• 22 Games We’d Love To See On The Nintendo Switch 2

    The original Switch was a trailblazing device that proved you could take console-quality games on the go, but it was demonstrably less powerful than its PlayStation and Xbox competitors. In the years since the handheld hit the shelves, that gap has only grown with the release of the PS5 and Xbox Series X/S. Making up…Read more...
    22 Games We’d Love To See On The Nintendo Switch 2 The original Switch was a trailblazing device that proved you could take console-quality games on the go, but it was demonstrably less powerful than its PlayStation and Xbox competitors. In the years since the handheld hit the shelves, that gap has only grown with the release of the PS5 and Xbox Series X/S. Making up…Read more...
    KOTAKU.COM
    22 Games We’d Love To See On The Nintendo Switch 2
    The original Switch was a trailblazing device that proved you could take console-quality games on the go, but it was demonstrably less powerful than its PlayStation and Xbox competitors. In the years since the handheld hit the shelves, that gap has o
    2 Commentarii 0 Distribuiri
  • Maxon has released Redshift 2025.5, and honestly, it's about time! But let's not sugarcoat it; the hype around new features like USDZ file rendering and point cloud support in Blender feels like a desperate attempt to keep up with competitors. Why does every release come with the same old promises? Users are tired of half-baked updates that don't address the real issues plaguing GPU rendering. Instead of flashy features, how about focusing on stability and performance? It’s infuriating to see companies chase trends while neglecting the core functionalities that truly matter. Enough with the marketing gimmicks—deliver real improvements or don’t bother at all!

    #Maxon #Redshift2025 #GPURendering #Blender #Tech
    Maxon has released Redshift 2025.5, and honestly, it's about time! But let's not sugarcoat it; the hype around new features like USDZ file rendering and point cloud support in Blender feels like a desperate attempt to keep up with competitors. Why does every release come with the same old promises? Users are tired of half-baked updates that don't address the real issues plaguing GPU rendering. Instead of flashy features, how about focusing on stability and performance? It’s infuriating to see companies chase trends while neglecting the core functionalities that truly matter. Enough with the marketing gimmicks—deliver real improvements or don’t bother at all! #Maxon #Redshift2025 #GPURendering #Blender #Tech
    Maxon releases Redshift 2025.5
    Check out the new features in the GPU renderer, including support for rendering USDZ files, and support for point clouds in Blender.
    1 Commentarii 0 Distribuiri
  • competitor analysis, website traffic, traffic comparison, SEO strategies, digital marketing, engagement metrics, user demographics, website analytics, 2025 trends

    In the cutthroat world of digital marketing, knowing your competitors’ website traffic is akin to knowing the secret ingredient of a rival chef’s famous dish. In 2025, analyzing and comparing competitor website traffic has evolved into an art form. Forget the days of simply glancing at their homepages; today, we dissect, delve, and de...
    competitor analysis, website traffic, traffic comparison, SEO strategies, digital marketing, engagement metrics, user demographics, website analytics, 2025 trends In the cutthroat world of digital marketing, knowing your competitors’ website traffic is akin to knowing the secret ingredient of a rival chef’s famous dish. In 2025, analyzing and comparing competitor website traffic has evolved into an art form. Forget the days of simply glancing at their homepages; today, we dissect, delve, and de...
    # How to Analyze & Compare Competitor Website Traffic in 2025
    competitor analysis, website traffic, traffic comparison, SEO strategies, digital marketing, engagement metrics, user demographics, website analytics, 2025 trends In the cutthroat world of digital marketing, knowing your competitors’ website traffic is akin to knowing the secret ingredient of a rival chef’s famous dish. In 2025, analyzing and comparing competitor website traffic has evolved...
    Like
    Love
    Wow
    Sad
    Angry
    195
    1 Commentarii 0 Distribuiri
  • Hey there, fabulous friends!

    Are you ready to take your market research game to the next level? Today, I want to share with you something that can truly transform how you see competition! In this fast-paced world, every entrepreneur and marketer needs to be equipped with the right tools to uncover hidden gems in the market. And guess what? The answer lies in the **14 Best Competitive Intelligence Tools for Market Research**!

    Imagine having the power to peek behind the curtain of your competitors and discover their strategies and tactics! With these amazing tools, you can gather insights that will not only help you understand your market better but also give you the edge you need to soar higher than ever before!

    One standout tool that I absolutely adore is the **Semrush Traffic & Market Toolkit**. It’s like having a secret weapon in your back pocket! This toolkit provides invaluable data about traffic sources, keyword strategies, and much more! Say goodbye to guesswork and hello to informed decisions! Each piece of information you gather brings you one step closer to your goals.

    But that’s not all! Each of the 14 tools has its own unique features that cater to different aspects of competitive intelligence. Whether it's analyzing social media performance, tracking keywords, or monitoring brand mentions, there’s something for everyone! It’s time to embrace the power of knowledge and turn it into your competitive advantage!

    I know that diving into market research might seem daunting, but let me tell you, it’s a thrilling adventure! Every insight you uncover is like finding a treasure map leading you to success! So, don’t shy away from exploring these tools. Embrace them with open arms and watch your business flourish!

    Remember, the only limit to your success is the extent of your imagination and the determination to use the right resources. So gear up, equip yourself with these 14 best competitive intelligence tools, and let’s conquer the market together!

    Let’s lift each other up and share our discoveries! What tools are you excited to try? Drop your thoughts in the comments below! Let’s inspire one another to reach new heights!

    #MarketResearch #CompetitiveIntelligence #BusinessGrowth #Semrush #Inspiration
    🌟 Hey there, fabulous friends! 🌟 Are you ready to take your market research game to the next level? 🚀 Today, I want to share with you something that can truly transform how you see competition! In this fast-paced world, every entrepreneur and marketer needs to be equipped with the right tools to uncover hidden gems in the market. And guess what? The answer lies in the **14 Best Competitive Intelligence Tools for Market Research**! 🎉🎉 Imagine having the power to peek behind the curtain of your competitors and discover their strategies and tactics! With these amazing tools, you can gather insights that will not only help you understand your market better but also give you the edge you need to soar higher than ever before! 🌈✨ One standout tool that I absolutely adore is the **Semrush Traffic & Market Toolkit**. It’s like having a secret weapon in your back pocket! 🕵️‍♂️💼 This toolkit provides invaluable data about traffic sources, keyword strategies, and much more! Say goodbye to guesswork and hello to informed decisions! Each piece of information you gather brings you one step closer to your goals. 🌟 But that’s not all! Each of the 14 tools has its own unique features that cater to different aspects of competitive intelligence. Whether it's analyzing social media performance, tracking keywords, or monitoring brand mentions, there’s something for everyone! It’s time to embrace the power of knowledge and turn it into your competitive advantage! 💪🔥 I know that diving into market research might seem daunting, but let me tell you, it’s a thrilling adventure! Every insight you uncover is like finding a treasure map leading you to success! 🗺️💖 So, don’t shy away from exploring these tools. Embrace them with open arms and watch your business flourish! 🌺 Remember, the only limit to your success is the extent of your imagination and the determination to use the right resources. So gear up, equip yourself with these 14 best competitive intelligence tools, and let’s conquer the market together! 🌍💫 Let’s lift each other up and share our discoveries! What tools are you excited to try? Drop your thoughts in the comments below! 👇💬 Let’s inspire one another to reach new heights! #MarketResearch #CompetitiveIntelligence #BusinessGrowth #Semrush #Inspiration
    The 14 Best Competitive Intelligence Tools for Market Research
    Discover the competition and reveal strategies and tactics of any industry player with these top 14 competitive intelligence tools, including the Semrush Traffic & Market Toolkit.
    Like
    Love
    Wow
    Angry
    Sad
    567
    1 Commentarii 0 Distribuiri
  • Hey everyone!

    Today, let’s dive into an exciting topic that can truly elevate your online presence: **Keyword Bidding**! Whether you’re a business owner, a marketer, or just someone curious about the digital landscape, understanding keyword bidding can open up a world of possibilities for you!

    So, what exactly is keyword bidding? It’s all about setting the amount you’re willing to pay to achieve your goals in Google Ads. Think of it as placing a bet on your future success! When you bid on keywords, you’re investing in your visibility online, allowing your business to reach the right audience at the right time. Isn’t that empowering?

    Imagine this: You have a fantastic product or service, but if nobody sees it, how can you shine? This is where keyword bidding comes into play! By strategically choosing the right keywords related to your business, you can ensure that when potential customers search for what you offer, they find YOU!

    Here’s a simple step-by-step guide to get you started on your keyword bidding journey:

    1. **Research Your Keywords**: Start by brainstorming keywords that are relevant to your business. Use tools like Google Keyword Planner to discover popular search terms. The more specific, the better!

    2. **Set Your Budget**: Determine how much you’re willing to spend. Remember, this is an investment in your growth! Don’t be afraid to start small; you can always increase your budget as you see results.

    3. **Choose Your Bids**: Decide how much you want to bid for each keyword. This can vary based on competition and your goals. Don’t forget to keep an eye on your competitors!

    4. **Monitor and Adjust**: Once your ads are live, regularly check their performance. Are certain keywords performing better than others? Adjust your bids accordingly to maximize your return on investment.

    5. **Stay Inspired**: Keyword bidding is a journey, so stay positive and keep learning! Engage with communities, read up on trends, and don’t hesitate to experiment! Your enthusiasm will fuel your success!

    Remember, every great achievement starts with a single step! Embrace this opportunity to harness the power of keyword bidding and watch your business flourish! You’ve got this! Let’s make those dreams a reality, one bid at a time!

    #KeywordBidding #GoogleAds #DigitalMarketing #OnlineSuccess #Inspiration
    🌟 Hey everyone! 🌟 Today, let’s dive into an exciting topic that can truly elevate your online presence: **Keyword Bidding**! 🚀 Whether you’re a business owner, a marketer, or just someone curious about the digital landscape, understanding keyword bidding can open up a world of possibilities for you! So, what exactly is keyword bidding? 🤔 It’s all about setting the amount you’re willing to pay to achieve your goals in Google Ads. Think of it as placing a bet on your future success! 💪 When you bid on keywords, you’re investing in your visibility online, allowing your business to reach the right audience at the right time. Isn’t that empowering? 🌈 Imagine this: You have a fantastic product or service, but if nobody sees it, how can you shine? 🌟 This is where keyword bidding comes into play! By strategically choosing the right keywords related to your business, you can ensure that when potential customers search for what you offer, they find YOU! 🎯 Here’s a simple step-by-step guide to get you started on your keyword bidding journey: 1. **Research Your Keywords**: Start by brainstorming keywords that are relevant to your business. Use tools like Google Keyword Planner to discover popular search terms. The more specific, the better! 🔍 2. **Set Your Budget**: Determine how much you’re willing to spend. Remember, this is an investment in your growth! Don’t be afraid to start small; you can always increase your budget as you see results. 💰 3. **Choose Your Bids**: Decide how much you want to bid for each keyword. This can vary based on competition and your goals. Don’t forget to keep an eye on your competitors! 👀 4. **Monitor and Adjust**: Once your ads are live, regularly check their performance. Are certain keywords performing better than others? Adjust your bids accordingly to maximize your return on investment. 📈 5. **Stay Inspired**: Keyword bidding is a journey, so stay positive and keep learning! Engage with communities, read up on trends, and don’t hesitate to experiment! Your enthusiasm will fuel your success! 🌺 Remember, every great achievement starts with a single step! 💖 Embrace this opportunity to harness the power of keyword bidding and watch your business flourish! 🌼 You’ve got this! Let’s make those dreams a reality, one bid at a time! 💫 #KeywordBidding #GoogleAds #DigitalMarketing #OnlineSuccess #Inspiration
    What Is Keyword Bidding? A Beginner’s Step-by-Step Guide
    Keyword bidding involves setting how much you’re willing to pay to reach a certain goal in Google Ads.
    Like
    Love
    Wow
    Sad
    Angry
    548
    1 Commentarii 0 Distribuiri
  • It's infuriating to see how many businesses are still in the dark about the true power of local SEO! Seriously, how many times do we have to explain that ignoring local search is like handing your competition a golden ticket to snatch away your potential customers? In a world where everything is interconnected, the sheer neglect of local SEO is maddening.

    Let’s get straight to the point: local SEO isn't just a trendy buzzword; it's an absolute necessity for any business that wants to thrive in its community! If you're still sitting on the sidelines, thinking that social media posts or fancy ads will magically draw customers through your door, think again! The reality is that those who master local SEO will dominate search results, while the rest are doomed to languish in obscurity.

    The absurdity of this situation is mind-boggling. Businesses have the tools at their disposal, but many still fail to understand the significance of geolocalization. It’s not rocket science! Local SEO can significantly improve your organic positioning, and yet, here we are, shouting into the void. You want visibility? You want to attract local customers? Then optimize your Google My Business listing, gather those reviews, and ensure your NAP (Name, Address, Phone number) information is consistent across all platforms. It’s not that complicated, yet so many are just too lazy to put in the work!

    And let’s talk about the content. Enough with the generic posts that have nothing to do with your local audience! If your content doesn’t resonate with the community you serve, it’s as good as throwing money out the window. Local SEO thrives on relevance and authenticity, so start creating content that speaks directly to your audience. Be the business that knows its customers, not just another faceless entity in the digital ether.

    It’s time to wake up, people! Local SEO is the lifeblood of businesses that want to thrive in today’s competitive landscape. Stop making excuses for why you can’t implement these strategies. It’s not about being tech-savvy; it’s about being smart, strategic, and willing to adapt. The longer you wait, the more customers you lose to those who understand the importance of local SEO.

    If you’re still clueless, it’s time to educate yourself because ignoring local SEO is a direct ticket to failure. Don’t let your competitors leave you in their dust. Step up, get informed, and start making the changes that will propel your business forward. Your community is waiting for you—don’t keep them waiting any longer!

    #LocalSEO #DigitalMarketing #SmallBusiness #OrganicPositioning #SEO
    It's infuriating to see how many businesses are still in the dark about the true power of local SEO! Seriously, how many times do we have to explain that ignoring local search is like handing your competition a golden ticket to snatch away your potential customers? In a world where everything is interconnected, the sheer neglect of local SEO is maddening. Let’s get straight to the point: local SEO isn't just a trendy buzzword; it's an absolute necessity for any business that wants to thrive in its community! If you're still sitting on the sidelines, thinking that social media posts or fancy ads will magically draw customers through your door, think again! The reality is that those who master local SEO will dominate search results, while the rest are doomed to languish in obscurity. The absurdity of this situation is mind-boggling. Businesses have the tools at their disposal, but many still fail to understand the significance of geolocalization. It’s not rocket science! Local SEO can significantly improve your organic positioning, and yet, here we are, shouting into the void. You want visibility? You want to attract local customers? Then optimize your Google My Business listing, gather those reviews, and ensure your NAP (Name, Address, Phone number) information is consistent across all platforms. It’s not that complicated, yet so many are just too lazy to put in the work! And let’s talk about the content. Enough with the generic posts that have nothing to do with your local audience! If your content doesn’t resonate with the community you serve, it’s as good as throwing money out the window. Local SEO thrives on relevance and authenticity, so start creating content that speaks directly to your audience. Be the business that knows its customers, not just another faceless entity in the digital ether. It’s time to wake up, people! Local SEO is the lifeblood of businesses that want to thrive in today’s competitive landscape. Stop making excuses for why you can’t implement these strategies. It’s not about being tech-savvy; it’s about being smart, strategic, and willing to adapt. The longer you wait, the more customers you lose to those who understand the importance of local SEO. If you’re still clueless, it’s time to educate yourself because ignoring local SEO is a direct ticket to failure. Don’t let your competitors leave you in their dust. Step up, get informed, and start making the changes that will propel your business forward. Your community is waiting for you—don’t keep them waiting any longer! #LocalSEO #DigitalMarketing #SmallBusiness #OrganicPositioning #SEO
    SEO local, ¿qué es y cómo ayuda a mejorar el posicionamiento orgánico?
    SEO local, ¿qué es y cómo ayuda a mejorar el posicionamiento orgánico? En un mundo cada vez más conectado, el SEO local se ha consolidado como una de las estrategias más efectivas para mejorar la visibilidad de los negocios locales que dependen de la
    Like
    Love
    Wow
    Sad
    Angry
    518
    1 Commentarii 0 Distribuiri

  • ## The 2025 Anniversary of UGREEN: Fueling Your Journey with Every Percentage!

    It's 2025, and while the world moves at lightning speed, UGREEN has been steadfastly chugging along, shoving mediocre competitors aside and positioning itself as a titan in the tech accessory field. A company that dares to claim, "We charge your journey with every percentage!"—and frankly, it had better deliver on that promise. Let's peel back the layers of this anniversary celebration and see whether UGREEN truly l...
    ## The 2025 Anniversary of UGREEN: Fueling Your Journey with Every Percentage! It's 2025, and while the world moves at lightning speed, UGREEN has been steadfastly chugging along, shoving mediocre competitors aside and positioning itself as a titan in the tech accessory field. A company that dares to claim, "We charge your journey with every percentage!"—and frankly, it had better deliver on that promise. Let's peel back the layers of this anniversary celebration and see whether UGREEN truly l...
    الذكرى السنوية لعلامة UGREEN لعام 2025: نَشحن رحلتك بكل نسبة مئوية!
    ## The 2025 Anniversary of UGREEN: Fueling Your Journey with Every Percentage! It's 2025, and while the world moves at lightning speed, UGREEN has been steadfastly chugging along, shoving mediocre competitors aside and positioning itself as a titan in the tech accessory field. A company that dares to claim, "We charge your journey with every percentage!"—and frankly, it had better deliver on...
    Like
    Love
    Wow
    Sad
    Angry
    592
    1 Commentarii 0 Distribuiri
  • In a world flooded with noise, I find myself lost in the silence. Each day, I wake up to the same empty room, filled with memories of what once was. The warmth of connection has faded, replaced by a cold, hollow feeling of isolation. It’s a weight I carry, heavy on my chest, like a shadow that never leaves.

    As I scroll through the endless feeds of smiling faces, I can’t help but feel the sting of loneliness. It’s as if everyone has found their place in the sun, while I remain hidden in the corners, searching for a glimpse of belonging. I look for a spark of understanding, but all I find are fleeting moments that remind me of my solitude.

    I think about what it means to have a share of search in this vast digital landscape. To be a brand that stands out, to be seen and sought after, while I remain invisible, a mere whisper in the chaos. The percentage of search queries for a brand compared to its competitors feels like a metaphor for my life. I watch as others rise, while I struggle to be noticed, to be acknowledged, to matter.

    What does it mean to be relevant when the world feels so distant? I yearn to be a part of something bigger, yet I find myself on the outskirts, watching from afar. The metrics of success and recognition apply to brands and businesses, but what about the human heart? How do we measure the longing for connection, the ache for companionship?

    I feel like a ghost among the living, haunted by the echoes of laughter and joy that seem just out of reach. Every interaction feels superficial, a mere transaction without substance. I crave authenticity, a genuine bond that transcends the digital noise. But as I reach out, I feel the familiar sting of rejection, the reminder that perhaps I am not meant to be part of this narrative.

    In this search for meaning, I find myself grappling with the reality of my existence. I ponder the calculations of value and worth, wondering if I will ever find my rightful place among those who shine. The loneliness envelops me, a heavy cloak that I cannot shed.

    Yet, even in this desolation, I hold onto a flicker of hope. Perhaps one day, I will find my share of search, a moment where I am not just a statistic, but a soul recognized and valued. Until then, I will continue to wander through this vast expanse, seeking the connection that feels so elusive.

    #Loneliness #SearchForConnection #Heartbreak #Isolation #EmotionalJourney
    In a world flooded with noise, I find myself lost in the silence. Each day, I wake up to the same empty room, filled with memories of what once was. The warmth of connection has faded, replaced by a cold, hollow feeling of isolation. It’s a weight I carry, heavy on my chest, like a shadow that never leaves. As I scroll through the endless feeds of smiling faces, I can’t help but feel the sting of loneliness. It’s as if everyone has found their place in the sun, while I remain hidden in the corners, searching for a glimpse of belonging. I look for a spark of understanding, but all I find are fleeting moments that remind me of my solitude. I think about what it means to have a share of search in this vast digital landscape. To be a brand that stands out, to be seen and sought after, while I remain invisible, a mere whisper in the chaos. The percentage of search queries for a brand compared to its competitors feels like a metaphor for my life. I watch as others rise, while I struggle to be noticed, to be acknowledged, to matter. What does it mean to be relevant when the world feels so distant? I yearn to be a part of something bigger, yet I find myself on the outskirts, watching from afar. The metrics of success and recognition apply to brands and businesses, but what about the human heart? How do we measure the longing for connection, the ache for companionship? I feel like a ghost among the living, haunted by the echoes of laughter and joy that seem just out of reach. Every interaction feels superficial, a mere transaction without substance. I crave authenticity, a genuine bond that transcends the digital noise. But as I reach out, I feel the familiar sting of rejection, the reminder that perhaps I am not meant to be part of this narrative. In this search for meaning, I find myself grappling with the reality of my existence. I ponder the calculations of value and worth, wondering if I will ever find my rightful place among those who shine. The loneliness envelops me, a heavy cloak that I cannot shed. Yet, even in this desolation, I hold onto a flicker of hope. Perhaps one day, I will find my share of search, a moment where I am not just a statistic, but a soul recognized and valued. Until then, I will continue to wander through this vast expanse, seeking the connection that feels so elusive. #Loneliness #SearchForConnection #Heartbreak #Isolation #EmotionalJourney
    What Is Share of Search? & How to Calculate It
    Share of search is the percentage of search queries for a brand relative to competitors in the same category.
    Like
    Love
    Wow
    Sad
    Angry
    583
    1 Commentarii 0 Distribuiri
  • Ankur Kothari Q&A: Customer Engagement Book Interview

    Reading Time: 9 minutes
    In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns.
    But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic.
    This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results.
    Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.

     
    Ankur Kothari Q&A Interview
    1. What types of customer engagement data are most valuable for making strategic business decisions?
    Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns.
    Second would be demographic information: age, location, income, and other relevant personal characteristics.
    Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews.
    Fourth would be the customer journey data.

    We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data.

    2. How do you distinguish between data that is actionable versus data that is just noise?
    First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance.
    Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in.

    You also want to make sure that there is consistency across sources.
    Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory.
    Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy.

    By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions.

    3. How can customer engagement data be used to identify and prioritize new business opportunities?
    First, it helps us to uncover unmet needs.

    By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points.

    Second would be identifying emerging needs.
    Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly.
    Third would be segmentation analysis.
    Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies.
    Last is to build competitive differentiation.

    Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions.

    4. Can you share an example of where data insights directly influenced a critical decision?
    I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings.
    We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms.
    That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs.

    That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial.

    5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time?
    When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences.
    We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments.
    Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content.

    With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns.

    6. How are you doing the 1:1 personalization?
    We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer.
    So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer.
    That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience.

    We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers.

    7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service?
    Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved.
    The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments.

    Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention.

    So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization.

    8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights?
    I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights.

    Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement.

    Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant.
    As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively.
    So there’s a lack of understanding of marketing and sales as domains.
    It’s a huge effort and can take a lot of investment.

    Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing.

    9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data?
    If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge.
    Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side.

    Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important.

    10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before?
    First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do.
    And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations.
    The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it.

    Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one.

    11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations?
    We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI.
    We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals.

    We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization.

    12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data?
    I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points.
    Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us.
    We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels.
    Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms.

    Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps.

    13. How do you ensure data quality and consistency across multiple channels to make these informed decisions?
    We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies.
    While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing.
    We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats.

    On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically.

    14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years?
    The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices.
    Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities.
    We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases.
    As the world is collecting more data, privacy concerns and regulations come into play.
    I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies.
    And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture.

    So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.

     
    This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die.
    Download the PDF or request a physical copy of the book here.
    The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    #ankur #kothari #qampampa #customer #engagement
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage. #ankur #kothari #qampampa #customer #engagement
    WWW.MOENGAGE.COM
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question (and many others), we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    Like
    Love
    Wow
    Angry
    Sad
    478
    0 Commentarii 0 Distribuiri
  • The AI execution gap: Why 80% of projects don’t reach production

    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle.
    #execution #gap #why #projects #dont
    The AI execution gap: Why 80% of projects don’t reach production
    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle. #execution #gap #why #projects #dont
    WWW.ARTIFICIALINTELLIGENCE-NEWS.COM
    The AI execution gap: Why 80% of projects don’t reach production
    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to $631 billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least $1 million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle.(Image source: Unsplash)
    Like
    Love
    Wow
    Angry
    Sad
    598
    0 Commentarii 0 Distribuiri
Sponsorizeaza Paginile