• Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety

    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse.
    Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehiclesacross countless real-world and edge-case scenarios without the risks and costs of physical testing.
    These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models— neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation.
    To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools.
    Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale.
    Universal Scene Description, a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale.
    NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale.
    Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models.

    Foundations for Scalable, Realistic Simulation
    Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots.

    In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools.
    Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos.
    Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing.
    The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases.
    Driving the Future of AV Safety
    To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety.
    The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems.
    These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks.

    At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance.
    Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay:

    Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks.
    Get Plugged Into the World of OpenUSD
    Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote.
    Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14.
    Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute.
    Explore the Alliance for OpenUSD forum and the AOUSD website.
    Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X.
    #into #omniverse #world #foundation #models
    Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety
    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse. Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehiclesacross countless real-world and edge-case scenarios without the risks and costs of physical testing. These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models— neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation. To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools. Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale. Universal Scene Description, a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale. NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale. Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models. Foundations for Scalable, Realistic Simulation Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots. In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools. Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos. Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing. The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases. Driving the Future of AV Safety To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety. The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems. These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks. At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance. Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay: Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks. Get Plugged Into the World of OpenUSD Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote. Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14. Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute. Explore the Alliance for OpenUSD forum and the AOUSD website. Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X. #into #omniverse #world #foundation #models
    BLOGS.NVIDIA.COM
    Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety
    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse. Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehicles (AVs) across countless real-world and edge-case scenarios without the risks and costs of physical testing. These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models (WFMs) — neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation. To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools. Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale. Universal Scene Description (OpenUSD), a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale. NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale. Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models. Foundations for Scalable, Realistic Simulation Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots. In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools. Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos. Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing. The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases. Driving the Future of AV Safety To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety. The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems. These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks. At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance. Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay: Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks. Get Plugged Into the World of OpenUSD Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote. Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14. Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute. Explore the Alliance for OpenUSD forum and the AOUSD website. Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X.
    0 Комментарии 0 Поделились
  • NVIDIA TensorRT Boosts Stable Diffusion 3.5 Performance on NVIDIA GeForce RTX and RTX PRO GPUs

    Generative AI has reshaped how people create, imagine and interact with digital content.
    As AI models continue to grow in capability and complexity, they require more VRAM, or video random access memory. The base Stable Diffusion 3.5 Large model, for example, uses over 18GB of VRAM — limiting the number of systems that can run it well.
    By applying quantization to the model, noncritical layers can be removed or run with lower precision. NVIDIA GeForce RTX 40 Series and the Ada Lovelace generation of NVIDIA RTX PRO GPUs support FP8 quantization to help run these quantized models, and the latest-generation NVIDIA Blackwell GPUs also add support for FP4.
    NVIDIA collaborated with Stability AI to quantize its latest model, Stable Diffusion3.5 Large, to FP8 — reducing VRAM consumption by 40%. Further optimizations to SD3.5 Large and Medium with the NVIDIA TensorRT software development kitdouble performance.
    In addition, TensorRT has been reimagined for RTX AI PCs, combining its industry-leading performance with just-in-time, on-device engine building and an 8x smaller package size for seamless AI deployment to more than 100 million RTX AI PCs. TensorRT for RTX is now available as a standalone SDK for developers.
    RTX-Accelerated AI
    NVIDIA and Stability AI are boosting the performance and reducing the VRAM requirements of Stable Diffusion 3.5, one of the world’s most popular AI image models. With NVIDIA TensorRT acceleration and quantization, users can now generate and edit images faster and more efficiently on NVIDIA RTX GPUs.
    Stable Diffusion 3.5 quantized FP8generates images in half the time with similar quality as FP16. Prompt: A serene mountain lake at sunrise, crystal clear water reflecting snow-capped peaks, lush pine trees along the shore, soft morning mist, photorealistic, vibrant colors, high resolution.
    To address the VRAM limitations of SD3.5 Large, the model was quantized with TensorRT to FP8, reducing the VRAM requirement by 40% to 11GB. This means five GeForce RTX 50 Series GPUs can run the model from memory instead of just one.
    SD3.5 Large and Medium models were also optimized with TensorRT, an AI backend for taking full advantage of Tensor Cores. TensorRT optimizes a model’s weights and graph — the instructions on how to run a model — specifically for RTX GPUs.
    FP8 TensorRT boosts SD3.5 Large performance by 2.3x vs. BF16 PyTorch, with 40% less memory use. For SD3.5 Medium, BF16 TensorRT delivers a 1.7x speedup.
    Combined, FP8 TensorRT delivers a 2.3x performance boost on SD3.5 Large compared with running the original models in BF16 PyTorch, while using 40% less memory. And in SD3.5 Medium, BF16 TensorRT provides a 1.7x performance increase compared with BF16 PyTorch.
    The optimized models are now available on Stability AI’s Hugging Face page.
    NVIDIA and Stability AI are also collaborating to release SD3.5 as an NVIDIA NIM microservice, making it easier for creators and developers to access and deploy the model for a wide range of applications. The NIM microservice is expected to be released in July.
    TensorRT for RTX SDK Released
    Announced at Microsoft Build — and already available as part of the new Windows ML framework in preview — TensorRT for RTX is now available as a standalone SDK for developers.
    Previously, developers needed to pre-generate and package TensorRT engines for each class of GPU — a process that would yield GPU-specific optimizations but required significant time.
    With the new version of TensorRT, developers can create a generic TensorRT engine that’s optimized on device in seconds. This JIT compilation approach can be done in the background during installation or when they first use the feature.
    The easy-to-integrate SDK is now 8x smaller and can be invoked through Windows ML — Microsoft’s new AI inference backend in Windows. Developers can download the new standalone SDK from the NVIDIA Developer page or test it in the Windows ML preview.
    For more details, read this NVIDIA technical blog and this Microsoft Build recap.
    Join NVIDIA at GTC Paris
    At NVIDIA GTC Paris at VivaTech — Europe’s biggest startup and tech event — NVIDIA founder and CEO Jensen Huang yesterday delivered a keynote address on the latest breakthroughs in cloud AI infrastructure, agentic AI and physical AI. Watch a replay.
    GTC Paris runs through Thursday, June 12, with hands-on demos and sessions led by industry leaders. Whether attending in person or joining online, there’s still plenty to explore at the event.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #nvidia #tensorrt #boosts #stable #diffusion
    NVIDIA TensorRT Boosts Stable Diffusion 3.5 Performance on NVIDIA GeForce RTX and RTX PRO GPUs
    Generative AI has reshaped how people create, imagine and interact with digital content. As AI models continue to grow in capability and complexity, they require more VRAM, or video random access memory. The base Stable Diffusion 3.5 Large model, for example, uses over 18GB of VRAM — limiting the number of systems that can run it well. By applying quantization to the model, noncritical layers can be removed or run with lower precision. NVIDIA GeForce RTX 40 Series and the Ada Lovelace generation of NVIDIA RTX PRO GPUs support FP8 quantization to help run these quantized models, and the latest-generation NVIDIA Blackwell GPUs also add support for FP4. NVIDIA collaborated with Stability AI to quantize its latest model, Stable Diffusion3.5 Large, to FP8 — reducing VRAM consumption by 40%. Further optimizations to SD3.5 Large and Medium with the NVIDIA TensorRT software development kitdouble performance. In addition, TensorRT has been reimagined for RTX AI PCs, combining its industry-leading performance with just-in-time, on-device engine building and an 8x smaller package size for seamless AI deployment to more than 100 million RTX AI PCs. TensorRT for RTX is now available as a standalone SDK for developers. RTX-Accelerated AI NVIDIA and Stability AI are boosting the performance and reducing the VRAM requirements of Stable Diffusion 3.5, one of the world’s most popular AI image models. With NVIDIA TensorRT acceleration and quantization, users can now generate and edit images faster and more efficiently on NVIDIA RTX GPUs. Stable Diffusion 3.5 quantized FP8generates images in half the time with similar quality as FP16. Prompt: A serene mountain lake at sunrise, crystal clear water reflecting snow-capped peaks, lush pine trees along the shore, soft morning mist, photorealistic, vibrant colors, high resolution. To address the VRAM limitations of SD3.5 Large, the model was quantized with TensorRT to FP8, reducing the VRAM requirement by 40% to 11GB. This means five GeForce RTX 50 Series GPUs can run the model from memory instead of just one. SD3.5 Large and Medium models were also optimized with TensorRT, an AI backend for taking full advantage of Tensor Cores. TensorRT optimizes a model’s weights and graph — the instructions on how to run a model — specifically for RTX GPUs. FP8 TensorRT boosts SD3.5 Large performance by 2.3x vs. BF16 PyTorch, with 40% less memory use. For SD3.5 Medium, BF16 TensorRT delivers a 1.7x speedup. Combined, FP8 TensorRT delivers a 2.3x performance boost on SD3.5 Large compared with running the original models in BF16 PyTorch, while using 40% less memory. And in SD3.5 Medium, BF16 TensorRT provides a 1.7x performance increase compared with BF16 PyTorch. The optimized models are now available on Stability AI’s Hugging Face page. NVIDIA and Stability AI are also collaborating to release SD3.5 as an NVIDIA NIM microservice, making it easier for creators and developers to access and deploy the model for a wide range of applications. The NIM microservice is expected to be released in July. TensorRT for RTX SDK Released Announced at Microsoft Build — and already available as part of the new Windows ML framework in preview — TensorRT for RTX is now available as a standalone SDK for developers. Previously, developers needed to pre-generate and package TensorRT engines for each class of GPU — a process that would yield GPU-specific optimizations but required significant time. With the new version of TensorRT, developers can create a generic TensorRT engine that’s optimized on device in seconds. This JIT compilation approach can be done in the background during installation or when they first use the feature. The easy-to-integrate SDK is now 8x smaller and can be invoked through Windows ML — Microsoft’s new AI inference backend in Windows. Developers can download the new standalone SDK from the NVIDIA Developer page or test it in the Windows ML preview. For more details, read this NVIDIA technical blog and this Microsoft Build recap. Join NVIDIA at GTC Paris At NVIDIA GTC Paris at VivaTech — Europe’s biggest startup and tech event — NVIDIA founder and CEO Jensen Huang yesterday delivered a keynote address on the latest breakthroughs in cloud AI infrastructure, agentic AI and physical AI. Watch a replay. GTC Paris runs through Thursday, June 12, with hands-on demos and sessions led by industry leaders. Whether attending in person or joining online, there’s still plenty to explore at the event. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #nvidia #tensorrt #boosts #stable #diffusion
    BLOGS.NVIDIA.COM
    NVIDIA TensorRT Boosts Stable Diffusion 3.5 Performance on NVIDIA GeForce RTX and RTX PRO GPUs
    Generative AI has reshaped how people create, imagine and interact with digital content. As AI models continue to grow in capability and complexity, they require more VRAM, or video random access memory. The base Stable Diffusion 3.5 Large model, for example, uses over 18GB of VRAM — limiting the number of systems that can run it well. By applying quantization to the model, noncritical layers can be removed or run with lower precision. NVIDIA GeForce RTX 40 Series and the Ada Lovelace generation of NVIDIA RTX PRO GPUs support FP8 quantization to help run these quantized models, and the latest-generation NVIDIA Blackwell GPUs also add support for FP4. NVIDIA collaborated with Stability AI to quantize its latest model, Stable Diffusion (SD) 3.5 Large, to FP8 — reducing VRAM consumption by 40%. Further optimizations to SD3.5 Large and Medium with the NVIDIA TensorRT software development kit (SDK) double performance. In addition, TensorRT has been reimagined for RTX AI PCs, combining its industry-leading performance with just-in-time (JIT), on-device engine building and an 8x smaller package size for seamless AI deployment to more than 100 million RTX AI PCs. TensorRT for RTX is now available as a standalone SDK for developers. RTX-Accelerated AI NVIDIA and Stability AI are boosting the performance and reducing the VRAM requirements of Stable Diffusion 3.5, one of the world’s most popular AI image models. With NVIDIA TensorRT acceleration and quantization, users can now generate and edit images faster and more efficiently on NVIDIA RTX GPUs. Stable Diffusion 3.5 quantized FP8 (right) generates images in half the time with similar quality as FP16 (left). Prompt: A serene mountain lake at sunrise, crystal clear water reflecting snow-capped peaks, lush pine trees along the shore, soft morning mist, photorealistic, vibrant colors, high resolution. To address the VRAM limitations of SD3.5 Large, the model was quantized with TensorRT to FP8, reducing the VRAM requirement by 40% to 11GB. This means five GeForce RTX 50 Series GPUs can run the model from memory instead of just one. SD3.5 Large and Medium models were also optimized with TensorRT, an AI backend for taking full advantage of Tensor Cores. TensorRT optimizes a model’s weights and graph — the instructions on how to run a model — specifically for RTX GPUs. FP8 TensorRT boosts SD3.5 Large performance by 2.3x vs. BF16 PyTorch, with 40% less memory use. For SD3.5 Medium, BF16 TensorRT delivers a 1.7x speedup. Combined, FP8 TensorRT delivers a 2.3x performance boost on SD3.5 Large compared with running the original models in BF16 PyTorch, while using 40% less memory. And in SD3.5 Medium, BF16 TensorRT provides a 1.7x performance increase compared with BF16 PyTorch. The optimized models are now available on Stability AI’s Hugging Face page. NVIDIA and Stability AI are also collaborating to release SD3.5 as an NVIDIA NIM microservice, making it easier for creators and developers to access and deploy the model for a wide range of applications. The NIM microservice is expected to be released in July. TensorRT for RTX SDK Released Announced at Microsoft Build — and already available as part of the new Windows ML framework in preview — TensorRT for RTX is now available as a standalone SDK for developers. Previously, developers needed to pre-generate and package TensorRT engines for each class of GPU — a process that would yield GPU-specific optimizations but required significant time. With the new version of TensorRT, developers can create a generic TensorRT engine that’s optimized on device in seconds. This JIT compilation approach can be done in the background during installation or when they first use the feature. The easy-to-integrate SDK is now 8x smaller and can be invoked through Windows ML — Microsoft’s new AI inference backend in Windows. Developers can download the new standalone SDK from the NVIDIA Developer page or test it in the Windows ML preview. For more details, read this NVIDIA technical blog and this Microsoft Build recap. Join NVIDIA at GTC Paris At NVIDIA GTC Paris at VivaTech — Europe’s biggest startup and tech event — NVIDIA founder and CEO Jensen Huang yesterday delivered a keynote address on the latest breakthroughs in cloud AI infrastructure, agentic AI and physical AI. Watch a replay. GTC Paris runs through Thursday, June 12, with hands-on demos and sessions led by industry leaders. Whether attending in person or joining online, there’s still plenty to explore at the event. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    Like
    Love
    Wow
    Sad
    Angry
    482
    0 Комментарии 0 Поделились
  • Inside the thinking behind Frontify Futures' standout brand identity

    Who knows where branding will go in the future? However, for many of us working in the creative industries, it's our job to know. So it's something we need to start talking about, and Frontify Futures wants to be the platform where that conversation unfolds.
    This ambitious new thought leadership initiative from Frontify brings together an extraordinary coalition of voices—CMOs who've scaled global brands, creative leaders reimagining possibilities, strategy directors pioneering new approaches, and cultural forecasters mapping emerging opportunities—to explore how effectiveness, innovation, and scale will shape tomorrow's brand-building landscape.
    But Frontify Futures isn't just another content platform. Excitingly, from a design perspective, it's also a living experiment in what brand identity can become when technology meets craft, when systems embrace chaos, and when the future itself becomes a design material.
    Endless variation
    What makes Frontify Futures' typography unique isn't just its custom foundation: it's how that foundation enables endless variation and evolution. This was primarily achieved, reveals developer and digital art director Daniel Powell, by building bespoke tools for the project.

    "Rather than rely solely on streamlined tools built for speed and production, we started building our own," he explains. "The first was a node-based design tool that takes our custom Frame and Hairline fonts as a base and uses them as the foundations for our type generator. With it, we can generate unique type variations for each content strand—each article, even—and create both static and animated type, exportable as video or rendered live in the browser."
    Each of these tools included what Daniel calls a "chaos element: a small but intentional glitch in the system. A microstatement about the nature of the future: that it can be anticipated but never fully known. It's our way of keeping gesture alive inside the system."
    One of the clearest examples of this is the colour palette generator. "It samples from a dynamic photo grid tied to a rotating colour wheel that completes one full revolution per year," Daniel explains. "But here's the twist: wind speed and direction in St. Gallen, Switzerland—Frontify's HQ—nudges the wheel unpredictably off-centre. It's a subtle, living mechanic; each article contains a log of the wind data in its code as a kind of Easter Egg."

    Another favourite of Daniel's—yet to be released—is an expanded version of Conway's Game of Life. "It's been running continuously for over a month now, evolving patterns used in one of the content strand headers," he reveals. "The designer becomes a kind of photographer, capturing moments from a petri dish of generative motion."
    Core Philosophy
    In developing this unique identity, two phrases stood out to Daniel as guiding lights from the outset. The first was, 'We will show, not tell.'
    "This became the foundation for how we approached the identity," recalls Daniel. "It had to feel like a playground: open, experimental, and fluid. Not overly precious or prescriptive. A system the Frontify team could truly own, shape, and evolve. A platform, not a final product. A foundation, just as the future is always built on the past."

    The second guiding phrase, pulled directly from Frontify's rebrand materials, felt like "a call to action," says Daniel. "'Gestural and geometric. Human and machine. Art and science.' It's a tension that feels especially relevant in the creative industries today. As technology accelerates, we ask ourselves: how do we still hold onto our craft? What does it mean to be expressive in an increasingly systemised world?"
    Stripped back and skeletal typography
    The identity that Daniel and his team created reflects these themes through typography that literally embodies the platform's core philosophy. It really started from this idea of the past being built upon the 'foundations' of the past," he explains. "At the time Frontify Futures was being created, Frontify itself was going through a rebrand. With that, they'd started using a new variable typeface called Cranny, a custom cut of Azurio by Narrow Type."
    Daniel's team took Cranny and "pushed it into a stripped-back and almost skeletal take". The result was Crany-Frame and Crany-Hairline. "These fonts then served as our base scaffolding," he continues. "They were never seen in design, but instead, we applied decoration them to produce new typefaces for each content strand, giving the identity the space to grow and allow new ideas and shapes to form."

    As Daniel saw it, the demands on the typeface were pretty simple. "It needed to set an atmosphere. We needed it needed to feel alive. We wanted it to be something shifting and repositioning. And so, while we have a bunch of static cuts of each base style, we rarely use them; the typefaces you see on the website and social only exist at the moment as a string of parameters to create a general style that we use to create live animating versions of the font generated on the fly."
    In addition to setting the atmosphere, it needed to be extremely flexible and feature live inputs, as a significant part of the branding is about the unpredictability of the future. "So Daniel's team built in those aforementioned "chaos moments where everything from user interaction to live windspeeds can affect the font."
    Design Process
    The process of creating the typefaces is a fascinating one. "We started by working with the custom cut of Azuriofrom Narrow Type. We then redrew it to take inspiration from how a frame and a hairline could be produced from this original cut. From there, we built a type generation tool that uses them as a base.
    "It's a custom node-based system that lets us really get in there and play with the overlays for everything from grid-sizing, shapes and timing for the animation," he outlines. "We used this tool to design the variants for different content strands. We weren't just designing letterforms; we were designing a comprehensive toolset that could evolve in tandem with the content.
    "That became a big part of the process: designing systems that designers could actually use, not just look at; again, it was a wider conversation and concept around the future and how designers and machines can work together."

    In short, the evolution of the typeface system reflects the platform's broader commitment to continuous growth and adaptation." The whole idea was to make something open enough to keep building on," Daniel stresses. "We've already got tools in place to generate new weights, shapes and animated variants, and the tool itself still has a ton of unused functionality.
    "I can see that growing as new content strands emerge; we'll keep adapting the type with them," he adds. "It's less about version numbers and more about ongoing movement. The system's alive; that's the point.
    A provocation for the industry
    In this context, the Frontify Futures identity represents more than smart visual branding; it's also a manifesto for how creative systems might evolve in an age of increasing automation and systematisation. By building unpredictability into their tools, embracing the tension between human craft and machine precision, and creating systems that grow and adapt rather than merely scale, Daniel and the Frontify team have created something that feels genuinely forward-looking.
    For creatives grappling with similar questions about the future of their craft, Frontify Futures offers both inspiration and practical demonstration. It shows how brands can remain human while embracing technological capability, how systems can be both consistent and surprising, and how the future itself can become a creative medium.
    This clever approach suggests that the future of branding lies not in choosing between human creativity and systematic efficiency but in finding new ways to make them work together, creating something neither could achieve alone.
    #inside #thinking #behind #frontify #futures039
    Inside the thinking behind Frontify Futures' standout brand identity
    Who knows where branding will go in the future? However, for many of us working in the creative industries, it's our job to know. So it's something we need to start talking about, and Frontify Futures wants to be the platform where that conversation unfolds. This ambitious new thought leadership initiative from Frontify brings together an extraordinary coalition of voices—CMOs who've scaled global brands, creative leaders reimagining possibilities, strategy directors pioneering new approaches, and cultural forecasters mapping emerging opportunities—to explore how effectiveness, innovation, and scale will shape tomorrow's brand-building landscape. But Frontify Futures isn't just another content platform. Excitingly, from a design perspective, it's also a living experiment in what brand identity can become when technology meets craft, when systems embrace chaos, and when the future itself becomes a design material. Endless variation What makes Frontify Futures' typography unique isn't just its custom foundation: it's how that foundation enables endless variation and evolution. This was primarily achieved, reveals developer and digital art director Daniel Powell, by building bespoke tools for the project. "Rather than rely solely on streamlined tools built for speed and production, we started building our own," he explains. "The first was a node-based design tool that takes our custom Frame and Hairline fonts as a base and uses them as the foundations for our type generator. With it, we can generate unique type variations for each content strand—each article, even—and create both static and animated type, exportable as video or rendered live in the browser." Each of these tools included what Daniel calls a "chaos element: a small but intentional glitch in the system. A microstatement about the nature of the future: that it can be anticipated but never fully known. It's our way of keeping gesture alive inside the system." One of the clearest examples of this is the colour palette generator. "It samples from a dynamic photo grid tied to a rotating colour wheel that completes one full revolution per year," Daniel explains. "But here's the twist: wind speed and direction in St. Gallen, Switzerland—Frontify's HQ—nudges the wheel unpredictably off-centre. It's a subtle, living mechanic; each article contains a log of the wind data in its code as a kind of Easter Egg." Another favourite of Daniel's—yet to be released—is an expanded version of Conway's Game of Life. "It's been running continuously for over a month now, evolving patterns used in one of the content strand headers," he reveals. "The designer becomes a kind of photographer, capturing moments from a petri dish of generative motion." Core Philosophy In developing this unique identity, two phrases stood out to Daniel as guiding lights from the outset. The first was, 'We will show, not tell.' "This became the foundation for how we approached the identity," recalls Daniel. "It had to feel like a playground: open, experimental, and fluid. Not overly precious or prescriptive. A system the Frontify team could truly own, shape, and evolve. A platform, not a final product. A foundation, just as the future is always built on the past." The second guiding phrase, pulled directly from Frontify's rebrand materials, felt like "a call to action," says Daniel. "'Gestural and geometric. Human and machine. Art and science.' It's a tension that feels especially relevant in the creative industries today. As technology accelerates, we ask ourselves: how do we still hold onto our craft? What does it mean to be expressive in an increasingly systemised world?" Stripped back and skeletal typography The identity that Daniel and his team created reflects these themes through typography that literally embodies the platform's core philosophy. It really started from this idea of the past being built upon the 'foundations' of the past," he explains. "At the time Frontify Futures was being created, Frontify itself was going through a rebrand. With that, they'd started using a new variable typeface called Cranny, a custom cut of Azurio by Narrow Type." Daniel's team took Cranny and "pushed it into a stripped-back and almost skeletal take". The result was Crany-Frame and Crany-Hairline. "These fonts then served as our base scaffolding," he continues. "They were never seen in design, but instead, we applied decoration them to produce new typefaces for each content strand, giving the identity the space to grow and allow new ideas and shapes to form." As Daniel saw it, the demands on the typeface were pretty simple. "It needed to set an atmosphere. We needed it needed to feel alive. We wanted it to be something shifting and repositioning. And so, while we have a bunch of static cuts of each base style, we rarely use them; the typefaces you see on the website and social only exist at the moment as a string of parameters to create a general style that we use to create live animating versions of the font generated on the fly." In addition to setting the atmosphere, it needed to be extremely flexible and feature live inputs, as a significant part of the branding is about the unpredictability of the future. "So Daniel's team built in those aforementioned "chaos moments where everything from user interaction to live windspeeds can affect the font." Design Process The process of creating the typefaces is a fascinating one. "We started by working with the custom cut of Azuriofrom Narrow Type. We then redrew it to take inspiration from how a frame and a hairline could be produced from this original cut. From there, we built a type generation tool that uses them as a base. "It's a custom node-based system that lets us really get in there and play with the overlays for everything from grid-sizing, shapes and timing for the animation," he outlines. "We used this tool to design the variants for different content strands. We weren't just designing letterforms; we were designing a comprehensive toolset that could evolve in tandem with the content. "That became a big part of the process: designing systems that designers could actually use, not just look at; again, it was a wider conversation and concept around the future and how designers and machines can work together." In short, the evolution of the typeface system reflects the platform's broader commitment to continuous growth and adaptation." The whole idea was to make something open enough to keep building on," Daniel stresses. "We've already got tools in place to generate new weights, shapes and animated variants, and the tool itself still has a ton of unused functionality. "I can see that growing as new content strands emerge; we'll keep adapting the type with them," he adds. "It's less about version numbers and more about ongoing movement. The system's alive; that's the point. A provocation for the industry In this context, the Frontify Futures identity represents more than smart visual branding; it's also a manifesto for how creative systems might evolve in an age of increasing automation and systematisation. By building unpredictability into their tools, embracing the tension between human craft and machine precision, and creating systems that grow and adapt rather than merely scale, Daniel and the Frontify team have created something that feels genuinely forward-looking. For creatives grappling with similar questions about the future of their craft, Frontify Futures offers both inspiration and practical demonstration. It shows how brands can remain human while embracing technological capability, how systems can be both consistent and surprising, and how the future itself can become a creative medium. This clever approach suggests that the future of branding lies not in choosing between human creativity and systematic efficiency but in finding new ways to make them work together, creating something neither could achieve alone. #inside #thinking #behind #frontify #futures039
    WWW.CREATIVEBOOM.COM
    Inside the thinking behind Frontify Futures' standout brand identity
    Who knows where branding will go in the future? However, for many of us working in the creative industries, it's our job to know. So it's something we need to start talking about, and Frontify Futures wants to be the platform where that conversation unfolds. This ambitious new thought leadership initiative from Frontify brings together an extraordinary coalition of voices—CMOs who've scaled global brands, creative leaders reimagining possibilities, strategy directors pioneering new approaches, and cultural forecasters mapping emerging opportunities—to explore how effectiveness, innovation, and scale will shape tomorrow's brand-building landscape. But Frontify Futures isn't just another content platform. Excitingly, from a design perspective, it's also a living experiment in what brand identity can become when technology meets craft, when systems embrace chaos, and when the future itself becomes a design material. Endless variation What makes Frontify Futures' typography unique isn't just its custom foundation: it's how that foundation enables endless variation and evolution. This was primarily achieved, reveals developer and digital art director Daniel Powell, by building bespoke tools for the project. "Rather than rely solely on streamlined tools built for speed and production, we started building our own," he explains. "The first was a node-based design tool that takes our custom Frame and Hairline fonts as a base and uses them as the foundations for our type generator. With it, we can generate unique type variations for each content strand—each article, even—and create both static and animated type, exportable as video or rendered live in the browser." Each of these tools included what Daniel calls a "chaos element: a small but intentional glitch in the system. A microstatement about the nature of the future: that it can be anticipated but never fully known. It's our way of keeping gesture alive inside the system." One of the clearest examples of this is the colour palette generator. "It samples from a dynamic photo grid tied to a rotating colour wheel that completes one full revolution per year," Daniel explains. "But here's the twist: wind speed and direction in St. Gallen, Switzerland—Frontify's HQ—nudges the wheel unpredictably off-centre. It's a subtle, living mechanic; each article contains a log of the wind data in its code as a kind of Easter Egg." Another favourite of Daniel's—yet to be released—is an expanded version of Conway's Game of Life. "It's been running continuously for over a month now, evolving patterns used in one of the content strand headers," he reveals. "The designer becomes a kind of photographer, capturing moments from a petri dish of generative motion." Core Philosophy In developing this unique identity, two phrases stood out to Daniel as guiding lights from the outset. The first was, 'We will show, not tell.' "This became the foundation for how we approached the identity," recalls Daniel. "It had to feel like a playground: open, experimental, and fluid. Not overly precious or prescriptive. A system the Frontify team could truly own, shape, and evolve. A platform, not a final product. A foundation, just as the future is always built on the past." The second guiding phrase, pulled directly from Frontify's rebrand materials, felt like "a call to action," says Daniel. "'Gestural and geometric. Human and machine. Art and science.' It's a tension that feels especially relevant in the creative industries today. As technology accelerates, we ask ourselves: how do we still hold onto our craft? What does it mean to be expressive in an increasingly systemised world?" Stripped back and skeletal typography The identity that Daniel and his team created reflects these themes through typography that literally embodies the platform's core philosophy. It really started from this idea of the past being built upon the 'foundations' of the past," he explains. "At the time Frontify Futures was being created, Frontify itself was going through a rebrand. With that, they'd started using a new variable typeface called Cranny, a custom cut of Azurio by Narrow Type." Daniel's team took Cranny and "pushed it into a stripped-back and almost skeletal take". The result was Crany-Frame and Crany-Hairline. "These fonts then served as our base scaffolding," he continues. "They were never seen in design, but instead, we applied decoration them to produce new typefaces for each content strand, giving the identity the space to grow and allow new ideas and shapes to form." As Daniel saw it, the demands on the typeface were pretty simple. "It needed to set an atmosphere. We needed it needed to feel alive. We wanted it to be something shifting and repositioning. And so, while we have a bunch of static cuts of each base style, we rarely use them; the typefaces you see on the website and social only exist at the moment as a string of parameters to create a general style that we use to create live animating versions of the font generated on the fly." In addition to setting the atmosphere, it needed to be extremely flexible and feature live inputs, as a significant part of the branding is about the unpredictability of the future. "So Daniel's team built in those aforementioned "chaos moments where everything from user interaction to live windspeeds can affect the font." Design Process The process of creating the typefaces is a fascinating one. "We started by working with the custom cut of Azurio (Cranny) from Narrow Type. We then redrew it to take inspiration from how a frame and a hairline could be produced from this original cut. From there, we built a type generation tool that uses them as a base. "It's a custom node-based system that lets us really get in there and play with the overlays for everything from grid-sizing, shapes and timing for the animation," he outlines. "We used this tool to design the variants for different content strands. We weren't just designing letterforms; we were designing a comprehensive toolset that could evolve in tandem with the content. "That became a big part of the process: designing systems that designers could actually use, not just look at; again, it was a wider conversation and concept around the future and how designers and machines can work together." In short, the evolution of the typeface system reflects the platform's broader commitment to continuous growth and adaptation." The whole idea was to make something open enough to keep building on," Daniel stresses. "We've already got tools in place to generate new weights, shapes and animated variants, and the tool itself still has a ton of unused functionality. "I can see that growing as new content strands emerge; we'll keep adapting the type with them," he adds. "It's less about version numbers and more about ongoing movement. The system's alive; that's the point. A provocation for the industry In this context, the Frontify Futures identity represents more than smart visual branding; it's also a manifesto for how creative systems might evolve in an age of increasing automation and systematisation. By building unpredictability into their tools, embracing the tension between human craft and machine precision, and creating systems that grow and adapt rather than merely scale, Daniel and the Frontify team have created something that feels genuinely forward-looking. For creatives grappling with similar questions about the future of their craft, Frontify Futures offers both inspiration and practical demonstration. It shows how brands can remain human while embracing technological capability, how systems can be both consistent and surprising, and how the future itself can become a creative medium. This clever approach suggests that the future of branding lies not in choosing between human creativity and systematic efficiency but in finding new ways to make them work together, creating something neither could achieve alone.
    0 Комментарии 0 Поделились
  • Mock up a website in five prompts

    “Wait, can users actually add products to the cart?”Every prototype faces that question or one like it. You start to explain it’s “just Figma,” “just dummy data,” but what if you didn’t need disclaimers?What if you could hand clients—or your team—a working, data-connected mock-up of their website, or new pages and components, in less time than it takes to wireframe?That’s the challenge we’ll tackle today. But first, we need to look at:The problem with today’s prototyping toolsPick two: speed, flexibility, or interactivity.The prototyping ecosystem, despite having amazing software that addresses a huge variety of needs, doesn’t really have one tool that gives you all three.Wireframing apps let you draw boxes in minutes but every button is fake. Drag-and-drop builders animate scroll triggers until you ask for anything off-template. Custom code frees you… after you wave goodbye to a few afternoons.AI tools haven’t smashed the trade-off; they’ve just dressed it in flashier costumes. One prompt births a landing page, the next dumps a 2,000-line, worse-than-junior-level React file in your lap. The bottleneck is still there. Builder’s approach to website mockupsWe’ve been trying something a little different to maintain speed, flexibility, and interactivity while mocking full websites. Our AI-driven visual editor:Spins up a repo in seconds or connects to your existing one to use the code as design inspiration. React, Vue, Angular, and Svelte all work out of the box.
    Lets you shape components via plain English, visual edits, copy/pasted Figma frames, web inspos, MCP tools, and constant visual awareness of your entire website.
    Commits each change as a clean GitHub pull request your team can review like hand-written code. All your usual CI checks and lint rules apply.And if you need a tweak, you can comment to @builderio-bot right in the GitHub PR to make asynchronous changes without context switching.This results in a live site the café owner can interact with today, and a branch your devs can merge tomorrow. Stakeholders get to click actual buttons and trigger real state—no more “so, just imagine this works” demos.Let’s see it in action.From blank canvas to working mockup in five promptsToday, I’m going to mock up a fake business website. You’re welcome to create a real one.Before we fire off a single prompt, grab a note and write:Business name & vibe
    Core pages
    Primary goal
    Brand palette & toneThat’s it. Don’t sweat the details—we can always iterate. For mine, I wrote:1. Sunny Trails Bakery — family-owned, feel-good, smells like warm cinnamon.
    2. Home, About, Pricing / Subscription Box, Menu.
    3. Drive online orders and foot traffic—every CTA should funnel toward “Order Now” or “Reserve a Table.”
    4. Warm yellow, chocolate brown, rounded typography, playful copy.We’re not trying to fit everything here. What matters is clarity on what we’re creating, so the AI has enough context to produce usable scaffolds, and so later tweaks stay aligned with the client’s vision. Builder will default to using React, Vite, and Tailwind. If you want a different JS framework, you can link an existing repo in that stack. In the near future, you won’t need to do this extra step to get non-React frameworks to function.An entire website from the first promptNow, we’re ready to get going.Head over to Builder.io and paste in this prompt or your own:Create a cozy bakery website called “Sunny Trails Bakery” with pages for:
    • Home
    • About
    • Pricing
    • Menu
    Brand palette: warm yellow and chocolate brown. Tone: playful, inviting. The restaurant is family-owned, feel-good, and smells like cinnamon.
    The goal of this site is to drive online orders and foot traffic—every CTA should funnel toward "Order Now" or "Reserve a Table."Once you hit enter, Builder will spin up a new dev container, and then inside that container, the AI will build out the first version of your site. You can leave the page and come back when it’s done.Now, before we go further, let’s create our repo, so that we get version history right from the outset. Click “Create Repo” up in the top right, and link your GitHub account.Once the process is complete, you’ll have a brand new repo.If you need any help on this step, or any of the below, check out these docs.Making the mockup’s order system workFrom our one-shot prompt, we’ve already got a really nice start for our client. However, when we press the “Order Now” button, we just get a generic alert. Let’s fix this.The best part about connecting to GitHub is that we get version control. Head back to your dashboard and edit the settings of your new project. We can give it a better name, and then, in the “Advanced” section, we can change the “Commit Mode” to “Pull Requests.”Now, we have the ability to create new branches right within Builder, allowing us to make drastic changes without worrying about the main version. This is also helpful if you’d like to show your client or team a few different versions of the same prototype.On a new branch, I’ll write another short prompt:Can you make the "Order Now" button work, even if it's just with dummy JSON for now?As you can see in the GIF above, Builder creates an ordering system and a fully mobile-responsive cart and checkout flow.Now, we can click “Send PR” in the top right, and we have an ordinary GitHub PR that can be reviewed and merged as needed.This is what’s possible in two prompts. For our third, let’s gussy up the style.If you’re like me, you might spend a lot of time admiring other people’s cool designs and learning how to code up similar components in your own style.Luckily, Builder has this capability, too, with our Chrome extension. I found a “Featured Posts” section on OpenAI’s website, where I like how the layout and scrolling work. We can copy and paste it onto our “Featured Treats” section, retaining our cafe’s distinctive brand style.Don’t worry—OpenAI doesn’t mind a little web scraping.You can do this with any component on any website, so your own projects can very quickly become a “best of the web” if you know what you’re doing.Plus, you can use Figma designs in much the same way, with even better design fidelity. Copy and paste a Figma frame with our Figma plugin, and tell the AI to either use the component as inspiration or as a 1:1 to reference for what the design should be.Now, we’re ready to send our PR. This time, let’s take a closer look at the code the AI has created.As you can see, the code is neatly formatted into two reusable components. Scrolling down further, I find a CSS file and then the actual implementation on the homepage, with clean JSON to represent the dummy post data.Design tweaks to the mockup with visual editsOne issue that cropped up when the AI brought in the OpenAI layout is that it changed my text from “Featured Treats” to “Featured Stories & Treats.” I’ve realized I don’t like either, and I want to replace that text with: “Fresh Out of the Bakery.”It would be silly, though, to prompt the AI just for this small tweak. Let’s switch into edit mode.Edit Mode lets you select any component and change any of its content or underlying CSS directly. You get a host of Webflow-like options to choose from, so that you can finesse the details as needed.Once you’ve made all the visual changes you want—maybe tweaking a button color or a border radius—you can click “Apply Edits,” and the AI will ensure the underlying code matches your repo’s style.Async fixes to the mockup with Builder BotNow, our pull request is nearly ready to merge, but I found one issue with it:When we copied the OpenAI website layout earlier, one of the blog posts had a video as its featured graphic instead of just an image. This is cool for OpenAI, but for our bakery, I just wanted images in this section. Since I didn’t instruct Builder’s AI otherwise, it went ahead and followed the layout and created extra code for video capability.No problem. We can fix this inside GItHub with our final prompt. We just need to comment on the PR and tag builderio-bot. Within about a minute, Builder Bot has successfully removed the video functionality, leaving a minimal diff that affects only the code it needed to. For example: Returning to my project in Builder, I can see that the bot’s changes are accounted for in the chat window as well, and I can use the live preview link to make sure my site works as expected:Now, if this were a real project, you could easily deploy this to the web for your client. After all, you’ve got a whole GitHub repo. This isn’t just a mockup; it’s actual code you can tweak—with Builder or Cursor or by hand—until you’re satisfied to run the site in production.So, why use Builder to mock up your website?Sure, this has been a somewhat contrived example. A real prototype is going to look prettier, because I’m going to spend more time on pieces of the design that I don’t like as much.But that’s the point of the best AI tools: they don’t take you, the human, out of the loop.You still get to make all the executive decisions, and it respects your hard work. Since you can constantly see all the code the AI creates, work in branches, and prompt with component-level precision, you can stop worrying about AI overwriting your opinions and start using it more as the tool it’s designed to be.You can copy in your team’s Figma designs, import web inspos, connect MCP servers to get Jira tickets in hand, and—most importantly—work with existing repos full of existing styles that Builder will understand and match, just like it matched OpenAI’s layout to our little cafe.So, we get speed, flexibility, and interactivity all the way from prompt to PR to production.Try Builder today.
    #mock #website #five #prompts
    Mock up a website in five prompts
    “Wait, can users actually add products to the cart?”Every prototype faces that question or one like it. You start to explain it’s “just Figma,” “just dummy data,” but what if you didn’t need disclaimers?What if you could hand clients—or your team—a working, data-connected mock-up of their website, or new pages and components, in less time than it takes to wireframe?That’s the challenge we’ll tackle today. But first, we need to look at:The problem with today’s prototyping toolsPick two: speed, flexibility, or interactivity.The prototyping ecosystem, despite having amazing software that addresses a huge variety of needs, doesn’t really have one tool that gives you all three.Wireframing apps let you draw boxes in minutes but every button is fake. Drag-and-drop builders animate scroll triggers until you ask for anything off-template. Custom code frees you… after you wave goodbye to a few afternoons.AI tools haven’t smashed the trade-off; they’ve just dressed it in flashier costumes. One prompt births a landing page, the next dumps a 2,000-line, worse-than-junior-level React file in your lap. The bottleneck is still there. Builder’s approach to website mockupsWe’ve been trying something a little different to maintain speed, flexibility, and interactivity while mocking full websites. Our AI-driven visual editor:Spins up a repo in seconds or connects to your existing one to use the code as design inspiration. React, Vue, Angular, and Svelte all work out of the box. Lets you shape components via plain English, visual edits, copy/pasted Figma frames, web inspos, MCP tools, and constant visual awareness of your entire website. Commits each change as a clean GitHub pull request your team can review like hand-written code. All your usual CI checks and lint rules apply.And if you need a tweak, you can comment to @builderio-bot right in the GitHub PR to make asynchronous changes without context switching.This results in a live site the café owner can interact with today, and a branch your devs can merge tomorrow. Stakeholders get to click actual buttons and trigger real state—no more “so, just imagine this works” demos.Let’s see it in action.From blank canvas to working mockup in five promptsToday, I’m going to mock up a fake business website. You’re welcome to create a real one.Before we fire off a single prompt, grab a note and write:Business name & vibe Core pages Primary goal Brand palette & toneThat’s it. Don’t sweat the details—we can always iterate. For mine, I wrote:1. Sunny Trails Bakery — family-owned, feel-good, smells like warm cinnamon. 2. Home, About, Pricing / Subscription Box, Menu. 3. Drive online orders and foot traffic—every CTA should funnel toward “Order Now” or “Reserve a Table.” 4. Warm yellow, chocolate brown, rounded typography, playful copy.We’re not trying to fit everything here. What matters is clarity on what we’re creating, so the AI has enough context to produce usable scaffolds, and so later tweaks stay aligned with the client’s vision. Builder will default to using React, Vite, and Tailwind. If you want a different JS framework, you can link an existing repo in that stack. In the near future, you won’t need to do this extra step to get non-React frameworks to function.An entire website from the first promptNow, we’re ready to get going.Head over to Builder.io and paste in this prompt or your own:Create a cozy bakery website called “Sunny Trails Bakery” with pages for: • Home • About • Pricing • Menu Brand palette: warm yellow and chocolate brown. Tone: playful, inviting. The restaurant is family-owned, feel-good, and smells like cinnamon. The goal of this site is to drive online orders and foot traffic—every CTA should funnel toward "Order Now" or "Reserve a Table."Once you hit enter, Builder will spin up a new dev container, and then inside that container, the AI will build out the first version of your site. You can leave the page and come back when it’s done.Now, before we go further, let’s create our repo, so that we get version history right from the outset. Click “Create Repo” up in the top right, and link your GitHub account.Once the process is complete, you’ll have a brand new repo.If you need any help on this step, or any of the below, check out these docs.Making the mockup’s order system workFrom our one-shot prompt, we’ve already got a really nice start for our client. However, when we press the “Order Now” button, we just get a generic alert. Let’s fix this.The best part about connecting to GitHub is that we get version control. Head back to your dashboard and edit the settings of your new project. We can give it a better name, and then, in the “Advanced” section, we can change the “Commit Mode” to “Pull Requests.”Now, we have the ability to create new branches right within Builder, allowing us to make drastic changes without worrying about the main version. This is also helpful if you’d like to show your client or team a few different versions of the same prototype.On a new branch, I’ll write another short prompt:Can you make the "Order Now" button work, even if it's just with dummy JSON for now?As you can see in the GIF above, Builder creates an ordering system and a fully mobile-responsive cart and checkout flow.Now, we can click “Send PR” in the top right, and we have an ordinary GitHub PR that can be reviewed and merged as needed.This is what’s possible in two prompts. For our third, let’s gussy up the style.If you’re like me, you might spend a lot of time admiring other people’s cool designs and learning how to code up similar components in your own style.Luckily, Builder has this capability, too, with our Chrome extension. I found a “Featured Posts” section on OpenAI’s website, where I like how the layout and scrolling work. We can copy and paste it onto our “Featured Treats” section, retaining our cafe’s distinctive brand style.Don’t worry—OpenAI doesn’t mind a little web scraping.You can do this with any component on any website, so your own projects can very quickly become a “best of the web” if you know what you’re doing.Plus, you can use Figma designs in much the same way, with even better design fidelity. Copy and paste a Figma frame with our Figma plugin, and tell the AI to either use the component as inspiration or as a 1:1 to reference for what the design should be.Now, we’re ready to send our PR. This time, let’s take a closer look at the code the AI has created.As you can see, the code is neatly formatted into two reusable components. Scrolling down further, I find a CSS file and then the actual implementation on the homepage, with clean JSON to represent the dummy post data.Design tweaks to the mockup with visual editsOne issue that cropped up when the AI brought in the OpenAI layout is that it changed my text from “Featured Treats” to “Featured Stories & Treats.” I’ve realized I don’t like either, and I want to replace that text with: “Fresh Out of the Bakery.”It would be silly, though, to prompt the AI just for this small tweak. Let’s switch into edit mode.Edit Mode lets you select any component and change any of its content or underlying CSS directly. You get a host of Webflow-like options to choose from, so that you can finesse the details as needed.Once you’ve made all the visual changes you want—maybe tweaking a button color or a border radius—you can click “Apply Edits,” and the AI will ensure the underlying code matches your repo’s style.Async fixes to the mockup with Builder BotNow, our pull request is nearly ready to merge, but I found one issue with it:When we copied the OpenAI website layout earlier, one of the blog posts had a video as its featured graphic instead of just an image. This is cool for OpenAI, but for our bakery, I just wanted images in this section. Since I didn’t instruct Builder’s AI otherwise, it went ahead and followed the layout and created extra code for video capability.No problem. We can fix this inside GItHub with our final prompt. We just need to comment on the PR and tag builderio-bot. Within about a minute, Builder Bot has successfully removed the video functionality, leaving a minimal diff that affects only the code it needed to. For example: Returning to my project in Builder, I can see that the bot’s changes are accounted for in the chat window as well, and I can use the live preview link to make sure my site works as expected:Now, if this were a real project, you could easily deploy this to the web for your client. After all, you’ve got a whole GitHub repo. This isn’t just a mockup; it’s actual code you can tweak—with Builder or Cursor or by hand—until you’re satisfied to run the site in production.So, why use Builder to mock up your website?Sure, this has been a somewhat contrived example. A real prototype is going to look prettier, because I’m going to spend more time on pieces of the design that I don’t like as much.But that’s the point of the best AI tools: they don’t take you, the human, out of the loop.You still get to make all the executive decisions, and it respects your hard work. Since you can constantly see all the code the AI creates, work in branches, and prompt with component-level precision, you can stop worrying about AI overwriting your opinions and start using it more as the tool it’s designed to be.You can copy in your team’s Figma designs, import web inspos, connect MCP servers to get Jira tickets in hand, and—most importantly—work with existing repos full of existing styles that Builder will understand and match, just like it matched OpenAI’s layout to our little cafe.So, we get speed, flexibility, and interactivity all the way from prompt to PR to production.Try Builder today. #mock #website #five #prompts
    WWW.BUILDER.IO
    Mock up a website in five prompts
    “Wait, can users actually add products to the cart?”Every prototype faces that question or one like it. You start to explain it’s “just Figma,” “just dummy data,” but what if you didn’t need disclaimers?What if you could hand clients—or your team—a working, data-connected mock-up of their website, or new pages and components, in less time than it takes to wireframe?That’s the challenge we’ll tackle today. But first, we need to look at:The problem with today’s prototyping toolsPick two: speed, flexibility, or interactivity.The prototyping ecosystem, despite having amazing software that addresses a huge variety of needs, doesn’t really have one tool that gives you all three.Wireframing apps let you draw boxes in minutes but every button is fake. Drag-and-drop builders animate scroll triggers until you ask for anything off-template. Custom code frees you… after you wave goodbye to a few afternoons.AI tools haven’t smashed the trade-off; they’ve just dressed it in flashier costumes. One prompt births a landing page, the next dumps a 2,000-line, worse-than-junior-level React file in your lap. The bottleneck is still there. Builder’s approach to website mockupsWe’ve been trying something a little different to maintain speed, flexibility, and interactivity while mocking full websites. Our AI-driven visual editor:Spins up a repo in seconds or connects to your existing one to use the code as design inspiration. React, Vue, Angular, and Svelte all work out of the box. Lets you shape components via plain English, visual edits, copy/pasted Figma frames, web inspos, MCP tools, and constant visual awareness of your entire website. Commits each change as a clean GitHub pull request your team can review like hand-written code. All your usual CI checks and lint rules apply.And if you need a tweak, you can comment to @builderio-bot right in the GitHub PR to make asynchronous changes without context switching.This results in a live site the café owner can interact with today, and a branch your devs can merge tomorrow. Stakeholders get to click actual buttons and trigger real state—no more “so, just imagine this works” demos.Let’s see it in action.From blank canvas to working mockup in five promptsToday, I’m going to mock up a fake business website. You’re welcome to create a real one.Before we fire off a single prompt, grab a note and write:Business name & vibe Core pages Primary goal Brand palette & toneThat’s it. Don’t sweat the details—we can always iterate. For mine, I wrote:1. Sunny Trails Bakery — family-owned, feel-good, smells like warm cinnamon. 2. Home, About, Pricing / Subscription Box, Menu (with daily specials). 3. Drive online orders and foot traffic—every CTA should funnel toward “Order Now” or “Reserve a Table.” 4. Warm yellow, chocolate brown, rounded typography, playful copy.We’re not trying to fit everything here. What matters is clarity on what we’re creating, so the AI has enough context to produce usable scaffolds, and so later tweaks stay aligned with the client’s vision. Builder will default to using React, Vite, and Tailwind. If you want a different JS framework, you can link an existing repo in that stack. In the near future, you won’t need to do this extra step to get non-React frameworks to function.(Free tier Builder gives you 5 AI credits/day and 25/month—plenty to follow along with today’s demo. Upgrade only when you need it.)An entire website from the first promptNow, we’re ready to get going.Head over to Builder.io and paste in this prompt or your own:Create a cozy bakery website called “Sunny Trails Bakery” with pages for: • Home • About • Pricing • Menu Brand palette: warm yellow and chocolate brown. Tone: playful, inviting. The restaurant is family-owned, feel-good, and smells like cinnamon. The goal of this site is to drive online orders and foot traffic—every CTA should funnel toward "Order Now" or "Reserve a Table."Once you hit enter, Builder will spin up a new dev container, and then inside that container, the AI will build out the first version of your site. You can leave the page and come back when it’s done.Now, before we go further, let’s create our repo, so that we get version history right from the outset. Click “Create Repo” up in the top right, and link your GitHub account.Once the process is complete, you’ll have a brand new repo.If you need any help on this step, or any of the below, check out these docs.Making the mockup’s order system workFrom our one-shot prompt, we’ve already got a really nice start for our client. However, when we press the “Order Now” button, we just get a generic alert. Let’s fix this.The best part about connecting to GitHub is that we get version control. Head back to your dashboard and edit the settings of your new project. We can give it a better name, and then, in the “Advanced” section, we can change the “Commit Mode” to “Pull Requests.”Now, we have the ability to create new branches right within Builder, allowing us to make drastic changes without worrying about the main version. This is also helpful if you’d like to show your client or team a few different versions of the same prototype.On a new branch, I’ll write another short prompt:Can you make the "Order Now" button work, even if it's just with dummy JSON for now?As you can see in the GIF above, Builder creates an ordering system and a fully mobile-responsive cart and checkout flow.Now, we can click “Send PR” in the top right, and we have an ordinary GitHub PR that can be reviewed and merged as needed.This is what’s possible in two prompts. For our third, let’s gussy up the style.If you’re like me, you might spend a lot of time admiring other people’s cool designs and learning how to code up similar components in your own style.Luckily, Builder has this capability, too, with our Chrome extension. I found a “Featured Posts” section on OpenAI’s website, where I like how the layout and scrolling work. We can copy and paste it onto our “Featured Treats” section, retaining our cafe’s distinctive brand style.Don’t worry—OpenAI doesn’t mind a little web scraping.You can do this with any component on any website, so your own projects can very quickly become a “best of the web” if you know what you’re doing.Plus, you can use Figma designs in much the same way, with even better design fidelity. Copy and paste a Figma frame with our Figma plugin, and tell the AI to either use the component as inspiration or as a 1:1 to reference for what the design should be.(You can grab our design-to-code guide for a lot more ideas of what this can help you accomplish.)Now, we’re ready to send our PR. This time, let’s take a closer look at the code the AI has created.As you can see, the code is neatly formatted into two reusable components. Scrolling down further, I find a CSS file and then the actual implementation on the homepage, with clean JSON to represent the dummy post data.Design tweaks to the mockup with visual editsOne issue that cropped up when the AI brought in the OpenAI layout is that it changed my text from “Featured Treats” to “Featured Stories & Treats.” I’ve realized I don’t like either, and I want to replace that text with: “Fresh Out of the Bakery.”It would be silly, though, to prompt the AI just for this small tweak. Let’s switch into edit mode.Edit Mode lets you select any component and change any of its content or underlying CSS directly. You get a host of Webflow-like options to choose from, so that you can finesse the details as needed.Once you’ve made all the visual changes you want—maybe tweaking a button color or a border radius—you can click “Apply Edits,” and the AI will ensure the underlying code matches your repo’s style.Async fixes to the mockup with Builder BotNow, our pull request is nearly ready to merge, but I found one issue with it:When we copied the OpenAI website layout earlier, one of the blog posts had a video as its featured graphic instead of just an image. This is cool for OpenAI, but for our bakery, I just wanted images in this section. Since I didn’t instruct Builder’s AI otherwise, it went ahead and followed the layout and created extra code for video capability.No problem. We can fix this inside GItHub with our final prompt. We just need to comment on the PR and tag builderio-bot. Within about a minute, Builder Bot has successfully removed the video functionality, leaving a minimal diff that affects only the code it needed to. For example: Returning to my project in Builder, I can see that the bot’s changes are accounted for in the chat window as well, and I can use the live preview link to make sure my site works as expected:Now, if this were a real project, you could easily deploy this to the web for your client. After all, you’ve got a whole GitHub repo. This isn’t just a mockup; it’s actual code you can tweak—with Builder or Cursor or by hand—until you’re satisfied to run the site in production.So, why use Builder to mock up your website?Sure, this has been a somewhat contrived example. A real prototype is going to look prettier, because I’m going to spend more time on pieces of the design that I don’t like as much.But that’s the point of the best AI tools: they don’t take you, the human, out of the loop.You still get to make all the executive decisions, and it respects your hard work. Since you can constantly see all the code the AI creates, work in branches, and prompt with component-level precision, you can stop worrying about AI overwriting your opinions and start using it more as the tool it’s designed to be.You can copy in your team’s Figma designs, import web inspos, connect MCP servers to get Jira tickets in hand, and—most importantly—work with existing repos full of existing styles that Builder will understand and match, just like it matched OpenAI’s layout to our little cafe.So, we get speed, flexibility, and interactivity all the way from prompt to PR to production.Try Builder today.
    0 Комментарии 0 Поделились
  • Do you think Sony will make support for their rumored new handheld mandatory for developers?

    Red Kong XIX
    Member

    Oct 11, 2020

    13,560

    This is assuming that the handheld can play PS4 games natively without any issues, so they are not included in the poll.
    Hardware leaker Kepler said it should be able to run PS5 games, even without a patch, but with a performance impact potentially. 

    Hero_of_the_Day
    Avenger

    Oct 27, 2017

    19,958

    Isn't the rumor that games don't require patches to run on it? That would imply that support isn't mandatory, but automatic.
     

    Homura
    ▲ Legend ▲
    Member

    Aug 20, 2019

    7,232

    As the post above said, the rumor is the PS5 portable will be able to run natively any and all PS4/PS5 games.

    Of course, some games might not work properly or require specific patches, but the idea is automatic compatibility. 

    shadowman16
    Member

    Oct 25, 2017

    42,292

    Ideally you'd want stuff to pretty much work out of the box. The more you ask devs to do, the less I imagine will want to support it... Or suddenly games get parred down so that they can run on handhelds.

    I personally would just prefer a solution where its automatic. I dont really care about a Sony handheld, dont really want devs to be forced to support the thing 

    Modest_Modsoul
    Living the Dreams
    Member

    Oct 29, 2017

    28,418


     

    setmymindforopensky
    Member

    Apr 20, 2025

    67

    a lot of games have performance modes. it should run a lot of the library even without any patching. if there's multiplat im sure itll default to the PS4 ver. im not sure what theyd do for something like GTA6 but itll have a series S version so its clearly scalable enough.

    im guessing PSTV situation. support it or not we dont care. 

    reksveks
    Member

    May 17, 2022

    7,628

    Think Kepler is personally assuming the goal of running without patches is a goal and one that won't happen just cause it's too late to force it.

    It's going to be an interesting solution to an interesting problem 

    Servbot24
    The Fallen

    Oct 25, 2017

    47,826

    Obviously not. Pretty absurd question tbh.
     

    RivalGT
    Member

    Dec 13, 2017

    7,616

    This one sounds like it requires a lot of work on Sony's end, I dont think developers will need to do much for games to work.

    Granted moving forward Sony is likely to make it easier for devs to have a more input on this portable mode.

    Things working out of the box is likely the goal, and thats what Sony needs if they want this to work, but devs having more input on this mode would be a plus I think. 

    Callibretto
    Member

    Oct 25, 2017

    10,445

    Indonesia

    shadowman16 said:

    Ideally you'd want stuff to pretty much work out of the box. The more you ask devs to do, the less I imagine will want to support it... Or suddenly games get parred down so that they can run on handhelds.

    I personally would just prefer a solution where its automatic. I dont really care about a Sony handheld, dont really want devs to be forced to support the thingClick to expand...
    Click to shrink...

    depend on the game imo, asking CD Project to somehow make Witcher 4 playable on handheld might be unreasonable. but any game that can run on Switch 2 should be playable on PSPortable without much issue
     

    Pheonix1
    Member

    Jun 22, 2024

    716

    Absolutely they will. Not sure why people think it would be hard, if they hand them.the right tools most ports won't take long anyhow.
     

    skeezx
    Member

    Oct 27, 2017

    23,994

    guessing there will be a "portable approved" label with the respective games going forward, regardless whether it's a PS5 or PS6 game. and when the thing is released popular past titles will be retroactively approved by sony, and up to developers if they want to patch the bigger games to be portable friendly.

    i guess where things could get tricky/laborious for developers is whether every game going forward is required to screen for portable performance, as it's not a PC so the portable will likely disallow for running "non-approved" games at all 

    AmFreak
    Member

    Oct 26, 2017

    3,245

    They need to give people some form of guarantee that it will get games, otherwise they greatly diminish their potential success.

    The best way to do this is to make it another SKU of the contemporary console. And witheverything already running at 60fps and progression slowing to a crawl it's far easier than it had been in the past. 

    Ruck
    Member

    Oct 25, 2017

    3,105

    I mean, what is the handheld? PS6? Or an actual second console? If the former, then yes, if the latter then no
     

    TitanicFall
    Member

    Nov 12, 2017

    9,340

    Nah. It might be incentivized though. There's not much in it for devs if it's a cross buy situation.
     

    Callibretto
    Member

    Oct 25, 2017

    10,445

    Indonesia

    imo, PS6 will remain their main console, focusing on high fidelity visuals that Switch 2 and portable PC won't be able to run without huge compromise.

    PSPortable will be secondary console, something like PSPortal, but this time able to play any games that Switch2 can reasonably run. and for the high end games that it can't run, it will use streaming, either from PS6 you own, or PS+ Premium subs 

    bleits
    Member

    Oct 14, 2023

    373

    They have to if they want to be taken seriously
     

    Vic Damone Jr.
    Member

    Oct 27, 2017

    20,534

    Nope Sony doesn't mandate this stuff and it's why their second product always dies.
     

    fiendcode
    Member

    Oct 26, 2017

    26,514

    I think it depends on what the device really is, if it's more of a "Portal 2" or a "Series SP" or something else entirely. Streaming might be enough for PS6 games along with incentivized PS5/4 patches but whatever SIE does they need to make sure their inhouse teams are ALL on board this time. That was a big part of PSP/Vita's downfall, that the biggest or most important PS Studios snubbed them and the teams that did show up with support are mostly closed and gone now.
     

    Callibretto
    Member

    Oct 25, 2017

    10,445

    Indonesia

    bleits said:

    They have to if they want to be taken seriously

    Click to expand...
    Click to shrink...

    from the last interview with PS exec about Switch 2 spec, it seems clear that PS have no plan to abandon high end console spec to switch to mobile hardware like Switch 2 and Xbox Ally.

    PS consider their high fidelity visual as advantage and differentiator from Nintendo.

    so with PS6, their top studio will eventuall make games that just won't realistically run on handheld devices.

    so having a mandate where all PS6 games is playable on handheld is simply unrealistic imo 

    danm999
    Member

    Oct 29, 2017

    19,929

    Sydney

    Incentives, not mandates.
     

    NSESN
    ▲ Legend ▲
    Member

    Oct 25, 2017

    27,729

    I think people are setting themselves for disappointment in regards for how powerful this thing will be
     

    defaltoption
    Plug in a controller and enter the Konami code
    The Fallen

    Oct 27, 2017

    12,485

    Austin

    Depends on what they call it.

    If they call it anything related to ps6, expect very bad performance, and mandates

    If they call it ps5 portable, expect bad performance and no mandates as it will be handled on their end

    If they call it a ps portable expect it to have no support from Sony and get whatever it gets just be happy it functions till they abandon it. 

    Metnut
    Member

    Apr 7, 2025

    30

    Good question OP.

    I voted the middle one. I think anything that ships for PS5 will need to work for the handheld. Question is whether that works automatically or will need patches. 

    mute
    ▲ Legend ▲
    Member

    Oct 25, 2017

    29,807

    I think that would require a level of commitment to a secondary piece of hardware that Sony hasn't shown in a long time.
     

    Patison
    Member

    Oct 27, 2017

    761

    It's difficult to say without knowing what they're planning with this device exactly. If they're fully going Switch routeor more like a Steam Deck, which will run launch games perfectly and then, as time goes on, some titles might start looking less than ideal or be unplayable at all.

    Or Series S/X, just the Series S being portable — that would be preferable but also limiting but also diminishing returns between generations so might be worth it etc.

    And if that device happens at all and its development won't be dropped soon is another question. Lots of unknowns, but I'm interested to see what Sony comes up with, as long as they'll have games to support it this time around. 

    Jammerz
    Member

    Apr 29, 2023

    1,579

    I think it will be optional support.

    However sony needs to support it with their first parties to set an example and making it as easy as possible for other devs to scale down. For sony first party games maybe use nixxes to scale down so their studios aren't bogged down. 

    Hamchan
    The Fallen

    Oct 25, 2017

    6,000

    I think 99.9% of games will be crossgen between PS5 and PS6 for the entire generation, just based on how this industry is going, so it might not be much of an issue for Sony to mandate.
     

    Advance.Wars.Sgt.
    Member

    Jun 10, 2018

    10,456

    Honestly, I'd worry more about Sony's 1st party teams than 3rd party developers since they were notoriously adverse making software with a handheld power profile in mind.
     

    overthewaves
    Member

    Sep 30, 2020

    1,203

    Wouldn't that hamstring the games for ps6? That's PlayStation players biggest fear they don't want a series S type situation right? They treat series S like a punching bag.
     

    Neonvisions
    Member

    Oct 27, 2017

    707

    overthewaves said:

    Wouldn't that hamstring the games for ps6? That's PlayStation players biggest fear they don't want a series S type situation right? They treat series S like a punching bag.

    Click to expand...
    Click to shrink...

    How would that effect PS6? Are you suggesting that the Series S hamstrings games for the X? 

    Gwarm
    Member

    Nov 13, 2017

    2,902

    I'd be shocked if Sony released a device that let's you play games that haven't been patched or confirmed to run acceptably. Imagine if certain games just hard crashed the console? This is the company that wouldn't let you play certain Vita games on the PSTV even if they actually worked.
     

    bloopland33
    Member

    Mar 4, 2020

    3,845

    I wonder if they'll just do the Steam Deck thing and do a compatibility badge. You can boot whatever software you want, but it might run at 5 fps and drain your battery.

    This would be in addition to whatever efforts they're doing to make things work out of the box, of course.

    But it's hard to imagine them mandating developers ship a PS6 profile and a PS6P profile for those heavier games 5-7 years from now…

    ….but it's also hard to imagine them shipping this PS6-gen device that doesn't play everything. So maybe they Steam Deck it 

    vivftp
    Member

    Oct 29, 2017

    23,016

    My guess, every PS6 game will be mandated to support it. PS5 games will support it natively for the simpler games and will require a patch as has been rumored to run on lesser specs

    I think next gen we get PS3 and Vita emulation so the PS6 and portable will be able to play games from PSN from every past PlayStation 

    Mocha Joe
    Member

    Jun 2, 2021

    13,636

    Really need to take the Steam Deck approach and don't make it a requirement. Just make it a complementary device where it is possible to play majority of the games available on PSN.
     

    overthewaves
    Member

    Sep 30, 2020

    1,203

    Neonvisions said:

    How would that effect PS6? Are you suggesting that the Series S hamstrings games for the X?

    Click to expand...
    Click to shrink...

    I mean did you see the reaction here to the series S announcement lol. Everyone was saying it's gonna "hold back the generation".
     

    reksveks
    Member

    May 17, 2022

    7,628

    Neonvisions said:

    How would that effect PS6? Are you suggesting that the Series S hamstrings games for the X?

    Click to expand...
    Click to shrink...

    Or the perception is that it does but the truth is that there is a lot of factors
     

    Fabs
    Member

    Aug 22, 2019

    2,827

    I can't see the forcing handheld and pro support next gen.
     

    level
    Member

    May 25, 2023

    1,427

    Definitely not

    Games already take too long to make. Extra time isn't something they'll want to reinforce to their developers. 

    gofreak
    Member

    Oct 26, 2017

    8,411

    I don't think support will be mandatory. I think they're bringing it into a reality where a growing portion of games can, or could, run without much change or effort on the developer's part on a next gen handheld. They'll lean on that natural trend rather than a policy - anything that is outside of that will just be streamable as now with the Portal.
     

    Caiusto
    Member

    Oct 25, 2017

    7,086

    If they don't want to end up with another Vita yes they will.
     

    mute
    ▲ Legend ▲
    Member

    Oct 25, 2017

    29,807

    Advance.Wars.Sgt. said:

    Honestly, I'd worry more about Sony's 1st party teams than 3rd party developers since they were notoriously adverse making software with a handheld power profile in mind.

    Click to expand...
    Click to shrink...

    It does seem kinda unthinkable that Intergalactic would be made with a handheld in mind, for example.
     

    AmFreak
    Member

    Oct 26, 2017

    3,245

    mute said:

    It does seem kinda unthinkable that Intergalactic would be made with a handheld in mind, for example.

    Click to expand...
    Click to shrink...

    Ratchet, Returnal, Cyberpunk, etc. also weren't made "with a handheld in mind".
     

    Spoit
    Member

    Oct 28, 2017

    5,599

    Given how much of a pain the series S mandate has been, I don't see them binding even first party studios to it, especially ones that are trying to go for the cutting edge of tech. Since given AMDs timelines, is not going to be anywhere near a base PS5.

    I'm also skeptical of the claim that'll be able to play ps5 games without extensive patching. 

    Jawmuncher
    Crisis Dino
    Moderator

    Oct 25, 2017

    45,166

    Ibis Island

    No, I think the portable will handle portable stuff "automatically" for what it converts
     

    knightmawk
    Member

    Dec 12, 2018

    8,900

    I expect they'll do everything they can to make sure no one has to think about it and it's as automatic as possible. It'll technically still be part of cert, but the goal will be for it to be rare that a game fails that part of cert and has to be sent back.

    That being said, I imagine there will be some games that still don't work and developers will be able to submit for that exception. 

    RivalGT
    Member

    Dec 13, 2017

    7,616

    I think the concept here is similar to how PS4 games play on PS5, the ones with patches I mean, the game will run with a different graphics preset then it would on PS4/ PS4 Pro, so in some cases this means higher resolution or higher frame rate cap.

    What Sony needs to work on their end is getting this to work without any patches from developers. Its the only way this can work. 

    Vexii
    Member

    Oct 31, 2017

    3,103

    UK

    if they don't mandate support, it'll just be a death knell for the format. I don't think they could get away with a dedicated handheld platform now when the Switch and Steam Deck exists
     

    Mobius and Pet Octopus
    Member

    Oct 25, 2017

    17,065

    Just because a game can run on a handheld, doesn't mean that's all required for support. The UI alone likely requires changes for an optimal experience, sometimes necessary to be "playable". Small screen sizes usually needs changes.
     

    SeanMN
    Member

    Oct 28, 2017

    2,437

    If PS6 games support is optional, that will create fragmentation of the platform and uncertain software support.

    If it's part of the PS6 family and support is mandatory, I can see there being concern that if would hold the generation back with a low capability sku.

    My thoughts are this should be a PS6 and support the same as the primary console. 
    #you #think #sony #will #make
    Do you think Sony will make support for their rumored new handheld mandatory for developers?
    Red Kong XIX Member Oct 11, 2020 13,560 This is assuming that the handheld can play PS4 games natively without any issues, so they are not included in the poll. Hardware leaker Kepler said it should be able to run PS5 games, even without a patch, but with a performance impact potentially.  Hero_of_the_Day Avenger Oct 27, 2017 19,958 Isn't the rumor that games don't require patches to run on it? That would imply that support isn't mandatory, but automatic.   Homura ▲ Legend ▲ Member Aug 20, 2019 7,232 As the post above said, the rumor is the PS5 portable will be able to run natively any and all PS4/PS5 games. Of course, some games might not work properly or require specific patches, but the idea is automatic compatibility.  shadowman16 Member Oct 25, 2017 42,292 Ideally you'd want stuff to pretty much work out of the box. The more you ask devs to do, the less I imagine will want to support it... Or suddenly games get parred down so that they can run on handhelds. I personally would just prefer a solution where its automatic. I dont really care about a Sony handheld, dont really want devs to be forced to support the thing  Modest_Modsoul Living the Dreams Member Oct 29, 2017 28,418 🤷‍♂️   setmymindforopensky Member Apr 20, 2025 67 a lot of games have performance modes. it should run a lot of the library even without any patching. if there's multiplat im sure itll default to the PS4 ver. im not sure what theyd do for something like GTA6 but itll have a series S version so its clearly scalable enough. im guessing PSTV situation. support it or not we dont care.  reksveks Member May 17, 2022 7,628 Think Kepler is personally assuming the goal of running without patches is a goal and one that won't happen just cause it's too late to force it. It's going to be an interesting solution to an interesting problem  Servbot24 The Fallen Oct 25, 2017 47,826 Obviously not. Pretty absurd question tbh.   RivalGT Member Dec 13, 2017 7,616 This one sounds like it requires a lot of work on Sony's end, I dont think developers will need to do much for games to work. Granted moving forward Sony is likely to make it easier for devs to have a more input on this portable mode. Things working out of the box is likely the goal, and thats what Sony needs if they want this to work, but devs having more input on this mode would be a plus I think.  Callibretto Member Oct 25, 2017 10,445 Indonesia shadowman16 said: Ideally you'd want stuff to pretty much work out of the box. The more you ask devs to do, the less I imagine will want to support it... Or suddenly games get parred down so that they can run on handhelds. I personally would just prefer a solution where its automatic. I dont really care about a Sony handheld, dont really want devs to be forced to support the thingClick to expand... Click to shrink... depend on the game imo, asking CD Project to somehow make Witcher 4 playable on handheld might be unreasonable. but any game that can run on Switch 2 should be playable on PSPortable without much issue   Pheonix1 Member Jun 22, 2024 716 Absolutely they will. Not sure why people think it would be hard, if they hand them.the right tools most ports won't take long anyhow.   skeezx Member Oct 27, 2017 23,994 guessing there will be a "portable approved" label with the respective games going forward, regardless whether it's a PS5 or PS6 game. and when the thing is released popular past titles will be retroactively approved by sony, and up to developers if they want to patch the bigger games to be portable friendly. i guess where things could get tricky/laborious for developers is whether every game going forward is required to screen for portable performance, as it's not a PC so the portable will likely disallow for running "non-approved" games at all  AmFreak Member Oct 26, 2017 3,245 They need to give people some form of guarantee that it will get games, otherwise they greatly diminish their potential success. The best way to do this is to make it another SKU of the contemporary console. And witheverything already running at 60fps and progression slowing to a crawl it's far easier than it had been in the past.  Ruck Member Oct 25, 2017 3,105 I mean, what is the handheld? PS6? Or an actual second console? If the former, then yes, if the latter then no   TitanicFall Member Nov 12, 2017 9,340 Nah. It might be incentivized though. There's not much in it for devs if it's a cross buy situation.   Callibretto Member Oct 25, 2017 10,445 Indonesia imo, PS6 will remain their main console, focusing on high fidelity visuals that Switch 2 and portable PC won't be able to run without huge compromise. PSPortable will be secondary console, something like PSPortal, but this time able to play any games that Switch2 can reasonably run. and for the high end games that it can't run, it will use streaming, either from PS6 you own, or PS+ Premium subs  bleits Member Oct 14, 2023 373 They have to if they want to be taken seriously   Vic Damone Jr. Member Oct 27, 2017 20,534 Nope Sony doesn't mandate this stuff and it's why their second product always dies.   fiendcode Member Oct 26, 2017 26,514 I think it depends on what the device really is, if it's more of a "Portal 2" or a "Series SP" or something else entirely. Streaming might be enough for PS6 games along with incentivized PS5/4 patches but whatever SIE does they need to make sure their inhouse teams are ALL on board this time. That was a big part of PSP/Vita's downfall, that the biggest or most important PS Studios snubbed them and the teams that did show up with support are mostly closed and gone now.   Callibretto Member Oct 25, 2017 10,445 Indonesia bleits said: They have to if they want to be taken seriously Click to expand... Click to shrink... from the last interview with PS exec about Switch 2 spec, it seems clear that PS have no plan to abandon high end console spec to switch to mobile hardware like Switch 2 and Xbox Ally. PS consider their high fidelity visual as advantage and differentiator from Nintendo. so with PS6, their top studio will eventuall make games that just won't realistically run on handheld devices. so having a mandate where all PS6 games is playable on handheld is simply unrealistic imo  danm999 Member Oct 29, 2017 19,929 Sydney Incentives, not mandates.   NSESN ▲ Legend ▲ Member Oct 25, 2017 27,729 I think people are setting themselves for disappointment in regards for how powerful this thing will be   defaltoption Plug in a controller and enter the Konami code The Fallen Oct 27, 2017 12,485 Austin Depends on what they call it. If they call it anything related to ps6, expect very bad performance, and mandates If they call it ps5 portable, expect bad performance and no mandates as it will be handled on their end If they call it a ps portable expect it to have no support from Sony and get whatever it gets just be happy it functions till they abandon it.  Metnut Member Apr 7, 2025 30 Good question OP. I voted the middle one. I think anything that ships for PS5 will need to work for the handheld. Question is whether that works automatically or will need patches.  mute ▲ Legend ▲ Member Oct 25, 2017 29,807 I think that would require a level of commitment to a secondary piece of hardware that Sony hasn't shown in a long time.   Patison Member Oct 27, 2017 761 It's difficult to say without knowing what they're planning with this device exactly. If they're fully going Switch routeor more like a Steam Deck, which will run launch games perfectly and then, as time goes on, some titles might start looking less than ideal or be unplayable at all. Or Series S/X, just the Series S being portable — that would be preferable but also limiting but also diminishing returns between generations so might be worth it etc. And if that device happens at all and its development won't be dropped soon is another question. Lots of unknowns, but I'm interested to see what Sony comes up with, as long as they'll have games to support it this time around.  Jammerz Member Apr 29, 2023 1,579 I think it will be optional support. However sony needs to support it with their first parties to set an example and making it as easy as possible for other devs to scale down. For sony first party games maybe use nixxes to scale down so their studios aren't bogged down.  Hamchan The Fallen Oct 25, 2017 6,000 I think 99.9% of games will be crossgen between PS5 and PS6 for the entire generation, just based on how this industry is going, so it might not be much of an issue for Sony to mandate.   Advance.Wars.Sgt. Member Jun 10, 2018 10,456 Honestly, I'd worry more about Sony's 1st party teams than 3rd party developers since they were notoriously adverse making software with a handheld power profile in mind.   overthewaves Member Sep 30, 2020 1,203 Wouldn't that hamstring the games for ps6? That's PlayStation players biggest fear they don't want a series S type situation right? They treat series S like a punching bag.   Neonvisions Member Oct 27, 2017 707 overthewaves said: Wouldn't that hamstring the games for ps6? That's PlayStation players biggest fear they don't want a series S type situation right? They treat series S like a punching bag. Click to expand... Click to shrink... How would that effect PS6? Are you suggesting that the Series S hamstrings games for the X?  Gwarm Member Nov 13, 2017 2,902 I'd be shocked if Sony released a device that let's you play games that haven't been patched or confirmed to run acceptably. Imagine if certain games just hard crashed the console? This is the company that wouldn't let you play certain Vita games on the PSTV even if they actually worked.   bloopland33 Member Mar 4, 2020 3,845 I wonder if they'll just do the Steam Deck thing and do a compatibility badge. You can boot whatever software you want, but it might run at 5 fps and drain your battery. This would be in addition to whatever efforts they're doing to make things work out of the box, of course. But it's hard to imagine them mandating developers ship a PS6 profile and a PS6P profile for those heavier games 5-7 years from now… ….but it's also hard to imagine them shipping this PS6-gen device that doesn't play everything. So maybe they Steam Deck it  vivftp Member Oct 29, 2017 23,016 My guess, every PS6 game will be mandated to support it. PS5 games will support it natively for the simpler games and will require a patch as has been rumored to run on lesser specs I think next gen we get PS3 and Vita emulation so the PS6 and portable will be able to play games from PSN from every past PlayStation  Mocha Joe Member Jun 2, 2021 13,636 Really need to take the Steam Deck approach and don't make it a requirement. Just make it a complementary device where it is possible to play majority of the games available on PSN.   overthewaves Member Sep 30, 2020 1,203 Neonvisions said: How would that effect PS6? Are you suggesting that the Series S hamstrings games for the X? Click to expand... Click to shrink... I mean did you see the reaction here to the series S announcement lol. Everyone was saying it's gonna "hold back the generation".   reksveks Member May 17, 2022 7,628 Neonvisions said: How would that effect PS6? Are you suggesting that the Series S hamstrings games for the X? Click to expand... Click to shrink... Or the perception is that it does but the truth is that there is a lot of factors   Fabs Member Aug 22, 2019 2,827 I can't see the forcing handheld and pro support next gen.   level Member May 25, 2023 1,427 Definitely not Games already take too long to make. Extra time isn't something they'll want to reinforce to their developers.  gofreak Member Oct 26, 2017 8,411 I don't think support will be mandatory. I think they're bringing it into a reality where a growing portion of games can, or could, run without much change or effort on the developer's part on a next gen handheld. They'll lean on that natural trend rather than a policy - anything that is outside of that will just be streamable as now with the Portal.   Caiusto Member Oct 25, 2017 7,086 If they don't want to end up with another Vita yes they will.   mute ▲ Legend ▲ Member Oct 25, 2017 29,807 Advance.Wars.Sgt. said: Honestly, I'd worry more about Sony's 1st party teams than 3rd party developers since they were notoriously adverse making software with a handheld power profile in mind. Click to expand... Click to shrink... It does seem kinda unthinkable that Intergalactic would be made with a handheld in mind, for example.   AmFreak Member Oct 26, 2017 3,245 mute said: It does seem kinda unthinkable that Intergalactic would be made with a handheld in mind, for example. Click to expand... Click to shrink... Ratchet, Returnal, Cyberpunk, etc. also weren't made "with a handheld in mind".   Spoit Member Oct 28, 2017 5,599 Given how much of a pain the series S mandate has been, I don't see them binding even first party studios to it, especially ones that are trying to go for the cutting edge of tech. Since given AMDs timelines, is not going to be anywhere near a base PS5. I'm also skeptical of the claim that'll be able to play ps5 games without extensive patching.  Jawmuncher Crisis Dino Moderator Oct 25, 2017 45,166 Ibis Island No, I think the portable will handle portable stuff "automatically" for what it converts   knightmawk Member Dec 12, 2018 8,900 I expect they'll do everything they can to make sure no one has to think about it and it's as automatic as possible. It'll technically still be part of cert, but the goal will be for it to be rare that a game fails that part of cert and has to be sent back. That being said, I imagine there will be some games that still don't work and developers will be able to submit for that exception.  RivalGT Member Dec 13, 2017 7,616 I think the concept here is similar to how PS4 games play on PS5, the ones with patches I mean, the game will run with a different graphics preset then it would on PS4/ PS4 Pro, so in some cases this means higher resolution or higher frame rate cap. What Sony needs to work on their end is getting this to work without any patches from developers. Its the only way this can work.  Vexii Member Oct 31, 2017 3,103 UK if they don't mandate support, it'll just be a death knell for the format. I don't think they could get away with a dedicated handheld platform now when the Switch and Steam Deck exists   Mobius and Pet Octopus Member Oct 25, 2017 17,065 Just because a game can run on a handheld, doesn't mean that's all required for support. The UI alone likely requires changes for an optimal experience, sometimes necessary to be "playable". Small screen sizes usually needs changes.   SeanMN Member Oct 28, 2017 2,437 If PS6 games support is optional, that will create fragmentation of the platform and uncertain software support. If it's part of the PS6 family and support is mandatory, I can see there being concern that if would hold the generation back with a low capability sku. My thoughts are this should be a PS6 and support the same as the primary console.  #you #think #sony #will #make
    WWW.RESETERA.COM
    Do you think Sony will make support for their rumored new handheld mandatory for developers?
    Red Kong XIX Member Oct 11, 2020 13,560 This is assuming that the handheld can play PS4 games natively without any issues, so they are not included in the poll. Hardware leaker Kepler said it should be able to run PS5 games, even without a patch, but with a performance impact potentially.  Hero_of_the_Day Avenger Oct 27, 2017 19,958 Isn't the rumor that games don't require patches to run on it? That would imply that support isn't mandatory, but automatic.   Homura ▲ Legend ▲ Member Aug 20, 2019 7,232 As the post above said, the rumor is the PS5 portable will be able to run natively any and all PS4/PS5 games. Of course, some games might not work properly or require specific patches, but the idea is automatic compatibility.  shadowman16 Member Oct 25, 2017 42,292 Ideally you'd want stuff to pretty much work out of the box. The more you ask devs to do, the less I imagine will want to support it... Or suddenly games get parred down so that they can run on handhelds (which considering how people hated cross gen for that reason, they'd hate it here as well). I personally would just prefer a solution where its automatic. I dont really care about a Sony handheld, dont really want devs to be forced to support the thing (considering how shit Sony is at supporting its peripherals - like the Vita or PSVR2)  Modest_Modsoul Living the Dreams Member Oct 29, 2017 28,418 🤷‍♂️   setmymindforopensky Member Apr 20, 2025 67 a lot of games have performance modes. it should run a lot of the library even without any patching. if there's multiplat im sure itll default to the PS4 ver. im not sure what theyd do for something like GTA6 but itll have a series S version so its clearly scalable enough. im guessing PSTV situation. support it or not we dont care.  reksveks Member May 17, 2022 7,628 Think Kepler is personally assuming the goal of running without patches is a goal and one that won't happen just cause it's too late to force it. It's going to be an interesting solution to an interesting problem  Servbot24 The Fallen Oct 25, 2017 47,826 Obviously not. Pretty absurd question tbh.   RivalGT Member Dec 13, 2017 7,616 This one sounds like it requires a lot of work on Sony's end, I dont think developers will need to do much for games to work. Granted moving forward Sony is likely to make it easier for devs to have a more input on this portable mode. Things working out of the box is likely the goal, and thats what Sony needs if they want this to work, but devs having more input on this mode would be a plus I think.  Callibretto Member Oct 25, 2017 10,445 Indonesia shadowman16 said: Ideally you'd want stuff to pretty much work out of the box. The more you ask devs to do, the less I imagine will want to support it... Or suddenly games get parred down so that they can run on handhelds (which considering how people hated cross gen for that reason, they'd hate it here as well). I personally would just prefer a solution where its automatic. I dont really care about a Sony handheld, dont really want devs to be forced to support the thing (considering how shit Sony is at supporting its peripherals - like the Vita or PSVR2) Click to expand... Click to shrink... depend on the game imo, asking CD Project to somehow make Witcher 4 playable on handheld might be unreasonable. but any game that can run on Switch 2 should be playable on PSPortable without much issue   Pheonix1 Member Jun 22, 2024 716 Absolutely they will. Not sure why people think it would be hard, if they hand them.the right tools most ports won't take long anyhow.   skeezx Member Oct 27, 2017 23,994 guessing there will be a "portable approved" label with the respective games going forward, regardless whether it's a PS5 or PS6 game. and when the thing is released popular past titles will be retroactively approved by sony, and up to developers if they want to patch the bigger games to be portable friendly. i guess where things could get tricky/laborious for developers is whether every game going forward is required to screen for portable performance, as it's not a PC so the portable will likely disallow for running "non-approved" games at all  AmFreak Member Oct 26, 2017 3,245 They need to give people some form of guarantee that it will get games, otherwise they greatly diminish their potential success. The best way to do this is to make it another SKU of the contemporary console. And with (close to) everything already running at 60fps and progression slowing to a crawl it's far easier than it had been in the past.  Ruck Member Oct 25, 2017 3,105 I mean, what is the handheld? PS6? Or an actual second console? If the former, then yes, if the latter then no   TitanicFall Member Nov 12, 2017 9,340 Nah. It might be incentivized though. There's not much in it for devs if it's a cross buy situation.   Callibretto Member Oct 25, 2017 10,445 Indonesia imo, PS6 will remain their main console, focusing on high fidelity visuals that Switch 2 and portable PC won't be able to run without huge compromise. PSPortable will be secondary console, something like PSPortal, but this time able to play any games that Switch2 can reasonably run. and for the high end games that it can't run, it will use streaming, either from PS6 you own, or PS+ Premium subs  bleits Member Oct 14, 2023 373 They have to if they want to be taken seriously   Vic Damone Jr. Member Oct 27, 2017 20,534 Nope Sony doesn't mandate this stuff and it's why their second product always dies.   fiendcode Member Oct 26, 2017 26,514 I think it depends on what the device really is, if it's more of a "Portal 2" or a "Series SP" or something else entirely (PSP3?). Streaming might be enough for PS6 games along with incentivized PS5/4 patches but whatever SIE does they need to make sure their inhouse teams are ALL on board this time. That was a big part of PSP/Vita's downfall, that the biggest or most important PS Studios snubbed them and the teams that did show up with support are mostly closed and gone now.   Callibretto Member Oct 25, 2017 10,445 Indonesia bleits said: They have to if they want to be taken seriously Click to expand... Click to shrink... from the last interview with PS exec about Switch 2 spec, it seems clear that PS have no plan to abandon high end console spec to switch to mobile hardware like Switch 2 and Xbox Ally. PS consider their high fidelity visual as advantage and differentiator from Nintendo. so with PS6, their top studio will eventuall make games that just won't realistically run on handheld devices. so having a mandate where all PS6 games is playable on handheld is simply unrealistic imo  danm999 Member Oct 29, 2017 19,929 Sydney Incentives, not mandates.   NSESN ▲ Legend ▲ Member Oct 25, 2017 27,729 I think people are setting themselves for disappointment in regards for how powerful this thing will be   defaltoption Plug in a controller and enter the Konami code The Fallen Oct 27, 2017 12,485 Austin Depends on what they call it. If they call it anything related to ps6, expect very bad performance, and mandates If they call it ps5 portable, expect bad performance and no mandates as it will be handled on their end If they call it a ps portable expect it to have no support from Sony and get whatever it gets just be happy it functions till they abandon it.  Metnut Member Apr 7, 2025 30 Good question OP. I voted the middle one. I think anything that ships for PS5 will need to work for the handheld. Question is whether that works automatically or will need patches.  mute ▲ Legend ▲ Member Oct 25, 2017 29,807 I think that would require a level of commitment to a secondary piece of hardware that Sony hasn't shown in a long time.   Patison Member Oct 27, 2017 761 It's difficult to say without knowing what they're planning with this device exactly. If they're fully going Switch route (or PS Vita/PS TV route) or more like a Steam Deck, which will run launch games perfectly and then, as time goes on, some titles might start looking less than ideal or be unplayable at all. Or Series S/X, just the Series S being portable — that would be preferable but also limiting but also diminishing returns between generations so might be worth it etc. And if that device happens at all and its development won't be dropped soon is another question. Lots of unknowns, but I'm interested to see what Sony comes up with, as long as they'll have games to support it this time around.  Jammerz Member Apr 29, 2023 1,579 I think it will be optional support. However sony needs to support it with their first parties to set an example and making it as easy as possible for other devs to scale down. For sony first party games maybe use nixxes to scale down so their studios aren't bogged down.  Hamchan The Fallen Oct 25, 2017 6,000 I think 99.9% of games will be crossgen between PS5 and PS6 for the entire generation, just based on how this industry is going, so it might not be much of an issue for Sony to mandate.   Advance.Wars.Sgt. Member Jun 10, 2018 10,456 Honestly, I'd worry more about Sony's 1st party teams than 3rd party developers since they were notoriously adverse making software with a handheld power profile in mind.   overthewaves Member Sep 30, 2020 1,203 Wouldn't that hamstring the games for ps6? That's PlayStation players biggest fear they don't want a series S type situation right? They treat series S like a punching bag.   Neonvisions Member Oct 27, 2017 707 overthewaves said: Wouldn't that hamstring the games for ps6? That's PlayStation players biggest fear they don't want a series S type situation right? They treat series S like a punching bag. Click to expand... Click to shrink... How would that effect PS6? Are you suggesting that the Series S hamstrings games for the X?  Gwarm Member Nov 13, 2017 2,902 I'd be shocked if Sony released a device that let's you play games that haven't been patched or confirmed to run acceptably. Imagine if certain games just hard crashed the console? This is the company that wouldn't let you play certain Vita games on the PSTV even if they actually worked.   bloopland33 Member Mar 4, 2020 3,845 I wonder if they'll just do the Steam Deck thing and do a compatibility badge. You can boot whatever software you want, but it might run at 5 fps and drain your battery. This would be in addition to whatever efforts they're doing to make things work out of the box, of course. But it's hard to imagine them mandating developers ship a PS6 profile and a PS6P profile for those heavier games 5-7 years from now… ….but it's also hard to imagine them shipping this PS6-gen device that doesn't play everything (depending on how they position it). So maybe they Steam Deck it  vivftp Member Oct 29, 2017 23,016 My guess, every PS6 game will be mandated to support it. PS5 games will support it natively for the simpler games and will require a patch as has been rumored to run on lesser specs I think next gen we get PS3 and Vita emulation so the PS6 and portable will be able to play games from PSN from every past PlayStation  Mocha Joe Member Jun 2, 2021 13,636 Really need to take the Steam Deck approach and don't make it a requirement. Just make it a complementary device where it is possible to play majority of the games available on PSN.   overthewaves Member Sep 30, 2020 1,203 Neonvisions said: How would that effect PS6? Are you suggesting that the Series S hamstrings games for the X? Click to expand... Click to shrink... I mean did you see the reaction here to the series S announcement lol. Everyone was saying it's gonna "hold back the generation".   reksveks Member May 17, 2022 7,628 Neonvisions said: How would that effect PS6? Are you suggesting that the Series S hamstrings games for the X? Click to expand... Click to shrink... Or the perception is that it does but the truth is that there is a lot of factors   Fabs Member Aug 22, 2019 2,827 I can't see the forcing handheld and pro support next gen.   level Member May 25, 2023 1,427 Definitely not Games already take too long to make. Extra time isn't something they'll want to reinforce to their developers.  gofreak Member Oct 26, 2017 8,411 I don't think support will be mandatory. I think they're bringing it into a reality where a growing portion of games can, or could, run without much change or effort on the developer's part on a next gen handheld. They'll lean on that natural trend rather than a policy - anything that is outside of that will just be streamable as now with the Portal.   Caiusto Member Oct 25, 2017 7,086 If they don't want to end up with another Vita yes they will.   mute ▲ Legend ▲ Member Oct 25, 2017 29,807 Advance.Wars.Sgt. said: Honestly, I'd worry more about Sony's 1st party teams than 3rd party developers since they were notoriously adverse making software with a handheld power profile in mind. Click to expand... Click to shrink... It does seem kinda unthinkable that Intergalactic would be made with a handheld in mind, for example.   AmFreak Member Oct 26, 2017 3,245 mute said: It does seem kinda unthinkable that Intergalactic would be made with a handheld in mind, for example. Click to expand... Click to shrink... Ratchet, Returnal, Cyberpunk, etc. also weren't made "with a handheld in mind".   Spoit Member Oct 28, 2017 5,599 Given how much of a pain the series S mandate has been, I don't see them binding even first party studios to it, especially ones that are trying to go for the cutting edge of tech. Since given AMDs timelines, is not going to be anywhere near a base PS5. I'm also skeptical of the claim that'll be able to play ps5 games without extensive patching.  Jawmuncher Crisis Dino Moderator Oct 25, 2017 45,166 Ibis Island No, I think the portable will handle portable stuff "automatically" for what it converts   knightmawk Member Dec 12, 2018 8,900 I expect they'll do everything they can to make sure no one has to think about it and it's as automatic as possible. It'll technically still be part of cert, but the goal will be for it to be rare that a game fails that part of cert and has to be sent back. That being said, I imagine there will be some games that still don't work and developers will be able to submit for that exception.  RivalGT Member Dec 13, 2017 7,616 I think the concept here is similar to how PS4 games play on PS5, the ones with patches I mean, the game will run with a different graphics preset then it would on PS4/ PS4 Pro, so in some cases this means higher resolution or higher frame rate cap. What Sony needs to work on their end is getting this to work without any patches from developers. Its the only way this can work.  Vexii Member Oct 31, 2017 3,103 UK if they don't mandate support, it'll just be a death knell for the format. I don't think they could get away with a dedicated handheld platform now when the Switch and Steam Deck exists   Mobius and Pet Octopus Member Oct 25, 2017 17,065 Just because a game can run on a handheld, doesn't mean that's all required for support. The UI alone likely requires changes for an optimal experience, sometimes necessary to be "playable". Small screen sizes usually needs changes.   SeanMN Member Oct 28, 2017 2,437 If PS6 games support is optional, that will create fragmentation of the platform and uncertain software support. If it's part of the PS6 family and support is mandatory, I can see there being concern that if would hold the generation back with a low capability sku. My thoughts are this should be a PS6 and support the same as the primary console. 
    0 Комментарии 0 Поделились
  • NVIDIA helps Germany lead Europe’s AI manufacturing race

    Germany and NVIDIA are building possibly the most ambitious European tech project of the decade: the continent’s first industrial AI cloud.NVIDIA has been on a European tour over the past month with CEO Jensen Huang charming audiences at London Tech Week before dazzling the crowds at Paris’s VivaTech. But it was his meeting with German Chancellor Friedrich Merz that might prove the most consequential stop.The resulting partnership between NVIDIA and Deutsche Telekom isn’t just another corporate handshake; it’s potentially a turning point for European technological sovereignty.An “AI factory”will be created with a focus on manufacturing, which is hardly surprising given Germany’s renowned industrial heritage. The facility aims to give European industrial players the computational firepower to revolutionise everything from design to robotics.“In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Huang. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.”It’s rare to hear such urgency from a telecoms CEO, but Deutsche Telekom’s Timotheus Höttges added: “Europe’s technological future needs a sprint, not a stroll. We must seize the opportunities of artificial intelligence now, revolutionise our industry, and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.”The first phase alone will deploy 10,000 NVIDIA Blackwell GPUs spread across various high-performance systems. That makes this Germany’s largest AI deployment ever; a statement the country isn’t content to watch from the sidelines as AI transforms global industry.A Deloitte study recently highlighted the critical importance of AI technology development to Germany’s future competitiveness, particularly noting the need for expanded data centre capacity. When you consider that demand is expected to triple within just five years, this investment seems less like ambition and more like necessity.Robots teaching robotsOne of the early adopters is NEURA Robotics, a German firm that specialises in cognitive robotics. They’re using this computational muscle to power something called the Neuraverse which is essentially a connected network where robots can learn from each other.Think of it as a robotic hive mind for skills ranging from precision welding to household ironing, with each machine contributing its learnings to a collective intelligence.“Physical AI is the electricity of the future—it will power every machine on the planet,” said David Reger, Founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.”The implications of this AI project for manufacturing in Germany could be profound. This isn’t just about making existing factories slightly more efficient; it’s about reimagining what manufacturing can be in an age of intelligent machines.AI for more than just Germany’s industrial titansWhat’s particularly promising about this project is its potential reach beyond Germany’s industrial titans. The famed Mittelstand – the network of specialised small and medium-sized businesses that forms the backbone of the German economy – stands to benefit.These companies often lack the resources to build their own AI infrastructure but possess the specialised knowledge that makes them perfect candidates for AI-enhanced innovation. Democratising access to cutting-edge AI could help preserve their competitive edge in a challenging global market.Academic and research institutions will also gain access, potentially accelerating innovation across numerous fields. The approximately 900 Germany-based startups in NVIDIA’s Inception program will be eligible to use these resources, potentially unleashing a wave of entrepreneurial AI applications.However impressive this massive project is, it’s viewed merely as a stepping stone towards something even more ambitious: Europe’s AI gigafactory. This planned 100,000 GPU-powered initiative backed by the EU and Germany won’t come online until 2027, but it represents Europe’s determination to carve out its own technological future.As other European telecom providers follow suit with their own AI infrastructure projects, we may be witnessing the beginning of a concerted effort to establish technological sovereignty across the continent.For a region that has often found itself caught between American tech dominance and Chinese ambitions, building indigenous AI capability represents more than economic opportunity. Whether this bold project in Germany will succeed remains to be seen, but one thing is clear: Europe is no longer content to be a passive consumer of AI technology developed elsewhere.Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here.
    #nvidia #helps #germany #lead #europes
    NVIDIA helps Germany lead Europe’s AI manufacturing race
    Germany and NVIDIA are building possibly the most ambitious European tech project of the decade: the continent’s first industrial AI cloud.NVIDIA has been on a European tour over the past month with CEO Jensen Huang charming audiences at London Tech Week before dazzling the crowds at Paris’s VivaTech. But it was his meeting with German Chancellor Friedrich Merz that might prove the most consequential stop.The resulting partnership between NVIDIA and Deutsche Telekom isn’t just another corporate handshake; it’s potentially a turning point for European technological sovereignty.An “AI factory”will be created with a focus on manufacturing, which is hardly surprising given Germany’s renowned industrial heritage. The facility aims to give European industrial players the computational firepower to revolutionise everything from design to robotics.“In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Huang. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.”It’s rare to hear such urgency from a telecoms CEO, but Deutsche Telekom’s Timotheus Höttges added: “Europe’s technological future needs a sprint, not a stroll. We must seize the opportunities of artificial intelligence now, revolutionise our industry, and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.”The first phase alone will deploy 10,000 NVIDIA Blackwell GPUs spread across various high-performance systems. That makes this Germany’s largest AI deployment ever; a statement the country isn’t content to watch from the sidelines as AI transforms global industry.A Deloitte study recently highlighted the critical importance of AI technology development to Germany’s future competitiveness, particularly noting the need for expanded data centre capacity. When you consider that demand is expected to triple within just five years, this investment seems less like ambition and more like necessity.Robots teaching robotsOne of the early adopters is NEURA Robotics, a German firm that specialises in cognitive robotics. They’re using this computational muscle to power something called the Neuraverse which is essentially a connected network where robots can learn from each other.Think of it as a robotic hive mind for skills ranging from precision welding to household ironing, with each machine contributing its learnings to a collective intelligence.“Physical AI is the electricity of the future—it will power every machine on the planet,” said David Reger, Founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.”The implications of this AI project for manufacturing in Germany could be profound. This isn’t just about making existing factories slightly more efficient; it’s about reimagining what manufacturing can be in an age of intelligent machines.AI for more than just Germany’s industrial titansWhat’s particularly promising about this project is its potential reach beyond Germany’s industrial titans. The famed Mittelstand – the network of specialised small and medium-sized businesses that forms the backbone of the German economy – stands to benefit.These companies often lack the resources to build their own AI infrastructure but possess the specialised knowledge that makes them perfect candidates for AI-enhanced innovation. Democratising access to cutting-edge AI could help preserve their competitive edge in a challenging global market.Academic and research institutions will also gain access, potentially accelerating innovation across numerous fields. The approximately 900 Germany-based startups in NVIDIA’s Inception program will be eligible to use these resources, potentially unleashing a wave of entrepreneurial AI applications.However impressive this massive project is, it’s viewed merely as a stepping stone towards something even more ambitious: Europe’s AI gigafactory. This planned 100,000 GPU-powered initiative backed by the EU and Germany won’t come online until 2027, but it represents Europe’s determination to carve out its own technological future.As other European telecom providers follow suit with their own AI infrastructure projects, we may be witnessing the beginning of a concerted effort to establish technological sovereignty across the continent.For a region that has often found itself caught between American tech dominance and Chinese ambitions, building indigenous AI capability represents more than economic opportunity. Whether this bold project in Germany will succeed remains to be seen, but one thing is clear: Europe is no longer content to be a passive consumer of AI technology developed elsewhere.Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here. #nvidia #helps #germany #lead #europes
    WWW.ARTIFICIALINTELLIGENCE-NEWS.COM
    NVIDIA helps Germany lead Europe’s AI manufacturing race
    Germany and NVIDIA are building possibly the most ambitious European tech project of the decade: the continent’s first industrial AI cloud.NVIDIA has been on a European tour over the past month with CEO Jensen Huang charming audiences at London Tech Week before dazzling the crowds at Paris’s VivaTech. But it was his meeting with German Chancellor Friedrich Merz that might prove the most consequential stop.The resulting partnership between NVIDIA and Deutsche Telekom isn’t just another corporate handshake; it’s potentially a turning point for European technological sovereignty.An “AI factory” (as they’re calling it) will be created with a focus on manufacturing, which is hardly surprising given Germany’s renowned industrial heritage. The facility aims to give European industrial players the computational firepower to revolutionise everything from design to robotics.“In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Huang. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.”It’s rare to hear such urgency from a telecoms CEO, but Deutsche Telekom’s Timotheus Höttges added: “Europe’s technological future needs a sprint, not a stroll. We must seize the opportunities of artificial intelligence now, revolutionise our industry, and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.”The first phase alone will deploy 10,000 NVIDIA Blackwell GPUs spread across various high-performance systems. That makes this Germany’s largest AI deployment ever; a statement the country isn’t content to watch from the sidelines as AI transforms global industry.A Deloitte study recently highlighted the critical importance of AI technology development to Germany’s future competitiveness, particularly noting the need for expanded data centre capacity. When you consider that demand is expected to triple within just five years, this investment seems less like ambition and more like necessity.Robots teaching robotsOne of the early adopters is NEURA Robotics, a German firm that specialises in cognitive robotics. They’re using this computational muscle to power something called the Neuraverse which is essentially a connected network where robots can learn from each other.Think of it as a robotic hive mind for skills ranging from precision welding to household ironing, with each machine contributing its learnings to a collective intelligence.“Physical AI is the electricity of the future—it will power every machine on the planet,” said David Reger, Founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.”The implications of this AI project for manufacturing in Germany could be profound. This isn’t just about making existing factories slightly more efficient; it’s about reimagining what manufacturing can be in an age of intelligent machines.AI for more than just Germany’s industrial titansWhat’s particularly promising about this project is its potential reach beyond Germany’s industrial titans. The famed Mittelstand – the network of specialised small and medium-sized businesses that forms the backbone of the German economy – stands to benefit.These companies often lack the resources to build their own AI infrastructure but possess the specialised knowledge that makes them perfect candidates for AI-enhanced innovation. Democratising access to cutting-edge AI could help preserve their competitive edge in a challenging global market.Academic and research institutions will also gain access, potentially accelerating innovation across numerous fields. The approximately 900 Germany-based startups in NVIDIA’s Inception program will be eligible to use these resources, potentially unleashing a wave of entrepreneurial AI applications.However impressive this massive project is, it’s viewed merely as a stepping stone towards something even more ambitious: Europe’s AI gigafactory. This planned 100,000 GPU-powered initiative backed by the EU and Germany won’t come online until 2027, but it represents Europe’s determination to carve out its own technological future.As other European telecom providers follow suit with their own AI infrastructure projects, we may be witnessing the beginning of a concerted effort to establish technological sovereignty across the continent.For a region that has often found itself caught between American tech dominance and Chinese ambitions, building indigenous AI capability represents more than economic opportunity. Whether this bold project in Germany will succeed remains to be seen, but one thing is clear: Europe is no longer content to be a passive consumer of AI technology developed elsewhere.(Photo by Maheshkumar Painam)Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here.
    0 Комментарии 0 Поделились
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Комментарии 0 Поделились
  • From Rivals to Partners: What’s Up with the Google and OpenAI Cloud Deal?

    Google and OpenAI struck a cloud computing deal in May, according to a Reuters report.
    The deal surprised the industry as the two are seen as major AI rivals.
    Signs of friction between OpenAI and Microsoft may have also fueled the move.
    The partnership is a win-win.OpenAI gets more badly needed computing resources while Google profits from its B investment to boost its cloud computing capacity in 2025.

    In a surprise move, Google and OpenAI inked a deal that will see the AI rivals partnering to address OpenAI’s growing cloud computing needs.
    The story, reported by Reuters, cited anonymous sources saying that the deal had been discussed for months and finalized in May. Around this time, OpenAI has struggled to keep up with demand as its number of weekly active users and business users grew in Q1 2025. There’s also speculation of friction between OpenAI and its biggest investor Microsoft.
    Why the Deal Surprised the Tech Industry
    The rivalry between the two companies hardly needs an introduction. When OpenAI’s ChatGPT launched in November 2022, it posed a huge threat to Google that triggered a code red within the search giant and cloud services provider.
    Since then, Google has launched Bardto compete with OpenAI head-on. However, it had to play catch up with OpenAI’s more advanced ChatGPT AI chatbot. This led to numerous issues with Bard, with critics referring to it as a half-baked product.

    A post on X in February 2023 showed the Bard AI chatbot erroneously stating that the James Webb Telescope took the first picture of an exoplanet. It was, in fact, the European Southern Observatory’s Very Large Telescope that did this in 2004. Google’s parent company Alphabet lost B off its market value within 24 hours as a result.
    Two years on, Gemini made significant strides in terms of accuracy, quoting sources, and depth of information, but is still prone to hallucinations from time to time. You can see examples of these posted on social media, like telling a user to make spicy spaghetti with gasoline or the AI thinking it’s still 2024. 
    And then there’s this gem:

    With the entire industry shifting towards more AI integrations, Google went ahead and integrated its AI suite into Search via AI Overviews. It then doubled down on this integration with AI Mode, an experimental feature that lets you perform AI-powered searches by typing in a question, uploading a photo, or using your voice.
    In the future, AI Mode from Google Search could be a viable competitor to ChatGPT—unless of course, Google decides to bin it along with many of its previous products. Given the scope of the investment, and Gemini’s significant improvement, we doubt AI + Search will be axed.
    It’s a Win-Win for Google and OpenAI—Not So Much for Microsoft?
    In the business world, money and the desire for expansion can break even the biggest rivalries. And the one between the two tech giants isn’t an exception.
    Partly, it could be attributed to OpenAI’s relationship with Microsoft. Although the Redmond, Washington-based company has invested billions in OpenAI and has the resources to meet the latter’s cloud computing needs, their partnership hasn’t always been rosy. 
    Some would say it began when OpenAI CEO Sam Altman was briefly ousted in November 2023, which put a strain on the ‘best bromance in tech’ between him and Microsoft CEO Satya Nadella. Then last year, Microsoft added OpenAI to its list of competitors in the AI space before eventually losing its status as OpenAI’s exclusive cloud provider in January 2025.
    If that wasn’t enough, there’s also the matter of the two companies’ goal of achieving artificial general intelligence. Defined as when OpenAI develops AI systems that generate B in profits, reaching AGI means Microsoft will lose access to the former’s technology. With the company behind ChatGPT expecting to triple its 2025 revenue to from B the previous year, this could happen sooner rather than later.
    While OpenAI already has deals with Microsoft, Oracle, and CoreWeave to provide it with cloud services and access to infrastructure, it needs more and soon as the company has seen massive growth in the past few months.
    In February, OpenAI announced that it had over 400M weekly active users, up from 300M in December 2024. Meanwhile, the number of its business users who use ChatGPT Enterprise, ChatGPT Team, and ChatGPT Edu products also jumped from 2M in February to 3M in March.
    The good news is Google is more than ready to deliver. Its parent company has earmarked B towards its investments in AI this year, which includes boosting its cloud computing capacity.

    In April, Google launched its 7th generation tensor processing unitcalled Ironwood, which has been designed specifically for inference. According to the company, the new TPU will help power AI models that will ‘proactively retrieve and generate data to collaboratively deliver insights and answers, not just data.’The deal with OpenAI can be seen as a vote of confidence in Google’s cloud computing capability that competes with the likes of Microsoft Azure and Amazon Web Services. It also expands Google’s vast client list that includes tech, gaming, entertainment, and retail companies, as well as organizations in the public sector.

    As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy.
    With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility.
    Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines.
    Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech. 
    He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom.
    That fascination with tech didn’t just stick. It evolved into a full-blown calling.
    After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career.
    He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy.
    His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers.
    At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap.
    Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual.
    As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting.
    From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it.

    View all articles by Cedric Solidon

    Our editorial process

    The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors.
    #rivals #partners #whats #with #google
    From Rivals to Partners: What’s Up with the Google and OpenAI Cloud Deal?
    Google and OpenAI struck a cloud computing deal in May, according to a Reuters report. The deal surprised the industry as the two are seen as major AI rivals. Signs of friction between OpenAI and Microsoft may have also fueled the move. The partnership is a win-win.OpenAI gets more badly needed computing resources while Google profits from its B investment to boost its cloud computing capacity in 2025. In a surprise move, Google and OpenAI inked a deal that will see the AI rivals partnering to address OpenAI’s growing cloud computing needs. The story, reported by Reuters, cited anonymous sources saying that the deal had been discussed for months and finalized in May. Around this time, OpenAI has struggled to keep up with demand as its number of weekly active users and business users grew in Q1 2025. There’s also speculation of friction between OpenAI and its biggest investor Microsoft. Why the Deal Surprised the Tech Industry The rivalry between the two companies hardly needs an introduction. When OpenAI’s ChatGPT launched in November 2022, it posed a huge threat to Google that triggered a code red within the search giant and cloud services provider. Since then, Google has launched Bardto compete with OpenAI head-on. However, it had to play catch up with OpenAI’s more advanced ChatGPT AI chatbot. This led to numerous issues with Bard, with critics referring to it as a half-baked product. A post on X in February 2023 showed the Bard AI chatbot erroneously stating that the James Webb Telescope took the first picture of an exoplanet. It was, in fact, the European Southern Observatory’s Very Large Telescope that did this in 2004. Google’s parent company Alphabet lost B off its market value within 24 hours as a result. Two years on, Gemini made significant strides in terms of accuracy, quoting sources, and depth of information, but is still prone to hallucinations from time to time. You can see examples of these posted on social media, like telling a user to make spicy spaghetti with gasoline or the AI thinking it’s still 2024.  And then there’s this gem: With the entire industry shifting towards more AI integrations, Google went ahead and integrated its AI suite into Search via AI Overviews. It then doubled down on this integration with AI Mode, an experimental feature that lets you perform AI-powered searches by typing in a question, uploading a photo, or using your voice. In the future, AI Mode from Google Search could be a viable competitor to ChatGPT—unless of course, Google decides to bin it along with many of its previous products. Given the scope of the investment, and Gemini’s significant improvement, we doubt AI + Search will be axed. It’s a Win-Win for Google and OpenAI—Not So Much for Microsoft? In the business world, money and the desire for expansion can break even the biggest rivalries. And the one between the two tech giants isn’t an exception. Partly, it could be attributed to OpenAI’s relationship with Microsoft. Although the Redmond, Washington-based company has invested billions in OpenAI and has the resources to meet the latter’s cloud computing needs, their partnership hasn’t always been rosy.  Some would say it began when OpenAI CEO Sam Altman was briefly ousted in November 2023, which put a strain on the ‘best bromance in tech’ between him and Microsoft CEO Satya Nadella. Then last year, Microsoft added OpenAI to its list of competitors in the AI space before eventually losing its status as OpenAI’s exclusive cloud provider in January 2025. If that wasn’t enough, there’s also the matter of the two companies’ goal of achieving artificial general intelligence. Defined as when OpenAI develops AI systems that generate B in profits, reaching AGI means Microsoft will lose access to the former’s technology. With the company behind ChatGPT expecting to triple its 2025 revenue to from B the previous year, this could happen sooner rather than later. While OpenAI already has deals with Microsoft, Oracle, and CoreWeave to provide it with cloud services and access to infrastructure, it needs more and soon as the company has seen massive growth in the past few months. In February, OpenAI announced that it had over 400M weekly active users, up from 300M in December 2024. Meanwhile, the number of its business users who use ChatGPT Enterprise, ChatGPT Team, and ChatGPT Edu products also jumped from 2M in February to 3M in March. The good news is Google is more than ready to deliver. Its parent company has earmarked B towards its investments in AI this year, which includes boosting its cloud computing capacity. In April, Google launched its 7th generation tensor processing unitcalled Ironwood, which has been designed specifically for inference. According to the company, the new TPU will help power AI models that will ‘proactively retrieve and generate data to collaboratively deliver insights and answers, not just data.’The deal with OpenAI can be seen as a vote of confidence in Google’s cloud computing capability that competes with the likes of Microsoft Azure and Amazon Web Services. It also expands Google’s vast client list that includes tech, gaming, entertainment, and retail companies, as well as organizations in the public sector. As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy. With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility. Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines. Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech.  He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom. That fascination with tech didn’t just stick. It evolved into a full-blown calling. After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career. He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy. His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers. At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap. Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual. As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting. From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it. View all articles by Cedric Solidon Our editorial process The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors. #rivals #partners #whats #with #google
    TECHREPORT.COM
    From Rivals to Partners: What’s Up with the Google and OpenAI Cloud Deal?
    Google and OpenAI struck a cloud computing deal in May, according to a Reuters report. The deal surprised the industry as the two are seen as major AI rivals. Signs of friction between OpenAI and Microsoft may have also fueled the move. The partnership is a win-win.OpenAI gets more badly needed computing resources while Google profits from its $75B investment to boost its cloud computing capacity in 2025. In a surprise move, Google and OpenAI inked a deal that will see the AI rivals partnering to address OpenAI’s growing cloud computing needs. The story, reported by Reuters, cited anonymous sources saying that the deal had been discussed for months and finalized in May. Around this time, OpenAI has struggled to keep up with demand as its number of weekly active users and business users grew in Q1 2025. There’s also speculation of friction between OpenAI and its biggest investor Microsoft. Why the Deal Surprised the Tech Industry The rivalry between the two companies hardly needs an introduction. When OpenAI’s ChatGPT launched in November 2022, it posed a huge threat to Google that triggered a code red within the search giant and cloud services provider. Since then, Google has launched Bard (now known as Gemini) to compete with OpenAI head-on. However, it had to play catch up with OpenAI’s more advanced ChatGPT AI chatbot. This led to numerous issues with Bard, with critics referring to it as a half-baked product. A post on X in February 2023 showed the Bard AI chatbot erroneously stating that the James Webb Telescope took the first picture of an exoplanet. It was, in fact, the European Southern Observatory’s Very Large Telescope that did this in 2004. Google’s parent company Alphabet lost $100B off its market value within 24 hours as a result. Two years on, Gemini made significant strides in terms of accuracy, quoting sources, and depth of information, but is still prone to hallucinations from time to time. You can see examples of these posted on social media, like telling a user to make spicy spaghetti with gasoline or the AI thinking it’s still 2024.  And then there’s this gem: With the entire industry shifting towards more AI integrations, Google went ahead and integrated its AI suite into Search via AI Overviews. It then doubled down on this integration with AI Mode, an experimental feature that lets you perform AI-powered searches by typing in a question, uploading a photo, or using your voice. In the future, AI Mode from Google Search could be a viable competitor to ChatGPT—unless of course, Google decides to bin it along with many of its previous products. Given the scope of the investment, and Gemini’s significant improvement, we doubt AI + Search will be axed. It’s a Win-Win for Google and OpenAI—Not So Much for Microsoft? In the business world, money and the desire for expansion can break even the biggest rivalries. And the one between the two tech giants isn’t an exception. Partly, it could be attributed to OpenAI’s relationship with Microsoft. Although the Redmond, Washington-based company has invested billions in OpenAI and has the resources to meet the latter’s cloud computing needs, their partnership hasn’t always been rosy.  Some would say it began when OpenAI CEO Sam Altman was briefly ousted in November 2023, which put a strain on the ‘best bromance in tech’ between him and Microsoft CEO Satya Nadella. Then last year, Microsoft added OpenAI to its list of competitors in the AI space before eventually losing its status as OpenAI’s exclusive cloud provider in January 2025. If that wasn’t enough, there’s also the matter of the two companies’ goal of achieving artificial general intelligence (AGI). Defined as when OpenAI develops AI systems that generate $100B in profits, reaching AGI means Microsoft will lose access to the former’s technology. With the company behind ChatGPT expecting to triple its 2025 revenue to $12.7 from $3.7B the previous year, this could happen sooner rather than later. While OpenAI already has deals with Microsoft, Oracle, and CoreWeave to provide it with cloud services and access to infrastructure, it needs more and soon as the company has seen massive growth in the past few months. In February, OpenAI announced that it had over 400M weekly active users, up from 300M in December 2024. Meanwhile, the number of its business users who use ChatGPT Enterprise, ChatGPT Team, and ChatGPT Edu products also jumped from 2M in February to 3M in March. The good news is Google is more than ready to deliver. Its parent company has earmarked $75B towards its investments in AI this year, which includes boosting its cloud computing capacity. In April, Google launched its 7th generation tensor processing unit (TPU) called Ironwood, which has been designed specifically for inference. According to the company, the new TPU will help power AI models that will ‘proactively retrieve and generate data to collaboratively deliver insights and answers, not just data.’The deal with OpenAI can be seen as a vote of confidence in Google’s cloud computing capability that competes with the likes of Microsoft Azure and Amazon Web Services. It also expands Google’s vast client list that includes tech, gaming, entertainment, and retail companies, as well as organizations in the public sector. As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy. With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility. Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines. Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech.  He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom. That fascination with tech didn’t just stick. It evolved into a full-blown calling. After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career. He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy. His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers. At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap. Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual. As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting. From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it. View all articles by Cedric Solidon Our editorial process The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors.
    0 Комментарии 0 Поделились
  • Powering next-gen services with AI in regulated industries 

    Businesses in highly-regulated industries like financial services, insurance, pharmaceuticals, and health care are increasingly turning to AI-powered tools to streamline complex and sensitive tasks. Conversational AI-driven interfaces are helping hospitals to track the location and delivery of a patient’s time-sensitive cancer drugs. Generative AI chatbots are helping insurance customers answer questions and solve problems. And agentic AI systems are emerging to support financial services customers in making complex financial planning and budgeting decisions. 

    “Over the last 15 years of digital transformation, the orientation in many regulated sectors has been to look at digital technologies as a place to provide more cost-effective and meaningful customer experience and divert customers from higher-cost, more complex channels of service,” says Peter Neufeld, who leads the EY Studio+ digital and customer experience capability at EY for financial services companies in the UK, Europe, the Middle East, and Africa. 

    DOWNLOAD THE FULL REPORT

    For many, the “last mile” of the end-to-end customer journey can present a challenge. Services at this stage often involve much more complex interactions than the usual app or self-service portal can handle. This could be dealing with a challenging health diagnosis, addressing late mortgage payments, applying for government benefits, or understanding the lifestyle you can afford in retirement. “When we get into these more complex service needs, there’s a real bias toward human interaction,” says Neufeld. “We want to speak to someone, we want to understand whether we’re making a good decision, or we might want alternative views and perspectives.” 

    But these high-cost, high-touch interactions can be less than satisfying for customers when handled through a call center if, for example, technical systems are outdated or data sources are disconnected. Those kinds of problems ultimately lead to the possibility of complaints and lost business. Good customer experience is critical for the bottom line. Customers are 3.8 times more likely to make return purchases after a successful experience than after an unsuccessful one, according to Qualtrics. Intuitive AI-driven systems— supported by robust data infrastructure that can efficiently access and share information in real time— can boost the customer experience, even in complex or sensitive situations. 

    Download the full report.

    This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

    This content was researched, designed, and written entirely by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.
    #powering #nextgen #services #with #regulated
    Powering next-gen services with AI in regulated industries 
    Businesses in highly-regulated industries like financial services, insurance, pharmaceuticals, and health care are increasingly turning to AI-powered tools to streamline complex and sensitive tasks. Conversational AI-driven interfaces are helping hospitals to track the location and delivery of a patient’s time-sensitive cancer drugs. Generative AI chatbots are helping insurance customers answer questions and solve problems. And agentic AI systems are emerging to support financial services customers in making complex financial planning and budgeting decisions.  “Over the last 15 years of digital transformation, the orientation in many regulated sectors has been to look at digital technologies as a place to provide more cost-effective and meaningful customer experience and divert customers from higher-cost, more complex channels of service,” says Peter Neufeld, who leads the EY Studio+ digital and customer experience capability at EY for financial services companies in the UK, Europe, the Middle East, and Africa.  DOWNLOAD THE FULL REPORT For many, the “last mile” of the end-to-end customer journey can present a challenge. Services at this stage often involve much more complex interactions than the usual app or self-service portal can handle. This could be dealing with a challenging health diagnosis, addressing late mortgage payments, applying for government benefits, or understanding the lifestyle you can afford in retirement. “When we get into these more complex service needs, there’s a real bias toward human interaction,” says Neufeld. “We want to speak to someone, we want to understand whether we’re making a good decision, or we might want alternative views and perspectives.”  But these high-cost, high-touch interactions can be less than satisfying for customers when handled through a call center if, for example, technical systems are outdated or data sources are disconnected. Those kinds of problems ultimately lead to the possibility of complaints and lost business. Good customer experience is critical for the bottom line. Customers are 3.8 times more likely to make return purchases after a successful experience than after an unsuccessful one, according to Qualtrics. Intuitive AI-driven systems— supported by robust data infrastructure that can efficiently access and share information in real time— can boost the customer experience, even in complex or sensitive situations.  Download the full report. This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. This content was researched, designed, and written entirely by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review. #powering #nextgen #services #with #regulated
    WWW.TECHNOLOGYREVIEW.COM
    Powering next-gen services with AI in regulated industries 
    Businesses in highly-regulated industries like financial services, insurance, pharmaceuticals, and health care are increasingly turning to AI-powered tools to streamline complex and sensitive tasks. Conversational AI-driven interfaces are helping hospitals to track the location and delivery of a patient’s time-sensitive cancer drugs. Generative AI chatbots are helping insurance customers answer questions and solve problems. And agentic AI systems are emerging to support financial services customers in making complex financial planning and budgeting decisions.  “Over the last 15 years of digital transformation, the orientation in many regulated sectors has been to look at digital technologies as a place to provide more cost-effective and meaningful customer experience and divert customers from higher-cost, more complex channels of service,” says Peter Neufeld, who leads the EY Studio+ digital and customer experience capability at EY for financial services companies in the UK, Europe, the Middle East, and Africa.  DOWNLOAD THE FULL REPORT For many, the “last mile” of the end-to-end customer journey can present a challenge. Services at this stage often involve much more complex interactions than the usual app or self-service portal can handle. This could be dealing with a challenging health diagnosis, addressing late mortgage payments, applying for government benefits, or understanding the lifestyle you can afford in retirement. “When we get into these more complex service needs, there’s a real bias toward human interaction,” says Neufeld. “We want to speak to someone, we want to understand whether we’re making a good decision, or we might want alternative views and perspectives.”  But these high-cost, high-touch interactions can be less than satisfying for customers when handled through a call center if, for example, technical systems are outdated or data sources are disconnected. Those kinds of problems ultimately lead to the possibility of complaints and lost business. Good customer experience is critical for the bottom line. Customers are 3.8 times more likely to make return purchases after a successful experience than after an unsuccessful one, according to Qualtrics. Intuitive AI-driven systems— supported by robust data infrastructure that can efficiently access and share information in real time— can boost the customer experience, even in complex or sensitive situations.  Download the full report. This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. This content was researched, designed, and written entirely by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.
    0 Комментарии 0 Поделились