claimed effortlessly.There’s still the question of whether Apple, as many hope, can reclaim — and lock down — that leadership for itself. A healthy dose of competition, at the very least, can only help.Too big, fail too was originally published in UX Collective on Medium, where people are continuing the conversation by highlighting and responding to this story.
    #too #big #fail
    Too big, fail too
    Inside Apple’s high-gloss standoff with AI ambition and the uncanny choreography of WWDC 2025There was a time when watching an Apple keynote — like Steve Jobs introducing the iPhone in 2007, the masterclass of all masterclasses in product launching — felt like watching a tightrope act. There was suspense. Live demos happened — sometimes they failed, and when they didn’t, the applause was real, not piped through a Dolby mix.These days, that tension is gone. Since 2020, in the wake of the pandemic, Apple events have become pre-recorded masterworks: drone shots sweeping over Apple Park, transitions smoother than a Pixar short, and executives delivering their lines like odd, IRL spatial personas. They move like human renderings: poised, confident, and just robotic enough to raise a brow. The kind of people who, if encountered in real life, would probably light up half a dozen red flags before a handshake is even offered. A case in point: the official “Liquid Glass” UI demo — it’s visually stunning, yes, but also uncanny, like a concept reel that forgot it needed to ship. that’s the paradox. Not only has Apple trimmed down the content of WWDC, it’s also polished the delivery into something almost inhumanly controlled. Every keynote beat feels engineered to avoid risk, reduce friction, and glide past doubt. But in doing so, something vital slips away: the tension, the spontaneity, the sense that the future is being made, not just performed.Just one year earlier, WWDC 2024 opened with a cinematic cold open “somewhere over California”: Schiller piloting an Apple-branded plane, iPod in hand, muttering “I’m getting too old for this stuff.” A perfect mix of Lethal Weapon camp and a winking message that yes, Classic-Apple was still at the controls — literally — flying its senior leadership straight toward Cupertino. Out the hatch, like high-altitude paratroopers of optimism, leapt the entire exec team, with Craig Federighi, always the go-to for Apple’s auto-ironic set pieces, leading the charge, donning a helmet literally resembling his own legendary mane. It was peak-bold, bizarre, and unmistakably Apple. That intro now reads like the final act of full-throttle confidence.This year’s WWDC offered a particularly crisp contrast. Aside from the new intro — which features Craig Federighi drifting an F1-style race car across the inner rooftop ring of Apple Park as a “therapy session”, a not-so-subtle nod to the upcoming Formula 1 blockbuster but also to the accountability for the failure to deliver the system-wide AI on time — WWDC 2025 pulled back dramatically. The new “Apple Intelligence” was introduced in a keynote with zero stumbles, zero awkward transitions, and visuals so pristine they could have been rendered on a Vision Pro. Not only had the scope of WWDC been trimmed down to safer talking points, but even the tone had shifted — less like a tech summit, more like a handsomely lit containment-mode seminar. And that, perhaps, was the problem. The presentation wasn’t a reveal — it was a performance. And performances can be edited in post. Demos can’t.So when Apple in march 2025 quietly admitted, for the first time, in a formal press release addressed to reporters like John Gruber, that the personalized Siri and system-wide AI features would be delayed — the reaction wasn’t outrage. It was something subtler: disillusionment. Gruber’s response cracked the façade wide open. His post opened a slow but persistent wave of unease, rippling through developer Slack channels and private comment threads alike. John Gruber’s reaction, published under the headline “Something is rotten in the State of Cupertino”, was devastating. His critique opened the floodgates to a wave of murmurs and public unease among developers and insiders, many of whom had begun to question what was really happening at the helm of key divisions central to Apple’s future.Many still believe Apple is the only company truly capable of pulling off hardware-software integrated AI at scale. But there’s a sense that the company is now operating in damage-control mode. The delay didn’t just push back a feature — it disrupted the entire strategic arc of WWDC 2025. What could have been a milestone in system-level AI became a cautious sidestep, repackaged through visual polish and feature tweaks. The result: a presentation focused on UI refinements and safe bets, far removed from the sweeping revolution that had been teased as the main selling point for promoting the iPhone 16 launch, “Built for Apple Intelligence”.That tension surfaced during Joanna Stern’s recent live interview with Craig Federighi and Greg Joswiak. These are two of Apple’s most media-savvy execs, and yet, in a setting where questions weren’t scripted, you could see the seams. Their usual fluency gave way to something stiffer. More careful. Less certain. And even the absences speak volumes: for the first time in a decade, no one from Apple’s top team joined John Gruber’s Talk Show at WWDC. It wasn’t a scheduling fluke — nor a petty retaliation for Gruber’s damning March article. It was a retreat — one that Stratechery’s Ben Thompson described as exactly that: a strategic fallback, not a brave reset.Meanwhile, the keynote narrative quietly shifted from AI ambition to UI innovation: new visual effects, tighter integration, call screening. Credit here goes to Alan Dye — Apple VP of Human Interface Design and one of the last remaining members of Jony Ive’s inner circle not yet absorbed into LoveFrom — whose long-arc work on interface aesthetics, from the early stages of the Dynamic Island onward, is finally starting to click into place. This is classic Apple: refinement as substance, design as coherence. But it was meant to be the cherry on top of a much deeper AI-system transformation — not the whole sundae. All useful. All safe. And yet, the thing that Apple could uniquely deliver — a seamless, deeply integrated, user-controlled and privacy-safe Apple Intelligence — is now the thing it seems most reluctant to show.There is no doubt the groundwork has been laid. And to Apple’s credit, Jason Snell notes that the company is shifting gears, scaling ambitions to something that feels more tangible. But in scaling back the risk, something else has been scaled back too: the willingness to look your audience of stakeholders, developers and users live, in the eye, and show the future for how you have carefully crafted it and how you can put it in the market immediately, or in mere weeks. Showing things as they are, or as they will be very soon. Rehearsed, yes, but never faked.Even James Dyson’s live demo of a new vacuum showed more courage. No camera cuts. No soft lighting. Just a human being, showing a thing. It might have sucked, literally or figuratively. But it didn’t. And it stuck. That’s what feels missing in Cupertino.Some have started using the term glasslighting — a coined pun blending Apple’s signature glassy aesthetics with the soft manipulations of marketing, like a gentle fog of polished perfection that leaves expectations quietly disoriented. It’s not deception. It’s damage control. But that instinct, understandable as it is, doesn’t build momentum. It builds inertia. And inertia doesn’t sell intelligence. It only delays the reckoning.Before the curtain falls, it’s hard not to revisit the uncanny polish of Apple’s speakers presence. One might start to wonder whether Apple is really late on AI — or whether it’s simply developed such a hyper-advanced internal model that its leadership team has been replaced by real-time human avatars, flawlessly animated, fed directly by the Neural Engine. Not the constrained humanity of two floating eyes behind an Apple Vision headset, but full-on flawless embodiment — if this is Apple’s augmented AI at work, it may be the only undisclosed and underpromised demo actually shipping.OS30 live demoMeanwhile, just as Apple was soft-pedaling its A.I. story with maximum visual polish, a very different tone landed from across the bay: Sam Altman and Jony Ive, sitting in a bar, talking about the future. stage. No teleprompter. No uncanny valley. Just two “old friends”, with one hell of a budget, quietly sketching the next era of computing. A vision Apple once claimed effortlessly.There’s still the question of whether Apple, as many hope, can reclaim — and lock down — that leadership for itself. A healthy dose of competition, at the very least, can only help.Too big, fail too was originally published in UX Collective on Medium, where people are continuing the conversation by highlighting and responding to this story. #too #big #fail
    UXDESIGN.CC
    Too big, fail too
    Inside Apple’s high-gloss standoff with AI ambition and the uncanny choreography of WWDC 2025There was a time when watching an Apple keynote — like Steve Jobs introducing the iPhone in 2007, the masterclass of all masterclasses in product launching — felt like watching a tightrope act. There was suspense. Live demos happened — sometimes they failed, and when they didn’t, the applause was real, not piped through a Dolby mix.These days, that tension is gone. Since 2020, in the wake of the pandemic, Apple events have become pre-recorded masterworks: drone shots sweeping over Apple Park, transitions smoother than a Pixar short, and executives delivering their lines like odd, IRL spatial personas. They move like human renderings: poised, confident, and just robotic enough to raise a brow. The kind of people who, if encountered in real life, would probably light up half a dozen red flags before a handshake is even offered. A case in point: the official “Liquid Glass” UI demo — it’s visually stunning, yes, but also uncanny, like a concept reel that forgot it needed to ship.https://medium.com/media/fcb3b16cc42621ba32153aff80ea1805/hrefAnd that’s the paradox. Not only has Apple trimmed down the content of WWDC, it’s also polished the delivery into something almost inhumanly controlled. Every keynote beat feels engineered to avoid risk, reduce friction, and glide past doubt. But in doing so, something vital slips away: the tension, the spontaneity, the sense that the future is being made, not just performed.Just one year earlier, WWDC 2024 opened with a cinematic cold open “somewhere over California”:https://medium.com/media/f97f45387353363264d99c341d4571b0/hrefPhil Schiller piloting an Apple-branded plane, iPod in hand, muttering “I’m getting too old for this stuff.” A perfect mix of Lethal Weapon camp and a winking message that yes, Classic-Apple was still at the controls — literally — flying its senior leadership straight toward Cupertino. Out the hatch, like high-altitude paratroopers of optimism, leapt the entire exec team, with Craig Federighi, always the go-to for Apple’s auto-ironic set pieces, leading the charge, donning a helmet literally resembling his own legendary mane. It was peak-bold, bizarre, and unmistakably Apple. That intro now reads like the final act of full-throttle confidence.This year’s WWDC offered a particularly crisp contrast. Aside from the new intro — which features Craig Federighi drifting an F1-style race car across the inner rooftop ring of Apple Park as a “therapy session”, a not-so-subtle nod to the upcoming Formula 1 blockbuster but also to the accountability for the failure to deliver the system-wide AI on time — WWDC 2025 pulled back dramatically. The new “Apple Intelligence” was introduced in a keynote with zero stumbles, zero awkward transitions, and visuals so pristine they could have been rendered on a Vision Pro. Not only had the scope of WWDC been trimmed down to safer talking points, but even the tone had shifted — less like a tech summit, more like a handsomely lit containment-mode seminar. And that, perhaps, was the problem. The presentation wasn’t a reveal — it was a performance. And performances can be edited in post. Demos can’t.So when Apple in march 2025 quietly admitted, for the first time, in a formal press release addressed to reporters like John Gruber, that the personalized Siri and system-wide AI features would be delayed — the reaction wasn’t outrage. It was something subtler: disillusionment. Gruber’s response cracked the façade wide open. His post opened a slow but persistent wave of unease, rippling through developer Slack channels and private comment threads alike. John Gruber’s reaction, published under the headline “Something is rotten in the State of Cupertino”, was devastating. His critique opened the floodgates to a wave of murmurs and public unease among developers and insiders, many of whom had begun to question what was really happening at the helm of key divisions central to Apple’s future.Many still believe Apple is the only company truly capable of pulling off hardware-software integrated AI at scale. But there’s a sense that the company is now operating in damage-control mode. The delay didn’t just push back a feature — it disrupted the entire strategic arc of WWDC 2025. What could have been a milestone in system-level AI became a cautious sidestep, repackaged through visual polish and feature tweaks. The result: a presentation focused on UI refinements and safe bets, far removed from the sweeping revolution that had been teased as the main selling point for promoting the iPhone 16 launch, “Built for Apple Intelligence”.That tension surfaced during Joanna Stern’s recent live interview with Craig Federighi and Greg Joswiak. These are two of Apple’s most media-savvy execs, and yet, in a setting where questions weren’t scripted, you could see the seams. Their usual fluency gave way to something stiffer. More careful. Less certain. And even the absences speak volumes: for the first time in a decade, no one from Apple’s top team joined John Gruber’s Talk Show at WWDC. It wasn’t a scheduling fluke — nor a petty retaliation for Gruber’s damning March article. It was a retreat — one that Stratechery’s Ben Thompson described as exactly that: a strategic fallback, not a brave reset.Meanwhile, the keynote narrative quietly shifted from AI ambition to UI innovation: new visual effects, tighter integration, call screening. Credit here goes to Alan Dye — Apple VP of Human Interface Design and one of the last remaining members of Jony Ive’s inner circle not yet absorbed into LoveFrom — whose long-arc work on interface aesthetics, from the early stages of the Dynamic Island onward, is finally starting to click into place. This is classic Apple: refinement as substance, design as coherence. But it was meant to be the cherry on top of a much deeper AI-system transformation — not the whole sundae. All useful. All safe. And yet, the thing that Apple could uniquely deliver — a seamless, deeply integrated, user-controlled and privacy-safe Apple Intelligence — is now the thing it seems most reluctant to show.There is no doubt the groundwork has been laid. And to Apple’s credit, Jason Snell notes that the company is shifting gears, scaling ambitions to something that feels more tangible. But in scaling back the risk, something else has been scaled back too: the willingness to look your audience of stakeholders, developers and users live, in the eye, and show the future for how you have carefully crafted it and how you can put it in the market immediately, or in mere weeks. Showing things as they are, or as they will be very soon. Rehearsed, yes, but never faked.Even James Dyson’s live demo of a new vacuum showed more courage. No camera cuts. No soft lighting. Just a human being, showing a thing. It might have sucked, literally or figuratively. But it didn’t. And it stuck. That’s what feels missing in Cupertino.Some have started using the term glasslighting — a coined pun blending Apple’s signature glassy aesthetics with the soft manipulations of marketing, like a gentle fog of polished perfection that leaves expectations quietly disoriented. It’s not deception. It’s damage control. But that instinct, understandable as it is, doesn’t build momentum. It builds inertia. And inertia doesn’t sell intelligence. It only delays the reckoning.Before the curtain falls, it’s hard not to revisit the uncanny polish of Apple’s speakers presence. One might start to wonder whether Apple is really late on AI — or whether it’s simply developed such a hyper-advanced internal model that its leadership team has been replaced by real-time human avatars, flawlessly animated, fed directly by the Neural Engine. Not the constrained humanity of two floating eyes behind an Apple Vision headset, but full-on flawless embodiment — if this is Apple’s augmented AI at work, it may be the only undisclosed and underpromised demo actually shipping.OS30 live demoMeanwhile, just as Apple was soft-pedaling its A.I. story with maximum visual polish, a very different tone landed from across the bay: Sam Altman and Jony Ive, sitting in a bar, talking about the future.https://medium.com/media/5cdea73d7fde0b538e038af1990afa44/hrefNo stage. No teleprompter. No uncanny valley. Just two “old friends”, with one hell of a budget, quietly sketching the next era of computing. A vision Apple once claimed effortlessly.There’s still the question of whether Apple, as many hope, can reclaim — and lock down — that leadership for itself. A healthy dose of competition, at the very least, can only help.Too big, fail too was originally published in UX Collective on Medium, where people are continuing the conversation by highlighting and responding to this story.
    0 Commentarii 0 Distribuiri 0 previzualizare
CGShares https://cgshares.com