• FBC: Firebreak, Control 2, Remedy Games, multiplayer gaming, survival tips, Hiss enemy, gaming strategies, game mechanics, Firebreak gameplay

    ---

    ## Introduction

    Let’s get one thing straight: if you think you can just waltz into FBC: Firebreak and come out unscathed, you’re delusional. This isn’t your typical walk in the park; it’s a chaotic battle against the relentless Hiss, and if you’re not prepared, you might as well throw your controller out the window. As we all eagerly anticipate Cont...
    FBC: Firebreak, Control 2, Remedy Games, multiplayer gaming, survival tips, Hiss enemy, gaming strategies, game mechanics, Firebreak gameplay --- ## Introduction Let’s get one thing straight: if you think you can just waltz into FBC: Firebreak and come out unscathed, you’re delusional. This isn’t your typical walk in the park; it’s a chaotic battle against the relentless Hiss, and if you’re not prepared, you might as well throw your controller out the window. As we all eagerly anticipate Cont...
    4 Essential Tips To Survive The Hiss In FBC: Firebreak
    FBC: Firebreak, Control 2, Remedy Games, multiplayer gaming, survival tips, Hiss enemy, gaming strategies, game mechanics, Firebreak gameplay --- ## Introduction Let’s get one thing straight: if you think you can just waltz into FBC: Firebreak and come out unscathed, you’re delusional. This isn’t your typical walk in the park; it’s a chaotic battle against the relentless Hiss, and if you’re...
    Like
    Love
    Wow
    Angry
    Sad
    462
    1 Commentarii 0 Distribuiri 0 previzualizare
  • The recent announcement of CEAD inaugurating a center dedicated to 3D printing for manufacturing boat hulls is nothing short of infuriating. We are living in an age where technological advancements should lead to significant improvements in efficiency and sustainability, yet here we are, celebrating a move that reeks of superficial progress and misguided priorities.

    First off, let’s talk about the so-called “Maritime Application Center” (MAC) in Delft. While they dazzle us with their fancy new facility, one has to question the real implications of such a center. Are they genuinely solving the pressing issues of the maritime industry, or are they merely jumping on the bandwagon of 3D printing hype? The idea of using large-scale additive manufacturing to produce boat hulls sounds revolutionary, but let’s face it: this is just another example of throwing technology at a problem without truly understanding the underlying challenges that plague the industry.

    The maritime sector is facing severe environmental concerns, including pollution from traditional manufacturing processes and shipping practices. Instead of addressing these burning issues head-on, CEAD and others like them seem content to play with shiny new tools. 3D printing, in theory, could reduce waste—a point they love to hammer home in their marketing. But what about the energy consumption and material sourcing involved? Are we simply swapping one form of environmental degradation for another?

    Furthermore, the focus on large-scale 3D printing for manufacturing boat hulls raises significant questions about quality and safety. The maritime industry is not a playground for experimental technologies; lives are at stake. Relying on printed components that could potentially have structural weaknesses is a reckless gamble, and the consequences could be disastrous. Are we prepared to accept the liability if these hulls fail at sea?

    Let’s not forget the economic implications of this move. Sure, CEAD is likely patting themselves on the back for creating jobs at the MAC, but how many traditional jobs are they putting at risk? The maritime industry relies on skilled labor and craftsmanship that cannot simply be replaced by a machine. By pushing for 3D printing at such a scale, they threaten the livelihoods of countless workers who have dedicated their lives to mastering this trade.

    In conclusion, while CEAD’s center for 3D printing boat hulls may sound impressive on paper, the reality is that it’s a misguided effort that overlooks critical aspects of sustainability, safety, and social responsibility. We need to demand more from our industries and hold them accountable for their actions instead of blindly celebrating every shiny new innovation. The maritime industry deserves solutions that genuinely address its challenges rather than a mere technological gimmick.

    #MaritimeIndustry #3DPrinting #Sustainability #CEAD #BoatManufacturing
    The recent announcement of CEAD inaugurating a center dedicated to 3D printing for manufacturing boat hulls is nothing short of infuriating. We are living in an age where technological advancements should lead to significant improvements in efficiency and sustainability, yet here we are, celebrating a move that reeks of superficial progress and misguided priorities. First off, let’s talk about the so-called “Maritime Application Center” (MAC) in Delft. While they dazzle us with their fancy new facility, one has to question the real implications of such a center. Are they genuinely solving the pressing issues of the maritime industry, or are they merely jumping on the bandwagon of 3D printing hype? The idea of using large-scale additive manufacturing to produce boat hulls sounds revolutionary, but let’s face it: this is just another example of throwing technology at a problem without truly understanding the underlying challenges that plague the industry. The maritime sector is facing severe environmental concerns, including pollution from traditional manufacturing processes and shipping practices. Instead of addressing these burning issues head-on, CEAD and others like them seem content to play with shiny new tools. 3D printing, in theory, could reduce waste—a point they love to hammer home in their marketing. But what about the energy consumption and material sourcing involved? Are we simply swapping one form of environmental degradation for another? Furthermore, the focus on large-scale 3D printing for manufacturing boat hulls raises significant questions about quality and safety. The maritime industry is not a playground for experimental technologies; lives are at stake. Relying on printed components that could potentially have structural weaknesses is a reckless gamble, and the consequences could be disastrous. Are we prepared to accept the liability if these hulls fail at sea? Let’s not forget the economic implications of this move. Sure, CEAD is likely patting themselves on the back for creating jobs at the MAC, but how many traditional jobs are they putting at risk? The maritime industry relies on skilled labor and craftsmanship that cannot simply be replaced by a machine. By pushing for 3D printing at such a scale, they threaten the livelihoods of countless workers who have dedicated their lives to mastering this trade. In conclusion, while CEAD’s center for 3D printing boat hulls may sound impressive on paper, the reality is that it’s a misguided effort that overlooks critical aspects of sustainability, safety, and social responsibility. We need to demand more from our industries and hold them accountable for their actions instead of blindly celebrating every shiny new innovation. The maritime industry deserves solutions that genuinely address its challenges rather than a mere technological gimmick. #MaritimeIndustry #3DPrinting #Sustainability #CEAD #BoatManufacturing
    CEAD inaugura un centro dedicado a la impresión 3D para fabricar cascos de barcos
    La industria marítima está experimentando una transformación importante gracias a la impresión 3D de gran formato. El grupo holandés CEAD, especialista en fabricación aditiva a gran escala, ha inaugurado recientemente su Maritime Application Center (
    Like
    Love
    Wow
    Sad
    Angry
    587
    1 Commentarii 0 Distribuiri 0 previzualizare
  • Tavernspite housing, Pembrokeshire

    The commission, valued at up to £46,000, will see the appointed architect work closely with ateb’s internal teams to deliver a 30-unit housing development, supporting the group’s mission to create better living solutions for the people and communities of West Wales.
    The two-year contract, running from July 2025 to July 2027, will require the architect to oversee all stages of design, from feasibility through to tender, in line with Welsh Government technical scrutiny and local authority planning requirements.
    The project is part of ateb’s ongoing commitment to respond to local housing need, regenerate communities, and provide a variety of affordable tenures, including social rent, rent to buy, and shared ownership.Advertisement

    According to the brief: ‘The ateb Groupis a unique set o companies that collectively has the shared purpose of 'Creating better living solutions for the people and communities of West Wales.
    ‘ateb currently has around 3,100 homes predominantly in Pembrokeshire, that we rent on either a social or intermediate rental basis.  ateb works closely with its Local Authority and other partners to develop around 150 new homes every year, to meet affordable housing need through a range of tenures such as, for rent, rent to buy or shared ownership.’
    Tavernspite is a small village of around 350 inhabitants located 9.7km southeast of Narberth in Pembrokeshire. Ateb, based in nearby Haverfordwest, is a not-for-profit housing association managing around 3,100 homes across the county.
    The group’s social purpose is supported by its subsidiaries: Mill Bay Homes, which develops homes for sale to reinvest profits into affordable housing, and West Wales Care and Repair, which supports older and vulnerable residents to remain independent in their homes.
    Bids will be assessed 60 per cent on quality and 40 per cent on price, with a strong emphasis on experience in the housing association sector and collaborative working with internal client teams.Advertisement

    Applicants must hold professional indemnity insurance of at least £2 million and be prepared to attend in-person evaluation presentations as part of the assessment process.

    Competition details
    Project title Provision of Architect Services for Tavernspite Development
    Client
    Contract value Tbc
    First round deadline Midday, 3 July 2025
    Restrictions The contract particularly welcomes submissions from small and medium-sized enterprisesand voluntary, community, and social enterprisesMore information
    #tavernspite #housing #pembrokeshire
    Tavernspite housing, Pembrokeshire
    The commission, valued at up to £46,000, will see the appointed architect work closely with ateb’s internal teams to deliver a 30-unit housing development, supporting the group’s mission to create better living solutions for the people and communities of West Wales. The two-year contract, running from July 2025 to July 2027, will require the architect to oversee all stages of design, from feasibility through to tender, in line with Welsh Government technical scrutiny and local authority planning requirements. The project is part of ateb’s ongoing commitment to respond to local housing need, regenerate communities, and provide a variety of affordable tenures, including social rent, rent to buy, and shared ownership.Advertisement According to the brief: ‘The ateb Groupis a unique set o companies that collectively has the shared purpose of 'Creating better living solutions for the people and communities of West Wales. ‘ateb currently has around 3,100 homes predominantly in Pembrokeshire, that we rent on either a social or intermediate rental basis.  ateb works closely with its Local Authority and other partners to develop around 150 new homes every year, to meet affordable housing need through a range of tenures such as, for rent, rent to buy or shared ownership.’ Tavernspite is a small village of around 350 inhabitants located 9.7km southeast of Narberth in Pembrokeshire. Ateb, based in nearby Haverfordwest, is a not-for-profit housing association managing around 3,100 homes across the county. The group’s social purpose is supported by its subsidiaries: Mill Bay Homes, which develops homes for sale to reinvest profits into affordable housing, and West Wales Care and Repair, which supports older and vulnerable residents to remain independent in their homes. Bids will be assessed 60 per cent on quality and 40 per cent on price, with a strong emphasis on experience in the housing association sector and collaborative working with internal client teams.Advertisement Applicants must hold professional indemnity insurance of at least £2 million and be prepared to attend in-person evaluation presentations as part of the assessment process. Competition details Project title Provision of Architect Services for Tavernspite Development Client Contract value Tbc First round deadline Midday, 3 July 2025 Restrictions The contract particularly welcomes submissions from small and medium-sized enterprisesand voluntary, community, and social enterprisesMore information #tavernspite #housing #pembrokeshire
    WWW.ARCHITECTSJOURNAL.CO.UK
    Tavernspite housing, Pembrokeshire
    The commission, valued at up to £46,000 (including VAT), will see the appointed architect work closely with ateb’s internal teams to deliver a 30-unit housing development, supporting the group’s mission to create better living solutions for the people and communities of West Wales. The two-year contract, running from July 2025 to July 2027, will require the architect to oversee all stages of design, from feasibility through to tender, in line with Welsh Government technical scrutiny and local authority planning requirements. The project is part of ateb’s ongoing commitment to respond to local housing need, regenerate communities, and provide a variety of affordable tenures, including social rent, rent to buy, and shared ownership.Advertisement According to the brief: ‘The ateb Group (where ateb means answer or solution In Welsh) is a unique set o companies that collectively has the shared purpose of 'Creating better living solutions for the people and communities of West Wales. ‘ateb currently has around 3,100 homes predominantly in Pembrokeshire, that we rent on either a social or intermediate rental basis.  ateb works closely with its Local Authority and other partners to develop around 150 new homes every year, to meet affordable housing need through a range of tenures such as, for rent, rent to buy or shared ownership.’ Tavernspite is a small village of around 350 inhabitants located 9.7km southeast of Narberth in Pembrokeshire. Ateb, based in nearby Haverfordwest, is a not-for-profit housing association managing around 3,100 homes across the county. The group’s social purpose is supported by its subsidiaries: Mill Bay Homes, which develops homes for sale to reinvest profits into affordable housing, and West Wales Care and Repair, which supports older and vulnerable residents to remain independent in their homes. Bids will be assessed 60 per cent on quality and 40 per cent on price, with a strong emphasis on experience in the housing association sector and collaborative working with internal client teams.Advertisement Applicants must hold professional indemnity insurance of at least £2 million and be prepared to attend in-person evaluation presentations as part of the assessment process. Competition details Project title Provision of Architect Services for Tavernspite Development Client Contract value Tbc First round deadline Midday, 3 July 2025 Restrictions The contract particularly welcomes submissions from small and medium-sized enterprises (SMEs) and voluntary, community, and social enterprises (VCSEs) More information https://www.find-tender.service.gov.uk/Notice/031815-2025
    Like
    Love
    Wow
    Sad
    Angry
    544
    2 Commentarii 0 Distribuiri 0 previzualizare
  • Inside Mark Zuckerberg’s AI hiring spree

    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch, Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI. “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies. Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will needto approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More:
    #inside #mark #zuckerbergs #hiring #spree
    Inside Mark Zuckerberg’s AI hiring spree
    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch, Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI. “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies. Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will needto approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More: #inside #mark #zuckerbergs #hiring #spree
    WWW.THEVERGE.COM
    Inside Mark Zuckerberg’s AI hiring spree
    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch (amazingly, not all of them do), Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI (a deal Zuckerberg passed on). “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies (although that is highly unlikely to happen). Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s $14.3 billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will need (and want) to approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent $3 billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More:
    0 Commentarii 0 Distribuiri 0 previzualizare
  • IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029

    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029

    By John P. Mello Jr.
    June 11, 2025 5:00 AM PT

    IBM unveiled its plan to build IBM Quantum Starling, shown in this rendering. Starling is expected to be the first large-scale, fault-tolerant quantum system.ADVERTISEMENT
    Enterprise IT Lead Generation Services
    Fuel Your Pipeline. Close More Deals. Our full-service marketing programs deliver sales-ready leads. 100% Satisfaction Guarantee! Learn more.

    IBM revealed Tuesday its roadmap for bringing a large-scale, fault-tolerant quantum computer, IBM Quantum Starling, online by 2029, which is significantly earlier than many technologists thought possible.
    The company predicts that when its new Starling computer is up and running, it will be capable of performing 20,000 times more operations than today’s quantum computers — a computational state so vast it would require the memory of more than a quindecillionof the world’s most powerful supercomputers to represent.
    “IBM is charting the next frontier in quantum computing,” Big Blue CEO Arvind Krishna said in a statement. “Our expertise across mathematics, physics, and engineering is paving the way for a large-scale, fault-tolerant quantum computer — one that will solve real-world challenges and unlock immense possibilities for business.”
    IBM’s plan to deliver a fault-tolerant quantum system by 2029 is ambitious but not implausible, especially given the rapid pace of its quantum roadmap and past milestones, observed Ensar Seker, CISO at SOCRadar, a threat intelligence company in Newark, Del.
    “They’ve consistently met or exceeded their qubit scaling goals, and their emphasis on modularity and error correction indicates they’re tackling the right challenges,” he told TechNewsWorld. “However, moving from thousands to millions of physical qubits with sufficient fidelity remains a steep climb.”
    A qubit is the fundamental unit of information in quantum computing, capable of representing a zero, a one, or both simultaneously due to quantum superposition. In practice, fault-tolerant quantum computers use clusters of physical qubits working together to form a logical qubit — a more stable unit designed to store quantum information and correct errors in real time.
    Realistic Roadmap
    Luke Yang, an equity analyst with Morningstar Research Services in Chicago, believes IBM’s roadmap is realistic. “The exact scale and error correction performance might still change between now and 2029, but overall, the goal is reasonable,” he told TechNewsWorld.
    “Given its reliability and professionalism, IBM’s bold claim should be taken seriously,” said Enrique Solano, co-CEO and co-founder of Kipu Quantum, a quantum algorithm company with offices in Berlin and Karlsruhe, Germany.
    “Of course, it may also fail, especially when considering the unpredictability of hardware complexities involved,” he told TechNewsWorld, “but companies like IBM exist for such challenges, and we should all be positively impressed by its current achievements and promised technological roadmap.”
    Tim Hollebeek, vice president of industry standards at DigiCert, a global digital security company, added: “IBM is a leader in this area, and not normally a company that hypes their news. This is a fast-moving industry, and success is certainly possible.”
    “IBM is attempting to do something that no one has ever done before and will almost certainly run into challenges,” he told TechNewsWorld, “but at this point, it is largely an engineering scaling exercise, not a research project.”
    “IBM has demonstrated consistent progress, has committed billion over five years to quantum computing, and the timeline is within the realm of technical feasibility,” noted John Young, COO of Quantum eMotion, a developer of quantum random number generator technology, in Saint-Laurent, Quebec, Canada.
    “That said,” he told TechNewsWorld, “fault-tolerant in a practical, industrial sense is a very high bar.”
    Solving the Quantum Error Correction Puzzle
    To make a quantum computer fault-tolerant, errors need to be corrected so large workloads can be run without faults. In a quantum computer, errors are reduced by clustering physical qubits to form logical qubits, which have lower error rates than the underlying physical qubits.
    “Error correction is a challenge,” Young said. “Logical qubits require thousands of physical qubits to function reliably. That’s a massive scaling issue.”
    IBM explained in its announcement that creating increasing numbers of logical qubits capable of executing quantum circuits with as few physical qubits as possible is critical to quantum computing at scale. Until today, a clear path to building such a fault-tolerant system without unrealistic engineering overhead has not been published.

    Alternative and previous gold-standard, error-correcting codes present fundamental engineering challenges, IBM continued. To scale, they would require an unfeasible number of physical qubits to create enough logical qubits to perform complex operations — necessitating impractical amounts of infrastructure and control electronics. This renders them unlikely to be implemented beyond small-scale experiments and devices.
    In two research papers released with its roadmap, IBM detailed how it will overcome the challenges of building the large-scale, fault-tolerant architecture needed for a quantum computer.
    One paper outlines the use of quantum low-density parity checkcodes to reduce physical qubit overhead. The other describes methods for decoding errors in real time using conventional computing.
    According to IBM, a practical fault-tolerant quantum architecture must:

    Suppress enough errors for useful algorithms to succeed
    Prepare and measure logical qubits during computation
    Apply universal instructions to logical qubits
    Decode measurements from logical qubits in real time and guide subsequent operations
    Scale modularly across hundreds or thousands of logical qubits
    Be efficient enough to run meaningful algorithms using realistic energy and infrastructure resources

    Aside from the technological challenges that quantum computer makers are facing, there may also be some market challenges. “Locating suitable use cases for quantum computers could be the biggest challenge,” Morningstar’s Yang maintained.
    “Only certain computing workloads, such as random circuit sampling, can fully unleash the computing power of quantum computers and show their advantage over the traditional supercomputers we have now,” he said. “However, workloads like RCS are not very commercially useful, and we believe commercial relevance is one of the key factors that determine the total market size for quantum computers.”
    Q-Day Approaching Faster Than Expected
    For years now, organizations have been told they need to prepare for “Q-Day” — the day a quantum computer will be able to crack all the encryption they use to keep their data secure. This IBM announcement suggests the window for action to protect data may be closing faster than many anticipated.
    “This absolutely adds urgency and credibility to the security expert guidance on post-quantum encryption being factored into their planning now,” said Dave Krauthamer, field CTO of QuSecure, maker of quantum-safe security solutions, in San Mateo, Calif.
    “IBM’s move to create a large-scale fault-tolerant quantum computer by 2029 is indicative of the timeline collapsing,” he told TechNewsWorld. “A fault-tolerant quantum computer of this magnitude could be well on the path to crack asymmetric ciphers sooner than anyone thinks.”

    “Security leaders need to take everything connected to post-quantum encryption as a serious measure and work it into their security plans now — not later,” he said.
    Roger Grimes, a defense evangelist with KnowBe4, a security awareness training provider in Clearwater, Fla., pointed out that IBM is just the latest in a surge of quantum companies announcing quickly forthcoming computational breakthroughs within a few years.
    “It leads to the question of whether the U.S. government’s original PQCpreparation date of 2030 is still a safe date,” he told TechNewsWorld.
    “It’s starting to feel a lot more risky for any company to wait until 2030 to be prepared against quantum attacks. It also flies in the face of the latest cybersecurity EOthat relaxed PQC preparation rules as compared to Biden’s last EO PQC standard order, which told U.S. agencies to transition to PQC ASAP.”
    “Most US companies are doing zero to prepare for Q-Day attacks,” he declared. “The latest executive order seems to tell U.S. agencies — and indirectly, all U.S. businesses — that they have more time to prepare. It’s going to cause even more agencies and businesses to be less prepared during a time when it seems multiple quantum computing companies are making significant progress.”
    “It definitely feels that something is going to give soon,” he said, “and if I were a betting man, and I am, I would bet that most U.S. companies are going to be unprepared for Q-Day on the day Q-Day becomes a reality.”

    John P. Mello Jr. has been an ECT News Network reporter since 2003. His areas of focus include cybersecurity, IT issues, privacy, e-commerce, social media, artificial intelligence, big data and consumer electronics. He has written and edited for numerous publications, including the Boston Business Journal, the Boston Phoenix, Megapixel.Net and Government Security News. Email John.

    Leave a Comment

    Click here to cancel reply.
    Please sign in to post or reply to a comment. New users create a free account.

    Related Stories

    More by John P. Mello Jr.

    view all

    More in Emerging Tech
    #ibm #plans #largescale #faulttolerant #quantum
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029 By John P. Mello Jr. June 11, 2025 5:00 AM PT IBM unveiled its plan to build IBM Quantum Starling, shown in this rendering. Starling is expected to be the first large-scale, fault-tolerant quantum system.ADVERTISEMENT Enterprise IT Lead Generation Services Fuel Your Pipeline. Close More Deals. Our full-service marketing programs deliver sales-ready leads. 100% Satisfaction Guarantee! Learn more. IBM revealed Tuesday its roadmap for bringing a large-scale, fault-tolerant quantum computer, IBM Quantum Starling, online by 2029, which is significantly earlier than many technologists thought possible. The company predicts that when its new Starling computer is up and running, it will be capable of performing 20,000 times more operations than today’s quantum computers — a computational state so vast it would require the memory of more than a quindecillionof the world’s most powerful supercomputers to represent. “IBM is charting the next frontier in quantum computing,” Big Blue CEO Arvind Krishna said in a statement. “Our expertise across mathematics, physics, and engineering is paving the way for a large-scale, fault-tolerant quantum computer — one that will solve real-world challenges and unlock immense possibilities for business.” IBM’s plan to deliver a fault-tolerant quantum system by 2029 is ambitious but not implausible, especially given the rapid pace of its quantum roadmap and past milestones, observed Ensar Seker, CISO at SOCRadar, a threat intelligence company in Newark, Del. “They’ve consistently met or exceeded their qubit scaling goals, and their emphasis on modularity and error correction indicates they’re tackling the right challenges,” he told TechNewsWorld. “However, moving from thousands to millions of physical qubits with sufficient fidelity remains a steep climb.” A qubit is the fundamental unit of information in quantum computing, capable of representing a zero, a one, or both simultaneously due to quantum superposition. In practice, fault-tolerant quantum computers use clusters of physical qubits working together to form a logical qubit — a more stable unit designed to store quantum information and correct errors in real time. Realistic Roadmap Luke Yang, an equity analyst with Morningstar Research Services in Chicago, believes IBM’s roadmap is realistic. “The exact scale and error correction performance might still change between now and 2029, but overall, the goal is reasonable,” he told TechNewsWorld. “Given its reliability and professionalism, IBM’s bold claim should be taken seriously,” said Enrique Solano, co-CEO and co-founder of Kipu Quantum, a quantum algorithm company with offices in Berlin and Karlsruhe, Germany. “Of course, it may also fail, especially when considering the unpredictability of hardware complexities involved,” he told TechNewsWorld, “but companies like IBM exist for such challenges, and we should all be positively impressed by its current achievements and promised technological roadmap.” Tim Hollebeek, vice president of industry standards at DigiCert, a global digital security company, added: “IBM is a leader in this area, and not normally a company that hypes their news. This is a fast-moving industry, and success is certainly possible.” “IBM is attempting to do something that no one has ever done before and will almost certainly run into challenges,” he told TechNewsWorld, “but at this point, it is largely an engineering scaling exercise, not a research project.” “IBM has demonstrated consistent progress, has committed billion over five years to quantum computing, and the timeline is within the realm of technical feasibility,” noted John Young, COO of Quantum eMotion, a developer of quantum random number generator technology, in Saint-Laurent, Quebec, Canada. “That said,” he told TechNewsWorld, “fault-tolerant in a practical, industrial sense is a very high bar.” Solving the Quantum Error Correction Puzzle To make a quantum computer fault-tolerant, errors need to be corrected so large workloads can be run without faults. In a quantum computer, errors are reduced by clustering physical qubits to form logical qubits, which have lower error rates than the underlying physical qubits. “Error correction is a challenge,” Young said. “Logical qubits require thousands of physical qubits to function reliably. That’s a massive scaling issue.” IBM explained in its announcement that creating increasing numbers of logical qubits capable of executing quantum circuits with as few physical qubits as possible is critical to quantum computing at scale. Until today, a clear path to building such a fault-tolerant system without unrealistic engineering overhead has not been published. Alternative and previous gold-standard, error-correcting codes present fundamental engineering challenges, IBM continued. To scale, they would require an unfeasible number of physical qubits to create enough logical qubits to perform complex operations — necessitating impractical amounts of infrastructure and control electronics. This renders them unlikely to be implemented beyond small-scale experiments and devices. In two research papers released with its roadmap, IBM detailed how it will overcome the challenges of building the large-scale, fault-tolerant architecture needed for a quantum computer. One paper outlines the use of quantum low-density parity checkcodes to reduce physical qubit overhead. The other describes methods for decoding errors in real time using conventional computing. According to IBM, a practical fault-tolerant quantum architecture must: Suppress enough errors for useful algorithms to succeed Prepare and measure logical qubits during computation Apply universal instructions to logical qubits Decode measurements from logical qubits in real time and guide subsequent operations Scale modularly across hundreds or thousands of logical qubits Be efficient enough to run meaningful algorithms using realistic energy and infrastructure resources Aside from the technological challenges that quantum computer makers are facing, there may also be some market challenges. “Locating suitable use cases for quantum computers could be the biggest challenge,” Morningstar’s Yang maintained. “Only certain computing workloads, such as random circuit sampling, can fully unleash the computing power of quantum computers and show their advantage over the traditional supercomputers we have now,” he said. “However, workloads like RCS are not very commercially useful, and we believe commercial relevance is one of the key factors that determine the total market size for quantum computers.” Q-Day Approaching Faster Than Expected For years now, organizations have been told they need to prepare for “Q-Day” — the day a quantum computer will be able to crack all the encryption they use to keep their data secure. This IBM announcement suggests the window for action to protect data may be closing faster than many anticipated. “This absolutely adds urgency and credibility to the security expert guidance on post-quantum encryption being factored into their planning now,” said Dave Krauthamer, field CTO of QuSecure, maker of quantum-safe security solutions, in San Mateo, Calif. “IBM’s move to create a large-scale fault-tolerant quantum computer by 2029 is indicative of the timeline collapsing,” he told TechNewsWorld. “A fault-tolerant quantum computer of this magnitude could be well on the path to crack asymmetric ciphers sooner than anyone thinks.” “Security leaders need to take everything connected to post-quantum encryption as a serious measure and work it into their security plans now — not later,” he said. Roger Grimes, a defense evangelist with KnowBe4, a security awareness training provider in Clearwater, Fla., pointed out that IBM is just the latest in a surge of quantum companies announcing quickly forthcoming computational breakthroughs within a few years. “It leads to the question of whether the U.S. government’s original PQCpreparation date of 2030 is still a safe date,” he told TechNewsWorld. “It’s starting to feel a lot more risky for any company to wait until 2030 to be prepared against quantum attacks. It also flies in the face of the latest cybersecurity EOthat relaxed PQC preparation rules as compared to Biden’s last EO PQC standard order, which told U.S. agencies to transition to PQC ASAP.” “Most US companies are doing zero to prepare for Q-Day attacks,” he declared. “The latest executive order seems to tell U.S. agencies — and indirectly, all U.S. businesses — that they have more time to prepare. It’s going to cause even more agencies and businesses to be less prepared during a time when it seems multiple quantum computing companies are making significant progress.” “It definitely feels that something is going to give soon,” he said, “and if I were a betting man, and I am, I would bet that most U.S. companies are going to be unprepared for Q-Day on the day Q-Day becomes a reality.” John P. Mello Jr. has been an ECT News Network reporter since 2003. His areas of focus include cybersecurity, IT issues, privacy, e-commerce, social media, artificial intelligence, big data and consumer electronics. He has written and edited for numerous publications, including the Boston Business Journal, the Boston Phoenix, Megapixel.Net and Government Security News. Email John. Leave a Comment Click here to cancel reply. Please sign in to post or reply to a comment. New users create a free account. Related Stories More by John P. Mello Jr. view all More in Emerging Tech #ibm #plans #largescale #faulttolerant #quantum
    WWW.TECHNEWSWORLD.COM
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029 By John P. Mello Jr. June 11, 2025 5:00 AM PT IBM unveiled its plan to build IBM Quantum Starling, shown in this rendering. Starling is expected to be the first large-scale, fault-tolerant quantum system. (Image Credit: IBM) ADVERTISEMENT Enterprise IT Lead Generation Services Fuel Your Pipeline. Close More Deals. Our full-service marketing programs deliver sales-ready leads. 100% Satisfaction Guarantee! Learn more. IBM revealed Tuesday its roadmap for bringing a large-scale, fault-tolerant quantum computer, IBM Quantum Starling, online by 2029, which is significantly earlier than many technologists thought possible. The company predicts that when its new Starling computer is up and running, it will be capable of performing 20,000 times more operations than today’s quantum computers — a computational state so vast it would require the memory of more than a quindecillion (10⁴⁸) of the world’s most powerful supercomputers to represent. “IBM is charting the next frontier in quantum computing,” Big Blue CEO Arvind Krishna said in a statement. “Our expertise across mathematics, physics, and engineering is paving the way for a large-scale, fault-tolerant quantum computer — one that will solve real-world challenges and unlock immense possibilities for business.” IBM’s plan to deliver a fault-tolerant quantum system by 2029 is ambitious but not implausible, especially given the rapid pace of its quantum roadmap and past milestones, observed Ensar Seker, CISO at SOCRadar, a threat intelligence company in Newark, Del. “They’ve consistently met or exceeded their qubit scaling goals, and their emphasis on modularity and error correction indicates they’re tackling the right challenges,” he told TechNewsWorld. “However, moving from thousands to millions of physical qubits with sufficient fidelity remains a steep climb.” A qubit is the fundamental unit of information in quantum computing, capable of representing a zero, a one, or both simultaneously due to quantum superposition. In practice, fault-tolerant quantum computers use clusters of physical qubits working together to form a logical qubit — a more stable unit designed to store quantum information and correct errors in real time. Realistic Roadmap Luke Yang, an equity analyst with Morningstar Research Services in Chicago, believes IBM’s roadmap is realistic. “The exact scale and error correction performance might still change between now and 2029, but overall, the goal is reasonable,” he told TechNewsWorld. “Given its reliability and professionalism, IBM’s bold claim should be taken seriously,” said Enrique Solano, co-CEO and co-founder of Kipu Quantum, a quantum algorithm company with offices in Berlin and Karlsruhe, Germany. “Of course, it may also fail, especially when considering the unpredictability of hardware complexities involved,” he told TechNewsWorld, “but companies like IBM exist for such challenges, and we should all be positively impressed by its current achievements and promised technological roadmap.” Tim Hollebeek, vice president of industry standards at DigiCert, a global digital security company, added: “IBM is a leader in this area, and not normally a company that hypes their news. This is a fast-moving industry, and success is certainly possible.” “IBM is attempting to do something that no one has ever done before and will almost certainly run into challenges,” he told TechNewsWorld, “but at this point, it is largely an engineering scaling exercise, not a research project.” “IBM has demonstrated consistent progress, has committed $30 billion over five years to quantum computing, and the timeline is within the realm of technical feasibility,” noted John Young, COO of Quantum eMotion, a developer of quantum random number generator technology, in Saint-Laurent, Quebec, Canada. “That said,” he told TechNewsWorld, “fault-tolerant in a practical, industrial sense is a very high bar.” Solving the Quantum Error Correction Puzzle To make a quantum computer fault-tolerant, errors need to be corrected so large workloads can be run without faults. In a quantum computer, errors are reduced by clustering physical qubits to form logical qubits, which have lower error rates than the underlying physical qubits. “Error correction is a challenge,” Young said. “Logical qubits require thousands of physical qubits to function reliably. That’s a massive scaling issue.” IBM explained in its announcement that creating increasing numbers of logical qubits capable of executing quantum circuits with as few physical qubits as possible is critical to quantum computing at scale. Until today, a clear path to building such a fault-tolerant system without unrealistic engineering overhead has not been published. Alternative and previous gold-standard, error-correcting codes present fundamental engineering challenges, IBM continued. To scale, they would require an unfeasible number of physical qubits to create enough logical qubits to perform complex operations — necessitating impractical amounts of infrastructure and control electronics. This renders them unlikely to be implemented beyond small-scale experiments and devices. In two research papers released with its roadmap, IBM detailed how it will overcome the challenges of building the large-scale, fault-tolerant architecture needed for a quantum computer. One paper outlines the use of quantum low-density parity check (qLDPC) codes to reduce physical qubit overhead. The other describes methods for decoding errors in real time using conventional computing. According to IBM, a practical fault-tolerant quantum architecture must: Suppress enough errors for useful algorithms to succeed Prepare and measure logical qubits during computation Apply universal instructions to logical qubits Decode measurements from logical qubits in real time and guide subsequent operations Scale modularly across hundreds or thousands of logical qubits Be efficient enough to run meaningful algorithms using realistic energy and infrastructure resources Aside from the technological challenges that quantum computer makers are facing, there may also be some market challenges. “Locating suitable use cases for quantum computers could be the biggest challenge,” Morningstar’s Yang maintained. “Only certain computing workloads, such as random circuit sampling [RCS], can fully unleash the computing power of quantum computers and show their advantage over the traditional supercomputers we have now,” he said. “However, workloads like RCS are not very commercially useful, and we believe commercial relevance is one of the key factors that determine the total market size for quantum computers.” Q-Day Approaching Faster Than Expected For years now, organizations have been told they need to prepare for “Q-Day” — the day a quantum computer will be able to crack all the encryption they use to keep their data secure. This IBM announcement suggests the window for action to protect data may be closing faster than many anticipated. “This absolutely adds urgency and credibility to the security expert guidance on post-quantum encryption being factored into their planning now,” said Dave Krauthamer, field CTO of QuSecure, maker of quantum-safe security solutions, in San Mateo, Calif. “IBM’s move to create a large-scale fault-tolerant quantum computer by 2029 is indicative of the timeline collapsing,” he told TechNewsWorld. “A fault-tolerant quantum computer of this magnitude could be well on the path to crack asymmetric ciphers sooner than anyone thinks.” “Security leaders need to take everything connected to post-quantum encryption as a serious measure and work it into their security plans now — not later,” he said. Roger Grimes, a defense evangelist with KnowBe4, a security awareness training provider in Clearwater, Fla., pointed out that IBM is just the latest in a surge of quantum companies announcing quickly forthcoming computational breakthroughs within a few years. “It leads to the question of whether the U.S. government’s original PQC [post-quantum cryptography] preparation date of 2030 is still a safe date,” he told TechNewsWorld. “It’s starting to feel a lot more risky for any company to wait until 2030 to be prepared against quantum attacks. It also flies in the face of the latest cybersecurity EO [Executive Order] that relaxed PQC preparation rules as compared to Biden’s last EO PQC standard order, which told U.S. agencies to transition to PQC ASAP.” “Most US companies are doing zero to prepare for Q-Day attacks,” he declared. “The latest executive order seems to tell U.S. agencies — and indirectly, all U.S. businesses — that they have more time to prepare. It’s going to cause even more agencies and businesses to be less prepared during a time when it seems multiple quantum computing companies are making significant progress.” “It definitely feels that something is going to give soon,” he said, “and if I were a betting man, and I am, I would bet that most U.S. companies are going to be unprepared for Q-Day on the day Q-Day becomes a reality.” John P. Mello Jr. has been an ECT News Network reporter since 2003. His areas of focus include cybersecurity, IT issues, privacy, e-commerce, social media, artificial intelligence, big data and consumer electronics. He has written and edited for numerous publications, including the Boston Business Journal, the Boston Phoenix, Megapixel.Net and Government Security News. Email John. Leave a Comment Click here to cancel reply. Please sign in to post or reply to a comment. New users create a free account. Related Stories More by John P. Mello Jr. view all More in Emerging Tech
    0 Commentarii 0 Distribuiri 0 previzualizare
  • From Networks to Business Models, AI Is Rewiring Telecom

    Artificial intelligence is already rewriting the rules of wireless and telecom — powering predictive maintenance, streamlining network operations, and enabling more innovative services.
    As AI scales, the disruption will be faster, deeper, and harder to reverse than any prior shift in the industry.
    Compared to the sweeping changes AI is set to unleash, past telecom innovations look incremental.
    AI is redefining how networks operate, services are delivered, and data is secured — across every device and digital touchpoint.
    AI Is Reshaping Wireless Networks Already
    Artificial intelligence is already transforming wireless through smarter private networks, fixed wireless access, and intelligent automation across the stack.
    AI detects and resolves network issues before they impact service, improving uptime and customer satisfaction. It’s also opening the door to entirely new revenue streams and business models.
    Each wireless generation brought new capabilities. AI, however, marks a more profound shift — networks that think, respond, and evolve in real time.
    AI Acceleration Will Outpace Past Tech Shifts
    Many may underestimate the speed and magnitude of AI-driven change.
    The shift from traditional voice and data systems to AI-driven network intelligence is already underway.
    Although predictions abound, the true scope remains unclear.
    It’s tempting to assume we understand AI’s trajectory, but history suggests otherwise.

    Today, AI is already automating maintenance and optimizing performance without user disruption. The technologies we’ll rely on in the near future may still be on the drawing board.
    Few predicted that smartphones would emerge from analog beginnings—a reminder of how quickly foundational technologies can be reimagined.
    History shows that disruptive technologies rarely follow predictable paths — and AI is no exception. It’s already upending business models across industries.
    Technological shifts bring both new opportunities and complex trade-offs.
    AI Disruption Will Move Faster Than Ever
    The same cycle of reinvention is happening now — but with AI, it’s moving at unprecedented speed.
    Despite all the discussion, many still treat AI as a future concern — yet the shift is already well underway.
    As with every major technological leap, there will be gains and losses. The AI transition brings clear trade-offs: efficiency and innovation on one side, job displacement, and privacy erosion on the other.
    Unlike past tech waves that unfolded over decades, the AI shift will reshape industries in just a few years — and that change wave will only continue to move forward.
    AI Will Reshape All Sectors and Companies
    This shift will unfold faster than most organizations or individuals are prepared to handle.
    Today’s industries will likely look very different tomorrow. Entirely new sectors will emerge as legacy models become obsolete — redefining market leadership across industries.
    Telecom’s past holds a clear warning: market dominance can vanish quickly when companies ignore disruption.
    Eventually, the Baby Bells moved into long-distance service, while AT&T remained barred from selling local access — undermining its advantage.
    As the market shifted and competitors gained ground, AT&T lost its dominance and became vulnerable enough that SBC, a former regional Bell, acquired it and took on its name.

    It’s a case study of how incumbents fall when they fail to adapt — precisely the kind of pressure AI is now exerting across industries.
    SBC’s acquisition of AT&T flipped the power dynamic — proof that size doesn’t protect against disruption.
    The once-crowded telecom field has consolidated into just a few dominant players — each facing new threats from AI-native challengers.
    Legacy telecom models are being steadily displaced by faster, more flexible wireless, broadband, and streaming alternatives.
    No Industry Is Immune From AI Disruption
    AI will accelerate the next wave of industrial evolution — bringing innovations and consequences we’re only beginning to grasp.
    New winners will emerge as past leaders struggle to hang on — a shift that will also reshape the investment landscape. Startups leveraging AI will likely redefine leadership in sectors where incumbents have grown complacent.
    Nvidia’s rise is part of a broader trend: the next market leaders will emerge wherever AI creates a clear competitive advantage — whether in chips, code, or entirely new markets.
    The AI-driven future is arriving faster than most organizations are ready for. Adapting to this accelerating wave of change is no longer optional — it’s essential. Companies that act decisively today will define the winners of tomorrow.
    #networks #business #models #rewiring #telecom
    From Networks to Business Models, AI Is Rewiring Telecom
    Artificial intelligence is already rewriting the rules of wireless and telecom — powering predictive maintenance, streamlining network operations, and enabling more innovative services. As AI scales, the disruption will be faster, deeper, and harder to reverse than any prior shift in the industry. Compared to the sweeping changes AI is set to unleash, past telecom innovations look incremental. AI is redefining how networks operate, services are delivered, and data is secured — across every device and digital touchpoint. AI Is Reshaping Wireless Networks Already Artificial intelligence is already transforming wireless through smarter private networks, fixed wireless access, and intelligent automation across the stack. AI detects and resolves network issues before they impact service, improving uptime and customer satisfaction. It’s also opening the door to entirely new revenue streams and business models. Each wireless generation brought new capabilities. AI, however, marks a more profound shift — networks that think, respond, and evolve in real time. AI Acceleration Will Outpace Past Tech Shifts Many may underestimate the speed and magnitude of AI-driven change. The shift from traditional voice and data systems to AI-driven network intelligence is already underway. Although predictions abound, the true scope remains unclear. It’s tempting to assume we understand AI’s trajectory, but history suggests otherwise. Today, AI is already automating maintenance and optimizing performance without user disruption. The technologies we’ll rely on in the near future may still be on the drawing board. Few predicted that smartphones would emerge from analog beginnings—a reminder of how quickly foundational technologies can be reimagined. History shows that disruptive technologies rarely follow predictable paths — and AI is no exception. It’s already upending business models across industries. Technological shifts bring both new opportunities and complex trade-offs. AI Disruption Will Move Faster Than Ever The same cycle of reinvention is happening now — but with AI, it’s moving at unprecedented speed. Despite all the discussion, many still treat AI as a future concern — yet the shift is already well underway. As with every major technological leap, there will be gains and losses. The AI transition brings clear trade-offs: efficiency and innovation on one side, job displacement, and privacy erosion on the other. Unlike past tech waves that unfolded over decades, the AI shift will reshape industries in just a few years — and that change wave will only continue to move forward. AI Will Reshape All Sectors and Companies This shift will unfold faster than most organizations or individuals are prepared to handle. Today’s industries will likely look very different tomorrow. Entirely new sectors will emerge as legacy models become obsolete — redefining market leadership across industries. Telecom’s past holds a clear warning: market dominance can vanish quickly when companies ignore disruption. Eventually, the Baby Bells moved into long-distance service, while AT&T remained barred from selling local access — undermining its advantage. As the market shifted and competitors gained ground, AT&T lost its dominance and became vulnerable enough that SBC, a former regional Bell, acquired it and took on its name. It’s a case study of how incumbents fall when they fail to adapt — precisely the kind of pressure AI is now exerting across industries. SBC’s acquisition of AT&T flipped the power dynamic — proof that size doesn’t protect against disruption. The once-crowded telecom field has consolidated into just a few dominant players — each facing new threats from AI-native challengers. Legacy telecom models are being steadily displaced by faster, more flexible wireless, broadband, and streaming alternatives. No Industry Is Immune From AI Disruption AI will accelerate the next wave of industrial evolution — bringing innovations and consequences we’re only beginning to grasp. New winners will emerge as past leaders struggle to hang on — a shift that will also reshape the investment landscape. Startups leveraging AI will likely redefine leadership in sectors where incumbents have grown complacent. Nvidia’s rise is part of a broader trend: the next market leaders will emerge wherever AI creates a clear competitive advantage — whether in chips, code, or entirely new markets. The AI-driven future is arriving faster than most organizations are ready for. Adapting to this accelerating wave of change is no longer optional — it’s essential. Companies that act decisively today will define the winners of tomorrow. #networks #business #models #rewiring #telecom
    From Networks to Business Models, AI Is Rewiring Telecom
    Artificial intelligence is already rewriting the rules of wireless and telecom — powering predictive maintenance, streamlining network operations, and enabling more innovative services. As AI scales, the disruption will be faster, deeper, and harder to reverse than any prior shift in the industry. Compared to the sweeping changes AI is set to unleash, past telecom innovations look incremental. AI is redefining how networks operate, services are delivered, and data is secured — across every device and digital touchpoint. AI Is Reshaping Wireless Networks Already Artificial intelligence is already transforming wireless through smarter private networks, fixed wireless access (FWA), and intelligent automation across the stack. AI detects and resolves network issues before they impact service, improving uptime and customer satisfaction. It’s also opening the door to entirely new revenue streams and business models. Each wireless generation brought new capabilities. AI, however, marks a more profound shift — networks that think, respond, and evolve in real time. AI Acceleration Will Outpace Past Tech Shifts Many may underestimate the speed and magnitude of AI-driven change. The shift from traditional voice and data systems to AI-driven network intelligence is already underway. Although predictions abound, the true scope remains unclear. It’s tempting to assume we understand AI’s trajectory, but history suggests otherwise. Today, AI is already automating maintenance and optimizing performance without user disruption. The technologies we’ll rely on in the near future may still be on the drawing board. Few predicted that smartphones would emerge from analog beginnings—a reminder of how quickly foundational technologies can be reimagined. History shows that disruptive technologies rarely follow predictable paths — and AI is no exception. It’s already upending business models across industries. Technological shifts bring both new opportunities and complex trade-offs. AI Disruption Will Move Faster Than Ever The same cycle of reinvention is happening now — but with AI, it’s moving at unprecedented speed. Despite all the discussion, many still treat AI as a future concern — yet the shift is already well underway. As with every major technological leap, there will be gains and losses. The AI transition brings clear trade-offs: efficiency and innovation on one side, job displacement, and privacy erosion on the other. Unlike past tech waves that unfolded over decades, the AI shift will reshape industries in just a few years — and that change wave will only continue to move forward. AI Will Reshape All Sectors and Companies This shift will unfold faster than most organizations or individuals are prepared to handle. Today’s industries will likely look very different tomorrow. Entirely new sectors will emerge as legacy models become obsolete — redefining market leadership across industries. Telecom’s past holds a clear warning: market dominance can vanish quickly when companies ignore disruption. Eventually, the Baby Bells moved into long-distance service, while AT&T remained barred from selling local access — undermining its advantage. As the market shifted and competitors gained ground, AT&T lost its dominance and became vulnerable enough that SBC, a former regional Bell, acquired it and took on its name. It’s a case study of how incumbents fall when they fail to adapt — precisely the kind of pressure AI is now exerting across industries. SBC’s acquisition of AT&T flipped the power dynamic — proof that size doesn’t protect against disruption. The once-crowded telecom field has consolidated into just a few dominant players — each facing new threats from AI-native challengers. Legacy telecom models are being steadily displaced by faster, more flexible wireless, broadband, and streaming alternatives. No Industry Is Immune From AI Disruption AI will accelerate the next wave of industrial evolution — bringing innovations and consequences we’re only beginning to grasp. New winners will emerge as past leaders struggle to hang on — a shift that will also reshape the investment landscape. Startups leveraging AI will likely redefine leadership in sectors where incumbents have grown complacent. Nvidia’s rise is part of a broader trend: the next market leaders will emerge wherever AI creates a clear competitive advantage — whether in chips, code, or entirely new markets. The AI-driven future is arriving faster than most organizations are ready for. Adapting to this accelerating wave of change is no longer optional — it’s essential. Companies that act decisively today will define the winners of tomorrow.
    0 Commentarii 0 Distribuiri 0 previzualizare
  • An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment

    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro.Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22.

    If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster.
    Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral.
    Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet.

    At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas. Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites.
    Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement.
    I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two studentsstill in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa.

    Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent: this extraordinary revivalthe rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own.
    And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses ofstate or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research.
    There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms. 

    We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover.
    Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint.
    #excerpt #new #book #sérgio #ferro
    An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment
    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro.Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22. If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster. Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral. Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet. At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas. Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites. Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement. I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two studentsstill in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa. Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent: this extraordinary revivalthe rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own. And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses ofstate or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research. There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms.  We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover. Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint. #excerpt #new #book #sérgio #ferro
    An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment
    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro. (Douglas Spencer reviewed it for AN.) Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22. If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster. Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral. Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet. At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas (which we aspired to be a part of, like the pretentious students we were). Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites. Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement. I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two students (Flávio Império joined us a little later) still in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa. Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent:  […] this extraordinary revival […] the rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own. And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses of (any) state or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research. There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms.  We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética [this is ethics]. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover. Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint.
    0 Commentarii 0 Distribuiri 0 previzualizare
  • Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’

    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One.
    By Jay Stobie
    Visual effects supervisor John Knollconfers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact.
    Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contactand Rogue One: A Star Wars Storypropelled their respective franchises to new heights. While Star Trek Generationswelcomed Captain Jean-Luc Picard’screw to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk. Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope, it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story, The Mandalorian, Andor, Ahsoka, The Acolyte, and more.
    The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif.
    A final frame from the Battle of Scarif in Rogue One: A Star Wars Story.
    A Context for Conflict
    In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design.
    On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Ersoand Cassian Andorand the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival.
    From Physical to Digital
    By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical modelsfor its features was gradually giving way to innovative computer graphicsmodels, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001.
    Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com.
    However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.”
    John Knollconfers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact.
    Legendary Lineages
    In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.”
    Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet.
    While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got fromVER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.”
    The U.S.S. Enterprise-E in Star Trek: First Contact.
    Familiar Foes
    To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generationand Star Trek: Deep Space Nine, creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin.
    As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.”
    Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back, respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.”
    A final frame from Rogue One: A Star Wars Story.
    Forming Up the Fleets
    In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics.
    Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs, live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples. These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’spersonal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography…
    Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized.
    Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story.
    Tough Little Ships
    The Federation and Rebel Alliance each deployed “tough little ships”in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001!
    Exploration and Hope
    The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire.
    The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope?

    Jay Stobieis a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy.
    #looking #back #two #classics #ilm
    Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’
    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One. By Jay Stobie Visual effects supervisor John Knollconfers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact. Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contactand Rogue One: A Star Wars Storypropelled their respective franchises to new heights. While Star Trek Generationswelcomed Captain Jean-Luc Picard’screw to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk. Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope, it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story, The Mandalorian, Andor, Ahsoka, The Acolyte, and more. The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif. A final frame from the Battle of Scarif in Rogue One: A Star Wars Story. A Context for Conflict In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design. On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Ersoand Cassian Andorand the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival. From Physical to Digital By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical modelsfor its features was gradually giving way to innovative computer graphicsmodels, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001. Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com. However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.” John Knollconfers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact. Legendary Lineages In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.” Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet. While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got fromVER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.” The U.S.S. Enterprise-E in Star Trek: First Contact. Familiar Foes To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generationand Star Trek: Deep Space Nine, creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin. As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.” Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back, respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.” A final frame from Rogue One: A Star Wars Story. Forming Up the Fleets In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics. Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs, live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples. These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’spersonal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography… Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized. Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story. Tough Little Ships The Federation and Rebel Alliance each deployed “tough little ships”in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001! Exploration and Hope The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire. The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope? – Jay Stobieis a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy. #looking #back #two #classics #ilm
    WWW.ILM.COM
    Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’
    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One. By Jay Stobie Visual effects supervisor John Knoll (right) confers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact (Credit: ILM). Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contact (1996) and Rogue One: A Star Wars Story (2016) propelled their respective franchises to new heights. While Star Trek Generations (1994) welcomed Captain Jean-Luc Picard’s (Patrick Stewart) crew to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk (William Shatner). Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope (1977), it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story (2018), The Mandalorian (2019-23), Andor (2022-25), Ahsoka (2023), The Acolyte (2024), and more. The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif. A final frame from the Battle of Scarif in Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). A Context for Conflict In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design. On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Erso (Felicity Jones) and Cassian Andor (Diego Luna) and the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival. From Physical to Digital By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical models (many of which were built by ILM) for its features was gradually giving way to innovative computer graphics (CG) models, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001. Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com. However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.” John Knoll (second from left) confers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact (Credit: ILM). Legendary Lineages In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.” Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet. While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got from [equipment vendor] VER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.” The U.S.S. Enterprise-E in Star Trek: First Contact (Credit: Paramount). Familiar Foes To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generation (1987) and Star Trek: Deep Space Nine (1993), creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin. As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.” Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back (1980), respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.” A final frame from Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). Forming Up the Fleets In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics. Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs (the MC75 cruiser Profundity and U-wings), live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples (Nebulon-B frigates, X-wings, Y-wings, and more). These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’s (Carrie Fisher and Ingvild Deila) personal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography… Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized. Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). Tough Little Ships The Federation and Rebel Alliance each deployed “tough little ships” (an endearing description Commander William T. Riker [Jonathan Frakes] bestowed upon the U.S.S. Defiant in First Contact) in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001! Exploration and Hope The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire. The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope? – Jay Stobie (he/him) is a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy.
    0 Commentarii 0 Distribuiri 0 previzualizare
  • Learning to Lead in the Digital Age: The AI Readiness Reflection

    Insights

    Learning to Lead in the Digital Age: The AI Readiness Reflection

    As the race to integrate generative AI accelerates, organizations face a dual challenge: fostering tech-savviness across teams while developing next-generation leadership competencies. These are critical to ensuring that “everyone” in the organization is prepared for continuous adaptation and change.

    This AI Readiness Reflection is designed to help you assess where your leaders stand today and identify the optimal path to build the digital knowledge, mindset, skills, and leadership capabilities required to thrive in the future.

    Take the assessment now to discover how your current practices align with AI maturity—and gain actionable insights tailored to your organization’s readiness level.

    To download the full report, tell us a bit about yourself.

    First Name
    *

    Last Name
    *

    Job Title
    *

    Organization
    *

    Business Email
    *

    Country
    *

    — Please Select —

    United States

    United Kingdom

    Afghanistan

    Aland Islands

    Albania

    Algeria

    American Samoa

    Andorra

    Angola

    Anguilla

    Antarctica

    Antigua and Barbuda

    Argentina

    Armenia

    Aruba

    Australia

    Austria

    Azerbaijan

    Bahamas

    Bahrain

    Bangladesh

    Barbados

    Belarus

    Belgium

    Belize

    Benin

    Bermuda

    Bhutan

    Bolivia

    Bosnia and Herzegovina

    Botswana

    Bouvet Island

    Brazil

    British Indian Ocean Territory

    Brunei Darussalam

    Bulgaria

    Burkina Faso

    Burundi

    Cambodia

    Cameroon

    Canada

    Cape Verde

    Cayman Islands

    Central African Republic

    Chad

    Chile

    China

    Christmas Island

    CocosIslands

    Colombia

    Comoros

    Congo

    Congo, The Democratic Republic of

    Cook Islands

    Costa Rica

    Cote d’Ivoire

    Croatia

    Cuba

    Cyprus

    Czech Republic

    Denmark

    Djibouti

    Dominica

    Dominican Republic

    Ecuador

    Egypt

    El Salvador

    Equatorial Guinea

    Eritrea

    Estonia

    Ethiopia

    Falkland IslandsFaroe Islands

    Fiji

    Finland

    France

    French Guiana

    French Polynesia

    French Southern Territories

    Gabon

    Gambia

    Georgia

    Germany

    Ghana

    Gibraltar

    Greece

    Greenland

    Grenada

    Guadeloupe

    Guam

    Guatemala

    Guernsey

    Guinea

    Guinea-Bissau

    Guyana

    Haiti

    Heard Island and McDonald Islands

    Holy SeeHonduras

    Hong Kong

    Hungary

    Iceland

    India

    Indonesia

    Iran, Islamic Republic of

    Iraq

    Ireland

    Isle of Man

    Israel

    Italy

    Jamaica

    Japan

    Jersey

    Jordan

    Kazakhstan

    Kenya

    Kiribati

    Korea, Democratic People’s Republic

    Korea, Republic of

    Kuwait

    Kyrgyzstan

    Lao People’s Democratic Republic

    Latvia

    Lebanon

    Lesotho

    Liberia

    Libyan Arab Jamahiriya

    Liechtenstein

    Lithuania

    Luxembourg

    Macao

    Macedonia The Former Yugoslav Republic

    Madagascar

    Malawi

    Malaysia

    Maldives

    Mali

    Malta

    Marshall Islands

    Martinique

    Mauritania

    Mauritius

    Mayotte

    Mexico

    Micronesia, Federated States of

    Moldova, Republic of

    Monaco

    Mongolia

    Montenegro

    Montserrat

    Morocco

    Mozambique

    Myanmar

    Namibia

    Nauru

    Nepal

    Netherlands

    Netherlands Antilles

    New Caledonia

    New Zealand

    Nicaragua

    Niger

    Nigeria

    Niue

    Norfolk Island

    Northern Mariana Islands

    Norway

    Oman

    Pakistan

    Palau

    Palestinian Territory,Occupied

    Panama

    Papua New Guinea

    Paraguay

    Peru

    Philippines

    Pitcairn

    Poland

    Portugal

    Puerto Rico

    Qatar

    Reunion

    Romania

    Russian Federation

    Rwanda

    Saint Helena

    Saint Kitts and Nevis

    Saint Lucia

    Saint Pierre and Miquelon

    Saint Vincent and the Grenadines

    Samoa

    San Marino

    Sao Tome and Principe

    Saudi Arabia

    Senegal

    Serbia

    Serbia and Montenegro

    Seychelles

    Sierra Leone

    Singapore

    Slovakia

    Slovenia

    Solomon Islands

    Somalia

    South Africa

    South Georgia & Sandwich Islands

    Spain

    Sri Lanka

    Sudan

    Suriname

    Svalbard and Jan Mayen

    Swaziland

    Sweden

    Switzerland

    Syrian Arab Republic

    Taiwan

    Tajikistan

    Tanzania, United Republic of

    Thailand

    Timor-Leste

    Togo

    Tokelau

    Tonga

    Trinidad and Tobago

    Tunisia

    Turkey

    Turkmenistan

    Turks and Caicos Islands

    Tuvalu

    Uganda

    Ukraine

    United Arab Emirates

    United States Minor Outlying Islands

    Uruguay

    Uzbekistan

    Vanuatu

    Venezuela

    Viet Nam

    Virgin Islands, British

    Virgin Islands, U.S.

    Wallis and Futuna

    Western Sahara

    Yemen

    Zambia

    Zimbabwe

    I’m interested in a follow-up discussion

    By checking this box, you agree to receive emails and communications from Harvard Business Impact. To opt-out, please visit our Privacy Policy.

    Digital Intelligence

    Share this resource

    Share on LinkedIn

    Share on Facebook

    Share on X

    Share on WhatsApp

    Email this Page

    Connect with us

    Change isn’t easy, but we can help. Together we’ll create informed and inspired leaders ready to shape the future of your business.

    Contact us

    Latest Insights

    Strategic Alignment

    Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units

    Harvard Business Publishing announced the launch of Harvard Business Impact, a new brand identity for…

    : Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units

    News

    Digital Intelligence

    Succeeding in the Digital Age: Why AI-First Leadership Is Essential

    While AI makes powerful operational efficiencies possible, it cannot yet replace the creativity, adaptability, and…

    : Succeeding in the Digital Age: Why AI-First Leadership Is Essential

    Perspectives

    Digital Intelligence

    4 Keys to AI-First Leadership: The New Imperative for Digital Transformation

    AI has become a defining force in reshaping industries and determining competitive advantage. To support…

    : 4 Keys to AI-First Leadership: The New Imperative for Digital Transformation

    Infographic

    Talent Management

    Leadership Fitness Behavioral Assessment

    In our study, “Leadership Fitness: Developing the Capacity to See and Lead Differently Amid Complexity,”…

    : Leadership Fitness Behavioral Assessment

    Job Aid

    The post Learning to Lead in the Digital Age: The AI Readiness Reflection appeared first on Harvard Business Impact.
    #learning #lead #digital #age #readiness
    Learning to Lead in the Digital Age: The AI Readiness Reflection
    Insights Learning to Lead in the Digital Age: The AI Readiness Reflection As the race to integrate generative AI accelerates, organizations face a dual challenge: fostering tech-savviness across teams while developing next-generation leadership competencies. These are critical to ensuring that “everyone” in the organization is prepared for continuous adaptation and change. This AI Readiness Reflection is designed to help you assess where your leaders stand today and identify the optimal path to build the digital knowledge, mindset, skills, and leadership capabilities required to thrive in the future. Take the assessment now to discover how your current practices align with AI maturity—and gain actionable insights tailored to your organization’s readiness level. To download the full report, tell us a bit about yourself. First Name * Last Name * Job Title * Organization * Business Email * Country * — Please Select — United States United Kingdom Afghanistan Aland Islands Albania Algeria American Samoa Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island CocosIslands Colombia Comoros Congo Congo, The Democratic Republic of Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland IslandsFaroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guam Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy SeeHonduras Hong Kong Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia The Former Yugoslav Republic Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius Mayotte Mexico Micronesia, Federated States of Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Northern Mariana Islands Norway Oman Pakistan Palau Palestinian Territory,Occupied Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Puerto Rico Qatar Reunion Romania Russian Federation Rwanda Saint Helena Saint Kitts and Nevis Saint Lucia Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Serbia and Montenegro Seychelles Sierra Leone Singapore Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia & Sandwich Islands Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United States Minor Outlying Islands Uruguay Uzbekistan Vanuatu Venezuela Viet Nam Virgin Islands, British Virgin Islands, U.S. Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe I’m interested in a follow-up discussion By checking this box, you agree to receive emails and communications from Harvard Business Impact. To opt-out, please visit our Privacy Policy. Digital Intelligence Share this resource Share on LinkedIn Share on Facebook Share on X Share on WhatsApp Email this Page Connect with us Change isn’t easy, but we can help. Together we’ll create informed and inspired leaders ready to shape the future of your business. Contact us Latest Insights Strategic Alignment Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units Harvard Business Publishing announced the launch of Harvard Business Impact, a new brand identity for… : Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units News Digital Intelligence Succeeding in the Digital Age: Why AI-First Leadership Is Essential While AI makes powerful operational efficiencies possible, it cannot yet replace the creativity, adaptability, and… : Succeeding in the Digital Age: Why AI-First Leadership Is Essential Perspectives Digital Intelligence 4 Keys to AI-First Leadership: The New Imperative for Digital Transformation AI has become a defining force in reshaping industries and determining competitive advantage. To support… : 4 Keys to AI-First Leadership: The New Imperative for Digital Transformation Infographic Talent Management Leadership Fitness Behavioral Assessment In our study, “Leadership Fitness: Developing the Capacity to See and Lead Differently Amid Complexity,”… : Leadership Fitness Behavioral Assessment Job Aid The post Learning to Lead in the Digital Age: The AI Readiness Reflection appeared first on Harvard Business Impact. #learning #lead #digital #age #readiness
    WWW.HARVARDBUSINESS.ORG
    Learning to Lead in the Digital Age: The AI Readiness Reflection
    Insights Learning to Lead in the Digital Age: The AI Readiness Reflection As the race to integrate generative AI accelerates, organizations face a dual challenge: fostering tech-savviness across teams while developing next-generation leadership competencies. These are critical to ensuring that “everyone” in the organization is prepared for continuous adaptation and change. This AI Readiness Reflection is designed to help you assess where your leaders stand today and identify the optimal path to build the digital knowledge, mindset, skills, and leadership capabilities required to thrive in the future. Take the assessment now to discover how your current practices align with AI maturity—and gain actionable insights tailored to your organization’s readiness level. To download the full report, tell us a bit about yourself. First Name * Last Name * Job Title * Organization * Business Email * Country * — Please Select — United States United Kingdom Afghanistan Aland Islands Albania Algeria American Samoa Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, The Democratic Republic of Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guam Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hong Kong Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia The Former Yugoslav Republic Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius Mayotte Mexico Micronesia, Federated States of Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Northern Mariana Islands Norway Oman Pakistan Palau Palestinian Territory,Occupied Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Puerto Rico Qatar Reunion Romania Russian Federation Rwanda Saint Helena Saint Kitts and Nevis Saint Lucia Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Serbia and Montenegro Seychelles Sierra Leone Singapore Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia & Sandwich Islands Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United States Minor Outlying Islands Uruguay Uzbekistan Vanuatu Venezuela Viet Nam Virgin Islands, British Virgin Islands, U.S. Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe I’m interested in a follow-up discussion By checking this box, you agree to receive emails and communications from Harvard Business Impact. To opt-out, please visit our Privacy Policy. Digital Intelligence Share this resource Share on LinkedIn Share on Facebook Share on X Share on WhatsApp Email this Page Connect with us Change isn’t easy, but we can help. Together we’ll create informed and inspired leaders ready to shape the future of your business. Contact us Latest Insights Strategic Alignment Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units Harvard Business Publishing announced the launch of Harvard Business Impact, a new brand identity for… Read more: Harvard Business Publishing Unveils Harvard Business Impact as New Brand for Corporate Learning and Education Units News Digital Intelligence Succeeding in the Digital Age: Why AI-First Leadership Is Essential While AI makes powerful operational efficiencies possible, it cannot yet replace the creativity, adaptability, and… Read more: Succeeding in the Digital Age: Why AI-First Leadership Is Essential Perspectives Digital Intelligence 4 Keys to AI-First Leadership: The New Imperative for Digital Transformation AI has become a defining force in reshaping industries and determining competitive advantage. To support… Read more: 4 Keys to AI-First Leadership: The New Imperative for Digital Transformation Infographic Talent Management Leadership Fitness Behavioral Assessment In our study, “Leadership Fitness: Developing the Capacity to See and Lead Differently Amid Complexity,”… Read more: Leadership Fitness Behavioral Assessment Job Aid The post Learning to Lead in the Digital Age: The AI Readiness Reflection appeared first on Harvard Business Impact.
    0 Commentarii 0 Distribuiri 0 previzualizare
  • The art of two Mickeys

    Classic splitscreens, traditional face replacements and new approaches to machine learning-assisted face swapping allowed for twinning shots in ‘Mickey 17’. An excerpt from issue #32 of befores & afters magazine.
    The art of representing two characters on screen at the same time has become known as ‘twinning’. For Mickey 17 visual effects supervisor Dan Glass, the effect of seeing both Mickey 17 and 18 together was one he looked to achieve with a variety of methodologies. “With a technique like that,” he says, “you always want to use a range of tricks, because you don’t want people to figure it out. You want to keep them like, ‘Oh, wait a minute. How did they…?”
    “Going back to the way that Director Bong is so prepared and organized,” adds Glass, “it again makes the world of difference with that kind of work, because he thumbnails every shot. Then, some of them are a bit more fleshed out in storyboards. You can look at it and go, ‘Okay, in this situation, this is what the camera’s doing, this is what the actor’s doing,’ which in itself is quite interesting, because he pre-thinks all of this. You’d think that the actors show up and basically just have to follow the steps like robots. It’s not like that. He gives them an environment to work in, but the shots do end up extraordinarily close to what he thumbnails, and it made it a lot simpler to go through.”

    Those different approaches to twinning ranged from simple splitscreens, to traditional face replacements, and then substantially with a machine learned AI approach, now usually termed ‘face swapping’. What made the twinning work a tougher task than usual, suggests Glass, was the fact that the two Pattinson characters are virtually identical.
    “Normally, when you’re doing some kind of face replacement, you’re comparing it to a memory of the face. But this was right in front of you as two Mickeys looking strikingly similar.”
    Here’s how a typical twinning shot was achieved, as described by Glass. “Because Mickey was mostly dressed the same, with only a slight hair change, we were able to have Robert play both roles and to do them one after another. Sometimes, you have to do these things where hair and makeup or costume has a significant variation, so you’re either waiting a long time, which slows production, or you’re coming back at another time to do the different roles, which always makes the process a lot more complicated to match, but we were able to do that immediately.”

    “Based on the design of the shot,” continues Glass, “I would recommend which of Robert’s parts should be shot first. This was most often determined by which role had more impact on the camera movement. A huge credit goes to Robert for his ability to flip between the roles so effortlessly.”
    In the film, Mickey 17 is more passive and Mickey 18 is more aggressive. Pattinson reflected the distinct characters in his actions, including for a moment in which they fight. This fight, overseen by stunt coordinator Paul Lowe, represented moments of close interaction between the two Mickeys. It was here that a body double was crucial in shooting. The body double was also relied upon for the classic twinning technique of shooting ‘dirty’ over-the- shoulder out of focus shots of the double—ie. 17 looking at 18. However, it was quickly determined that even these would need face replacement work. “Robert’s jawline is so distinct that even those had to be replaced or shot as split screens,” observes Glass.

    When the shot was a moving one, no motion control was employed. “I’ve never been a big advocate for motion control,” states Glass. “To me it’s applicable when you’re doing things like miniatures where you need many matching passes, but I think when performances are involved, it interferes too much. It slows down a production’s speed of movement, but it’s also restrictive. Performance and camera always benefit from more flexibility.”
    “It helped tremendously that Director Bong and DOP Darius Khondji shot quite classically with minimal crane and Steadicam moves,” says Glass. “So, a lot of the moves are pan and dolly. There are some Steadicams in there that we were sometimes able to do splitscreens on. I wasn’t always sure that we could get away with the splitscreen as we shot it, but since we were always shooting the two roles, we had the footage to assess the practicality later. We were always prepared to go down a CG or machine learning route, but where we could use the splitscreen, that was the preference.”
    The Hydralite rig, developed by Volucap. Source:
    Rising Sun Pictureshandled the majority of twinning visual effects, completing them as splitscreen composites, 2D face replacements, and most notably via their machine learning toolset REVIZE, which utilized facial and body capture of Pattinson to train a model of his face and torso to swap for the double’s. A custom capture rig, dubbed the ‘Crazy Rig’ and now officially, The Hydralite, was devised and configured by Volucap to capture multiple angles of Robert on set in each lighting environment in order to produce the best possible reference for the machine learning algorithm. “For me, it was a completely legitimate use of the technique,” attests Glass, in terms of the machine learning approach. “All of the footage that we used to go into that process was captured on our movie for our movie. There’s nothing historic, or going through past libraries of footage, and it was all with Robert’s approval. I think the results were tremendous.”
    “It’s staggering to me as I watch the movie that the performances of each character are so flawlessly consistent throughout the film, because I know how much we were jumping around,” notes Glass. “I did encourage that we rehearse scenes ahead. Let’s say 17 was going to be the first role we captured, I’d have them rehearse it the other way around so that the double knew what he was going to do. Therefore, eyelines, movement, pacing and in instances where we were basically replacing the likeness of his head or even torso, we were still able to use the double’s performance and then map to that.”

    Read the full Mickey 17 issue of befores & afters magazine in PRINT from Amazon or as a DIGITAL EDITION on Patreon. Remember, you can also subscribe to the DIGITAL EDITION as a tier on the Patreon and get a new issue every time one is released.
    The post The art of two Mickeys appeared first on befores & afters.
    #art #two #mickeys
    The art of two Mickeys
    Classic splitscreens, traditional face replacements and new approaches to machine learning-assisted face swapping allowed for twinning shots in ‘Mickey 17’. An excerpt from issue #32 of befores & afters magazine. The art of representing two characters on screen at the same time has become known as ‘twinning’. For Mickey 17 visual effects supervisor Dan Glass, the effect of seeing both Mickey 17 and 18 together was one he looked to achieve with a variety of methodologies. “With a technique like that,” he says, “you always want to use a range of tricks, because you don’t want people to figure it out. You want to keep them like, ‘Oh, wait a minute. How did they…?” “Going back to the way that Director Bong is so prepared and organized,” adds Glass, “it again makes the world of difference with that kind of work, because he thumbnails every shot. Then, some of them are a bit more fleshed out in storyboards. You can look at it and go, ‘Okay, in this situation, this is what the camera’s doing, this is what the actor’s doing,’ which in itself is quite interesting, because he pre-thinks all of this. You’d think that the actors show up and basically just have to follow the steps like robots. It’s not like that. He gives them an environment to work in, but the shots do end up extraordinarily close to what he thumbnails, and it made it a lot simpler to go through.” Those different approaches to twinning ranged from simple splitscreens, to traditional face replacements, and then substantially with a machine learned AI approach, now usually termed ‘face swapping’. What made the twinning work a tougher task than usual, suggests Glass, was the fact that the two Pattinson characters are virtually identical. “Normally, when you’re doing some kind of face replacement, you’re comparing it to a memory of the face. But this was right in front of you as two Mickeys looking strikingly similar.” Here’s how a typical twinning shot was achieved, as described by Glass. “Because Mickey was mostly dressed the same, with only a slight hair change, we were able to have Robert play both roles and to do them one after another. Sometimes, you have to do these things where hair and makeup or costume has a significant variation, so you’re either waiting a long time, which slows production, or you’re coming back at another time to do the different roles, which always makes the process a lot more complicated to match, but we were able to do that immediately.” “Based on the design of the shot,” continues Glass, “I would recommend which of Robert’s parts should be shot first. This was most often determined by which role had more impact on the camera movement. A huge credit goes to Robert for his ability to flip between the roles so effortlessly.” In the film, Mickey 17 is more passive and Mickey 18 is more aggressive. Pattinson reflected the distinct characters in his actions, including for a moment in which they fight. This fight, overseen by stunt coordinator Paul Lowe, represented moments of close interaction between the two Mickeys. It was here that a body double was crucial in shooting. The body double was also relied upon for the classic twinning technique of shooting ‘dirty’ over-the- shoulder out of focus shots of the double—ie. 17 looking at 18. However, it was quickly determined that even these would need face replacement work. “Robert’s jawline is so distinct that even those had to be replaced or shot as split screens,” observes Glass. When the shot was a moving one, no motion control was employed. “I’ve never been a big advocate for motion control,” states Glass. “To me it’s applicable when you’re doing things like miniatures where you need many matching passes, but I think when performances are involved, it interferes too much. It slows down a production’s speed of movement, but it’s also restrictive. Performance and camera always benefit from more flexibility.” “It helped tremendously that Director Bong and DOP Darius Khondji shot quite classically with minimal crane and Steadicam moves,” says Glass. “So, a lot of the moves are pan and dolly. There are some Steadicams in there that we were sometimes able to do splitscreens on. I wasn’t always sure that we could get away with the splitscreen as we shot it, but since we were always shooting the two roles, we had the footage to assess the practicality later. We were always prepared to go down a CG or machine learning route, but where we could use the splitscreen, that was the preference.” The Hydralite rig, developed by Volucap. Source: Rising Sun Pictureshandled the majority of twinning visual effects, completing them as splitscreen composites, 2D face replacements, and most notably via their machine learning toolset REVIZE, which utilized facial and body capture of Pattinson to train a model of his face and torso to swap for the double’s. A custom capture rig, dubbed the ‘Crazy Rig’ and now officially, The Hydralite, was devised and configured by Volucap to capture multiple angles of Robert on set in each lighting environment in order to produce the best possible reference for the machine learning algorithm. “For me, it was a completely legitimate use of the technique,” attests Glass, in terms of the machine learning approach. “All of the footage that we used to go into that process was captured on our movie for our movie. There’s nothing historic, or going through past libraries of footage, and it was all with Robert’s approval. I think the results were tremendous.” “It’s staggering to me as I watch the movie that the performances of each character are so flawlessly consistent throughout the film, because I know how much we were jumping around,” notes Glass. “I did encourage that we rehearse scenes ahead. Let’s say 17 was going to be the first role we captured, I’d have them rehearse it the other way around so that the double knew what he was going to do. Therefore, eyelines, movement, pacing and in instances where we were basically replacing the likeness of his head or even torso, we were still able to use the double’s performance and then map to that.” Read the full Mickey 17 issue of befores & afters magazine in PRINT from Amazon or as a DIGITAL EDITION on Patreon. Remember, you can also subscribe to the DIGITAL EDITION as a tier on the Patreon and get a new issue every time one is released. The post The art of two Mickeys appeared first on befores & afters. #art #two #mickeys
    BEFORESANDAFTERS.COM
    The art of two Mickeys
    Classic splitscreens, traditional face replacements and new approaches to machine learning-assisted face swapping allowed for twinning shots in ‘Mickey 17’. An excerpt from issue #32 of befores & afters magazine. The art of representing two characters on screen at the same time has become known as ‘twinning’. For Mickey 17 visual effects supervisor Dan Glass, the effect of seeing both Mickey 17 and 18 together was one he looked to achieve with a variety of methodologies. “With a technique like that,” he says, “you always want to use a range of tricks, because you don’t want people to figure it out. You want to keep them like, ‘Oh, wait a minute. How did they…?” “Going back to the way that Director Bong is so prepared and organized,” adds Glass, “it again makes the world of difference with that kind of work, because he thumbnails every shot. Then, some of them are a bit more fleshed out in storyboards. You can look at it and go, ‘Okay, in this situation, this is what the camera’s doing, this is what the actor’s doing,’ which in itself is quite interesting, because he pre-thinks all of this. You’d think that the actors show up and basically just have to follow the steps like robots. It’s not like that. He gives them an environment to work in, but the shots do end up extraordinarily close to what he thumbnails, and it made it a lot simpler to go through.” Those different approaches to twinning ranged from simple splitscreens, to traditional face replacements, and then substantially with a machine learned AI approach, now usually termed ‘face swapping’. What made the twinning work a tougher task than usual, suggests Glass, was the fact that the two Pattinson characters are virtually identical. “Normally, when you’re doing some kind of face replacement, you’re comparing it to a memory of the face. But this was right in front of you as two Mickeys looking strikingly similar.” Here’s how a typical twinning shot was achieved, as described by Glass. “Because Mickey was mostly dressed the same, with only a slight hair change, we were able to have Robert play both roles and to do them one after another. Sometimes, you have to do these things where hair and makeup or costume has a significant variation, so you’re either waiting a long time, which slows production, or you’re coming back at another time to do the different roles, which always makes the process a lot more complicated to match, but we were able to do that immediately.” “Based on the design of the shot,” continues Glass, “I would recommend which of Robert’s parts should be shot first. This was most often determined by which role had more impact on the camera movement. A huge credit goes to Robert for his ability to flip between the roles so effortlessly.” In the film, Mickey 17 is more passive and Mickey 18 is more aggressive. Pattinson reflected the distinct characters in his actions, including for a moment in which they fight. This fight, overseen by stunt coordinator Paul Lowe, represented moments of close interaction between the two Mickeys. It was here that a body double was crucial in shooting. The body double was also relied upon for the classic twinning technique of shooting ‘dirty’ over-the- shoulder out of focus shots of the double—ie. 17 looking at 18. However, it was quickly determined that even these would need face replacement work. “Robert’s jawline is so distinct that even those had to be replaced or shot as split screens,” observes Glass. When the shot was a moving one, no motion control was employed. “I’ve never been a big advocate for motion control,” states Glass. “To me it’s applicable when you’re doing things like miniatures where you need many matching passes, but I think when performances are involved, it interferes too much. It slows down a production’s speed of movement, but it’s also restrictive. Performance and camera always benefit from more flexibility.” “It helped tremendously that Director Bong and DOP Darius Khondji shot quite classically with minimal crane and Steadicam moves,” says Glass. “So, a lot of the moves are pan and dolly. There are some Steadicams in there that we were sometimes able to do splitscreens on. I wasn’t always sure that we could get away with the splitscreen as we shot it, but since we were always shooting the two roles, we had the footage to assess the practicality later. We were always prepared to go down a CG or machine learning route, but where we could use the splitscreen, that was the preference.” The Hydralite rig, developed by Volucap. Source: https://volucap.com Rising Sun Pictures (visual effects supervisor Guido Wolter) handled the majority of twinning visual effects, completing them as splitscreen composites, 2D face replacements, and most notably via their machine learning toolset REVIZE, which utilized facial and body capture of Pattinson to train a model of his face and torso to swap for the double’s. A custom capture rig, dubbed the ‘Crazy Rig’ and now officially, The Hydralite, was devised and configured by Volucap to capture multiple angles of Robert on set in each lighting environment in order to produce the best possible reference for the machine learning algorithm. “For me, it was a completely legitimate use of the technique,” attests Glass, in terms of the machine learning approach. “All of the footage that we used to go into that process was captured on our movie for our movie. There’s nothing historic, or going through past libraries of footage, and it was all with Robert’s approval. I think the results were tremendous.” “It’s staggering to me as I watch the movie that the performances of each character are so flawlessly consistent throughout the film, because I know how much we were jumping around,” notes Glass. “I did encourage that we rehearse scenes ahead. Let’s say 17 was going to be the first role we captured, I’d have them rehearse it the other way around so that the double knew what he was going to do. Therefore, eyelines, movement, pacing and in instances where we were basically replacing the likeness of his head or even torso, we were still able to use the double’s performance and then map to that.” Read the full Mickey 17 issue of befores & afters magazine in PRINT from Amazon or as a DIGITAL EDITION on Patreon. Remember, you can also subscribe to the DIGITAL EDITION as a tier on the Patreon and get a new issue every time one is released. The post The art of two Mickeys appeared first on befores & afters.
    0 Commentarii 0 Distribuiri 0 previzualizare
Sponsorizeaza Paginile
CGShares https://cgshares.com