• Hey there, fabulous friends!

    Are you ready to take your market research game to the next level? Today, I want to share with you something that can truly transform how you see competition! In this fast-paced world, every entrepreneur and marketer needs to be equipped with the right tools to uncover hidden gems in the market. And guess what? The answer lies in the **14 Best Competitive Intelligence Tools for Market Research**!

    Imagine having the power to peek behind the curtain of your competitors and discover their strategies and tactics! With these amazing tools, you can gather insights that will not only help you understand your market better but also give you the edge you need to soar higher than ever before!

    One standout tool that I absolutely adore is the **Semrush Traffic & Market Toolkit**. It’s like having a secret weapon in your back pocket! This toolkit provides invaluable data about traffic sources, keyword strategies, and much more! Say goodbye to guesswork and hello to informed decisions! Each piece of information you gather brings you one step closer to your goals.

    But that’s not all! Each of the 14 tools has its own unique features that cater to different aspects of competitive intelligence. Whether it's analyzing social media performance, tracking keywords, or monitoring brand mentions, there’s something for everyone! It’s time to embrace the power of knowledge and turn it into your competitive advantage!

    I know that diving into market research might seem daunting, but let me tell you, it’s a thrilling adventure! Every insight you uncover is like finding a treasure map leading you to success! So, don’t shy away from exploring these tools. Embrace them with open arms and watch your business flourish!

    Remember, the only limit to your success is the extent of your imagination and the determination to use the right resources. So gear up, equip yourself with these 14 best competitive intelligence tools, and let’s conquer the market together!

    Let’s lift each other up and share our discoveries! What tools are you excited to try? Drop your thoughts in the comments below! Let’s inspire one another to reach new heights!

    #MarketResearch #CompetitiveIntelligence #BusinessGrowth #Semrush #Inspiration
    🌟 Hey there, fabulous friends! 🌟 Are you ready to take your market research game to the next level? 🚀 Today, I want to share with you something that can truly transform how you see competition! In this fast-paced world, every entrepreneur and marketer needs to be equipped with the right tools to uncover hidden gems in the market. And guess what? The answer lies in the **14 Best Competitive Intelligence Tools for Market Research**! 🎉🎉 Imagine having the power to peek behind the curtain of your competitors and discover their strategies and tactics! With these amazing tools, you can gather insights that will not only help you understand your market better but also give you the edge you need to soar higher than ever before! 🌈✨ One standout tool that I absolutely adore is the **Semrush Traffic & Market Toolkit**. It’s like having a secret weapon in your back pocket! 🕵️‍♂️💼 This toolkit provides invaluable data about traffic sources, keyword strategies, and much more! Say goodbye to guesswork and hello to informed decisions! Each piece of information you gather brings you one step closer to your goals. 🌟 But that’s not all! Each of the 14 tools has its own unique features that cater to different aspects of competitive intelligence. Whether it's analyzing social media performance, tracking keywords, or monitoring brand mentions, there’s something for everyone! It’s time to embrace the power of knowledge and turn it into your competitive advantage! 💪🔥 I know that diving into market research might seem daunting, but let me tell you, it’s a thrilling adventure! Every insight you uncover is like finding a treasure map leading you to success! 🗺️💖 So, don’t shy away from exploring these tools. Embrace them with open arms and watch your business flourish! 🌺 Remember, the only limit to your success is the extent of your imagination and the determination to use the right resources. So gear up, equip yourself with these 14 best competitive intelligence tools, and let’s conquer the market together! 🌍💫 Let’s lift each other up and share our discoveries! What tools are you excited to try? Drop your thoughts in the comments below! 👇💬 Let’s inspire one another to reach new heights! #MarketResearch #CompetitiveIntelligence #BusinessGrowth #Semrush #Inspiration
    The 14 Best Competitive Intelligence Tools for Market Research
    Discover the competition and reveal strategies and tactics of any industry player with these top 14 competitive intelligence tools, including the Semrush Traffic & Market Toolkit.
    Like
    Love
    Wow
    Angry
    Sad
    567
    1 Комментарии 0 Поделились
  • Hey, amazing community!

    Are you ready to embark on an incredible adventure in the mesmerizing world of Arrakis? Dune Awakening isn’t just a game; it’s a journey that will test your skills, ignite your passion, and connect you with fellow explorers who share the same burning desire for survival and discovery!

    Now, let’s talk about something crucial for your survival on this beautiful yet harsh planet—finding cobalt and carbon! These resources are essential for crafting and upgrading your gear, and they will give you the edge you need to thrive in the vast deserts of Arrakis. Imagine the thrill of uncovering these precious materials while navigating through the stunning landscapes and dodging the dangers lurking beneath the sands!

    But don’t worry, I’ve got you covered! To find cobalt and carbon, you’ll need to explore various biomes and engage with the environment. Keep your eyes peeled for specific locations where these resources are more abundant. Use your tools wisely, and remember, teamwork is key! Collaborate with friends and fellow players to maximize your resource-gathering efforts.

    As you delve deeper into the game, remember to embrace the spirit of adventure! Every challenge you face is an opportunity for growth. Whether you’re learning to navigate the treacherous dunes or mastering the art of survival, each step brings you closer to becoming a true warrior of Arrakis!

    Let’s not forget the beauty of the friendships you’ll forge along the way! The bonds created in the heat of battle and shared victories will last far beyond the game. Celebrate each achievement, no matter how small, and encourage one another to push through the tough times. Together, we can create a thriving community that uplifts and inspires!

    So grab your gear, rally your friends, and get ready to dive into the thrilling world of Dune Awakening! Your adventure is just beginning, and I can’t wait to hear all about your discoveries and triumphs! Let’s make magic happen on Arrakis!

    Remember, every great explorer started with a single step. Take yours today!

    #DuneAwakening #ArrakisAdventure #SurvivalGaming #CobaltAndCarbon #TogetherWeThrive
    🌟 Hey, amazing community! 🌟 Are you ready to embark on an incredible adventure in the mesmerizing world of Arrakis? 🚀🌌 Dune Awakening isn’t just a game; it’s a journey that will test your skills, ignite your passion, and connect you with fellow explorers who share the same burning desire for survival and discovery! 🔥 Now, let’s talk about something crucial for your survival on this beautiful yet harsh planet—finding cobalt and carbon! 🌍💎 These resources are essential for crafting and upgrading your gear, and they will give you the edge you need to thrive in the vast deserts of Arrakis. Imagine the thrill of uncovering these precious materials while navigating through the stunning landscapes and dodging the dangers lurking beneath the sands! 🏜️💨 But don’t worry, I’ve got you covered! To find cobalt and carbon, you’ll need to explore various biomes and engage with the environment. Keep your eyes peeled for specific locations where these resources are more abundant. Use your tools wisely, and remember, teamwork is key! Collaborate with friends and fellow players to maximize your resource-gathering efforts. 🤝✨ As you delve deeper into the game, remember to embrace the spirit of adventure! Every challenge you face is an opportunity for growth. Whether you’re learning to navigate the treacherous dunes or mastering the art of survival, each step brings you closer to becoming a true warrior of Arrakis! 💪🌠 Let’s not forget the beauty of the friendships you’ll forge along the way! 🌈💖 The bonds created in the heat of battle and shared victories will last far beyond the game. Celebrate each achievement, no matter how small, and encourage one another to push through the tough times. Together, we can create a thriving community that uplifts and inspires! 🙌🎉 So grab your gear, rally your friends, and get ready to dive into the thrilling world of Dune Awakening! Your adventure is just beginning, and I can’t wait to hear all about your discoveries and triumphs! Let’s make magic happen on Arrakis! ✨🌟 Remember, every great explorer started with a single step. Take yours today! 🚀💖 #DuneAwakening #ArrakisAdventure #SurvivalGaming #CobaltAndCarbon #TogetherWeThrive
    Où trouver du cobalt/carbone sur Arrakis ? | Dune Awakening
    ActuGaming.net Où trouver du cobalt/carbone sur Arrakis ? | Dune Awakening Dune Awakening est un MMORPG axé sur la survie prenant place sur Arrakis, une planète […] L'article Où trouver du cobalt/carbone sur Arrakis ? | Dune Awakening est disp
    Like
    Love
    Wow
    Angry
    Sad
    648
    1 Комментарии 0 Поделились
  • Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon

    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey.

    Get the Popular Science daily newsletter
    Breakthroughs, discoveries, and DIY tips sent every weekday.

    South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations.
    Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered.
    Frontiers: What inspired you to become a researcher?
    Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved.
    F: Can you tell us about the research you’re currently working on?
    BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation.
    Local boating the Amazon River. CREDIT: Beatriz Cosendey.
    F: Could you tell us about one of the legends surrounding anacondas?
    BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty.
    F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity?
    BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently.
    A giant anaconda is being measured. Credit: Pedro Calazans.
    F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play?
    BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?”
    For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste.
    One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey.
    Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey.
    We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals.
    F: Are there any common misconceptions about this area of research? How would you address them?
    BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data.
    However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework.
    To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society.
    The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey.
    F: What are some of the areas of research you’d like to see tackled in the years ahead?
    BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere.
    F: How has open science benefited the reach and impact of your research?
    BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups.
    The Q&A can also be read here.
    #qampampa #how #anacondas #chickens #locals
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here. #qampampa #how #anacondas #chickens #locals
    WWW.POPSCI.COM
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals (up to around 2–2.5 meters), while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is her [the anaconda’s] favorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh (to block smaller animals), and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here.
    Like
    Love
    Wow
    Sad
    Angry
    443
    2 Комментарии 0 Поделились
  • Air-Conditioning Can Help the Power Grid instead of Overloading It

    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article.
    #airconditioning #can #help #power #grid
    Air-Conditioning Can Help the Power Grid instead of Overloading It
    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article. #airconditioning #can #help #power #grid
    WWW.SCIENTIFICAMERICAN.COM
    Air-Conditioning Can Help the Power Grid instead of Overloading It
    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article.
    Like
    Love
    Wow
    Sad
    Angry
    602
    0 Комментарии 0 Поделились
  • Free alternatives to Photoshop, Office, Premiere, and Netflix

    You don't have to go for the paid software options. Image: Timothy Exodus/Unsplash

    Get the Popular Science daily newsletter
    Breakthroughs, discoveries, and DIY tips sent every weekday.

    Most of us are signed up to plenty of digital subscriptions, covering streaming services, cloud storage, fitness apps, and plenty more. This extends to software subscriptions, too: Both Adobe Photoshop and Microsoft Officeask for monthly or yearly subscriptions if you want to stay up to date.
    Add up here and there and you can soon find yourself paying out more each week than you want. What you might not know is that for just about every paid software program out there, there’s a perfectly adequate and free replacement—so you can cut your dependency on software subscriptions right down.
    GIMP is an image editor packed with features. Screenshot: GIMP
    The rather oddly named GIMP—it stands for GNU Image Manipulation Program—is a head-on challenger to Adobe Photoshop, with a lot of the same advanced features on offer across object selections and manipulations, layers, and effects. GIMP doesn’t have as much AI stuffed into it as Photoshop does, but you might see that as a benefit.
    Whether you want to touch up and enhance the photos you’ve taken, or you want to create digital art, GIMP can handle it all. Open up the software and you’ll see you get a wealth of tools to play around with; there are plenty of third-party extensions and customizations available too—plus lots of tutorials and more help on the web.
    Download GIMP for Windows or macOS.
    LibreOffice Writer is a solid alternative to Microsoft Word. Screenshot: LibreOffice
    Microsoft Office is now called Microsoft 365, but however you refer to it, it’s anchored by Word, Excel, and PowerPoint. While Microsoft asks for a one-off fee or regular subscription, you can use LibreOffice completely free of charge—including the equivalent apps Writer, Calc, and Impress.
    If you have any experience using the Microsoft apps, you’ll feel right at home inside the LibreOffice apps—and they can import and export using Office file formats too. And just because you’re not paying for the software doesn’t mean you’re missing out on features, because these programs come backed with a host of useful options and tools.
    Download LibreOffice for Windows or macOS.
    Watch as much as you want on Tubi, for free. Screenshot: Tubi
    When it comes to movies and shows, there are plenty of services that will charge you a fee for access, including Netflix. Not so Tubi, which is completely funded by ads. Okay, it might not have the latest and greatest selection of titles, but there’s still plenty to watch, completely free. You aren’t going to run out of viewing material anytime soon.
    Tubi is one of a growing number of FAST streaming services, which stands for free ad-supported streaming television; others you might want to check out include Pluto TV and the Roku Channel. While content on these platforms is usually older than on the alternatives, you’ll probably be surprised at how much good stuff there is.
    Watch Tubi on the web, or on Android or iOS.
    Use KeePass as your password manager
    KeePass is a simple, straightforward password manager. Screenshot: KeePass
    We’ve written before about the benefits of using a password manager, but most of them require a subscription to use all of their features. If a password manager offers a free plan at all, it usually restricts how many passwords you can save or how many devices you can sync between, or apply some other limitations.
    KeePass is different, as it’s completely free and open source. It comes with plenty of features to keep your passwords private and secure, and while there’s only an official version for Windows, there are several unofficial ports so you can sync your passwords across macOS, Android, and iOS too.
    Download KeePass for Windows.
    Create videos with ease with OpenShot. Screenshot: OpenShot
    We’ll finish where we started, with an alternative to a program from the Adobe Creative Cloud suite. Unless you’re a professional filmmaker who needs the very best in industry-standard tools, OpenShot will give you everything you need in video editing features and options, and it’s capable of some impressive results.
    The extensive list includes support for key frame animations, an unlimited number of tracks, easy-to-use scaling and trimming tools, compositing, image overlays, title creating, and support for a broad range of video, audio, and image formats. Despite all of those features and more, you won’t find it difficult to use.
    Download OpenShot for Windows or macOS.
    #free #alternatives #photoshop #office #premiere
    Free alternatives to Photoshop, Office, Premiere, and Netflix
    You don't have to go for the paid software options. Image: Timothy Exodus/Unsplash Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. Most of us are signed up to plenty of digital subscriptions, covering streaming services, cloud storage, fitness apps, and plenty more. This extends to software subscriptions, too: Both Adobe Photoshop and Microsoft Officeask for monthly or yearly subscriptions if you want to stay up to date. Add up here and there and you can soon find yourself paying out more each week than you want. What you might not know is that for just about every paid software program out there, there’s a perfectly adequate and free replacement—so you can cut your dependency on software subscriptions right down. GIMP is an image editor packed with features. Screenshot: GIMP The rather oddly named GIMP—it stands for GNU Image Manipulation Program—is a head-on challenger to Adobe Photoshop, with a lot of the same advanced features on offer across object selections and manipulations, layers, and effects. GIMP doesn’t have as much AI stuffed into it as Photoshop does, but you might see that as a benefit. Whether you want to touch up and enhance the photos you’ve taken, or you want to create digital art, GIMP can handle it all. Open up the software and you’ll see you get a wealth of tools to play around with; there are plenty of third-party extensions and customizations available too—plus lots of tutorials and more help on the web. Download GIMP for Windows or macOS. LibreOffice Writer is a solid alternative to Microsoft Word. Screenshot: LibreOffice Microsoft Office is now called Microsoft 365, but however you refer to it, it’s anchored by Word, Excel, and PowerPoint. While Microsoft asks for a one-off fee or regular subscription, you can use LibreOffice completely free of charge—including the equivalent apps Writer, Calc, and Impress. If you have any experience using the Microsoft apps, you’ll feel right at home inside the LibreOffice apps—and they can import and export using Office file formats too. And just because you’re not paying for the software doesn’t mean you’re missing out on features, because these programs come backed with a host of useful options and tools. Download LibreOffice for Windows or macOS. Watch as much as you want on Tubi, for free. Screenshot: Tubi When it comes to movies and shows, there are plenty of services that will charge you a fee for access, including Netflix. Not so Tubi, which is completely funded by ads. Okay, it might not have the latest and greatest selection of titles, but there’s still plenty to watch, completely free. You aren’t going to run out of viewing material anytime soon. Tubi is one of a growing number of FAST streaming services, which stands for free ad-supported streaming television; others you might want to check out include Pluto TV and the Roku Channel. While content on these platforms is usually older than on the alternatives, you’ll probably be surprised at how much good stuff there is. Watch Tubi on the web, or on Android or iOS. Use KeePass as your password manager KeePass is a simple, straightforward password manager. Screenshot: KeePass We’ve written before about the benefits of using a password manager, but most of them require a subscription to use all of their features. If a password manager offers a free plan at all, it usually restricts how many passwords you can save or how many devices you can sync between, or apply some other limitations. KeePass is different, as it’s completely free and open source. It comes with plenty of features to keep your passwords private and secure, and while there’s only an official version for Windows, there are several unofficial ports so you can sync your passwords across macOS, Android, and iOS too. Download KeePass for Windows. Create videos with ease with OpenShot. Screenshot: OpenShot We’ll finish where we started, with an alternative to a program from the Adobe Creative Cloud suite. Unless you’re a professional filmmaker who needs the very best in industry-standard tools, OpenShot will give you everything you need in video editing features and options, and it’s capable of some impressive results. The extensive list includes support for key frame animations, an unlimited number of tracks, easy-to-use scaling and trimming tools, compositing, image overlays, title creating, and support for a broad range of video, audio, and image formats. Despite all of those features and more, you won’t find it difficult to use. Download OpenShot for Windows or macOS. #free #alternatives #photoshop #office #premiere
    WWW.POPSCI.COM
    Free alternatives to Photoshop, Office, Premiere, and Netflix
    You don't have to go for the paid software options. Image: Timothy Exodus/Unsplash Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. Most of us are signed up to plenty of digital subscriptions, covering streaming services, cloud storage, fitness apps, and plenty more. This extends to software subscriptions, too: Both Adobe Photoshop and Microsoft Office (now Microsoft 365) ask for monthly or yearly subscriptions if you want to stay up to date. Add up $5 here and $10 there and you can soon find yourself paying out more each week than you want. What you might not know is that for just about every paid software program out there, there’s a perfectly adequate and free replacement—so you can cut your dependency on software subscriptions right down. GIMP is an image editor packed with features. Screenshot: GIMP The rather oddly named GIMP—it stands for GNU Image Manipulation Program—is a head-on challenger to Adobe Photoshop, with a lot of the same advanced features on offer across object selections and manipulations, layers, and effects. GIMP doesn’t have as much AI stuffed into it as Photoshop does, but you might see that as a benefit. Whether you want to touch up and enhance the photos you’ve taken, or you want to create digital art, GIMP can handle it all. Open up the software and you’ll see you get a wealth of tools to play around with; there are plenty of third-party extensions and customizations available too—plus lots of tutorials and more help on the web. Download GIMP for Windows or macOS. LibreOffice Writer is a solid alternative to Microsoft Word. Screenshot: LibreOffice Microsoft Office is now called Microsoft 365, but however you refer to it, it’s anchored by Word, Excel, and PowerPoint. While Microsoft asks for a one-off fee or regular subscription, you can use LibreOffice completely free of charge—including the equivalent apps Writer (documents), Calc (spreadsheets), and Impress (presentations). If you have any experience using the Microsoft apps, you’ll feel right at home inside the LibreOffice apps—and they can import and export using Office file formats too. And just because you’re not paying for the software doesn’t mean you’re missing out on features, because these programs come backed with a host of useful options and tools. Download LibreOffice for Windows or macOS. Watch as much as you want on Tubi, for free. Screenshot: Tubi When it comes to movies and shows, there are plenty of services that will charge you a fee for access, including Netflix. Not so Tubi, which is completely funded by ads. Okay, it might not have the latest and greatest selection of titles, but there’s still plenty to watch, completely free. You aren’t going to run out of viewing material anytime soon. Tubi is one of a growing number of FAST streaming services, which stands for free ad-supported streaming television; others you might want to check out include Pluto TV and the Roku Channel. While content on these platforms is usually older than on the alternatives, you’ll probably be surprised at how much good stuff there is. Watch Tubi on the web, or on Android or iOS. Use KeePass as your password manager KeePass is a simple, straightforward password manager. Screenshot: KeePass We’ve written before about the benefits of using a password manager, but most of them require a subscription to use all of their features. If a password manager offers a free plan at all, it usually restricts how many passwords you can save or how many devices you can sync between, or apply some other limitations. KeePass is different, as it’s completely free and open source (so you can look at the source code yourself, if you wish). It comes with plenty of features to keep your passwords private and secure, and while there’s only an official version for Windows, there are several unofficial ports so you can sync your passwords across macOS, Android, and iOS too. Download KeePass for Windows. Create videos with ease with OpenShot. Screenshot: OpenShot We’ll finish where we started, with an alternative to a program from the Adobe Creative Cloud suite. Unless you’re a professional filmmaker who needs the very best in industry-standard tools, OpenShot will give you everything you need in video editing features and options, and it’s capable of some impressive results. The extensive list includes support for key frame animations, an unlimited number of tracks, easy-to-use scaling and trimming tools, compositing, image overlays, title creating (including 3D titles), and support for a broad range of video, audio, and image formats. Despite all of those features and more, you won’t find it difficult to use. Download OpenShot for Windows or macOS.
    0 Комментарии 0 Поделились
  • 15 riveting images from the 2025 UN World Oceans Day Photo Competition

    Big and Small Underwater Faces — 3rd Place.
    Trips to the Antarctic Peninsula always yield amazing encounters with leopard seals. Boldly approaching me and baring his teeth, this individual was keen to point out that this part of Antarctica was his territory. This picture was shot at dusk, resulting in the rather moody atmosphere.
     
    Credit: Lars von Ritter Zahony/ World Ocean’s Day

    Get the Popular Science daily newsletter
    Breakthroughs, discoveries, and DIY tips sent every weekday.

    The striking eye of a humpback whale named Sweet Girl peers at the camera. Just four days later, she would be dead, hit by a speeding boat and one of the 20,000 whales killed by ship strikes each year. Photographer Rachel Moore’s captivating imageof Sweet Girl earned top honors at the 2025 United Nations World Oceans Day Photo Competition.
    Wonder: Sustaining What Sustains Us — WinnerThis photo, taken in Mo’orea, French Polynesia in 2024, captures the eye of a humpback whale named Sweet Girl, just days before her tragic death. Four days after I captured this intimate moment, she was struck and killed by a fast-moving ship. Her death serves as a heartbreaking reminder of the 20,000 whales lost to ship strikes every year. We are using her story to advocate for stronger protections, petitioning for stricter speed laws around Tahiti and Mo’orea during whale season. I hope Sweet Girl’s legacy will spark real change to protect these incredible animals and prevent further senseless loss.Credit: Rachel Moore/ United Nations World Oceans Day www.unworldoceansday.org
    Now in its twelfth year, the competition coordinated in collaboration between the UN Division for Ocean Affairs and the Law of the Sea, DivePhotoGuide, Oceanic Global, and  the Intergovernmental Oceanographic Commission of UNESCO. Each year, thousands of underwater photographers submit images that judges award prizes for across four categories: Big and Small Underwater Faces, Underwater Seascapes, Above Water Seascapes, and Wonder: Sustaining What Sustains Us.
    This year’s winning images include a curious leopard seal, a swarm of jellyfish, and a very grumpy looking Japanese warbonnet. Given our oceans’ perilous state, all competition participants were required to sign a charter of 14 commitments regarding ethics in photography.
    Underwater Seascapes — Honorable MentionWith only orcas as their natural predators, leopard seals are Antarctica’s most versatile hunters, preying on everything from fish and cephalopods to penguins and other seals. Gentoo penguins are a favored menu item, and leopard seals can be observed patrolling the waters around their colonies. For this shot, I used a split image to capture both worlds: the gentoo penguin colony in the background with the leopard seal on the hunt in the foreground.Credit: Lars von Ritter Zahony/ United Nations World Oceans Day www.unworldoceansday.org
    Above Water Seascapes – WinnerA serene lake cradled by arid dunes, where a gentle stream breathes life into the heart of Mother Earth’s creation: Captured from an airplane, this image reveals the powerful contrasts and hidden beauty where land and ocean meet, reminding us that the ocean is the source of all life and that everything in nature is deeply connected. The location is a remote stretch of coastline near Shark Bay, Western Australia.Credit: Leander Nardin/ United Nations World Oceans Day www.unworldoceansday.org
    Above Water Seascapes — 3rd PlaceParadise Harbour is one of the most beautiful places on the Antarctic Peninsula. When I visited, the sea was extremely calm, and I was lucky enough to witness a wonderfully clear reflection of the Suárez Glacierin the water. The only problem was the waves created by our speedboat, and the only way to capture the perfect reflection was to lie on the bottom of the boat while it moved towards the glacier.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org
    Underwater Seascapes — 3rd Place“La Rapadura” is a natural hidden treasure on the northern coast of Tenerife, in the Spanish territory of the Canary Islands. Only discovered in 1996, it is one of the most astonishing underwater landscapes in the world, consistently ranking among the planet’s best dive sites. These towering columns of basalt are the result of volcanic processes that occurred between 500,000 and a million years ago. The formation was created when a basaltic lava flow reached the ocean, where, upon cooling and solidifying, it contracted, creating natural structures often compared to the pipes of church organs. Located in a region where marine life has been impacted by once common illegal fishing practices, this stunning natural monument has both geological and ecological value, and scientists and underwater photographers are advocating for its protection.Credit: Pedro Carrillo/ United Nations World Oceans Day www.unworldoceansday.org
    Underwater Seascapes — WinnerThis year, I had the incredible opportunity to visit a jellyfish lake during a liveaboard trip around southern Raja Ampat, Indonesia. Being surrounded by millions of jellyfish, which have evolved to lose their stinging ability due to the absence of predators, was one of the most breathtaking experiences I’ve ever had.Credit: Dani Escayola/ United Nations World Oceans Day www.unworldoceansday.org
    Underwater Seascapes — 2nd PlaceThis shot captures a school of rays resting at a cleaning station in Mauritius, where strong currents once attracted them regularly. Some rays grew accustomed to divers, allowing close encounters like this. Sadly, after the severe bleaching that the reefs here suffered last year, such gatherings have become rare, and I fear I may not witness this again at the same spot.Credit: Gerald Rambert/ United Nations World Oceans Day www.unworldoceansday.org
    Wonder: Sustaining What Sustains Us — 3rd PlaceShot in Cuba’s Jardines de la Reina—a protected shark sanctuary—this image captures a Caribbean reef shark weaving through a group of silky sharks near the surface. Using a slow shutter and strobes as the shark pivoted sharply, the motion blurred into a wave-like arc across its head, lit by the golden hues of sunset. The abundance and behavior of sharks here is a living symbol of what protected oceans can look like.Credit: Steven Lopez/ United Nations World Oceans Day www.unworldoceansday.org
     Above Water Seascapes — 2nd PlaceNorthern gannetssoar above the dramatic cliffs of Scotland’s Hermaness National Nature Reserve, their sleek white bodies and black-tipped wings slicing through the Shetland winds. These seabirds, the largest in the North Atlantic, are renowned for their striking plunge-dives, reaching speeds up to 100 kphas they hunt for fish beneath the waves. The cliffs of Hermaness provide ideal nesting sites, with updrafts aiding their take-offs and landings. Each spring, thousands return to this rugged coastline, forming one of the UK’s most significant gannet colonies. It was a major challenge to take photos at the edge of these cliffs at almost 200 meterswith the winds up to 30 kph.Credit: Nur Tucker/ United Nations World Oceans Day www.unworldoceansday.org
    Above Water Seascapes — Honorable MentionA South Atlantic swell breaks on the Dungeons Reef off the Cape Peninsula, South Africa, shot while photographing a big-wave surf session in October 2017. It’s the crescendoing sounds of these breaking swells that always amazes me.Credit: Ken Findlay/ United Nations World Oceans Day www.unworldoceansday.org
    Wonder: Sustaining What Sustains Us — Honorable MentionHumpback whales in their thousands migrate along the Ningaloo Reef in Western Australia every year on the way to and from their calving grounds. In four seasons of swimming with them on the reef here, this is the only encounter I’ve had like this one. This pair of huge adult whales repeatedly spy-hopped alongside us, seeking to interact with and investigate us, leaving me completely breathless. The female in the foreground was much more confident than the male behind and would constantly make close approaches, whilst the male hung back a little, still interested but shy. After more than 10 years working with wildlife in the water, this was one of the best experiences of my life.Credit: Ollie Clarke/ United Nations World Oceans Day www.unworldoceansday.org
    Big and Small Underwater Faces — 2nd PlaceOn one of my many blackwater dives in Anilao, in the Philippines, my guide and I spotted something moving erratically at a depth of around 20 meters, about 10 to 15 centimeters in size. We quickly realized that it was a rare blanket octopus. As we approached, it opened up its beautiful blanket, revealing its multicolored mantle. I managed to take a few shots before it went on its way. I felt truly privileged to have captured this fascinating deep-sea cephalopod. Among its many unique characteristics, this species exhibits some of the most extreme sexual size-dimorphism in nature, with females weighing up to 40,000 times more than males.Credit: Giacomo Marchione/ United Nations World Oceans Day www.unworldoceansday.org
    Big and Small Underwater Faces – WinnerThis photo of a Japanese warbonnetwas captured in the Sea of Japan, about 50 milessouthwest of Vladivostok, Russia. I found the ornate fish at a depth of about 30 meters, under the stern of a shipwreck. This species does not appear to be afraid of divers—on the contrary, it seems to enjoy the attention—and it even tried to sit on the dome port of my camera.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org
    Wonder: Sustaining What Sustains Us — 2nd PlaceA juvenile pinnate batfishcaptured with a slow shutter speed, a snooted light, and deliberate camera panning to create a sense of motion and drama. Juvenile pinnate batfish are known for their striking black bodies outlined in vibrant orange—a coloration they lose within just a few months as they mature. I encountered this restless subject in the tropical waters of Indonesia’s Lembeh Strait. Capturing this image took patience and persistence over two dives, as these active young fish constantly dart for cover in crevices, making the shot particularly challenging.Credit: Luis Arpa/ United Nations World Oceans Day www.unworldoceansday.org
    #riveting #images #world #oceans #dayphoto
    15 riveting images from the 2025 UN World Oceans Day Photo Competition
    Big and Small Underwater Faces — 3rd Place. Trips to the Antarctic Peninsula always yield amazing encounters with leopard seals. Boldly approaching me and baring his teeth, this individual was keen to point out that this part of Antarctica was his territory. This picture was shot at dusk, resulting in the rather moody atmosphere.   Credit: Lars von Ritter Zahony/ World Ocean’s Day Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. The striking eye of a humpback whale named Sweet Girl peers at the camera. Just four days later, she would be dead, hit by a speeding boat and one of the 20,000 whales killed by ship strikes each year. Photographer Rachel Moore’s captivating imageof Sweet Girl earned top honors at the 2025 United Nations World Oceans Day Photo Competition. Wonder: Sustaining What Sustains Us — WinnerThis photo, taken in Mo’orea, French Polynesia in 2024, captures the eye of a humpback whale named Sweet Girl, just days before her tragic death. Four days after I captured this intimate moment, she was struck and killed by a fast-moving ship. Her death serves as a heartbreaking reminder of the 20,000 whales lost to ship strikes every year. We are using her story to advocate for stronger protections, petitioning for stricter speed laws around Tahiti and Mo’orea during whale season. I hope Sweet Girl’s legacy will spark real change to protect these incredible animals and prevent further senseless loss.Credit: Rachel Moore/ United Nations World Oceans Day www.unworldoceansday.org Now in its twelfth year, the competition coordinated in collaboration between the UN Division for Ocean Affairs and the Law of the Sea, DivePhotoGuide, Oceanic Global, and  the Intergovernmental Oceanographic Commission of UNESCO. Each year, thousands of underwater photographers submit images that judges award prizes for across four categories: Big and Small Underwater Faces, Underwater Seascapes, Above Water Seascapes, and Wonder: Sustaining What Sustains Us. This year’s winning images include a curious leopard seal, a swarm of jellyfish, and a very grumpy looking Japanese warbonnet. Given our oceans’ perilous state, all competition participants were required to sign a charter of 14 commitments regarding ethics in photography. Underwater Seascapes — Honorable MentionWith only orcas as their natural predators, leopard seals are Antarctica’s most versatile hunters, preying on everything from fish and cephalopods to penguins and other seals. Gentoo penguins are a favored menu item, and leopard seals can be observed patrolling the waters around their colonies. For this shot, I used a split image to capture both worlds: the gentoo penguin colony in the background with the leopard seal on the hunt in the foreground.Credit: Lars von Ritter Zahony/ United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes – WinnerA serene lake cradled by arid dunes, where a gentle stream breathes life into the heart of Mother Earth’s creation: Captured from an airplane, this image reveals the powerful contrasts and hidden beauty where land and ocean meet, reminding us that the ocean is the source of all life and that everything in nature is deeply connected. The location is a remote stretch of coastline near Shark Bay, Western Australia.Credit: Leander Nardin/ United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — 3rd PlaceParadise Harbour is one of the most beautiful places on the Antarctic Peninsula. When I visited, the sea was extremely calm, and I was lucky enough to witness a wonderfully clear reflection of the Suárez Glacierin the water. The only problem was the waves created by our speedboat, and the only way to capture the perfect reflection was to lie on the bottom of the boat while it moved towards the glacier.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 3rd Place“La Rapadura” is a natural hidden treasure on the northern coast of Tenerife, in the Spanish territory of the Canary Islands. Only discovered in 1996, it is one of the most astonishing underwater landscapes in the world, consistently ranking among the planet’s best dive sites. These towering columns of basalt are the result of volcanic processes that occurred between 500,000 and a million years ago. The formation was created when a basaltic lava flow reached the ocean, where, upon cooling and solidifying, it contracted, creating natural structures often compared to the pipes of church organs. Located in a region where marine life has been impacted by once common illegal fishing practices, this stunning natural monument has both geological and ecological value, and scientists and underwater photographers are advocating for its protection.Credit: Pedro Carrillo/ United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — WinnerThis year, I had the incredible opportunity to visit a jellyfish lake during a liveaboard trip around southern Raja Ampat, Indonesia. Being surrounded by millions of jellyfish, which have evolved to lose their stinging ability due to the absence of predators, was one of the most breathtaking experiences I’ve ever had.Credit: Dani Escayola/ United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 2nd PlaceThis shot captures a school of rays resting at a cleaning station in Mauritius, where strong currents once attracted them regularly. Some rays grew accustomed to divers, allowing close encounters like this. Sadly, after the severe bleaching that the reefs here suffered last year, such gatherings have become rare, and I fear I may not witness this again at the same spot.Credit: Gerald Rambert/ United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 3rd PlaceShot in Cuba’s Jardines de la Reina—a protected shark sanctuary—this image captures a Caribbean reef shark weaving through a group of silky sharks near the surface. Using a slow shutter and strobes as the shark pivoted sharply, the motion blurred into a wave-like arc across its head, lit by the golden hues of sunset. The abundance and behavior of sharks here is a living symbol of what protected oceans can look like.Credit: Steven Lopez/ United Nations World Oceans Day www.unworldoceansday.org  Above Water Seascapes — 2nd PlaceNorthern gannetssoar above the dramatic cliffs of Scotland’s Hermaness National Nature Reserve, their sleek white bodies and black-tipped wings slicing through the Shetland winds. These seabirds, the largest in the North Atlantic, are renowned for their striking plunge-dives, reaching speeds up to 100 kphas they hunt for fish beneath the waves. The cliffs of Hermaness provide ideal nesting sites, with updrafts aiding their take-offs and landings. Each spring, thousands return to this rugged coastline, forming one of the UK’s most significant gannet colonies. It was a major challenge to take photos at the edge of these cliffs at almost 200 meterswith the winds up to 30 kph.Credit: Nur Tucker/ United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — Honorable MentionA South Atlantic swell breaks on the Dungeons Reef off the Cape Peninsula, South Africa, shot while photographing a big-wave surf session in October 2017. It’s the crescendoing sounds of these breaking swells that always amazes me.Credit: Ken Findlay/ United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — Honorable MentionHumpback whales in their thousands migrate along the Ningaloo Reef in Western Australia every year on the way to and from their calving grounds. In four seasons of swimming with them on the reef here, this is the only encounter I’ve had like this one. This pair of huge adult whales repeatedly spy-hopped alongside us, seeking to interact with and investigate us, leaving me completely breathless. The female in the foreground was much more confident than the male behind and would constantly make close approaches, whilst the male hung back a little, still interested but shy. After more than 10 years working with wildlife in the water, this was one of the best experiences of my life.Credit: Ollie Clarke/ United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces — 2nd PlaceOn one of my many blackwater dives in Anilao, in the Philippines, my guide and I spotted something moving erratically at a depth of around 20 meters, about 10 to 15 centimeters in size. We quickly realized that it was a rare blanket octopus. As we approached, it opened up its beautiful blanket, revealing its multicolored mantle. I managed to take a few shots before it went on its way. I felt truly privileged to have captured this fascinating deep-sea cephalopod. Among its many unique characteristics, this species exhibits some of the most extreme sexual size-dimorphism in nature, with females weighing up to 40,000 times more than males.Credit: Giacomo Marchione/ United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces – WinnerThis photo of a Japanese warbonnetwas captured in the Sea of Japan, about 50 milessouthwest of Vladivostok, Russia. I found the ornate fish at a depth of about 30 meters, under the stern of a shipwreck. This species does not appear to be afraid of divers—on the contrary, it seems to enjoy the attention—and it even tried to sit on the dome port of my camera.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 2nd PlaceA juvenile pinnate batfishcaptured with a slow shutter speed, a snooted light, and deliberate camera panning to create a sense of motion and drama. Juvenile pinnate batfish are known for their striking black bodies outlined in vibrant orange—a coloration they lose within just a few months as they mature. I encountered this restless subject in the tropical waters of Indonesia’s Lembeh Strait. Capturing this image took patience and persistence over two dives, as these active young fish constantly dart for cover in crevices, making the shot particularly challenging.Credit: Luis Arpa/ United Nations World Oceans Day www.unworldoceansday.org #riveting #images #world #oceans #dayphoto
    WWW.POPSCI.COM
    15 riveting images from the 2025 UN World Oceans Day Photo Competition
    Big and Small Underwater Faces — 3rd Place. Trips to the Antarctic Peninsula always yield amazing encounters with leopard seals (Hydrurga leptonyx). Boldly approaching me and baring his teeth, this individual was keen to point out that this part of Antarctica was his territory. This picture was shot at dusk, resulting in the rather moody atmosphere.   Credit: Lars von Ritter Zahony (Germany) / World Ocean’s Day Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. The striking eye of a humpback whale named Sweet Girl peers at the camera. Just four days later, she would be dead, hit by a speeding boat and one of the 20,000 whales killed by ship strikes each year. Photographer Rachel Moore’s captivating image (seen below) of Sweet Girl earned top honors at the 2025 United Nations World Oceans Day Photo Competition. Wonder: Sustaining What Sustains Us — WinnerThis photo, taken in Mo’orea, French Polynesia in 2024, captures the eye of a humpback whale named Sweet Girl, just days before her tragic death. Four days after I captured this intimate moment, she was struck and killed by a fast-moving ship. Her death serves as a heartbreaking reminder of the 20,000 whales lost to ship strikes every year. We are using her story to advocate for stronger protections, petitioning for stricter speed laws around Tahiti and Mo’orea during whale season. I hope Sweet Girl’s legacy will spark real change to protect these incredible animals and prevent further senseless loss.Credit: Rachel Moore (USA) / United Nations World Oceans Day www.unworldoceansday.org Now in its twelfth year, the competition coordinated in collaboration between the UN Division for Ocean Affairs and the Law of the Sea, DivePhotoGuide (DPG), Oceanic Global, and  the Intergovernmental Oceanographic Commission of UNESCO. Each year, thousands of underwater photographers submit images that judges award prizes for across four categories: Big and Small Underwater Faces, Underwater Seascapes, Above Water Seascapes, and Wonder: Sustaining What Sustains Us. This year’s winning images include a curious leopard seal, a swarm of jellyfish, and a very grumpy looking Japanese warbonnet. Given our oceans’ perilous state, all competition participants were required to sign a charter of 14 commitments regarding ethics in photography. Underwater Seascapes — Honorable MentionWith only orcas as their natural predators, leopard seals are Antarctica’s most versatile hunters, preying on everything from fish and cephalopods to penguins and other seals. Gentoo penguins are a favored menu item, and leopard seals can be observed patrolling the waters around their colonies. For this shot, I used a split image to capture both worlds: the gentoo penguin colony in the background with the leopard seal on the hunt in the foreground.Credit: Lars von Ritter Zahony (Germany) / United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes – WinnerA serene lake cradled by arid dunes, where a gentle stream breathes life into the heart of Mother Earth’s creation: Captured from an airplane, this image reveals the powerful contrasts and hidden beauty where land and ocean meet, reminding us that the ocean is the source of all life and that everything in nature is deeply connected. The location is a remote stretch of coastline near Shark Bay, Western Australia.Credit: Leander Nardin (Austria) / United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — 3rd PlaceParadise Harbour is one of the most beautiful places on the Antarctic Peninsula. When I visited, the sea was extremely calm, and I was lucky enough to witness a wonderfully clear reflection of the Suárez Glacier (aka Petzval Glacier) in the water. The only problem was the waves created by our speedboat, and the only way to capture the perfect reflection was to lie on the bottom of the boat while it moved towards the glacier.Credit: Andrey Nosik (Russia) / United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 3rd Place“La Rapadura” is a natural hidden treasure on the northern coast of Tenerife, in the Spanish territory of the Canary Islands. Only discovered in 1996, it is one of the most astonishing underwater landscapes in the world, consistently ranking among the planet’s best dive sites. These towering columns of basalt are the result of volcanic processes that occurred between 500,000 and a million years ago. The formation was created when a basaltic lava flow reached the ocean, where, upon cooling and solidifying, it contracted, creating natural structures often compared to the pipes of church organs. Located in a region where marine life has been impacted by once common illegal fishing practices, this stunning natural monument has both geological and ecological value, and scientists and underwater photographers are advocating for its protection. (Model: Yolanda Garcia)Credit: Pedro Carrillo (Spain) / United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — WinnerThis year, I had the incredible opportunity to visit a jellyfish lake during a liveaboard trip around southern Raja Ampat, Indonesia. Being surrounded by millions of jellyfish, which have evolved to lose their stinging ability due to the absence of predators, was one of the most breathtaking experiences I’ve ever had.Credit: Dani Escayola (Spain) / United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 2nd PlaceThis shot captures a school of rays resting at a cleaning station in Mauritius, where strong currents once attracted them regularly. Some rays grew accustomed to divers, allowing close encounters like this. Sadly, after the severe bleaching that the reefs here suffered last year, such gatherings have become rare, and I fear I may not witness this again at the same spot.Credit: Gerald Rambert (Mauritius) / United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 3rd PlaceShot in Cuba’s Jardines de la Reina—a protected shark sanctuary—this image captures a Caribbean reef shark weaving through a group of silky sharks near the surface. Using a slow shutter and strobes as the shark pivoted sharply, the motion blurred into a wave-like arc across its head, lit by the golden hues of sunset. The abundance and behavior of sharks here is a living symbol of what protected oceans can look like.Credit: Steven Lopez (USA) / United Nations World Oceans Day www.unworldoceansday.org  Above Water Seascapes — 2nd PlaceNorthern gannets (Morus bassanus) soar above the dramatic cliffs of Scotland’s Hermaness National Nature Reserve, their sleek white bodies and black-tipped wings slicing through the Shetland winds. These seabirds, the largest in the North Atlantic, are renowned for their striking plunge-dives, reaching speeds up to 100 kph (60 mph) as they hunt for fish beneath the waves. The cliffs of Hermaness provide ideal nesting sites, with updrafts aiding their take-offs and landings. Each spring, thousands return to this rugged coastline, forming one of the UK’s most significant gannet colonies. It was a major challenge to take photos at the edge of these cliffs at almost 200 meters (650 feet) with the winds up to 30 kph (20 mph).Credit: Nur Tucker (UK/Turkey) / United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — Honorable MentionA South Atlantic swell breaks on the Dungeons Reef off the Cape Peninsula, South Africa, shot while photographing a big-wave surf session in October 2017. It’s the crescendoing sounds of these breaking swells that always amazes me.Credit: Ken Findlay (South Africa) / United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — Honorable MentionHumpback whales in their thousands migrate along the Ningaloo Reef in Western Australia every year on the way to and from their calving grounds. In four seasons of swimming with them on the reef here, this is the only encounter I’ve had like this one. This pair of huge adult whales repeatedly spy-hopped alongside us, seeking to interact with and investigate us, leaving me completely breathless. The female in the foreground was much more confident than the male behind and would constantly make close approaches, whilst the male hung back a little, still interested but shy. After more than 10 years working with wildlife in the water, this was one of the best experiences of my life.Credit: Ollie Clarke (UK) / United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces — 2nd PlaceOn one of my many blackwater dives in Anilao, in the Philippines, my guide and I spotted something moving erratically at a depth of around 20 meters (65 feet), about 10 to 15 centimeters in size. We quickly realized that it was a rare blanket octopus (Tremoctopus sp.). As we approached, it opened up its beautiful blanket, revealing its multicolored mantle. I managed to take a few shots before it went on its way. I felt truly privileged to have captured this fascinating deep-sea cephalopod. Among its many unique characteristics, this species exhibits some of the most extreme sexual size-dimorphism in nature, with females weighing up to 40,000 times more than males.Credit: Giacomo Marchione (Italy) / United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces – WinnerThis photo of a Japanese warbonnet (Chirolophis japonicus) was captured in the Sea of Japan, about 50 miles (80 kilometers) southwest of Vladivostok, Russia. I found the ornate fish at a depth of about 30 meters (100 feet), under the stern of a shipwreck. This species does not appear to be afraid of divers—on the contrary, it seems to enjoy the attention—and it even tried to sit on the dome port of my camera.Credit: Andrey Nosik (Russia) / United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 2nd PlaceA juvenile pinnate batfish (Platax pinnatus) captured with a slow shutter speed, a snooted light, and deliberate camera panning to create a sense of motion and drama. Juvenile pinnate batfish are known for their striking black bodies outlined in vibrant orange—a coloration they lose within just a few months as they mature. I encountered this restless subject in the tropical waters of Indonesia’s Lembeh Strait. Capturing this image took patience and persistence over two dives, as these active young fish constantly dart for cover in crevices, making the shot particularly challenging.Credit: Luis Arpa (Spain) / United Nations World Oceans Day www.unworldoceansday.org
    0 Комментарии 0 Поделились
  • Five Climate Issues to Watch When Trump Goes to Canada

    June 13, 20255 min readFive Climate Issues to Watch When Trump Goes to CanadaPresident Trump will attend the G7 summit on Sunday in a nation he threatened to annex. He will also be an outlier on climate issuesBy Sara Schonhardt & E&E News Saul Loeb/AFP via Getty ImagesCLIMATEWIRE | The world’s richest nations are gathering Sunday in the Canadian Rockies for a summit that could reveal whether President Donald Trump's policies are shaking global climate efforts.The Group of Seven meeting comes at a challenging time for international climate policy. Trump’s tariff seesaw has cast a shade over the global economy, and his domestic policies have threatened billions of dollars in funding for clean energy programs. Those pressures are colliding with record-breaking temperatures worldwide and explosive demand for energy, driven by power-hungry data centers linked to artificial intelligence technologies.On top of that, Trump has threatened to annex the host of the meeting — Canada — and members of his Cabinet have taken swipes at Europe’s use of renewable energy. Rather than being aligned with much of the world's assertion that fossil fuels should be tempered, Trump embraces the opposite position — drill for more oil and gas and keep burning coal, while repealing environmental regulations on the biggest sources of U.S. carbon pollution.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Those moves illustrate his rejection of climate science and underscore his outlying positions on global warming in the G7.Here are five things to know about the summit.Who will be there?The group comprises Canada, France, Germany, Italy, Japan, the United Kingdom and the United States — plus the European Union. Together they account for more than 40 percent of gross domestic product globally and around a quarter of all energy-related carbon dioxide pollution, according to the International Energy Agency. The U.S. is the only one among them that is not trying to hit a carbon reduction goal.Some emerging economies have also been invited, including Mexico, India, South Africa and Brazil, the host of this year’s COP30 climate talks in November.Ahead of the meeting, the office of Canada's prime minister, Mark Carney, said he and Brazilian President Luiz Inácio Lula da Silva agreed to strengthen cooperation on energy security and critical minerals. White House press secretary Karoline Leavitt said Trump would be having "quite a few" bilateral meetings but that his schedule was in flux.The G7 first came together 50 years ago following the Arab oil embargo. Since then, its seven members have all joined the United Nations Framework Convention on Climate Change and the Paris Agreement. The U.S. is the only nation in the group that has withdrawn from the Paris Agreement, which counts almost every country in the world as a signatory.What’s on the table?Among Canada’s top priorities as host are strengthening energy security and fortifying critical mineral supply chains. Carney would also like to see some agreement on joint wildfire action.Expanding supply chains for critical minerals — and competing more aggressively with China over those resources — could be areas of common ground among the leaders. Climate change is expected to remain divisive. Looming over the discussions will be tariffs — which Trump has applied across the board — because they will have an impact on the clean energy transition.“I think probably the majority of the conversation will be less about climate per se, or certainly not using climate action as the frame, but more about energy transition and infrastructure as a way of kind of bridging the known gaps between most of the G7 and where the United States is right now,” said Dan Baer, director of the Europe program at the Carnegie Endowment for International Peace.What are the possible outcomes?The leaders could issue a communique at the end of their meeting, but those statements are based on consensus, something that would be difficult to reach without other G7 countries capitulating to Trump. Bloomberg reported Wednesday that nations won’t try to reach a joint agreement, in part because bridging gaps on climate change could be too hard.Instead, Carney could issue a chair’s summary or joint statements based on certain issues.The question is how far Canada will go to accommodate the U.S., which could try to roll back past statements on advancing clean energy, said Andrew Light, former assistant secretary of Energy for international affairs, who led ministerial-level negotiations for the G7.“They might say, rather than watering everything down that we accomplished in the last four years, we just do a chair's statement, which summarizes the debate,” Light said. “That will show you that you didn't get consensus, but you also didn't get capitulation.”What to watch forIf there is a communique, Light says he’ll be looking for whether there is tougher language on China and any signal of support for science and the Paris Agreement. During his first term, Trump refused to support the Paris accord in the G7 and G20 declarations.The statement could avoid climate and energy issues entirely. But if it backtracks on those issues, that could be a sign that countries made a deal by trading climate-related language for something else, Light said.Baer of Carnegie said a statement framed around energy security and infrastructure could be seen as a “pragmatic adaptation” to the U.S. administration, rather than an indication that other leaders aren’t concerned about climate change.Climate activists have lower expectations.“Realistically, we can expect very little, if any, mention of climate change,” said Caroline Brouillette, executive director of Climate Action Network Canada.“The message we should be expecting from those leaders is that climate action remains a priority for the rest of the G7 … whether it's on the transition away from fossil fuels and supporting developing countries through climate finance,” she said. “Especially now that the U.S. is stepping back, we need countries, including Canada, to be stepping up.”Best- and worst-case scenariosThe challenge for Carney will be preventing any further rupture with Trump, analysts said.In 2018, Trump made a hasty exit from the G7 summit, also in Canada that year, due largely to trade disagreements. He retracted his support for the joint statement.“The best,realistic case outcome is that things don't get worse,” said Baer.The worst-case scenario? Some kind of “highly personalized spat” that could add to the sense of disorder, he added.“I think the G7 on the one hand has the potential to be more important than ever, as fewer and fewer platforms for international cooperation seem to be able to take action,” Baer said. “So it's both very important and also I don't have super-high expectations.”Reprinted from E&E News with permission from POLITICO, LLC. Copyright 2025. E&E News provides essential news for energy and environment professionals.
    #five #climate #issues #watch #when
    Five Climate Issues to Watch When Trump Goes to Canada
    June 13, 20255 min readFive Climate Issues to Watch When Trump Goes to CanadaPresident Trump will attend the G7 summit on Sunday in a nation he threatened to annex. He will also be an outlier on climate issuesBy Sara Schonhardt & E&E News Saul Loeb/AFP via Getty ImagesCLIMATEWIRE | The world’s richest nations are gathering Sunday in the Canadian Rockies for a summit that could reveal whether President Donald Trump's policies are shaking global climate efforts.The Group of Seven meeting comes at a challenging time for international climate policy. Trump’s tariff seesaw has cast a shade over the global economy, and his domestic policies have threatened billions of dollars in funding for clean energy programs. Those pressures are colliding with record-breaking temperatures worldwide and explosive demand for energy, driven by power-hungry data centers linked to artificial intelligence technologies.On top of that, Trump has threatened to annex the host of the meeting — Canada — and members of his Cabinet have taken swipes at Europe’s use of renewable energy. Rather than being aligned with much of the world's assertion that fossil fuels should be tempered, Trump embraces the opposite position — drill for more oil and gas and keep burning coal, while repealing environmental regulations on the biggest sources of U.S. carbon pollution.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Those moves illustrate his rejection of climate science and underscore his outlying positions on global warming in the G7.Here are five things to know about the summit.Who will be there?The group comprises Canada, France, Germany, Italy, Japan, the United Kingdom and the United States — plus the European Union. Together they account for more than 40 percent of gross domestic product globally and around a quarter of all energy-related carbon dioxide pollution, according to the International Energy Agency. The U.S. is the only one among them that is not trying to hit a carbon reduction goal.Some emerging economies have also been invited, including Mexico, India, South Africa and Brazil, the host of this year’s COP30 climate talks in November.Ahead of the meeting, the office of Canada's prime minister, Mark Carney, said he and Brazilian President Luiz Inácio Lula da Silva agreed to strengthen cooperation on energy security and critical minerals. White House press secretary Karoline Leavitt said Trump would be having "quite a few" bilateral meetings but that his schedule was in flux.The G7 first came together 50 years ago following the Arab oil embargo. Since then, its seven members have all joined the United Nations Framework Convention on Climate Change and the Paris Agreement. The U.S. is the only nation in the group that has withdrawn from the Paris Agreement, which counts almost every country in the world as a signatory.What’s on the table?Among Canada’s top priorities as host are strengthening energy security and fortifying critical mineral supply chains. Carney would also like to see some agreement on joint wildfire action.Expanding supply chains for critical minerals — and competing more aggressively with China over those resources — could be areas of common ground among the leaders. Climate change is expected to remain divisive. Looming over the discussions will be tariffs — which Trump has applied across the board — because they will have an impact on the clean energy transition.“I think probably the majority of the conversation will be less about climate per se, or certainly not using climate action as the frame, but more about energy transition and infrastructure as a way of kind of bridging the known gaps between most of the G7 and where the United States is right now,” said Dan Baer, director of the Europe program at the Carnegie Endowment for International Peace.What are the possible outcomes?The leaders could issue a communique at the end of their meeting, but those statements are based on consensus, something that would be difficult to reach without other G7 countries capitulating to Trump. Bloomberg reported Wednesday that nations won’t try to reach a joint agreement, in part because bridging gaps on climate change could be too hard.Instead, Carney could issue a chair’s summary or joint statements based on certain issues.The question is how far Canada will go to accommodate the U.S., which could try to roll back past statements on advancing clean energy, said Andrew Light, former assistant secretary of Energy for international affairs, who led ministerial-level negotiations for the G7.“They might say, rather than watering everything down that we accomplished in the last four years, we just do a chair's statement, which summarizes the debate,” Light said. “That will show you that you didn't get consensus, but you also didn't get capitulation.”What to watch forIf there is a communique, Light says he’ll be looking for whether there is tougher language on China and any signal of support for science and the Paris Agreement. During his first term, Trump refused to support the Paris accord in the G7 and G20 declarations.The statement could avoid climate and energy issues entirely. But if it backtracks on those issues, that could be a sign that countries made a deal by trading climate-related language for something else, Light said.Baer of Carnegie said a statement framed around energy security and infrastructure could be seen as a “pragmatic adaptation” to the U.S. administration, rather than an indication that other leaders aren’t concerned about climate change.Climate activists have lower expectations.“Realistically, we can expect very little, if any, mention of climate change,” said Caroline Brouillette, executive director of Climate Action Network Canada.“The message we should be expecting from those leaders is that climate action remains a priority for the rest of the G7 … whether it's on the transition away from fossil fuels and supporting developing countries through climate finance,” she said. “Especially now that the U.S. is stepping back, we need countries, including Canada, to be stepping up.”Best- and worst-case scenariosThe challenge for Carney will be preventing any further rupture with Trump, analysts said.In 2018, Trump made a hasty exit from the G7 summit, also in Canada that year, due largely to trade disagreements. He retracted his support for the joint statement.“The best,realistic case outcome is that things don't get worse,” said Baer.The worst-case scenario? Some kind of “highly personalized spat” that could add to the sense of disorder, he added.“I think the G7 on the one hand has the potential to be more important than ever, as fewer and fewer platforms for international cooperation seem to be able to take action,” Baer said. “So it's both very important and also I don't have super-high expectations.”Reprinted from E&E News with permission from POLITICO, LLC. Copyright 2025. E&E News provides essential news for energy and environment professionals. #five #climate #issues #watch #when
    WWW.SCIENTIFICAMERICAN.COM
    Five Climate Issues to Watch When Trump Goes to Canada
    June 13, 20255 min readFive Climate Issues to Watch When Trump Goes to CanadaPresident Trump will attend the G7 summit on Sunday in a nation he threatened to annex. He will also be an outlier on climate issuesBy Sara Schonhardt & E&E News Saul Loeb/AFP via Getty ImagesCLIMATEWIRE | The world’s richest nations are gathering Sunday in the Canadian Rockies for a summit that could reveal whether President Donald Trump's policies are shaking global climate efforts.The Group of Seven meeting comes at a challenging time for international climate policy. Trump’s tariff seesaw has cast a shade over the global economy, and his domestic policies have threatened billions of dollars in funding for clean energy programs. Those pressures are colliding with record-breaking temperatures worldwide and explosive demand for energy, driven by power-hungry data centers linked to artificial intelligence technologies.On top of that, Trump has threatened to annex the host of the meeting — Canada — and members of his Cabinet have taken swipes at Europe’s use of renewable energy. Rather than being aligned with much of the world's assertion that fossil fuels should be tempered, Trump embraces the opposite position — drill for more oil and gas and keep burning coal, while repealing environmental regulations on the biggest sources of U.S. carbon pollution.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Those moves illustrate his rejection of climate science and underscore his outlying positions on global warming in the G7.Here are five things to know about the summit.Who will be there?The group comprises Canada, France, Germany, Italy, Japan, the United Kingdom and the United States — plus the European Union. Together they account for more than 40 percent of gross domestic product globally and around a quarter of all energy-related carbon dioxide pollution, according to the International Energy Agency. The U.S. is the only one among them that is not trying to hit a carbon reduction goal.Some emerging economies have also been invited, including Mexico, India, South Africa and Brazil, the host of this year’s COP30 climate talks in November.Ahead of the meeting, the office of Canada's prime minister, Mark Carney, said he and Brazilian President Luiz Inácio Lula da Silva agreed to strengthen cooperation on energy security and critical minerals. White House press secretary Karoline Leavitt said Trump would be having "quite a few" bilateral meetings but that his schedule was in flux.The G7 first came together 50 years ago following the Arab oil embargo. Since then, its seven members have all joined the United Nations Framework Convention on Climate Change and the Paris Agreement. The U.S. is the only nation in the group that has withdrawn from the Paris Agreement, which counts almost every country in the world as a signatory.What’s on the table?Among Canada’s top priorities as host are strengthening energy security and fortifying critical mineral supply chains. Carney would also like to see some agreement on joint wildfire action.Expanding supply chains for critical minerals — and competing more aggressively with China over those resources — could be areas of common ground among the leaders. Climate change is expected to remain divisive. Looming over the discussions will be tariffs — which Trump has applied across the board — because they will have an impact on the clean energy transition.“I think probably the majority of the conversation will be less about climate per se, or certainly not using climate action as the frame, but more about energy transition and infrastructure as a way of kind of bridging the known gaps between most of the G7 and where the United States is right now,” said Dan Baer, director of the Europe program at the Carnegie Endowment for International Peace.What are the possible outcomes?The leaders could issue a communique at the end of their meeting, but those statements are based on consensus, something that would be difficult to reach without other G7 countries capitulating to Trump. Bloomberg reported Wednesday that nations won’t try to reach a joint agreement, in part because bridging gaps on climate change could be too hard.Instead, Carney could issue a chair’s summary or joint statements based on certain issues.The question is how far Canada will go to accommodate the U.S., which could try to roll back past statements on advancing clean energy, said Andrew Light, former assistant secretary of Energy for international affairs, who led ministerial-level negotiations for the G7.“They might say, rather than watering everything down that we accomplished in the last four years, we just do a chair's statement, which summarizes the debate,” Light said. “That will show you that you didn't get consensus, but you also didn't get capitulation.”What to watch forIf there is a communique, Light says he’ll be looking for whether there is tougher language on China and any signal of support for science and the Paris Agreement. During his first term, Trump refused to support the Paris accord in the G7 and G20 declarations.The statement could avoid climate and energy issues entirely. But if it backtracks on those issues, that could be a sign that countries made a deal by trading climate-related language for something else, Light said.Baer of Carnegie said a statement framed around energy security and infrastructure could be seen as a “pragmatic adaptation” to the U.S. administration, rather than an indication that other leaders aren’t concerned about climate change.Climate activists have lower expectations.“Realistically, we can expect very little, if any, mention of climate change,” said Caroline Brouillette, executive director of Climate Action Network Canada.“The message we should be expecting from those leaders is that climate action remains a priority for the rest of the G7 … whether it's on the transition away from fossil fuels and supporting developing countries through climate finance,” she said. “Especially now that the U.S. is stepping back, we need countries, including Canada, to be stepping up.”Best- and worst-case scenariosThe challenge for Carney will be preventing any further rupture with Trump, analysts said.In 2018, Trump made a hasty exit from the G7 summit, also in Canada that year, due largely to trade disagreements. He retracted his support for the joint statement.“The best, [most] realistic case outcome is that things don't get worse,” said Baer.The worst-case scenario? Some kind of “highly personalized spat” that could add to the sense of disorder, he added.“I think the G7 on the one hand has the potential to be more important than ever, as fewer and fewer platforms for international cooperation seem to be able to take action,” Baer said. “So it's both very important and also I don't have super-high expectations.”Reprinted from E&E News with permission from POLITICO, LLC. Copyright 2025. E&E News provides essential news for energy and environment professionals.
    0 Комментарии 0 Поделились
  • Could Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment Explained

    June 13, 20253 min readCould Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment ExplainedWhen Israeli aircraft recently struck a uranium-enrichment complex in the nation, Iran could have been days away from achieving “breakout,” the ability to quickly turn “yellowcake” uranium into bomb-grade fuel, with its new high-speed centrifugesBy Deni Ellis Béchard edited by Dean VisserMen work inside of a uranium conversion facility just outside the city of Isfahan, Iran, on March 30, 2005. The facility in Isfahan made hexaflouride gas, which was then enriched by feeding it into centrifuges at a facility in Natanz, Iran. Getty ImagesIn the predawn darkness on Friday local time, Israeli military aircraft struck one of Iran’s uranium-enrichment complexes near the city of Natanz. The warheads aimed to do more than shatter concrete; they were meant to buy time, according to news reports. For months, Iran had seemed to be edging ever closer to “breakout,” the point at which its growing stockpile of partially enriched uranium could be converted into fuel for a nuclear bomb.But why did the strike occur now? One consideration could involve the way enrichment complexes work. Natural uranium is composed almost entirely of uranium 238, or U-238, an isotope that is relatively “heavy”. Only about 0.7 percent is uranium 235, a lighter isotope that is capable of sustaining a nuclear chain reaction. That means that in natural uranium, only seven atoms in 1,000 are the lighter, fission-ready U-235; “enrichment” simply means raising the percentage of U-235.U-235 can be used in warheads because its nucleus can easily be split. The International Atomic Energy Agency uses 25 kilograms of contained U-235 as the benchmark amount deemed sufficient for a first-generation implosion bomb. In such a weapon, the U-235 is surrounded by conventional explosives that, when detonated, compress the isotope. A separate device releases a neutron stream.Each time a neutron strikes a U-235 atom, the atom fissions; it divides and spits out, on average, two or three fresh neutrons—plus a burst of energy in the form of heat and gamma radiation. And the emitted neutrons in turn strike other U-235 nuclei, creating a self-sustaining chain reaction among the U-235 atoms that have been packed together into a critical mass. The result is a nuclear explosion. By contrast, the more common isotope, U-238, usually absorbs slow neutrons without splitting and cannot drive such a devastating chain reaction.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.To enrich uranium so that it contains enough U-235, the “yellowcake” uranium powder that comes out of a mine must go through a lengthy process of conversions to transform it from a solid into the gas uranium hexafluoride. First, a series of chemical processes refine the uranium and then, at high temperatures, each uranium atom is bound to six fluorine atoms. The result, uranium hexafluoride, is unusual: below 56 degrees Celsiusit is a white, waxy solid, but just above that temperature, it sublimates into a dense, invisible gas.During enrichment, this uranium hexafluoride is loaded into a centrifuge: a metal cylinder that spins at tens of thousands of revolutions per minute—faster than the blades of a jet engine. As the heavier U-238 molecules drift toward the cylinder wall, the lighter U-235 molecules remain closer to the center and are siphoned off. This new, slightly U-235-richer gas is then put into the next centrifuge. The process is repeated 10 to 20 times as ever more enriched gas is sent through a series of centrifuges.Enrichment is a slow process, but the Iranian government has been working on this for years and already holds roughly 400 kilograms of uranium enriched to 60 percent U-235. This falls short of the 90 percent required for nuclear weapons. But whereas Iran’s first-generation IR-1 centrifuges whirl at about 63,000 revolutions per minute and do relatively modest work, its newer IR-6 models, built from high-strength carbon fiber, spin faster and produce enriched uranium far more quickly.Iran has been installing thousands of these units, especially at Fordow, an underground enrichment facility built beneath 80 to 90 meters of rock. According to a report released on Monday by the Institute for Science and International Security, the new centrifuges could produce enough 90 percent U-235 uranium for a warhead “in as little as two to three days” and enough for nine nuclear weapons in three weeks—or 19 by the end of the third month.
    #could #iran #have #been #close
    Could Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment Explained
    June 13, 20253 min readCould Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment ExplainedWhen Israeli aircraft recently struck a uranium-enrichment complex in the nation, Iran could have been days away from achieving “breakout,” the ability to quickly turn “yellowcake” uranium into bomb-grade fuel, with its new high-speed centrifugesBy Deni Ellis Béchard edited by Dean VisserMen work inside of a uranium conversion facility just outside the city of Isfahan, Iran, on March 30, 2005. The facility in Isfahan made hexaflouride gas, which was then enriched by feeding it into centrifuges at a facility in Natanz, Iran. Getty ImagesIn the predawn darkness on Friday local time, Israeli military aircraft struck one of Iran’s uranium-enrichment complexes near the city of Natanz. The warheads aimed to do more than shatter concrete; they were meant to buy time, according to news reports. For months, Iran had seemed to be edging ever closer to “breakout,” the point at which its growing stockpile of partially enriched uranium could be converted into fuel for a nuclear bomb.But why did the strike occur now? One consideration could involve the way enrichment complexes work. Natural uranium is composed almost entirely of uranium 238, or U-238, an isotope that is relatively “heavy”. Only about 0.7 percent is uranium 235, a lighter isotope that is capable of sustaining a nuclear chain reaction. That means that in natural uranium, only seven atoms in 1,000 are the lighter, fission-ready U-235; “enrichment” simply means raising the percentage of U-235.U-235 can be used in warheads because its nucleus can easily be split. The International Atomic Energy Agency uses 25 kilograms of contained U-235 as the benchmark amount deemed sufficient for a first-generation implosion bomb. In such a weapon, the U-235 is surrounded by conventional explosives that, when detonated, compress the isotope. A separate device releases a neutron stream.Each time a neutron strikes a U-235 atom, the atom fissions; it divides and spits out, on average, two or three fresh neutrons—plus a burst of energy in the form of heat and gamma radiation. And the emitted neutrons in turn strike other U-235 nuclei, creating a self-sustaining chain reaction among the U-235 atoms that have been packed together into a critical mass. The result is a nuclear explosion. By contrast, the more common isotope, U-238, usually absorbs slow neutrons without splitting and cannot drive such a devastating chain reaction.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.To enrich uranium so that it contains enough U-235, the “yellowcake” uranium powder that comes out of a mine must go through a lengthy process of conversions to transform it from a solid into the gas uranium hexafluoride. First, a series of chemical processes refine the uranium and then, at high temperatures, each uranium atom is bound to six fluorine atoms. The result, uranium hexafluoride, is unusual: below 56 degrees Celsiusit is a white, waxy solid, but just above that temperature, it sublimates into a dense, invisible gas.During enrichment, this uranium hexafluoride is loaded into a centrifuge: a metal cylinder that spins at tens of thousands of revolutions per minute—faster than the blades of a jet engine. As the heavier U-238 molecules drift toward the cylinder wall, the lighter U-235 molecules remain closer to the center and are siphoned off. This new, slightly U-235-richer gas is then put into the next centrifuge. The process is repeated 10 to 20 times as ever more enriched gas is sent through a series of centrifuges.Enrichment is a slow process, but the Iranian government has been working on this for years and already holds roughly 400 kilograms of uranium enriched to 60 percent U-235. This falls short of the 90 percent required for nuclear weapons. But whereas Iran’s first-generation IR-1 centrifuges whirl at about 63,000 revolutions per minute and do relatively modest work, its newer IR-6 models, built from high-strength carbon fiber, spin faster and produce enriched uranium far more quickly.Iran has been installing thousands of these units, especially at Fordow, an underground enrichment facility built beneath 80 to 90 meters of rock. According to a report released on Monday by the Institute for Science and International Security, the new centrifuges could produce enough 90 percent U-235 uranium for a warhead “in as little as two to three days” and enough for nine nuclear weapons in three weeks—or 19 by the end of the third month. #could #iran #have #been #close
    WWW.SCIENTIFICAMERICAN.COM
    Could Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment Explained
    June 13, 20253 min readCould Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment ExplainedWhen Israeli aircraft recently struck a uranium-enrichment complex in the nation, Iran could have been days away from achieving “breakout,” the ability to quickly turn “yellowcake” uranium into bomb-grade fuel, with its new high-speed centrifugesBy Deni Ellis Béchard edited by Dean VisserMen work inside of a uranium conversion facility just outside the city of Isfahan, Iran, on March 30, 2005. The facility in Isfahan made hexaflouride gas, which was then enriched by feeding it into centrifuges at a facility in Natanz, Iran. Getty ImagesIn the predawn darkness on Friday local time, Israeli military aircraft struck one of Iran’s uranium-enrichment complexes near the city of Natanz. The warheads aimed to do more than shatter concrete; they were meant to buy time, according to news reports. For months, Iran had seemed to be edging ever closer to “breakout,” the point at which its growing stockpile of partially enriched uranium could be converted into fuel for a nuclear bomb. (Iran has denied that it has been pursuing nuclear weapons development.)But why did the strike occur now? One consideration could involve the way enrichment complexes work. Natural uranium is composed almost entirely of uranium 238, or U-238, an isotope that is relatively “heavy” (meaning it has more neutrons in its nucleus). Only about 0.7 percent is uranium 235 (U-235), a lighter isotope that is capable of sustaining a nuclear chain reaction. That means that in natural uranium, only seven atoms in 1,000 are the lighter, fission-ready U-235; “enrichment” simply means raising the percentage of U-235.U-235 can be used in warheads because its nucleus can easily be split. The International Atomic Energy Agency uses 25 kilograms of contained U-235 as the benchmark amount deemed sufficient for a first-generation implosion bomb. In such a weapon, the U-235 is surrounded by conventional explosives that, when detonated, compress the isotope. A separate device releases a neutron stream. (Neutrons are the neutral subatomic particle in an atom’s nucleus that adds to their mass.) Each time a neutron strikes a U-235 atom, the atom fissions; it divides and spits out, on average, two or three fresh neutrons—plus a burst of energy in the form of heat and gamma radiation. And the emitted neutrons in turn strike other U-235 nuclei, creating a self-sustaining chain reaction among the U-235 atoms that have been packed together into a critical mass. The result is a nuclear explosion. By contrast, the more common isotope, U-238, usually absorbs slow neutrons without splitting and cannot drive such a devastating chain reaction.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.To enrich uranium so that it contains enough U-235, the “yellowcake” uranium powder that comes out of a mine must go through a lengthy process of conversions to transform it from a solid into the gas uranium hexafluoride. First, a series of chemical processes refine the uranium and then, at high temperatures, each uranium atom is bound to six fluorine atoms. The result, uranium hexafluoride, is unusual: below 56 degrees Celsius (132.8 degrees Fahrenheit) it is a white, waxy solid, but just above that temperature, it sublimates into a dense, invisible gas.During enrichment, this uranium hexafluoride is loaded into a centrifuge: a metal cylinder that spins at tens of thousands of revolutions per minute—faster than the blades of a jet engine. As the heavier U-238 molecules drift toward the cylinder wall, the lighter U-235 molecules remain closer to the center and are siphoned off. This new, slightly U-235-richer gas is then put into the next centrifuge. The process is repeated 10 to 20 times as ever more enriched gas is sent through a series of centrifuges.Enrichment is a slow process, but the Iranian government has been working on this for years and already holds roughly 400 kilograms of uranium enriched to 60 percent U-235. This falls short of the 90 percent required for nuclear weapons. But whereas Iran’s first-generation IR-1 centrifuges whirl at about 63,000 revolutions per minute and do relatively modest work, its newer IR-6 models, built from high-strength carbon fiber, spin faster and produce enriched uranium far more quickly.Iran has been installing thousands of these units, especially at Fordow, an underground enrichment facility built beneath 80 to 90 meters of rock. According to a report released on Monday by the Institute for Science and International Security, the new centrifuges could produce enough 90 percent U-235 uranium for a warhead “in as little as two to three days” and enough for nine nuclear weapons in three weeks—or 19 by the end of the third month.
    0 Комментарии 0 Поделились
  • How a planetarium show discovered a spiral at the edge of our solar system

    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system.

    “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist.

    Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years. 

    The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?” 

    To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data.

    “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says. 

    The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars.

    “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.”

    She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’” 

    While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space ShowMore simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves. 

    In each simulation, the spiral persisted.

    “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’” 

    An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system.As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system.

    “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.”

    “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.”

    It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.”

    The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems.

    Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”

     In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths.Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show.

    “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’

    “ThenNeil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'”

    “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds.

    The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.”

    By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies.

    To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX.

    The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.” 

    The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.”

    Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data.

    “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.”

    As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands.

    Our Oort cloud, a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud“New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent. 

    More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud. 

    Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.” 

    The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud. 

    For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park.
    #how #planetarium #show #discovered #spiral
    How a planetarium show discovered a spiral at the edge of our solar system
    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system. “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist. Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years.  The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?”  To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data. “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says.  The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars. “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.” She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’”  While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space ShowMore simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves.  In each simulation, the spiral persisted. “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’”  An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system.As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system. “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.” “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.” It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.” The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems. Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”  In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths.Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show. “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’ “ThenNeil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'” “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds. The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.” By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies. To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX. The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.”  The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.” Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data. “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.” As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands. Our Oort cloud, a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud“New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent.  More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud.  Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.”  The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud.  For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park. #how #planetarium #show #discovered #spiral
    WWW.FASTCOMPANY.COM
    How a planetarium show discovered a spiral at the edge of our solar system
    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system. “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist. Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years.  The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?”  To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data. “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says.  The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars. “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.” She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’”  While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space Show (curving, dusty S-shape behind the Sun) [Image: © AMNH] More simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves.  In each simulation, the spiral persisted. “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’”  An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system. [Image: NASA] As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system. “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.” “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.” It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.” The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems. Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”  In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths. [Image: © AMNH] Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show. “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’ “Then [planetarium’s director] Neil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'” “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds. The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.” By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies. To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX. The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.”  The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.” Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data. “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.” As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands. Our Oort cloud (center), a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud [Image: © AMNH ] “New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent.  More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud.  Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.”  The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud.  For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park.
    0 Комментарии 0 Поделились