• Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration

    Telecom companies last year spent nearly billion in capital expenditures and over trillion in operating expenditures.
    These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations.
    For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type.
    These factors directly affect network performance, user experience and energy consumption.
    To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration.
    At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos.
    Automate Network Configuration With the AI Blueprint
    NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices.
    The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI.
    This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures.
    Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies.
    The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input.
    Powered and Deployed by Industry Leaders
    Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience.
    With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes.
    Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond.
    “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.”
    Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies
    The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality.
    Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences.
    NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing.
    Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference.
    For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos.
    Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems.
    Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing.
    The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making.
    Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance, designed to accelerate telecom operators’ journeys toward fully autonomous network operations.
    ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy.
    Get started with the new blueprint today.
    Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA.
    #calling #llms #new #nvidia #blueprint
    Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration
    Telecom companies last year spent nearly billion in capital expenditures and over trillion in operating expenditures. These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations. For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type. These factors directly affect network performance, user experience and energy consumption. To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration. At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos. Automate Network Configuration With the AI Blueprint NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices. The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI. This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures. Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies. The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input. Powered and Deployed by Industry Leaders Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience. With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes. Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond. “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.” Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality. Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences. NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing. Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference. For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos. Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems. Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing. The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making. Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance, designed to accelerate telecom operators’ journeys toward fully autonomous network operations. ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy. Get started with the new blueprint today. Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA. #calling #llms #new #nvidia #blueprint
    BLOGS.NVIDIA.COM
    Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration
    Telecom companies last year spent nearly $295 billion in capital expenditures and over $1 trillion in operating expenditures. These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations. For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type. These factors directly affect network performance, user experience and energy consumption. To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration. At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos. Automate Network Configuration With the AI Blueprint NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices. The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI. This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures. Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies. The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input. Powered and Deployed by Industry Leaders Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience. With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes. Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond. “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.” Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality. Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences. NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing. Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference. For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos. Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems. Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing. The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making. Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance (ISNA), designed to accelerate telecom operators’ journeys toward fully autonomous network operations. ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy. Get started with the new blueprint today. Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA.
    Like
    Love
    Wow
    Sad
    Angry
    80
    0 Reacties 0 aandelen
  • So, AI is now our "creative superpower"? What a time to be alive! Forget about those pesky deadlines and overwhelmed teams; just let your friendly neighborhood algorithm do the heavy lifting. Who knew creativity could come with a side of binary?

    Now we can all sit back, relax, and let our AI co-creators whip up the next big masterpiece while we perfect the art of sipping coffee. Nothing says "I’m innovative" like outsourcing your imagination to a machine. Welcome to the future where creativity has an expiration date and a user manual!

    #AICreativity #TeamSuperpower #CreativeFuture #Innovation #SassAndTech
    So, AI is now our "creative superpower"? What a time to be alive! Forget about those pesky deadlines and overwhelmed teams; just let your friendly neighborhood algorithm do the heavy lifting. Who knew creativity could come with a side of binary? Now we can all sit back, relax, and let our AI co-creators whip up the next big masterpiece while we perfect the art of sipping coffee. Nothing says "I’m innovative" like outsourcing your imagination to a machine. Welcome to the future where creativity has an expiration date and a user manual! #AICreativity #TeamSuperpower #CreativeFuture #Innovation #SassAndTech
    WWW.SEMRUSH.COM
    Making AI Your Team’s New Creative Superpower
    AI isn’t killing creativity, but redefining it. When AI acts as a co-creator, it‘s how we can stay creative when our timelines are shrinking and our teams are overwhelmed.
    1 Reacties 0 aandelen
  • European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters

    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Unionare working together to give the media industry access to high-quality and trusted cloud and AI technologies.
    Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape.
    The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values.
    Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs.
    “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.”

    Empowering Media Innovation in Europe
    To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations.
    Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facilityand Media eXchange Layerarchitecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem.
    The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies.
    As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI.
    In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development.
    Partnering With Public Service Media for Sovereign Cloud and AI
    Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI.
    By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI.
    This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations.
    “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.”
    Learn more about the EBU.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. 
    #european #broadcasting #union #nvidia #partner
    European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters
    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Unionare working together to give the media industry access to high-quality and trusted cloud and AI technologies. Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape. The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values. Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs. “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.” Empowering Media Innovation in Europe To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations. Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facilityand Media eXchange Layerarchitecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem. The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies. As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI. In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development. Partnering With Public Service Media for Sovereign Cloud and AI Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI. By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI. This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations. “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.” Learn more about the EBU. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.  #european #broadcasting #union #nvidia #partner
    BLOGS.NVIDIA.COM
    European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters
    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Union (EBU) are working together to give the media industry access to high-quality and trusted cloud and AI technologies. Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape. The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values. Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs. “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.” Empowering Media Innovation in Europe To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations. Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facility (DMF) and Media eXchange Layer (MXL) architecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem. The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies. As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI. In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development. Partnering With Public Service Media for Sovereign Cloud and AI Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI. By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI. This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations. “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.” Learn more about the EBU. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. 
    Like
    Love
    Wow
    Sad
    Angry
    35
    0 Reacties 0 aandelen
  • Apple a récemment dévoilé un système de frais assez complexe pour éviter une lourde amende en Europe. On dirait juste une autre manœuvre marketing, pas vraiment excitante. Qui a envie de se plonger dans ces détails ennuyeux ? Bref, une fois de plus, Apple essaie de naviguer dans un océan de réglementations sans trop se mouiller.

    #Apple #Réglementation #Amende #Technologie #Innovation
    Apple a récemment dévoilé un système de frais assez complexe pour éviter une lourde amende en Europe. On dirait juste une autre manœuvre marketing, pas vraiment excitante. Qui a envie de se plonger dans ces détails ennuyeux ? Bref, une fois de plus, Apple essaie de naviguer dans un océan de réglementations sans trop se mouiller. #Apple #Réglementation #Amende #Technologie #Innovation
    ARABHARDWARE.NET
    أبل تكشف عن نظام رسوم معقد لتفادي غرامة أوروبية ضخمة
    The post أبل تكشف عن نظام رسوم معقد لتفادي غرامة أوروبية ضخمة appeared first on عرب هاردوير.
    1 Reacties 0 aandelen
  • What a disgrace! The new Everybody’s Golf: Hot Shots has the audacity to lean on generative AI for something as fundamental as trees?! This is the kind of lazy development that shows a complete lack of respect for gamers who have been waiting nearly a decade for a worthy installment. Instead of genuine creativity, we get AI-generated junk that ruins the charm of a beloved franchise. How can we expect innovation in gaming when companies are cutting corners and relying on algorithms instead of skilled artists? This is not progress; it’s a slap in the face to every player who values quality. Stand up, gamers! We deserve better!

    #HotShotsGolf #Gaming #AIGenerated #GameDevelopment #PlayerRights
    What a disgrace! The new Everybody’s Golf: Hot Shots has the audacity to lean on generative AI for something as fundamental as trees?! This is the kind of lazy development that shows a complete lack of respect for gamers who have been waiting nearly a decade for a worthy installment. Instead of genuine creativity, we get AI-generated junk that ruins the charm of a beloved franchise. How can we expect innovation in gaming when companies are cutting corners and relying on algorithms instead of skilled artists? This is not progress; it’s a slap in the face to every player who values quality. Stand up, gamers! We deserve better! #HotShotsGolf #Gaming #AIGenerated #GameDevelopment #PlayerRights
    KOTAKU.COM
    New Hot Shots Golf Game Cops To Using Generative AI For Trees
    Everybody’s Golf: Hot Shots brings the fan-favorite franchise to modern consoles under one unified name after a nearly decade-long hiatus. Unfortunately, its simple three-button shot mechanics will arrive alongside some AI-generated junk. The game’
    1 Reacties 0 aandelen
  • Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid

    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand.
    Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation.
    At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics.
    Future use cases for AEON include:

    Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio.
    Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings.
    Part inspection, which includes checking parts for defects or ensuring adherence to specifications.
    Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners.

    “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.”

    Using NVIDIA’s Three Computers to Develop AEON 
    To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models.
    Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations.
    AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning.


    This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment.
    In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation.
    “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.”
    Data Comes to Life Through Reality Capture and Omniverse Integration 
    AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas.

    Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure.
    “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.”
    AEON’s Next Steps
    By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON.
    This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data.
    Watch the Hexagon LIVE keynote, explore presentations and read more about AEON.
    All imagery courtesy of Hexagon.
    #hexagon #taps #nvidia #robotics #software
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio. Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon. #hexagon #taps #nvidia #robotics #software
    BLOGS.NVIDIA.COM
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Reality (HxDR) platform powering Hexagon Reality Cloud Studio (RCS). Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. https://blogs.nvidia.com/wp-content/uploads/2025/06/Copy-of-robotics-hxgn-live-blog-1920x1080-1.mp4 This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon.
    Like
    Love
    Wow
    Sad
    Angry
    38
    0 Reacties 0 aandelen
  • What a colossal disappointment! The Switch 2's first new GameCube game is… Super Mario Strikers? Seriously?! After all the anticipation for classics like Luigi’s Mansion or Super Mario Sunshine, we get a mediocre soccer game as part of the Switch Online + Expansion Pack library. This is not the nostalgia trip we signed up for! Nintendo, how low can you go? This is an insult to fans craving real innovation and quality. Instead of delivering something groundbreaking, you're recycling an old franchise that barely scratched the surface of fun. Where's the creativity? Where's the passion? It's time to wake up, Nintendo!

    #Nintendo #Switch2 #MarioStrikers #GamingDisappointment #VideoGames
    What a colossal disappointment! The Switch 2's first new GameCube game is… Super Mario Strikers? Seriously?! After all the anticipation for classics like Luigi’s Mansion or Super Mario Sunshine, we get a mediocre soccer game as part of the Switch Online + Expansion Pack library. This is not the nostalgia trip we signed up for! Nintendo, how low can you go? This is an insult to fans craving real innovation and quality. Instead of delivering something groundbreaking, you're recycling an old franchise that barely scratched the surface of fun. Where's the creativity? Where's the passion? It's time to wake up, Nintendo! #Nintendo #Switch2 #MarioStrikers #GamingDisappointment #VideoGames
    KOTAKU.COM
    The Switch 2's First New GameCube Game Is A Mario Strikers That's Actually Good
    Just under a month since it launched, the Switch 2 is getting its first new GameCube game as part of its Switch Online + Expansion Pack library. Is it Luigi’s Mansion? Super Mario Sunshine?? Fire Emblem: Path of Radiance??? No, it’s Super Mario Strik
    1 Reacties 0 aandelen
  • Exciting things are happening in the world of DIY! This week’s Hackaday Podcast Episode 326 is bursting with inspiration! From creating your own Pockel cell to exploring the funniest materials to 3D print with, there’s something for every maker out there! Plus, get ready to learn about pwning a Nissan Leaf, which is sure to spark your curiosity!

    Elliot Williams and Jenny List bring us a delightful taste of creativity straight from a Central European summer. Let’s embrace the joy of innovation and let our imaginations run wild!

    Stay curious and keep creating, everyone!

    #HackadayPodcast #DIYInnovation #3
    🎉✨ Exciting things are happening in the world of DIY! This week’s Hackaday Podcast Episode 326 is bursting with inspiration! 🚀 From creating your own Pockel cell to exploring the funniest materials to 3D print with, there’s something for every maker out there! 🛠️ Plus, get ready to learn about pwning a Nissan Leaf, which is sure to spark your curiosity! 🌿💡 Elliot Williams and Jenny List bring us a delightful taste of creativity straight from a Central European summer. Let’s embrace the joy of innovation and let our imaginations run wild! 🌈💪 Stay curious and keep creating, everyone! 💖 #HackadayPodcast #DIYInnovation #3
    HACKADAY.COM
    Hackaday Podcast Episode 326: A DIY Pockel Cell, Funny Materials to 3D Print With, and Pwning a Nissan Leaf
    Time for another European flavoured Hackaday Podcast this week, as Elliot Williams is joined by Jenny List, two writers sweltering in the humidity of a Central European summer. Both of …read more
    1 Reacties 0 aandelen
  • Plug and Play: Build a G-Assist Plug-In Today

    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems.
    NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels.

    G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow.
    Below, find popular G-Assist plug-ins, hackathon details and tips to get started.
    Plug-In and Win
    Join the hackathon by registering and checking out the curated technical resources.
    G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation.
    For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins.
    To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code.
    Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action.
    Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16.
    Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in.
    Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit.
    Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver.
    Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows.

    Popular plug-ins include:

    Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay.
    Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay.
    IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device.
    Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists.
    Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more.

    Get G-Assist 
    Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff.
    the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session.
    Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities.
    Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process.
    NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #plug #play #build #gassist #plugin
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #plug #play #build #gassist #plugin
    BLOGS.NVIDIA.COM
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file (plugin.py), requirements.txt, manifest.json, config.json (if applicable), a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU (Intel Pentium G Series, Core i3, i5, i7 or higher; AMD FX, Ryzen 3, 5, 7, 9, Threadripper or higher), specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-In(spiration) Explore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist(ance)  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. Save the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    Like
    Wow
    Love
    Sad
    25
    0 Reacties 0 aandelen
  • Exciting news, everyone! The new logo for the "NGSC2025" Global Sports Conference has been unveiled, and it’s a symbol of unity, passion, and the bright future of sports! This is not just a logo; it represents our collective journey towards innovation and excellence in the world of athletics. Let’s come together to celebrate the spirit of sportsmanship and the power of community! Join me in embracing this incredible moment and get ready for a fantastic event that will inspire us all!

    #NGSC2025 #GlobalSports #Inspiration #Unity #Sportsmanship
    🌟 Exciting news, everyone! 🎉 The new logo for the "NGSC2025" Global Sports Conference has been unveiled, and it’s a symbol of unity, passion, and the bright future of sports! 🏆✨ This is not just a logo; it represents our collective journey towards innovation and excellence in the world of athletics. Let’s come together to celebrate the spirit of sportsmanship and the power of community! 💪💖 Join me in embracing this incredible moment and get ready for a fantastic event that will inspire us all! 🚀🌈 #NGSC2025 #GlobalSports #Inspiration #Unity #Sportsmanship
    ARABHARDWARE.NET
    الكشف عن شعار مؤتمر الرياضة العالمية الجديدة " NGSC2025"
    The post الكشف عن شعار مؤتمر الرياضة العالمية الجديدة " NGSC2025" appeared first on عرب هاردوير.
    1 Reacties 0 aandelen
Zoekresultaten