• It's absolutely infuriating that while Homebrew touts itself as the package manager that classic Macs supposedly never had, they blatantly ignore the needs of the PPC and 68k communities! This is a colossal oversight that reeks of elitism and neglect. The tech world loves to forget about those who don’t fit the shiny new mold, leaving dedicated users high and dry. Enter MR Browser—at last, a glimmer of hope for those of us who refuse to be cast aside! Why should we settle for being "criminally under-served"? It’s time to demand better! Don't let the big players dictate who gets support.

    #ClassicMacs #Homebrew #MRBrowser #TechNeglect #PPC
    It's absolutely infuriating that while Homebrew touts itself as the package manager that classic Macs supposedly never had, they blatantly ignore the needs of the PPC and 68k communities! This is a colossal oversight that reeks of elitism and neglect. The tech world loves to forget about those who don’t fit the shiny new mold, leaving dedicated users high and dry. Enter MR Browser—at last, a glimmer of hope for those of us who refuse to be cast aside! Why should we settle for being "criminally under-served"? It’s time to demand better! Don't let the big players dictate who gets support. #ClassicMacs #Homebrew #MRBrowser #TechNeglect #PPC
    HACKADAY.COM
    MR Browser is the Package Manager Classic Macs Never Had
    Homebrew bills itself as the package manager MacOS never had (conveniently ignoring MacPorts) but they leave the PPC crowd criminally under-served, to say nothing of the 68k gang. Enter [that-ben] …read more
    1 Comentários 0 Compartilhamentos 0 Anterior
  • ¡Basta ya de ignorar a verdaderos innovadores del diseño gráfico como Alain Le Quernec! Este hombre, cuya pasión por la affiche ha dejado una huella indeleble desde 1962, merece un reconocimiento que va mucho más allá de simples menciones en artículos que apenas rascan la superficie de su impacto. Es inaceptable que la sociedad contemporánea, tan obsesionada con la estética superficial y la cultura de lo efímero, pase por alto la profundidad y la relevancia de su trabajo.

    ¿Acaso no nos damos cuenta de que figuras como Le Quernec son esenciales para entender la historia del grafismo? Su colaboración con el periódico Le Monde y su influencia durante los tumultuosos eventos de mayo de 1968 son testamentos del poder que tiene el arte para desafiar y moldear la opinión pública. Pero, ¿dónde está la conversación? ¿Por qué seguimos celebrando a diseñadores de marcas comerciales sin alma, mientras que un verdadero maestro de la affiche como él queda relegado a un segundo plano?

    Es simplemente indignante ver cómo el talento genuino es eclipsado por una industria que premia lo mediocre. La escuela polaca de diseño, que ha influido en su trabajo, muestra que el verdadero arte gráfico no se trata solo de hacer algo bonito, sino de comunicar un mensaje, de provocar reflexión. Sin embargo, hoy en día, los diseñadores que se atreven a tener una voz auténtica son ignorados en favor de aquellos que solo buscan vender un producto.

    La cultura visual de nuestra era necesita un cambio radical. Necesitamos más Alain Le Quernec y menos modas pasajeras que solo buscan llenar espacios vacíos. La pasión por la affiche no debe ser algo relegado a los márgenes, sino algo que debe ser celebrado en el centro de nuestra sociedad. Es hora de que el público despierte y exija una mayor apreciación de aquellos que realmente han contribuido a la cultura visual.

    Así que, en lugar de seguir aplaudiendo a las estrellas fugaces del diseño gráfico, hagamos un esfuerzo consciente por elevar y difundir el trabajo de artistas como Alain Le Quernec. Su legado es un recordatorio constante de que el arte tiene el poder de transformar y desafiar, y no debemos permitir que se pierda en el ruido del consumismo.

    #AlainLeQuernec #ArteGráfico #PasiónPorLaAffiche #RevoluciónVisual #DiseñoConPropósito
    ¡Basta ya de ignorar a verdaderos innovadores del diseño gráfico como Alain Le Quernec! Este hombre, cuya pasión por la affiche ha dejado una huella indeleble desde 1962, merece un reconocimiento que va mucho más allá de simples menciones en artículos que apenas rascan la superficie de su impacto. Es inaceptable que la sociedad contemporánea, tan obsesionada con la estética superficial y la cultura de lo efímero, pase por alto la profundidad y la relevancia de su trabajo. ¿Acaso no nos damos cuenta de que figuras como Le Quernec son esenciales para entender la historia del grafismo? Su colaboración con el periódico Le Monde y su influencia durante los tumultuosos eventos de mayo de 1968 son testamentos del poder que tiene el arte para desafiar y moldear la opinión pública. Pero, ¿dónde está la conversación? ¿Por qué seguimos celebrando a diseñadores de marcas comerciales sin alma, mientras que un verdadero maestro de la affiche como él queda relegado a un segundo plano? Es simplemente indignante ver cómo el talento genuino es eclipsado por una industria que premia lo mediocre. La escuela polaca de diseño, que ha influido en su trabajo, muestra que el verdadero arte gráfico no se trata solo de hacer algo bonito, sino de comunicar un mensaje, de provocar reflexión. Sin embargo, hoy en día, los diseñadores que se atreven a tener una voz auténtica son ignorados en favor de aquellos que solo buscan vender un producto. La cultura visual de nuestra era necesita un cambio radical. Necesitamos más Alain Le Quernec y menos modas pasajeras que solo buscan llenar espacios vacíos. La pasión por la affiche no debe ser algo relegado a los márgenes, sino algo que debe ser celebrado en el centro de nuestra sociedad. Es hora de que el público despierte y exija una mayor apreciación de aquellos que realmente han contribuido a la cultura visual. Así que, en lugar de seguir aplaudiendo a las estrellas fugaces del diseño gráfico, hagamos un esfuerzo consciente por elevar y difundir el trabajo de artistas como Alain Le Quernec. Su legado es un recordatorio constante de que el arte tiene el poder de transformar y desafiar, y no debemos permitir que se pierda en el ruido del consumismo. #AlainLeQuernec #ArteGráfico #PasiónPorLaAffiche #RevoluciónVisual #DiseñoConPropósito
    Alain Le Quernec, la passion de l’affiche
    De sa première affiche réalisée en 1962 à ses collaborations avec le journal Le Monde, en passant par l’influence des événements de mai 1968 et de l’école polonaise, Alain Le Quernec est une figure majeure du graphisme. L’article Alain Le Quernec,
    Like
    Love
    Wow
    Sad
    Angry
    526
    1 Comentários 0 Compartilhamentos 0 Anterior
  • Casa Sofia by Mário Martins Atelier: A Contemporary Urban Infill in Lagos

    Casa Sofia | © Fernando Guerra / FG+SG
    Located in the historic heart of Lagos, Portugal, Casa Sofia by Mário Martins Atelier is a thoughtful exercise in urban integration and contemporary reinterpretation. Occupying a site once held by a modest two-story house, the project is situated on the corner of a block facing the Church of St Sebastião. With its commanding presence, this national monument set a formidable challenge for the architects: introducing a new residence that respects the weight of history while offering a clear, contemporary expression.

    Casa Sofia Technical Information

    Architects1-4: Mário Martins Atelier
    Location: Lagos, Portugal
    Project Completion Years: 2023
    Photographs: © Fernando Guerra / FG+SG

    It is therefore important to design a building to fit into and complete the block. A house that is quiet and solid, with rhythmic metrics, whose new design brings an identity, with the weight and scent of the times, to a city that has existed for many centuries.
    – Mário Martins Atelier

    Casa Sofia Photographs

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG

    © Fernando Guerra / FG+SG
    Spatial Organization and Circulation
    The design’s ambition is anchored in reconciling modern residential needs with the dense urban fabric that defines the walled city. Rather than imposing a bold or disruptive form, the project embraces the existing rhythms and textures of the surrounding architecture. The result is a building that both defers to and elevates the neighborhood’s character. Its restrained profile and carefully modulated facade echo the massing and articulation of the original house while introducing an identity that is clearly of its time.
    At the core of Casa Sofia’s spatial organization is a deliberate hierarchy of spaces that transitions seamlessly between public, semi-public, and private domains. Entry from the street occurs through a modest set of steps leading to an exterior atrium. This threshold mediates the relationship between the public realm and the interior, grounding the house in its urban context. Once inside, an open hall reveals the vertical flow of the building, dominated by a staircase that appears to float, linking the house’s various levels while maintaining visual continuity throughout.
    The ground floor houses three bedrooms, each with an ensuite bathroom, radiating from the central hall. This level also contains a small basement for technical support, reinforcing the discreet layering of functional and domestic spaces. Midway up the staircase, the house opens onto a garage, a laundry room, and an intimate courtyard. These areas, essential for daily life, are seamlessly integrated into the overall composition, contributing to a spatial richness that is both pragmatic and sensorial.
    On the first floor, an open-plan arrangement accommodates the main living spaces. Around a central void, the living and dining areas, kitchen, and master suite are arranged to encourage visual interplay and shared light. This configuration enhances the spatial porosity, ensuring that despite the density of the historic center, the house retains a sense of openness and fluidity. Above, a recessed roof level recedes from the street, culminating in a panoramic terrace with a swimming pool. Here, the building dissolves into the sky, offering expansive views and light-filled leisure spaces that contrast with the more enclosed lower floors.
    Materiality and Craftsmanship
    Materiality plays a decisive role in mediating the building’s relationship with its context. White-painted plaster, a familiar element in the region, is punctuated by deep limestone moldings. These details create a play of light and shadow that emphasizes the facade’s verticality and rhythm. The generous thickness of the walls, carried over from the site’s earlier construction, lends a sense of solidity and permanence to the house, recalling the tactile traditions of the Algarve’s architecture.
    The interior and exterior detailing is characterized by an economy of means, where each material is selected for its ability to reinforce the house’s quiet presence. Local materials and craftsmanship ground the project in its immediate context while responding to environmental imperatives. High thermal comfort is achieved through careful orientation and passive design strategies, complemented by the integration of solar control and water conservation measures. These considerations underscore the project’s commitment to sustainability without resorting to superficial gestures.
    Broader Urban and Cultural Implications
    Beyond its immediate function as a family home, Casa Sofia engages in a broader dialogue with its urban and cultural surroundings. The project exemplifies a measured response to the question of how to build within a historical setting without resorting to nostalgia or pastiche. It demonstrates that contemporary architecture can find resonance within heritage contexts by prioritizing the values of continuity, scale, and material authenticity.
    In its measured dialogue with the Church of St Sebastião and the centuries-old urban landscape of Lagos, Casa Sofia illustrates the potential for architecture to enrich the experience of place through quiet, rigorous interventions. It is a project that reaffirms architecture’s capacity to negotiate between past and present, crafting spaces that are at once deeply contextual and unambiguously of their moment.
    Casa Sofia Plans

    Sketch | © Mário Martins Atelier

    Ground Level | © Mário Martins Atelier

    Level 1 | © Mário Martins Atelier

    Level 2 | © Mário Martins Atelier

    Roof Plan | © Mário Martins Atelier

    Section | © Mário Martins Atelier
    Casa Sofia Image Gallery

    About Mário Martins Atelier
    Mário Martins Atelier is a Portuguese architecture and urbanism practice founded in 2000 by architect Mário Martins, who holds a degree from the Faculty of Architecture at the Technical University of Lisbon. Headquartered in Lagos with a secondary office in Lisbon, the firm operates with a dedicated multidisciplinary team. The office has developed a broad spectrum of work, from single-family homes and collective housing to public buildings and urban regeneration, distinguished by technical precision, contextual sensitivity, and sustainable strategies.
    Credits and Additional Notes

    Lead Architect: Mário Martins, arq.
    Project Team: Rita Rocha, Sónia Fialho, Susana Caetano, Susana Jóia, Ana Graça
    Engineering: Nuno Grave Engenharia
    Building: Marques Antunes Engenharia Lda
    #casa #sofia #mário #martins #atelier
    Casa Sofia by Mário Martins Atelier: A Contemporary Urban Infill in Lagos
    Casa Sofia | © Fernando Guerra / FG+SG Located in the historic heart of Lagos, Portugal, Casa Sofia by Mário Martins Atelier is a thoughtful exercise in urban integration and contemporary reinterpretation. Occupying a site once held by a modest two-story house, the project is situated on the corner of a block facing the Church of St Sebastião. With its commanding presence, this national monument set a formidable challenge for the architects: introducing a new residence that respects the weight of history while offering a clear, contemporary expression. Casa Sofia Technical Information Architects1-4: Mário Martins Atelier Location: Lagos, Portugal Project Completion Years: 2023 Photographs: © Fernando Guerra / FG+SG It is therefore important to design a building to fit into and complete the block. A house that is quiet and solid, with rhythmic metrics, whose new design brings an identity, with the weight and scent of the times, to a city that has existed for many centuries. – Mário Martins Atelier Casa Sofia Photographs © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG Spatial Organization and Circulation The design’s ambition is anchored in reconciling modern residential needs with the dense urban fabric that defines the walled city. Rather than imposing a bold or disruptive form, the project embraces the existing rhythms and textures of the surrounding architecture. The result is a building that both defers to and elevates the neighborhood’s character. Its restrained profile and carefully modulated facade echo the massing and articulation of the original house while introducing an identity that is clearly of its time. At the core of Casa Sofia’s spatial organization is a deliberate hierarchy of spaces that transitions seamlessly between public, semi-public, and private domains. Entry from the street occurs through a modest set of steps leading to an exterior atrium. This threshold mediates the relationship between the public realm and the interior, grounding the house in its urban context. Once inside, an open hall reveals the vertical flow of the building, dominated by a staircase that appears to float, linking the house’s various levels while maintaining visual continuity throughout. The ground floor houses three bedrooms, each with an ensuite bathroom, radiating from the central hall. This level also contains a small basement for technical support, reinforcing the discreet layering of functional and domestic spaces. Midway up the staircase, the house opens onto a garage, a laundry room, and an intimate courtyard. These areas, essential for daily life, are seamlessly integrated into the overall composition, contributing to a spatial richness that is both pragmatic and sensorial. On the first floor, an open-plan arrangement accommodates the main living spaces. Around a central void, the living and dining areas, kitchen, and master suite are arranged to encourage visual interplay and shared light. This configuration enhances the spatial porosity, ensuring that despite the density of the historic center, the house retains a sense of openness and fluidity. Above, a recessed roof level recedes from the street, culminating in a panoramic terrace with a swimming pool. Here, the building dissolves into the sky, offering expansive views and light-filled leisure spaces that contrast with the more enclosed lower floors. Materiality and Craftsmanship Materiality plays a decisive role in mediating the building’s relationship with its context. White-painted plaster, a familiar element in the region, is punctuated by deep limestone moldings. These details create a play of light and shadow that emphasizes the facade’s verticality and rhythm. The generous thickness of the walls, carried over from the site’s earlier construction, lends a sense of solidity and permanence to the house, recalling the tactile traditions of the Algarve’s architecture. The interior and exterior detailing is characterized by an economy of means, where each material is selected for its ability to reinforce the house’s quiet presence. Local materials and craftsmanship ground the project in its immediate context while responding to environmental imperatives. High thermal comfort is achieved through careful orientation and passive design strategies, complemented by the integration of solar control and water conservation measures. These considerations underscore the project’s commitment to sustainability without resorting to superficial gestures. Broader Urban and Cultural Implications Beyond its immediate function as a family home, Casa Sofia engages in a broader dialogue with its urban and cultural surroundings. The project exemplifies a measured response to the question of how to build within a historical setting without resorting to nostalgia or pastiche. It demonstrates that contemporary architecture can find resonance within heritage contexts by prioritizing the values of continuity, scale, and material authenticity. In its measured dialogue with the Church of St Sebastião and the centuries-old urban landscape of Lagos, Casa Sofia illustrates the potential for architecture to enrich the experience of place through quiet, rigorous interventions. It is a project that reaffirms architecture’s capacity to negotiate between past and present, crafting spaces that are at once deeply contextual and unambiguously of their moment. Casa Sofia Plans Sketch | © Mário Martins Atelier Ground Level | © Mário Martins Atelier Level 1 | © Mário Martins Atelier Level 2 | © Mário Martins Atelier Roof Plan | © Mário Martins Atelier Section | © Mário Martins Atelier Casa Sofia Image Gallery About Mário Martins Atelier Mário Martins Atelier is a Portuguese architecture and urbanism practice founded in 2000 by architect Mário Martins, who holds a degree from the Faculty of Architecture at the Technical University of Lisbon. Headquartered in Lagos with a secondary office in Lisbon, the firm operates with a dedicated multidisciplinary team. The office has developed a broad spectrum of work, from single-family homes and collective housing to public buildings and urban regeneration, distinguished by technical precision, contextual sensitivity, and sustainable strategies. Credits and Additional Notes Lead Architect: Mário Martins, arq. Project Team: Rita Rocha, Sónia Fialho, Susana Caetano, Susana Jóia, Ana Graça Engineering: Nuno Grave Engenharia Building: Marques Antunes Engenharia Lda #casa #sofia #mário #martins #atelier
    ARCHEYES.COM
    Casa Sofia by Mário Martins Atelier: A Contemporary Urban Infill in Lagos
    Casa Sofia | © Fernando Guerra / FG+SG Located in the historic heart of Lagos, Portugal, Casa Sofia by Mário Martins Atelier is a thoughtful exercise in urban integration and contemporary reinterpretation. Occupying a site once held by a modest two-story house, the project is situated on the corner of a block facing the Church of St Sebastião. With its commanding presence, this national monument set a formidable challenge for the architects: introducing a new residence that respects the weight of history while offering a clear, contemporary expression. Casa Sofia Technical Information Architects1-4: Mário Martins Atelier Location: Lagos, Portugal Project Completion Years: 2023 Photographs: © Fernando Guerra / FG+SG It is therefore important to design a building to fit into and complete the block. A house that is quiet and solid, with rhythmic metrics, whose new design brings an identity, with the weight and scent of the times, to a city that has existed for many centuries. – Mário Martins Atelier Casa Sofia Photographs © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG © Fernando Guerra / FG+SG Spatial Organization and Circulation The design’s ambition is anchored in reconciling modern residential needs with the dense urban fabric that defines the walled city. Rather than imposing a bold or disruptive form, the project embraces the existing rhythms and textures of the surrounding architecture. The result is a building that both defers to and elevates the neighborhood’s character. Its restrained profile and carefully modulated facade echo the massing and articulation of the original house while introducing an identity that is clearly of its time. At the core of Casa Sofia’s spatial organization is a deliberate hierarchy of spaces that transitions seamlessly between public, semi-public, and private domains. Entry from the street occurs through a modest set of steps leading to an exterior atrium. This threshold mediates the relationship between the public realm and the interior, grounding the house in its urban context. Once inside, an open hall reveals the vertical flow of the building, dominated by a staircase that appears to float, linking the house’s various levels while maintaining visual continuity throughout. The ground floor houses three bedrooms, each with an ensuite bathroom, radiating from the central hall. This level also contains a small basement for technical support, reinforcing the discreet layering of functional and domestic spaces. Midway up the staircase, the house opens onto a garage, a laundry room, and an intimate courtyard. These areas, essential for daily life, are seamlessly integrated into the overall composition, contributing to a spatial richness that is both pragmatic and sensorial. On the first floor, an open-plan arrangement accommodates the main living spaces. Around a central void, the living and dining areas, kitchen, and master suite are arranged to encourage visual interplay and shared light. This configuration enhances the spatial porosity, ensuring that despite the density of the historic center, the house retains a sense of openness and fluidity. Above, a recessed roof level recedes from the street, culminating in a panoramic terrace with a swimming pool. Here, the building dissolves into the sky, offering expansive views and light-filled leisure spaces that contrast with the more enclosed lower floors. Materiality and Craftsmanship Materiality plays a decisive role in mediating the building’s relationship with its context. White-painted plaster, a familiar element in the region, is punctuated by deep limestone moldings. These details create a play of light and shadow that emphasizes the facade’s verticality and rhythm. The generous thickness of the walls, carried over from the site’s earlier construction, lends a sense of solidity and permanence to the house, recalling the tactile traditions of the Algarve’s architecture. The interior and exterior detailing is characterized by an economy of means, where each material is selected for its ability to reinforce the house’s quiet presence. Local materials and craftsmanship ground the project in its immediate context while responding to environmental imperatives. High thermal comfort is achieved through careful orientation and passive design strategies, complemented by the integration of solar control and water conservation measures. These considerations underscore the project’s commitment to sustainability without resorting to superficial gestures. Broader Urban and Cultural Implications Beyond its immediate function as a family home, Casa Sofia engages in a broader dialogue with its urban and cultural surroundings. The project exemplifies a measured response to the question of how to build within a historical setting without resorting to nostalgia or pastiche. It demonstrates that contemporary architecture can find resonance within heritage contexts by prioritizing the values of continuity, scale, and material authenticity. In its measured dialogue with the Church of St Sebastião and the centuries-old urban landscape of Lagos, Casa Sofia illustrates the potential for architecture to enrich the experience of place through quiet, rigorous interventions. It is a project that reaffirms architecture’s capacity to negotiate between past and present, crafting spaces that are at once deeply contextual and unambiguously of their moment. Casa Sofia Plans Sketch | © Mário Martins Atelier Ground Level | © Mário Martins Atelier Level 1 | © Mário Martins Atelier Level 2 | © Mário Martins Atelier Roof Plan | © Mário Martins Atelier Section | © Mário Martins Atelier Casa Sofia Image Gallery About Mário Martins Atelier Mário Martins Atelier is a Portuguese architecture and urbanism practice founded in 2000 by architect Mário Martins, who holds a degree from the Faculty of Architecture at the Technical University of Lisbon (1988). Headquartered in Lagos with a secondary office in Lisbon, the firm operates with a dedicated multidisciplinary team. The office has developed a broad spectrum of work, from single-family homes and collective housing to public buildings and urban regeneration, distinguished by technical precision, contextual sensitivity, and sustainable strategies. Credits and Additional Notes Lead Architect: Mário Martins, arq. Project Team: Rita Rocha, Sónia Fialho, Susana Caetano, Susana Jóia, Ana Graça Engineering: Nuno Grave Engenharia Building: Marques Antunes Engenharia Lda
    Like
    Love
    Wow
    Sad
    Angry
    395
    2 Comentários 0 Compartilhamentos 0 Anterior
  • This ShowerClear Design Fixes the Mold Problem All Showerheads Have

    There is an inherent problem with the design of shower heads. Not some of them, all of them. The problem is that their very design creates the ideal circumstances for mold to thrive within them, internally, in areas that you cannot access for cleaning.A bathtub faucet or kitchen sink tap is simply just a shaped pipe that allows water to flow through them. When you turn the water off, the pipe mouths quickly dry, thanks to their relatively wide shape and local airflow.Showerheads, however, are complex workings of intricate inner channels and nozzles, designed to break the water flow into spray patterns that end users find desirable. These channels are all inside the showerhead and get little airflow. The channels can never really dry out completely, and over time, that interal dampness allows bacteria and mold—including the dreaded black mold--to thrive. In this shot of a showerhead that has been cut open by a saw, a lot of what you see is the detritus of the cut plastic, but you can also see the brown stuff. And deeper inside the head, you find this: The mother of Steve Sunshine, an inventor, was suffering from respiratory issues. Sunshine disassembled her showerhead and found it was filled with mold. He subsequently designed this ShowerClear: This ingenious design pops open, so that after a shower you can let the shower head's innards dry out. It also makes it easy to clean, so you can eliminate mineral build-up.The ShowerClear heads come in a variety of finishes and run
    #this #showerclear #design #fixes #mold
    This ShowerClear Design Fixes the Mold Problem All Showerheads Have
    There is an inherent problem with the design of shower heads. Not some of them, all of them. The problem is that their very design creates the ideal circumstances for mold to thrive within them, internally, in areas that you cannot access for cleaning.A bathtub faucet or kitchen sink tap is simply just a shaped pipe that allows water to flow through them. When you turn the water off, the pipe mouths quickly dry, thanks to their relatively wide shape and local airflow.Showerheads, however, are complex workings of intricate inner channels and nozzles, designed to break the water flow into spray patterns that end users find desirable. These channels are all inside the showerhead and get little airflow. The channels can never really dry out completely, and over time, that interal dampness allows bacteria and mold—including the dreaded black mold--to thrive. In this shot of a showerhead that has been cut open by a saw, a lot of what you see is the detritus of the cut plastic, but you can also see the brown stuff. And deeper inside the head, you find this: The mother of Steve Sunshine, an inventor, was suffering from respiratory issues. Sunshine disassembled her showerhead and found it was filled with mold. He subsequently designed this ShowerClear: This ingenious design pops open, so that after a shower you can let the shower head's innards dry out. It also makes it easy to clean, so you can eliminate mineral build-up.The ShowerClear heads come in a variety of finishes and run #this #showerclear #design #fixes #mold
    WWW.CORE77.COM
    This ShowerClear Design Fixes the Mold Problem All Showerheads Have
    There is an inherent problem with the design of shower heads. Not some of them, all of them. The problem is that their very design creates the ideal circumstances for mold to thrive within them, internally, in areas that you cannot access for cleaning.A bathtub faucet or kitchen sink tap is simply just a shaped pipe that allows water to flow through them. When you turn the water off, the pipe mouths quickly dry, thanks to their relatively wide shape and local airflow.Showerheads, however, are complex workings of intricate inner channels and nozzles, designed to break the water flow into spray patterns that end users find desirable. These channels are all inside the showerhead and get little airflow. The channels can never really dry out completely, and over time, that interal dampness allows bacteria and mold—including the dreaded black mold--to thrive. In this shot of a showerhead that has been cut open by a saw, a lot of what you see is the detritus of the cut plastic, but you can also see the brown stuff. And deeper inside the head, you find this: The mother of Steve Sunshine, an inventor, was suffering from respiratory issues. Sunshine disassembled her showerhead and found it was filled with mold. He subsequently designed this ShowerClear: This ingenious design pops open, so that after a shower you can let the shower head's innards dry out. It also makes it easy to clean, so you can eliminate mineral build-up. (This eliminates the mild hassle that many of us undertake to clean our showerheads, which is soaking them in a vessel filled with vinegar for a few hours.) The ShowerClear heads come in a variety of finishes and run $140.
    Like
    Love
    Wow
    Angry
    Sad
    500
    2 Comentários 0 Compartilhamentos 0 Anterior
  • Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’

    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One.
    By Jay Stobie
    Visual effects supervisor John Knollconfers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact.
    Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contactand Rogue One: A Star Wars Storypropelled their respective franchises to new heights. While Star Trek Generationswelcomed Captain Jean-Luc Picard’screw to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk. Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope, it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story, The Mandalorian, Andor, Ahsoka, The Acolyte, and more.
    The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif.
    A final frame from the Battle of Scarif in Rogue One: A Star Wars Story.
    A Context for Conflict
    In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design.
    On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Ersoand Cassian Andorand the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival.
    From Physical to Digital
    By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical modelsfor its features was gradually giving way to innovative computer graphicsmodels, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001.
    Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com.
    However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.”
    John Knollconfers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact.
    Legendary Lineages
    In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.”
    Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet.
    While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got fromVER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.”
    The U.S.S. Enterprise-E in Star Trek: First Contact.
    Familiar Foes
    To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generationand Star Trek: Deep Space Nine, creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin.
    As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.”
    Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back, respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.”
    A final frame from Rogue One: A Star Wars Story.
    Forming Up the Fleets
    In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics.
    Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs, live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples. These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’spersonal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography…
    Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized.
    Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story.
    Tough Little Ships
    The Federation and Rebel Alliance each deployed “tough little ships”in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001!
    Exploration and Hope
    The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire.
    The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope?

    Jay Stobieis a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy.
    #looking #back #two #classics #ilm
    Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’
    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One. By Jay Stobie Visual effects supervisor John Knollconfers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact. Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contactand Rogue One: A Star Wars Storypropelled their respective franchises to new heights. While Star Trek Generationswelcomed Captain Jean-Luc Picard’screw to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk. Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope, it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story, The Mandalorian, Andor, Ahsoka, The Acolyte, and more. The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif. A final frame from the Battle of Scarif in Rogue One: A Star Wars Story. A Context for Conflict In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design. On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Ersoand Cassian Andorand the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival. From Physical to Digital By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical modelsfor its features was gradually giving way to innovative computer graphicsmodels, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001. Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com. However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.” John Knollconfers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact. Legendary Lineages In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.” Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet. While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got fromVER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.” The U.S.S. Enterprise-E in Star Trek: First Contact. Familiar Foes To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generationand Star Trek: Deep Space Nine, creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin. As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.” Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back, respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.” A final frame from Rogue One: A Star Wars Story. Forming Up the Fleets In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics. Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs, live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples. These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’spersonal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography… Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized. Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story. Tough Little Ships The Federation and Rebel Alliance each deployed “tough little ships”in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001! Exploration and Hope The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire. The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope? – Jay Stobieis a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy. #looking #back #two #classics #ilm
    WWW.ILM.COM
    Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’
    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One. By Jay Stobie Visual effects supervisor John Knoll (right) confers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact (Credit: ILM). Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contact (1996) and Rogue One: A Star Wars Story (2016) propelled their respective franchises to new heights. While Star Trek Generations (1994) welcomed Captain Jean-Luc Picard’s (Patrick Stewart) crew to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk (William Shatner). Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope (1977), it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story (2018), The Mandalorian (2019-23), Andor (2022-25), Ahsoka (2023), The Acolyte (2024), and more. The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif. A final frame from the Battle of Scarif in Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). A Context for Conflict In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design. On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Erso (Felicity Jones) and Cassian Andor (Diego Luna) and the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival. From Physical to Digital By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical models (many of which were built by ILM) for its features was gradually giving way to innovative computer graphics (CG) models, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001. Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com. However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.” John Knoll (second from left) confers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact (Credit: ILM). Legendary Lineages In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.” Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet. While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got from [equipment vendor] VER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.” The U.S.S. Enterprise-E in Star Trek: First Contact (Credit: Paramount). Familiar Foes To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generation (1987) and Star Trek: Deep Space Nine (1993), creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin. As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.” Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back (1980), respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.” A final frame from Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). Forming Up the Fleets In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics. Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs (the MC75 cruiser Profundity and U-wings), live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples (Nebulon-B frigates, X-wings, Y-wings, and more). These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’s (Carrie Fisher and Ingvild Deila) personal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography… Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized. Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). Tough Little Ships The Federation and Rebel Alliance each deployed “tough little ships” (an endearing description Commander William T. Riker [Jonathan Frakes] bestowed upon the U.S.S. Defiant in First Contact) in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001! Exploration and Hope The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire. The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope? – Jay Stobie (he/him) is a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy.
    0 Comentários 0 Compartilhamentos 0 Anterior
  • Learning to Lead in the Digital Age: The AI Readiness Reflection

    Insights

    Learning to Lead in the Digital Age: The AI Readiness Reflection

    As the race to integrate generative AI accelerates, organizations face a dual challenge: fostering tech-savviness across teams while developing next-generation leadership competencies. These are critical to ensuring that “everyone” in the organization is prepared for continuous adaptation and change.

    This AI Readiness Reflection is designed to help you assess where your leaders stand today and identify the optimal path to build the digital knowledge, mindset, skills, and leadership capabilities required to thrive in the future.

    Take the assessment now to discover how your current practices align with AI maturity—and gain actionable insights tailored to your organization’s readiness level.

    To download the full report, tell us a bit about yourself.

    First Name
    *

    Last Name
    *

    Job Title
    *

    Organization
    *

    Business Email
    *

    Country
    *

    — Please Select —

    United States

    United Kingdom

    Afghanistan

    Aland Islands

    Albania

    Algeria

    American Samoa

    Andorra

    Angola

    Anguilla

    Antarctica

    Antigua and Barbuda

    Argentina

    Armenia

    Aruba

    Australia

    Austria

    Azerbaijan

    Bahamas

    Bahrain

    Bangladesh

    Barbados

    Belarus

    Belgium

    Belize

    Benin

    Bermuda

    Bhutan

    Bolivia

    Bosnia and Herzegovina

    Botswana

    Bouvet Island

    Brazil

    British Indian Ocean Territory

    Brunei Darussalam

    Bulgaria

    Burkina Faso

    Burundi

    Cambodia

    Cameroon

    Canada

    Cape Verde

    Cayman Islands

    Central African Republic

    Chad

    Chile

    China

    Christmas Island

    CocosIslands

    Colombia

    Comoros

    Congo

    Congo, The Democratic Republic of

    Cook Islands

    Costa Rica

    Cote d’Ivoire

    Croatia

    Cuba

    Cyprus

    Czech Republic

    Denmark

    Djibouti

    Dominica

    Dominican Republic

    Ecuador

    Egypt

    El Salvador

    Equatorial Guinea

    Eritrea

    Estonia

    Ethiopia

    Falkland IslandsFaroe Islands

    Fiji

    Finland

    France

    French Guiana

    French Polynesia

    French Southern Territories

    Gabon

    Gambia

    Georgia

    Germany

    Ghana

    Gibraltar

    Greece

    Greenland

    Grenada

    Guadeloupe

    Guam

    Guatemala

    Guernsey

    Guinea

    Guinea-Bissau

    Guyana

    Haiti

    Heard Island and McDonald Islands

    Holy SeeHonduras

    Hong Kong

    Hungary

    Iceland

    India

    Indonesia

    Iran, Islamic Republic of

    Iraq

    Ireland

    Isle of Man

    Israel

    Italy

    Jamaica

    Japan

    Jersey

    Jordan

    Kazakhstan

    Kenya

    Kiribati

    Korea, Democratic People’s Republic

    Korea, Republic of

    Kuwait

    Kyrgyzstan

    Lao People’s Democratic Republic

    Latvia

    Lebanon

    Lesotho

    Liberia

    Libyan Arab Jamahiriya

    Liechtenstein

    Lithuania

    Luxembourg

    Macao

    Macedonia The Former Yugoslav Republic

    Madagascar

    Malawi

    Malaysia

    Maldives

    Mali

    Malta

    Marshall Islands

    Martinique

    Mauritania

    Mauritius

    Mayotte

    Mexico

    Micronesia, Federated States of

    Moldova, Republic of

    Monaco

    Mongolia

    Montenegro

    Montserrat

    Morocco

    Mozambique

    Myanmar

    Namibia

    Nauru

    Nepal

    Netherlands

    Netherlands Antilles

    New Caledonia

    New Zealand

    Nicaragua

    Niger

    Nigeria

    Niue

    Norfolk Island

    Northern Mariana Islands

    Norway

    Oman

    Pakistan

    Palau

    Palestinian Territory,Occupied

    Panama

    Papua New Guinea

    Paraguay

    Peru

    Philippines

    Pitcairn

    Poland

    Portugal

    Puerto Rico

    Qatar

    Reunion

    Romania

    Russian Federation

    Rwanda

    Saint Helena

    Saint Kitts and Nevis

    Saint Lucia

    Saint Pierre and Miquelon

    Saint Vincent and the Grenadines

    Samoa

    San Marino

    Sao Tome and Principe

    Saudi Arabia

    Senegal

    Serbia

    Serbia and Montenegro

    Seychelles

    Sierra Leone

    Singapore

    Slovakia

    Slovenia

    Solomon Islands

    Somalia

    South Africa

    South Georgia & Sandwich Islands

    Spain

    Sri Lanka

    Sudan

    Suriname

    Svalbard and Jan Mayen

    Swaziland

    Sweden

    Switzerland

    Syrian Arab Republic

    Taiwan

    Tajikistan

    Tanzania, United Republic of

    Thailand

    Timor-Leste

    Togo

    Tokelau

    Tonga

    Trinidad and Tobago

    Tunisia

    Turkey

    Turkmenistan

    Turks and Caicos Islands

    Tuvalu

    Uganda

    Ukraine

    United Arab Emirates

    United States Minor Outlying Islands

    Uruguay

    Uzbekistan

    Vanuatu

    Venezuela

    Viet Nam

    Virgin Islands, British

    Virgin Islands, U.S.

    Wallis and Futuna

    Western Sahara

    Yemen

    Zambia

    Zimbabwe

    I’m interested in a follow-up discussion

    By checking this box, you agree to receive emails and communications from Harvard Business Impact. To opt-out, please visit our Privacy Policy.

    Digital Intelligence

    Share this resource

    Share on LinkedIn

    Share on Facebook

    Share on X

    Share on WhatsApp

    Email this Page

    Connect with us

    Change isn’t easy, but we can help. Together we’ll create informed and inspired leaders ready to shape the future of your business.

    Contact us

    Latest Insights

    Strategic Alignment

    Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units

    Harvard Business Publishing announced the launch of Harvard Business Impact, a new brand identity for…

    : Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units

    News

    Digital Intelligence

    Succeeding in the Digital Age: Why AI-First Leadership Is Essential

    While AI makes powerful operational efficiencies possible, it cannot yet replace the creativity, adaptability, and…

    : Succeeding in the Digital Age: Why AI-First Leadership Is Essential

    Perspectives

    Digital Intelligence

    4 Keys to AI-First Leadership: The New Imperative for Digital Transformation

    AI has become a defining force in reshaping industries and determining competitive advantage. To support…

    : 4 Keys to AI-First Leadership: The New Imperative for Digital Transformation

    Infographic

    Talent Management

    Leadership Fitness Behavioral Assessment

    In our study, “Leadership Fitness: Developing the Capacity to See and Lead Differently Amid Complexity,”…

    : Leadership Fitness Behavioral Assessment

    Job Aid

    The post Learning to Lead in the Digital Age: The AI Readiness Reflection appeared first on Harvard Business Impact.
    #learning #lead #digital #age #readiness
    Learning to Lead in the Digital Age: The AI Readiness Reflection
    Insights Learning to Lead in the Digital Age: The AI Readiness Reflection As the race to integrate generative AI accelerates, organizations face a dual challenge: fostering tech-savviness across teams while developing next-generation leadership competencies. These are critical to ensuring that “everyone” in the organization is prepared for continuous adaptation and change. This AI Readiness Reflection is designed to help you assess where your leaders stand today and identify the optimal path to build the digital knowledge, mindset, skills, and leadership capabilities required to thrive in the future. Take the assessment now to discover how your current practices align with AI maturity—and gain actionable insights tailored to your organization’s readiness level. To download the full report, tell us a bit about yourself. First Name * Last Name * Job Title * Organization * Business Email * Country * — Please Select — United States United Kingdom Afghanistan Aland Islands Albania Algeria American Samoa Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island CocosIslands Colombia Comoros Congo Congo, The Democratic Republic of Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland IslandsFaroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guam Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy SeeHonduras Hong Kong Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia The Former Yugoslav Republic Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius Mayotte Mexico Micronesia, Federated States of Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Northern Mariana Islands Norway Oman Pakistan Palau Palestinian Territory,Occupied Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Puerto Rico Qatar Reunion Romania Russian Federation Rwanda Saint Helena Saint Kitts and Nevis Saint Lucia Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Serbia and Montenegro Seychelles Sierra Leone Singapore Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia & Sandwich Islands Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United States Minor Outlying Islands Uruguay Uzbekistan Vanuatu Venezuela Viet Nam Virgin Islands, British Virgin Islands, U.S. Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe I’m interested in a follow-up discussion By checking this box, you agree to receive emails and communications from Harvard Business Impact. To opt-out, please visit our Privacy Policy. Digital Intelligence Share this resource Share on LinkedIn Share on Facebook Share on X Share on WhatsApp Email this Page Connect with us Change isn’t easy, but we can help. Together we’ll create informed and inspired leaders ready to shape the future of your business. Contact us Latest Insights Strategic Alignment Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units Harvard Business Publishing announced the launch of Harvard Business Impact, a new brand identity for… : Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units News Digital Intelligence Succeeding in the Digital Age: Why AI-First Leadership Is Essential While AI makes powerful operational efficiencies possible, it cannot yet replace the creativity, adaptability, and… : Succeeding in the Digital Age: Why AI-First Leadership Is Essential Perspectives Digital Intelligence 4 Keys to AI-First Leadership: The New Imperative for Digital Transformation AI has become a defining force in reshaping industries and determining competitive advantage. To support… : 4 Keys to AI-First Leadership: The New Imperative for Digital Transformation Infographic Talent Management Leadership Fitness Behavioral Assessment In our study, “Leadership Fitness: Developing the Capacity to See and Lead Differently Amid Complexity,”… : Leadership Fitness Behavioral Assessment Job Aid The post Learning to Lead in the Digital Age: The AI Readiness Reflection appeared first on Harvard Business Impact. #learning #lead #digital #age #readiness
    WWW.HARVARDBUSINESS.ORG
    Learning to Lead in the Digital Age: The AI Readiness Reflection
    Insights Learning to Lead in the Digital Age: The AI Readiness Reflection As the race to integrate generative AI accelerates, organizations face a dual challenge: fostering tech-savviness across teams while developing next-generation leadership competencies. These are critical to ensuring that “everyone” in the organization is prepared for continuous adaptation and change. This AI Readiness Reflection is designed to help you assess where your leaders stand today and identify the optimal path to build the digital knowledge, mindset, skills, and leadership capabilities required to thrive in the future. Take the assessment now to discover how your current practices align with AI maturity—and gain actionable insights tailored to your organization’s readiness level. To download the full report, tell us a bit about yourself. First Name * Last Name * Job Title * Organization * Business Email * Country * — Please Select — United States United Kingdom Afghanistan Aland Islands Albania Algeria American Samoa Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, The Democratic Republic of Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guam Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hong Kong Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia The Former Yugoslav Republic Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius Mayotte Mexico Micronesia, Federated States of Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Northern Mariana Islands Norway Oman Pakistan Palau Palestinian Territory,Occupied Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Puerto Rico Qatar Reunion Romania Russian Federation Rwanda Saint Helena Saint Kitts and Nevis Saint Lucia Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Serbia and Montenegro Seychelles Sierra Leone Singapore Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia & Sandwich Islands Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United States Minor Outlying Islands Uruguay Uzbekistan Vanuatu Venezuela Viet Nam Virgin Islands, British Virgin Islands, U.S. Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe I’m interested in a follow-up discussion By checking this box, you agree to receive emails and communications from Harvard Business Impact. To opt-out, please visit our Privacy Policy. Digital Intelligence Share this resource Share on LinkedIn Share on Facebook Share on X Share on WhatsApp Email this Page Connect with us Change isn’t easy, but we can help. Together we’ll create informed and inspired leaders ready to shape the future of your business. Contact us Latest Insights Strategic Alignment Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units Harvard Business Publishing announced the launch of Harvard Business Impact, a new brand identity for… Read more: Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units News Digital Intelligence Succeeding in the Digital Age: Why AI-First Leadership Is Essential While AI makes powerful operational efficiencies possible, it cannot yet replace the creativity, adaptability, and… Read more: Succeeding in the Digital Age: Why AI-First Leadership Is Essential Perspectives Digital Intelligence 4 Keys to AI-First Leadership: The New Imperative for Digital Transformation AI has become a defining force in reshaping industries and determining competitive advantage. To support… Read more: 4 Keys to AI-First Leadership: The New Imperative for Digital Transformation Infographic Talent Management Leadership Fitness Behavioral Assessment In our study, “Leadership Fitness: Developing the Capacity to See and Lead Differently Amid Complexity,”… Read more: Leadership Fitness Behavioral Assessment Job Aid The post Learning to Lead in the Digital Age: The AI Readiness Reflection appeared first on Harvard Business Impact.
    0 Comentários 0 Compartilhamentos 0 Anterior
  • Core77 Weekly Roundup (6-9-25 to 6-13-25)

    Here's what we looked at this week:Objets d'esign: Lexon is releasing speaker and lamp versions of Jeff Koons' Balloon Dog sculpture. Volvo's new Multi-Adaptive Safety Belt compensates for different sizes, shapes and crash severities.Dometic's designey coolers use a different manufacturing method.
    Wandercraft's Eve, the world's first self-balancing exoskeleton, allows people to walk again.U.C. Berkeley's tiny pogo robot has a unique locomotion style.BARE designs a better—and less expensive—Dutch oven featuring a host of UX improvements.Clever materials use: How to clear standing water on a flat roof using rope.Architecture that works with challenging terrain, not against it: The Zig-Zag Resort, by JA Joubert and UNS Architects.Industrial design firm APE creates the Echo Pro, a perfect-fitting bike helmet with a novel adjustment mechanism.The Splay Max: A folding portable 35" monitor.Industrial Design student work: Dashiell Schaeffer's Curvesse rocking chair, made from a single sheet of plywood.These unusual, "anti-ligature" doorknobs are designed with a grim functional purpose.Designey tool kits: A trend with legs.BareBag's unusual design approach: Bags that serve as hanging points for other bags.From Germany, the NOHRD SlimBeam is a handcrafted, attractive piece of home exercise equipment.Why America's streetlights have been turning purple.When industrial design is subject to aftermarket modifications: BoxPlates to undo the PlayStation 5's look.This ShowerClear design fixes the mold problem all showerheads have.Industrial design case study: Curve ID tackles industrial kitchen equipment for JAVAR.
    #core77 #weekly #roundup
    Core77 Weekly Roundup (6-9-25 to 6-13-25)
    Here's what we looked at this week:Objets d'esign: Lexon is releasing speaker and lamp versions of Jeff Koons' Balloon Dog sculpture. Volvo's new Multi-Adaptive Safety Belt compensates for different sizes, shapes and crash severities.Dometic's designey coolers use a different manufacturing method. Wandercraft's Eve, the world's first self-balancing exoskeleton, allows people to walk again.U.C. Berkeley's tiny pogo robot has a unique locomotion style.BARE designs a better—and less expensive—Dutch oven featuring a host of UX improvements.Clever materials use: How to clear standing water on a flat roof using rope.Architecture that works with challenging terrain, not against it: The Zig-Zag Resort, by JA Joubert and UNS Architects.Industrial design firm APE creates the Echo Pro, a perfect-fitting bike helmet with a novel adjustment mechanism.The Splay Max: A folding portable 35" monitor.Industrial Design student work: Dashiell Schaeffer's Curvesse rocking chair, made from a single sheet of plywood.These unusual, "anti-ligature" doorknobs are designed with a grim functional purpose.Designey tool kits: A trend with legs.BareBag's unusual design approach: Bags that serve as hanging points for other bags.From Germany, the NOHRD SlimBeam is a handcrafted, attractive piece of home exercise equipment.Why America's streetlights have been turning purple.When industrial design is subject to aftermarket modifications: BoxPlates to undo the PlayStation 5's look.This ShowerClear design fixes the mold problem all showerheads have.Industrial design case study: Curve ID tackles industrial kitchen equipment for JAVAR. #core77 #weekly #roundup
    WWW.CORE77.COM
    Core77 Weekly Roundup (6-9-25 to 6-13-25)
    Here's what we looked at this week:Objets d'esign: Lexon is releasing speaker and lamp versions of Jeff Koons' Balloon Dog sculpture. Volvo's new Multi-Adaptive Safety Belt compensates for different sizes, shapes and crash severities.Dometic's designey coolers use a different manufacturing method. Wandercraft's Eve, the world's first self-balancing exoskeleton, allows people to walk again.U.C. Berkeley's tiny pogo robot has a unique locomotion style.BARE designs a better—and less expensive—Dutch oven featuring a host of UX improvements.Clever materials use: How to clear standing water on a flat roof using rope.Architecture that works with challenging terrain, not against it: The Zig-Zag Resort, by JA Joubert and UNS Architects.Industrial design firm APE creates the Echo Pro, a perfect-fitting bike helmet with a novel adjustment mechanism.The Splay Max: A folding portable 35" monitor.Industrial Design student work: Dashiell Schaeffer's Curvesse rocking chair, made from a single sheet of plywood.These unusual, "anti-ligature" doorknobs are designed with a grim functional purpose.Designey tool kits: A trend with legs.BareBag's unusual design approach: Bags that serve as hanging points for other bags.From Germany, the NOHRD SlimBeam is a handcrafted, attractive piece of home exercise equipment.Why America's streetlights have been turning purple.When industrial design is subject to aftermarket modifications: BoxPlates to undo the PlayStation 5's look.This ShowerClear design fixes the mold problem all showerheads have.Industrial design case study: Curve ID tackles industrial kitchen equipment for JAVAR.
    0 Comentários 0 Compartilhamentos 0 Anterior
  • Barbie x HEWI Come Together to Think Pink in New Bath Line

    The name, the myth, the icon: Barbie is almost synonymous with pink, the specific hues of the time responding to cultural trends across the decades. The doll – created by Ruth Handler in 1959, and distributed and produced by Mattel – has reflected and also shaped decades of American culture. Bauhaus-inspired, Barbie and HEWI have collaborated to present the Barbie x HEWI sanitaryware collection, bathed in an approachable yet sophisticated shade of pink. With a focus on celebrating individuality the Barbie way, HEWI fosters a precedent of inclusive design for bathrooms at large, ushering in a new era where all are safe and welcome.

    HEWI continues to set new standards in bathroom and accessory design for almost one hundred years. Their iconic extruded door handle has extended to every facet of the bathroom, including a towel bar, shower seat, soap dish, and toilet roll holder, offering everything you might need if your bathroom needs a bit of brightness. A lovely shade of light pink accented with an approachable cream color allows the Barbie x HEWI collection to fit in with existing decor, palette incredibly important in a room made for washing and cleanliness. With a satisfying thickness sometimes absent from bathroom collections, each piece receives the signature HEWI finish, glossy and made to last even through the toughest bath times.

    Barbie has been an integral part of our culture for over 65 years, offering a new perspective about what professions the doll could take part in and the roles she could play. In more recent years, inclusion has been a priority for the brand, choosing a more natural silhouette and featuring a more accurate and diverse picture of who Barbie and her friends could be. Here, this energy extends to the restroom, where the iconic Barbie pink meets the bold, Bauhaus silhouette of HEWI designs.

    HEWI has been at the forefront of product design for over 90 years, challenging themselves and others to anticipate the needs of subsequent generations. With work in healthcare, public projects, hotels, and education, HEWI strives to continue to push the boundaries of materials technology, closing loops on their production processes with projects like the Re-seat collection, made out of offcuts from injection molding.

    To learn more about the Barbie x HEWI sanitaryware collection, please visit barbiexhewi.com. 
    Imagery courtesy of HEWI.
    #barbie #hewi #come #together #think
    Barbie x HEWI Come Together to Think Pink in New Bath Line
    The name, the myth, the icon: Barbie is almost synonymous with pink, the specific hues of the time responding to cultural trends across the decades. The doll – created by Ruth Handler in 1959, and distributed and produced by Mattel – has reflected and also shaped decades of American culture. Bauhaus-inspired, Barbie and HEWI have collaborated to present the Barbie x HEWI sanitaryware collection, bathed in an approachable yet sophisticated shade of pink. With a focus on celebrating individuality the Barbie way, HEWI fosters a precedent of inclusive design for bathrooms at large, ushering in a new era where all are safe and welcome. HEWI continues to set new standards in bathroom and accessory design for almost one hundred years. Their iconic extruded door handle has extended to every facet of the bathroom, including a towel bar, shower seat, soap dish, and toilet roll holder, offering everything you might need if your bathroom needs a bit of brightness. A lovely shade of light pink accented with an approachable cream color allows the Barbie x HEWI collection to fit in with existing decor, palette incredibly important in a room made for washing and cleanliness. With a satisfying thickness sometimes absent from bathroom collections, each piece receives the signature HEWI finish, glossy and made to last even through the toughest bath times. Barbie has been an integral part of our culture for over 65 years, offering a new perspective about what professions the doll could take part in and the roles she could play. In more recent years, inclusion has been a priority for the brand, choosing a more natural silhouette and featuring a more accurate and diverse picture of who Barbie and her friends could be. Here, this energy extends to the restroom, where the iconic Barbie pink meets the bold, Bauhaus silhouette of HEWI designs. HEWI has been at the forefront of product design for over 90 years, challenging themselves and others to anticipate the needs of subsequent generations. With work in healthcare, public projects, hotels, and education, HEWI strives to continue to push the boundaries of materials technology, closing loops on their production processes with projects like the Re-seat collection, made out of offcuts from injection molding. To learn more about the Barbie x HEWI sanitaryware collection, please visit barbiexhewi.com.  Imagery courtesy of HEWI. #barbie #hewi #come #together #think
    DESIGN-MILK.COM
    Barbie x HEWI Come Together to Think Pink in New Bath Line
    The name, the myth, the icon: Barbie is almost synonymous with pink, the specific hues of the time responding to cultural trends across the decades. The doll – created by Ruth Handler in 1959, and distributed and produced by Mattel – has reflected and also shaped decades of American culture. Bauhaus-inspired, Barbie and HEWI have collaborated to present the Barbie x HEWI sanitaryware collection, bathed in an approachable yet sophisticated shade of pink. With a focus on celebrating individuality the Barbie way, HEWI fosters a precedent of inclusive design for bathrooms at large, ushering in a new era where all are safe and welcome. HEWI continues to set new standards in bathroom and accessory design for almost one hundred years. Their iconic extruded door handle has extended to every facet of the bathroom, including a towel bar, shower seat, soap dish, and toilet roll holder, offering everything you might need if your bathroom needs a bit of brightness. A lovely shade of light pink accented with an approachable cream color allows the Barbie x HEWI collection to fit in with existing decor, palette incredibly important in a room made for washing and cleanliness. With a satisfying thickness sometimes absent from bathroom collections, each piece receives the signature HEWI finish, glossy and made to last even through the toughest bath times. Barbie has been an integral part of our culture for over 65 years, offering a new perspective about what professions the doll could take part in and the roles she could play. In more recent years, inclusion has been a priority for the brand, choosing a more natural silhouette and featuring a more accurate and diverse picture of who Barbie and her friends could be. Here, this energy extends to the restroom, where the iconic Barbie pink meets the bold, Bauhaus silhouette of HEWI designs. HEWI has been at the forefront of product design for over 90 years, challenging themselves and others to anticipate the needs of subsequent generations. With work in healthcare, public projects, hotels, and education, HEWI strives to continue to push the boundaries of materials technology, closing loops on their production processes with projects like the Re-seat collection, made out of offcuts from injection molding. To learn more about the Barbie x HEWI sanitaryware collection, please visit barbiexhewi.com.  Imagery courtesy of HEWI.
    0 Comentários 0 Compartilhamentos 0 Anterior
CGShares https://cgshares.com