• All the Stars, All the Time

    Some of the largest objects in the night sky to view through a telescope are galaxies and supernova remnants, often many times larger in size than the moon but generally …read more
    All the Stars, All the Time Some of the largest objects in the night sky to view through a telescope are galaxies and supernova remnants, often many times larger in size than the moon but generally …read more
    HACKADAY.COM
    All the Stars, All the Time
    Some of the largest objects in the night sky to view through a telescope are galaxies and supernova remnants, often many times larger in size than the moon but generally …read more
    1 Σχόλια 0 Μοιράστηκε
  • From Rivals to Partners: What’s Up with the Google and OpenAI Cloud Deal?

    Google and OpenAI struck a cloud computing deal in May, according to a Reuters report.
    The deal surprised the industry as the two are seen as major AI rivals.
    Signs of friction between OpenAI and Microsoft may have also fueled the move.
    The partnership is a win-win.OpenAI gets more badly needed computing resources while Google profits from its B investment to boost its cloud computing capacity in 2025.

    In a surprise move, Google and OpenAI inked a deal that will see the AI rivals partnering to address OpenAI’s growing cloud computing needs.
    The story, reported by Reuters, cited anonymous sources saying that the deal had been discussed for months and finalized in May. Around this time, OpenAI has struggled to keep up with demand as its number of weekly active users and business users grew in Q1 2025. There’s also speculation of friction between OpenAI and its biggest investor Microsoft.
    Why the Deal Surprised the Tech Industry
    The rivalry between the two companies hardly needs an introduction. When OpenAI’s ChatGPT launched in November 2022, it posed a huge threat to Google that triggered a code red within the search giant and cloud services provider.
    Since then, Google has launched Bardto compete with OpenAI head-on. However, it had to play catch up with OpenAI’s more advanced ChatGPT AI chatbot. This led to numerous issues with Bard, with critics referring to it as a half-baked product.

    A post on X in February 2023 showed the Bard AI chatbot erroneously stating that the James Webb Telescope took the first picture of an exoplanet. It was, in fact, the European Southern Observatory’s Very Large Telescope that did this in 2004. Google’s parent company Alphabet lost B off its market value within 24 hours as a result.
    Two years on, Gemini made significant strides in terms of accuracy, quoting sources, and depth of information, but is still prone to hallucinations from time to time. You can see examples of these posted on social media, like telling a user to make spicy spaghetti with gasoline or the AI thinking it’s still 2024. 
    And then there’s this gem:

    With the entire industry shifting towards more AI integrations, Google went ahead and integrated its AI suite into Search via AI Overviews. It then doubled down on this integration with AI Mode, an experimental feature that lets you perform AI-powered searches by typing in a question, uploading a photo, or using your voice.
    In the future, AI Mode from Google Search could be a viable competitor to ChatGPT—unless of course, Google decides to bin it along with many of its previous products. Given the scope of the investment, and Gemini’s significant improvement, we doubt AI + Search will be axed.
    It’s a Win-Win for Google and OpenAI—Not So Much for Microsoft?
    In the business world, money and the desire for expansion can break even the biggest rivalries. And the one between the two tech giants isn’t an exception.
    Partly, it could be attributed to OpenAI’s relationship with Microsoft. Although the Redmond, Washington-based company has invested billions in OpenAI and has the resources to meet the latter’s cloud computing needs, their partnership hasn’t always been rosy. 
    Some would say it began when OpenAI CEO Sam Altman was briefly ousted in November 2023, which put a strain on the ‘best bromance in tech’ between him and Microsoft CEO Satya Nadella. Then last year, Microsoft added OpenAI to its list of competitors in the AI space before eventually losing its status as OpenAI’s exclusive cloud provider in January 2025.
    If that wasn’t enough, there’s also the matter of the two companies’ goal of achieving artificial general intelligence. Defined as when OpenAI develops AI systems that generate B in profits, reaching AGI means Microsoft will lose access to the former’s technology. With the company behind ChatGPT expecting to triple its 2025 revenue to from B the previous year, this could happen sooner rather than later.
    While OpenAI already has deals with Microsoft, Oracle, and CoreWeave to provide it with cloud services and access to infrastructure, it needs more and soon as the company has seen massive growth in the past few months.
    In February, OpenAI announced that it had over 400M weekly active users, up from 300M in December 2024. Meanwhile, the number of its business users who use ChatGPT Enterprise, ChatGPT Team, and ChatGPT Edu products also jumped from 2M in February to 3M in March.
    The good news is Google is more than ready to deliver. Its parent company has earmarked B towards its investments in AI this year, which includes boosting its cloud computing capacity.

    In April, Google launched its 7th generation tensor processing unitcalled Ironwood, which has been designed specifically for inference. According to the company, the new TPU will help power AI models that will ‘proactively retrieve and generate data to collaboratively deliver insights and answers, not just data.’The deal with OpenAI can be seen as a vote of confidence in Google’s cloud computing capability that competes with the likes of Microsoft Azure and Amazon Web Services. It also expands Google’s vast client list that includes tech, gaming, entertainment, and retail companies, as well as organizations in the public sector.

    As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy.
    With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility.
    Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines.
    Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech. 
    He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom.
    That fascination with tech didn’t just stick. It evolved into a full-blown calling.
    After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career.
    He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy.
    His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers.
    At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap.
    Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual.
    As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting.
    From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it.

    View all articles by Cedric Solidon

    Our editorial process

    The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors.
    #rivals #partners #whats #with #google
    From Rivals to Partners: What’s Up with the Google and OpenAI Cloud Deal?
    Google and OpenAI struck a cloud computing deal in May, according to a Reuters report. The deal surprised the industry as the two are seen as major AI rivals. Signs of friction between OpenAI and Microsoft may have also fueled the move. The partnership is a win-win.OpenAI gets more badly needed computing resources while Google profits from its B investment to boost its cloud computing capacity in 2025. In a surprise move, Google and OpenAI inked a deal that will see the AI rivals partnering to address OpenAI’s growing cloud computing needs. The story, reported by Reuters, cited anonymous sources saying that the deal had been discussed for months and finalized in May. Around this time, OpenAI has struggled to keep up with demand as its number of weekly active users and business users grew in Q1 2025. There’s also speculation of friction between OpenAI and its biggest investor Microsoft. Why the Deal Surprised the Tech Industry The rivalry between the two companies hardly needs an introduction. When OpenAI’s ChatGPT launched in November 2022, it posed a huge threat to Google that triggered a code red within the search giant and cloud services provider. Since then, Google has launched Bardto compete with OpenAI head-on. However, it had to play catch up with OpenAI’s more advanced ChatGPT AI chatbot. This led to numerous issues with Bard, with critics referring to it as a half-baked product. A post on X in February 2023 showed the Bard AI chatbot erroneously stating that the James Webb Telescope took the first picture of an exoplanet. It was, in fact, the European Southern Observatory’s Very Large Telescope that did this in 2004. Google’s parent company Alphabet lost B off its market value within 24 hours as a result. Two years on, Gemini made significant strides in terms of accuracy, quoting sources, and depth of information, but is still prone to hallucinations from time to time. You can see examples of these posted on social media, like telling a user to make spicy spaghetti with gasoline or the AI thinking it’s still 2024.  And then there’s this gem: With the entire industry shifting towards more AI integrations, Google went ahead and integrated its AI suite into Search via AI Overviews. It then doubled down on this integration with AI Mode, an experimental feature that lets you perform AI-powered searches by typing in a question, uploading a photo, or using your voice. In the future, AI Mode from Google Search could be a viable competitor to ChatGPT—unless of course, Google decides to bin it along with many of its previous products. Given the scope of the investment, and Gemini’s significant improvement, we doubt AI + Search will be axed. It’s a Win-Win for Google and OpenAI—Not So Much for Microsoft? In the business world, money and the desire for expansion can break even the biggest rivalries. And the one between the two tech giants isn’t an exception. Partly, it could be attributed to OpenAI’s relationship with Microsoft. Although the Redmond, Washington-based company has invested billions in OpenAI and has the resources to meet the latter’s cloud computing needs, their partnership hasn’t always been rosy.  Some would say it began when OpenAI CEO Sam Altman was briefly ousted in November 2023, which put a strain on the ‘best bromance in tech’ between him and Microsoft CEO Satya Nadella. Then last year, Microsoft added OpenAI to its list of competitors in the AI space before eventually losing its status as OpenAI’s exclusive cloud provider in January 2025. If that wasn’t enough, there’s also the matter of the two companies’ goal of achieving artificial general intelligence. Defined as when OpenAI develops AI systems that generate B in profits, reaching AGI means Microsoft will lose access to the former’s technology. With the company behind ChatGPT expecting to triple its 2025 revenue to from B the previous year, this could happen sooner rather than later. While OpenAI already has deals with Microsoft, Oracle, and CoreWeave to provide it with cloud services and access to infrastructure, it needs more and soon as the company has seen massive growth in the past few months. In February, OpenAI announced that it had over 400M weekly active users, up from 300M in December 2024. Meanwhile, the number of its business users who use ChatGPT Enterprise, ChatGPT Team, and ChatGPT Edu products also jumped from 2M in February to 3M in March. The good news is Google is more than ready to deliver. Its parent company has earmarked B towards its investments in AI this year, which includes boosting its cloud computing capacity. In April, Google launched its 7th generation tensor processing unitcalled Ironwood, which has been designed specifically for inference. According to the company, the new TPU will help power AI models that will ‘proactively retrieve and generate data to collaboratively deliver insights and answers, not just data.’The deal with OpenAI can be seen as a vote of confidence in Google’s cloud computing capability that competes with the likes of Microsoft Azure and Amazon Web Services. It also expands Google’s vast client list that includes tech, gaming, entertainment, and retail companies, as well as organizations in the public sector. As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy. With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility. Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines. Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech.  He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom. That fascination with tech didn’t just stick. It evolved into a full-blown calling. After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career. He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy. His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers. At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap. Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual. As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting. From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it. View all articles by Cedric Solidon Our editorial process The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors. #rivals #partners #whats #with #google
    TECHREPORT.COM
    From Rivals to Partners: What’s Up with the Google and OpenAI Cloud Deal?
    Google and OpenAI struck a cloud computing deal in May, according to a Reuters report. The deal surprised the industry as the two are seen as major AI rivals. Signs of friction between OpenAI and Microsoft may have also fueled the move. The partnership is a win-win.OpenAI gets more badly needed computing resources while Google profits from its $75B investment to boost its cloud computing capacity in 2025. In a surprise move, Google and OpenAI inked a deal that will see the AI rivals partnering to address OpenAI’s growing cloud computing needs. The story, reported by Reuters, cited anonymous sources saying that the deal had been discussed for months and finalized in May. Around this time, OpenAI has struggled to keep up with demand as its number of weekly active users and business users grew in Q1 2025. There’s also speculation of friction between OpenAI and its biggest investor Microsoft. Why the Deal Surprised the Tech Industry The rivalry between the two companies hardly needs an introduction. When OpenAI’s ChatGPT launched in November 2022, it posed a huge threat to Google that triggered a code red within the search giant and cloud services provider. Since then, Google has launched Bard (now known as Gemini) to compete with OpenAI head-on. However, it had to play catch up with OpenAI’s more advanced ChatGPT AI chatbot. This led to numerous issues with Bard, with critics referring to it as a half-baked product. A post on X in February 2023 showed the Bard AI chatbot erroneously stating that the James Webb Telescope took the first picture of an exoplanet. It was, in fact, the European Southern Observatory’s Very Large Telescope that did this in 2004. Google’s parent company Alphabet lost $100B off its market value within 24 hours as a result. Two years on, Gemini made significant strides in terms of accuracy, quoting sources, and depth of information, but is still prone to hallucinations from time to time. You can see examples of these posted on social media, like telling a user to make spicy spaghetti with gasoline or the AI thinking it’s still 2024.  And then there’s this gem: With the entire industry shifting towards more AI integrations, Google went ahead and integrated its AI suite into Search via AI Overviews. It then doubled down on this integration with AI Mode, an experimental feature that lets you perform AI-powered searches by typing in a question, uploading a photo, or using your voice. In the future, AI Mode from Google Search could be a viable competitor to ChatGPT—unless of course, Google decides to bin it along with many of its previous products. Given the scope of the investment, and Gemini’s significant improvement, we doubt AI + Search will be axed. It’s a Win-Win for Google and OpenAI—Not So Much for Microsoft? In the business world, money and the desire for expansion can break even the biggest rivalries. And the one between the two tech giants isn’t an exception. Partly, it could be attributed to OpenAI’s relationship with Microsoft. Although the Redmond, Washington-based company has invested billions in OpenAI and has the resources to meet the latter’s cloud computing needs, their partnership hasn’t always been rosy.  Some would say it began when OpenAI CEO Sam Altman was briefly ousted in November 2023, which put a strain on the ‘best bromance in tech’ between him and Microsoft CEO Satya Nadella. Then last year, Microsoft added OpenAI to its list of competitors in the AI space before eventually losing its status as OpenAI’s exclusive cloud provider in January 2025. If that wasn’t enough, there’s also the matter of the two companies’ goal of achieving artificial general intelligence (AGI). Defined as when OpenAI develops AI systems that generate $100B in profits, reaching AGI means Microsoft will lose access to the former’s technology. With the company behind ChatGPT expecting to triple its 2025 revenue to $12.7 from $3.7B the previous year, this could happen sooner rather than later. While OpenAI already has deals with Microsoft, Oracle, and CoreWeave to provide it with cloud services and access to infrastructure, it needs more and soon as the company has seen massive growth in the past few months. In February, OpenAI announced that it had over 400M weekly active users, up from 300M in December 2024. Meanwhile, the number of its business users who use ChatGPT Enterprise, ChatGPT Team, and ChatGPT Edu products also jumped from 2M in February to 3M in March. The good news is Google is more than ready to deliver. Its parent company has earmarked $75B towards its investments in AI this year, which includes boosting its cloud computing capacity. In April, Google launched its 7th generation tensor processing unit (TPU) called Ironwood, which has been designed specifically for inference. According to the company, the new TPU will help power AI models that will ‘proactively retrieve and generate data to collaboratively deliver insights and answers, not just data.’The deal with OpenAI can be seen as a vote of confidence in Google’s cloud computing capability that competes with the likes of Microsoft Azure and Amazon Web Services. It also expands Google’s vast client list that includes tech, gaming, entertainment, and retail companies, as well as organizations in the public sector. As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy. With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility. Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines. Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech.  He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom. That fascination with tech didn’t just stick. It evolved into a full-blown calling. After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career. He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy. His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers. At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap. Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual. As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting. From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it. View all articles by Cedric Solidon Our editorial process The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors.
    0 Σχόλια 0 Μοιράστηκε
  • How a planetarium show discovered a spiral at the edge of our solar system

    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system.

    “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist.

    Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years. 

    The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?” 

    To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data.

    “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says. 

    The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars.

    “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.”

    She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’” 

    While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space ShowMore simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves. 

    In each simulation, the spiral persisted.

    “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’” 

    An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system.As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system.

    “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.”

    “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.”

    It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.”

    The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems.

    Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”

     In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths.Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show.

    “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’

    “ThenNeil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'”

    “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds.

    The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.”

    By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies.

    To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX.

    The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.” 

    The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.”

    Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data.

    “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.”

    As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands.

    Our Oort cloud, a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud“New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent. 

    More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud. 

    Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.” 

    The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud. 

    For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park.
    #how #planetarium #show #discovered #spiral
    How a planetarium show discovered a spiral at the edge of our solar system
    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system. “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist. Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years.  The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?”  To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data. “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says.  The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars. “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.” She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’”  While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space ShowMore simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves.  In each simulation, the spiral persisted. “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’”  An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system.As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system. “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.” “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.” It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.” The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems. Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”  In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths.Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show. “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’ “ThenNeil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'” “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds. The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.” By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies. To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX. The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.”  The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.” Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data. “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.” As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands. Our Oort cloud, a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud“New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent.  More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud.  Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.”  The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud.  For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park. #how #planetarium #show #discovered #spiral
    WWW.FASTCOMPANY.COM
    How a planetarium show discovered a spiral at the edge of our solar system
    If you’ve ever flown through outer space, at least while watching a documentary or a science fiction film, you’ve seen how artists turn astronomical findings into stunning visuals. But in the process of visualizing data for their latest planetarium show, a production team at New York’s American Museum of Natural History made a surprising discovery of their own: a trillion-and-a-half mile long spiral of material drifting along the edge of our solar system. “So this is a really fun thing that happened,” says Jackie Faherty, the museum’s senior scientist. Last winter, Faherty and her colleagues were beneath the dome of the museum’s Hayden Planetarium, fine-tuning a scene that featured the Oort cloud, the big, thick bubble surrounding our Sun and planets that’s filled with ice and rock and other remnants from the solar system’s infancy. The Oort cloud begins far beyond Neptune, around one and a half light years from the Sun. It has never been directly observed; its existence is inferred from the behavior of long-period comets entering the inner solar system. The cloud is so expansive that the Voyager spacecraft, our most distant probes, would need another 250 years just to reach its inner boundary; to reach the other side, they would need about 30,000 years.  The 30-minute show, Encounters in the Milky Way, narrated by Pedro Pascal, guides audiences on a trip through the galaxy across billions of years. For a section about our nascent solar system, the writing team decided “there’s going to be a fly-by” of the Oort cloud, Faherty says. “But what does our Oort cloud look like?”  To find out, the museum consulted astronomers and turned to David Nesvorný, a scientist at the Southwest Research Institute in San Antonio. He provided his model of the millions of particles believed to make up the Oort cloud, based on extensive observational data. “Everybody said, go talk to Nesvorný. He’s got the best model,” says Faherty. And “everybody told us, ‘There’s structure in the model,’ so we were kind of set up to look for stuff,” she says.  The museum’s technical team began using Nesvorný’s model to simulate how the cloud evolved over time. Later, as the team projected versions of the fly-by scene into the dome, with the camera looking back at the Oort cloud, they saw a familiar shape, one that appears in galaxies, Saturn’s rings, and disks around young stars. “We’re flying away from the Oort cloud and out pops this spiral, a spiral shape to the outside of our solar system,” Faherty marveled. “A huge structure, millions and millions of particles.” She emailed Nesvorný to ask for “more particles,” with a render of the scene attached. “We noticed the spiral of course,” she wrote. “And then he writes me back: ‘what are you talking about, a spiral?’”  While fine-tuning a simulation of the Oort cloud, a vast expanse of ice material leftover from the birth of our Sun, the ‘Encounters in the Milky Way’ production team noticed a very clear shape: a structure made of billions of comets and shaped like a spiral-armed galaxy, seen here in a scene from the final Space Show (curving, dusty S-shape behind the Sun) [Image: © AMNH] More simulations ensued, this time on Pleiades, a powerful NASA supercomputer. In high-performance computer simulations spanning 4.6 billion years, starting from the Solar System’s earliest days, the researchers visualized how the initial icy and rocky ingredients of the Oort cloud began circling the Sun, in the elliptical orbits that are thought to give the cloud its rough disc shape. The simulations also incorporated the physics of the Sun’s gravitational pull, the influences from our Milky Way galaxy, and the movements of the comets themselves.  In each simulation, the spiral persisted. “No one has ever seen the Oort structure like that before,” says Faherty. Nesvorný “has a great quote about this: ‘The math was all there. We just needed the visuals.’”  An illustration of the Kuiper Belt and Oort Cloud in relation to our solar system. [Image: NASA] As the Oort cloud grew with the early solar system, Nesvorný and his colleagues hypothesize that the galactic tide, or the gravitational force from the Milky Way, disrupted the orbits of some comets. Although the Sun pulls these objects inward, the galaxy’s gravity appears to have twisted part of the Oort cloud outward, forming a spiral tilted roughly 30 degrees from the plane of the solar system. “As the galactic tide acts to decouple bodies from the scattered disk it creates a spiral structure in physical space that is roughly 15,000 astronomical units in length,” or around 1.4 trillion miles from one end to the other, the researchers write in a paper that was published in March in the Astrophysical Journal. “The spiral is long-lived and persists in the inner Oort Cloud to the present time.” “The physics makes sense,” says Faherty. “Scientists, we’re amazing at what we do, but it doesn’t mean we can see everything right away.” It helped that the team behind the space show was primed to look for something, says Carter Emmart, the museum’s director of astrovisualization and director of Encounters. Astronomers had described Nesvorný’s model as having “a structure,” which intrigued the team’s artists. “We were also looking for structure so that it wouldn’t just be sort of like a big blob,” he says. “Other models were also revealing this—but they just hadn’t been visualized.” The museum’s attempts to simulate nature date back to its first habitat dioramas in the early 1900s, which brought visitors to places that hadn’t yet been captured by color photos, TV, or the web. The planetarium, a night sky simulator for generations of would-be scientists and astronauts, got its start after financier Charles Hayden bought the museum its first Zeiss projector. The planetarium now boasts one of the world’s few Zeiss Mark IX systems. Still, these days the star projector is rarely used, Emmart says, now that fulldome laser projectors can turn the old static starfield into 3D video running at 60 frames per second. The Hayden boasts six custom-built Christie projectors, part of what the museum’s former president called “the most advanced planetarium ever attempted.”  In about 1.3 million years, the star system Gliese 710 is set to pass directly through our Oort Cloud, an event visualized in a dramatic scene in ‘Encounters in the Milky Way.’ During its flyby, our systems will swap icy comets, flinging some out on new paths. [Image: © AMNH] Emmart recalls how in 1998, when he and other museum leaders were imagining the future of space shows at the Hayden—now with the help of digital projectors and computer graphics—there were questions over how much space they could try to show. “We’re talking about these astronomical data sets we could plot to make the galaxy and the stars,” he says. “Of course, we knew that we would have this star projector, but we really wanted to emphasize astrophysics with this dome video system. I was drawing pictures of this just to get our heads around it and noting the tip of the solar system to the Milky Way is about 60 degrees. And I said, what are we gonna do when we get outside the Milky Way?’ “Then [planetarium’s director] Neil Degrasse Tyson “goes, ‘whoa, whoa, whoa, Carter, we have enough to do. And just plotting the Milky Way, that’s hard enough.’ And I said, ‘well, when we exit the Milky Way and we don’t see any other galaxies, that’s sort of like astronomy in 1920—we thought maybe the entire universe is just a Milky Way.'” “And that kind of led to a chaotic discussion about, well, what other data sets are there for this?” Emmart adds. The museum worked with astronomer Brent Tully, who had mapped 3500 galaxies beyond the Milky Way, in collaboration with the National Center for Super Computing Applications. “That was it,” he says, “and that seemed fantastical.” By the time the first planetarium show opened at the museum’s new Rose Center for Earth and Space in 2000, Tully had broadened his survey “to an amazing” 30,000 galaxies. The Sloan Digital Sky Survey followed—it’s now at data release 18—with six million galaxies. To build the map of the universe that underlies Encounters, the team also relied on data from the European Space Agency’s space observatory, Gaia. Launched in 2013 and powered down in March of this year, Gaia brought an unprecedented precision to our astronomical map, plotting the distance between 1.7 billion stars. To visualize and render the simulated data, Jon Parker, the museum’s lead technical director, relied on Houdini, a 3D animation tool by Toronto-based SideFX. The goal is immersion, “whether it’s in front of the buffalo downstairs, and seeing what those herds were like before we decimated them, to coming in this room and being teleported to space, with an accurate foundation in the science,” Emmart says. “But the art is important, because the art is the way to the soul.”  The museum, he adds, is “a testament to wonder. And I think wonder is a gateway to inspiration, and inspiration is a gateway to motivation.” Three-D visuals aren’t just powerful tools for communicating science, but increasingly crucial for science itself. Software like OpenSpace, an open source simulation tool developed by the museum, along with the growing availability of high-performance computing, are making it easier to build highly detailed visuals of ever larger and more complex collections of data. “Anytime we look, literally, from a different angle at catalogs of astronomical positions, simulations, or exploring the phase space of a complex data set, there is great potential to discover something new,” says Brian R. Kent, an astronomer and director of science communications at National Radio Astronomy Observatory. “There is also a wealth of astronomics tatical data in archives that can be reanalyzed in new ways, leading to new discoveries.” As the instruments grow in size and sophistication, so does the data, and the challenge of understanding it. Like all scientists, astronomers are facing a deluge of data, ranging from gamma rays and X-rays to ultraviolet, optical, infrared, and radio bands. Our Oort cloud (center), a shell of icy bodies that surrounds the solar system and extends one-and-a-half light years in every direction, is shown in this scene from ‘Encounters in the Milky Way’ along with the Oort clouds of neighboring stars. The more massive the star, the larger its Oort cloud [Image: © AMNH ] “New facilities like the Next Generation Very Large Array here at NRAO or the Vera Rubin Observatory and LSST survey project will generate large volumes of data, so astronomers have to get creative with how to analyze it,” says Kent.  More data—and new instruments—will also be needed to prove the spiral itself is actually there: there’s still no known way to even observe the Oort cloud.  Instead, the paper notes, the structure will have to be measured from “detection of a large number of objects” in the radius of the inner Oort cloud or from “thermal emission from small particles in the Oort spiral.”  The Vera C. Rubin Observatory, a powerful, U.S.-funded telescope that recently began operation in Chile, could possibly observe individual icy bodies within the cloud. But researchers expect the telescope will likely discover only dozens of these objects, maybe hundreds, not enough to meaningfully visualize any shapes in the Oort cloud.  For us, here and now, the 1.4 trillion mile-long spiral will remain confined to the inside of a dark dome across the street from Central Park.
    0 Σχόλια 0 Μοιράστηκε
  • US science is being wrecked, and its leadership is fighting the last war

    Missing the big picture

    US science is being wrecked, and its leadership is fighting the last war

    Facing an extreme budget, the National Academies hosted an event that ignored it.

    John Timmer



    Jun 4, 2025 6:00 pm

    |

    16

    Credit:

    JHVE Photo

    Credit:

    JHVE Photo

    Story text

    Size

    Small
    Standard
    Large

    Width
    *

    Standard
    Wide

    Links

    Standard
    Orange

    * Subscribers only
      Learn more

    WASHINGTON, DC—The general outline of the Trump administration's proposed 2026 budget was released a few weeks back, and it included massive cuts for most agencies, including every one that funds scientific research. Late last week, those agencies began releasing details of what the cuts would mean for the actual projects and people they support. And the results are as bad as the initial budget had suggested: one-of-a-kind scientific experiment facilities and hardware retired, massive cuts in supported scientists, and entire areas of research halted.
    And this comes in an environment where previously funded grants are being terminated, funding is being held up for ideological screening, and universities have been subject to arbitrary funding freezes. Collectively, things are heading for damage to US science that will take decades to recover from. It's a radical break from the trajectory science had been on.
    That's the environment that the US's National Academies of Science found itself in yesterday while hosting the State of the Science event in Washington, DC. It was an obvious opportunity for the nation's leading scientific organization to warn the nation of the consequences of the path that the current administration has been traveling. Instead, the event largely ignored the present to worry about a future that may never exist.
    The proposed cuts
    The top-line budget numbers proposed earlier indicated things would be bad: nearly 40 percent taken off the National Institutes of Health's budget, the National Science Foundation down by over half. But now, many of the details of what those cuts mean are becoming apparent.
    NASA's budget includes sharp cuts for planetary science, which would be cut in half and then stay flat for the rest of the decade, with the Mars Sample Return mission canceled. All other science budgets, including Earth Science and Astrophysics, take similar hits; one astronomer posted a graphic showing how many present and future missions that would mean. Active missions that have returned unprecedented data, like Juno and New Horizons, would go, as would two Mars orbiters. As described by Science magazine's news team, "The plans would also kill off nearly every major science mission the agency has not yet begun to build."

    A chart prepared by astronomer Laura Lopez showing just how many astrophysics missions will be cancelled.

    Credit:

    Laura Lopez

    The National Science Foundation, which funds much of the US's fundamental research, is also set for brutal cuts. Biology, engineering, and education will all be slashed by over 70 percent; computer science, math and physical science, and social and behavioral science will all see cuts of over 60 percent. International programs will take an 80 percent cut. The funding rate of grant proposals is expected to drop from 26 percent to just 7 percent, meaning the vast majority of grants submitted to the NSF will be a waste of time. The number of people involved in NSF-funded activities will drop from over 300,000 to just 90,000. Almost every program to broaden participation in science will be eliminated.
    As for specifics, they're equally grim. The fleet of research ships will essentially become someone else's problem: "The FY 2026 Budget Request will enable partial support of some ships." We've been able to better pin down the nature and location of gravitational wave events as detectors in Japan and Italy joined the original two LIGO detectors; the NSF will reverse that progress by shutting one of the LIGOs. The NSF's contributions to detectors at the Large Hadron Collider will be cut by over half, and one of the two very large telescopes it was helping fund will be cancelled. "Access to the telescopes at Kitt Peak and Cerro Tololo will be phased out," and the NSF will transfer the facilities to other organizations.
    The Department of Health and Human Services has been less detailed about the specific cuts its divisions will see, largely focusing on the overall numbers, which are down considerably. The NIH, which is facing a cut of over 40 percent, will be reorganized, with its 19 institutes pared down to just eight. This will result in some odd pairings, such as the dental and eye institutes ending up in the same place; genomics and biomedical imaging will likewise end up under the same roof. Other groups like the Centers for Disease Control and Prevention and the Food and Drug Administration will also face major cuts.

    Issues go well beyond the core science agencies, as well. In the Department of Energy, funding for wind, solar, and renewable grid integration has been zeroed out, essentially ending all programs in this area. Hydrogen and fuel cells face a similar fate. Collectively, these had gotten over billion dollars in 2024's budget. Other areas of science at the DOE, such as high-energy physics, fusion, and biology, receive relatively minor cuts that are largely in line with the ones faced by administration priorities like fossil and nuclear energy.

    Will this happen?
    It goes without saying that this would amount to an abandonment of US scientific leadership at a time when most estimates of China's research spending show it approaching US-like levels of support. Not only would it eliminate many key facilities, instruments, and institutions that have helped make the US a scientific powerhouse, but it would also block the development of newer and additional ones. The harms are so widespread that even topics that the administration claims are priorities would see severe cuts.
    And the damage is likely to last for generations, as support is cut at every stage of the educational pipeline that prepares people for STEM careers. This includes careers in high-tech industries, which may require relocation overseas due to a combination of staffing concerns and heightened immigration controls.
    That said, we've been here before in the first Trump administration, when budgets were proposed with potentially catastrophic implications for US science. But Congress limited the damage and maintained reasonably consistent budgets for most agencies.
    Can we expect that to happen again? So far, the signs are not especially promising. The House has largely adopted the Trump administration's budget priorities, despite the fact that the budget they pass turns its back on decades of supposed concerns about deficit spending. While the Senate has yet to take up the budget, it has also been very pliant during the second Trump administration, approving grossly unqualified cabinet picks such as Robert F. Kennedy Jr.

    All of which would seem to call for the leadership of US science organizations to press the case for the importance of science funding to the US, and highlight the damage that these cuts would cause. But, if yesterday's National Academies event is anything to judge by, the leadership is not especially interested.
    Altered states
    As the nation's premier science organization, and one that performs lots of analyses for the government, the National Academies would seem to be in a position to have its concerns taken seriously by members of Congress. And, given that the present and future of science in the US is being set by policy choices, a meeting entitled the State of the Science would seem like the obvious place to address those concerns.
    If so, it was not obvious to Marcia McNutt, the president of the NAS, who gave the presentation. She made some oblique references to current problems, saying, that “We are embarking on a radical new experiment in what conditions promote science leadership, with the US being the treatment group, and China as the control," and acknowledged that "uncertainties over the science budgets for next year, coupled with cancellations of billions of dollars of already hard-won research grants, is causing an exodus of researchers."
    But her primary focus was on the trends that have been operative in science funding and policy leading up to but excluding the second Trump administration. McNutt suggested this was needed to look beyond the next four years. However, that ignores the obvious fact that US science will be fundamentally different if the Trump administration can follow through on its plans and policies; the trends that have been present for the last two decades will be irrelevant.
    She was also remarkably selective about her avoidance of discussing Trump administration priorities. After noting that faculty surveys have suggested they spend roughly 40 percent of their time handling regulatory requirements, she twice mentioned that the administration's anti-regulatory stance could be a net positive here. Yet she neglected to note that many of the abandoned regulations represent a retreat from science-driven policy.

    McNutt also acknowledged the problem of science losing the bipartisan support it has enjoyed, as trust in scientists among US conservatives has been on a downward trend. But she suggested it was scientists' responsibility to fix the problem, even though it's largely the product of one party deciding it can gain partisan advantage by raising doubts about scientific findings in fields like climate change and vaccine safety.
    The panel discussion that came after largely followed McNutt's lead in avoiding any mention of the current threats to science. The lone exception was Heather Wilson, president of the University of Texas at El Paso and a former Republican member of the House of Representatives and Secretary of the Air Force during the first Trump administration. Wilson took direct aim at Trump's cuts to funding for underrepresented groups, arguing, "Talent is evenly distributed, but opportunity is not." After arguing that "the moral authority of science depends on the pursuit of truth," she highlighted the cancellation of grants that had been used to study diseases that are more prevalent in some ethnic groups, saying "that's not woke science—that's genetics."
    Wilson was clearly the exception, however, as the rest of the panel largely avoided direct mention of either the damage already done to US science funding or the impending catastrophe on the horizon. We've asked the National Academies' leadership a number of questions about how it perceives its role at a time when US science is clearly under threat. As of this article's publication, however, we have not received a response.
    At yesterday's event, however, only one person showed a clear sense of what they thought that role should be—Wilson again, whose strongest words were directed at the National Academies themselves, which she said should "do what you've done since Lincoln was president," and stand up for the truth.

    John Timmer
    Senior Science Editor

    John Timmer
    Senior Science Editor

    John is Ars Technica's science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots.

    16 Comments
    #science #being #wrecked #its #leadership
    US science is being wrecked, and its leadership is fighting the last war
    Missing the big picture US science is being wrecked, and its leadership is fighting the last war Facing an extreme budget, the National Academies hosted an event that ignored it. John Timmer – Jun 4, 2025 6:00 pm | 16 Credit: JHVE Photo Credit: JHVE Photo Story text Size Small Standard Large Width * Standard Wide Links Standard Orange * Subscribers only   Learn more WASHINGTON, DC—The general outline of the Trump administration's proposed 2026 budget was released a few weeks back, and it included massive cuts for most agencies, including every one that funds scientific research. Late last week, those agencies began releasing details of what the cuts would mean for the actual projects and people they support. And the results are as bad as the initial budget had suggested: one-of-a-kind scientific experiment facilities and hardware retired, massive cuts in supported scientists, and entire areas of research halted. And this comes in an environment where previously funded grants are being terminated, funding is being held up for ideological screening, and universities have been subject to arbitrary funding freezes. Collectively, things are heading for damage to US science that will take decades to recover from. It's a radical break from the trajectory science had been on. That's the environment that the US's National Academies of Science found itself in yesterday while hosting the State of the Science event in Washington, DC. It was an obvious opportunity for the nation's leading scientific organization to warn the nation of the consequences of the path that the current administration has been traveling. Instead, the event largely ignored the present to worry about a future that may never exist. The proposed cuts The top-line budget numbers proposed earlier indicated things would be bad: nearly 40 percent taken off the National Institutes of Health's budget, the National Science Foundation down by over half. But now, many of the details of what those cuts mean are becoming apparent. NASA's budget includes sharp cuts for planetary science, which would be cut in half and then stay flat for the rest of the decade, with the Mars Sample Return mission canceled. All other science budgets, including Earth Science and Astrophysics, take similar hits; one astronomer posted a graphic showing how many present and future missions that would mean. Active missions that have returned unprecedented data, like Juno and New Horizons, would go, as would two Mars orbiters. As described by Science magazine's news team, "The plans would also kill off nearly every major science mission the agency has not yet begun to build." A chart prepared by astronomer Laura Lopez showing just how many astrophysics missions will be cancelled. Credit: Laura Lopez The National Science Foundation, which funds much of the US's fundamental research, is also set for brutal cuts. Biology, engineering, and education will all be slashed by over 70 percent; computer science, math and physical science, and social and behavioral science will all see cuts of over 60 percent. International programs will take an 80 percent cut. The funding rate of grant proposals is expected to drop from 26 percent to just 7 percent, meaning the vast majority of grants submitted to the NSF will be a waste of time. The number of people involved in NSF-funded activities will drop from over 300,000 to just 90,000. Almost every program to broaden participation in science will be eliminated. As for specifics, they're equally grim. The fleet of research ships will essentially become someone else's problem: "The FY 2026 Budget Request will enable partial support of some ships." We've been able to better pin down the nature and location of gravitational wave events as detectors in Japan and Italy joined the original two LIGO detectors; the NSF will reverse that progress by shutting one of the LIGOs. The NSF's contributions to detectors at the Large Hadron Collider will be cut by over half, and one of the two very large telescopes it was helping fund will be cancelled. "Access to the telescopes at Kitt Peak and Cerro Tololo will be phased out," and the NSF will transfer the facilities to other organizations. The Department of Health and Human Services has been less detailed about the specific cuts its divisions will see, largely focusing on the overall numbers, which are down considerably. The NIH, which is facing a cut of over 40 percent, will be reorganized, with its 19 institutes pared down to just eight. This will result in some odd pairings, such as the dental and eye institutes ending up in the same place; genomics and biomedical imaging will likewise end up under the same roof. Other groups like the Centers for Disease Control and Prevention and the Food and Drug Administration will also face major cuts. Issues go well beyond the core science agencies, as well. In the Department of Energy, funding for wind, solar, and renewable grid integration has been zeroed out, essentially ending all programs in this area. Hydrogen and fuel cells face a similar fate. Collectively, these had gotten over billion dollars in 2024's budget. Other areas of science at the DOE, such as high-energy physics, fusion, and biology, receive relatively minor cuts that are largely in line with the ones faced by administration priorities like fossil and nuclear energy. Will this happen? It goes without saying that this would amount to an abandonment of US scientific leadership at a time when most estimates of China's research spending show it approaching US-like levels of support. Not only would it eliminate many key facilities, instruments, and institutions that have helped make the US a scientific powerhouse, but it would also block the development of newer and additional ones. The harms are so widespread that even topics that the administration claims are priorities would see severe cuts. And the damage is likely to last for generations, as support is cut at every stage of the educational pipeline that prepares people for STEM careers. This includes careers in high-tech industries, which may require relocation overseas due to a combination of staffing concerns and heightened immigration controls. That said, we've been here before in the first Trump administration, when budgets were proposed with potentially catastrophic implications for US science. But Congress limited the damage and maintained reasonably consistent budgets for most agencies. Can we expect that to happen again? So far, the signs are not especially promising. The House has largely adopted the Trump administration's budget priorities, despite the fact that the budget they pass turns its back on decades of supposed concerns about deficit spending. While the Senate has yet to take up the budget, it has also been very pliant during the second Trump administration, approving grossly unqualified cabinet picks such as Robert F. Kennedy Jr. All of which would seem to call for the leadership of US science organizations to press the case for the importance of science funding to the US, and highlight the damage that these cuts would cause. But, if yesterday's National Academies event is anything to judge by, the leadership is not especially interested. Altered states As the nation's premier science organization, and one that performs lots of analyses for the government, the National Academies would seem to be in a position to have its concerns taken seriously by members of Congress. And, given that the present and future of science in the US is being set by policy choices, a meeting entitled the State of the Science would seem like the obvious place to address those concerns. If so, it was not obvious to Marcia McNutt, the president of the NAS, who gave the presentation. She made some oblique references to current problems, saying, that “We are embarking on a radical new experiment in what conditions promote science leadership, with the US being the treatment group, and China as the control," and acknowledged that "uncertainties over the science budgets for next year, coupled with cancellations of billions of dollars of already hard-won research grants, is causing an exodus of researchers." But her primary focus was on the trends that have been operative in science funding and policy leading up to but excluding the second Trump administration. McNutt suggested this was needed to look beyond the next four years. However, that ignores the obvious fact that US science will be fundamentally different if the Trump administration can follow through on its plans and policies; the trends that have been present for the last two decades will be irrelevant. She was also remarkably selective about her avoidance of discussing Trump administration priorities. After noting that faculty surveys have suggested they spend roughly 40 percent of their time handling regulatory requirements, she twice mentioned that the administration's anti-regulatory stance could be a net positive here. Yet she neglected to note that many of the abandoned regulations represent a retreat from science-driven policy. McNutt also acknowledged the problem of science losing the bipartisan support it has enjoyed, as trust in scientists among US conservatives has been on a downward trend. But she suggested it was scientists' responsibility to fix the problem, even though it's largely the product of one party deciding it can gain partisan advantage by raising doubts about scientific findings in fields like climate change and vaccine safety. The panel discussion that came after largely followed McNutt's lead in avoiding any mention of the current threats to science. The lone exception was Heather Wilson, president of the University of Texas at El Paso and a former Republican member of the House of Representatives and Secretary of the Air Force during the first Trump administration. Wilson took direct aim at Trump's cuts to funding for underrepresented groups, arguing, "Talent is evenly distributed, but opportunity is not." After arguing that "the moral authority of science depends on the pursuit of truth," she highlighted the cancellation of grants that had been used to study diseases that are more prevalent in some ethnic groups, saying "that's not woke science—that's genetics." Wilson was clearly the exception, however, as the rest of the panel largely avoided direct mention of either the damage already done to US science funding or the impending catastrophe on the horizon. We've asked the National Academies' leadership a number of questions about how it perceives its role at a time when US science is clearly under threat. As of this article's publication, however, we have not received a response. At yesterday's event, however, only one person showed a clear sense of what they thought that role should be—Wilson again, whose strongest words were directed at the National Academies themselves, which she said should "do what you've done since Lincoln was president," and stand up for the truth. John Timmer Senior Science Editor John Timmer Senior Science Editor John is Ars Technica's science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots. 16 Comments #science #being #wrecked #its #leadership
    ARSTECHNICA.COM
    US science is being wrecked, and its leadership is fighting the last war
    Missing the big picture US science is being wrecked, and its leadership is fighting the last war Facing an extreme budget, the National Academies hosted an event that ignored it. John Timmer – Jun 4, 2025 6:00 pm | 16 Credit: JHVE Photo Credit: JHVE Photo Story text Size Small Standard Large Width * Standard Wide Links Standard Orange * Subscribers only   Learn more WASHINGTON, DC—The general outline of the Trump administration's proposed 2026 budget was released a few weeks back, and it included massive cuts for most agencies, including every one that funds scientific research. Late last week, those agencies began releasing details of what the cuts would mean for the actual projects and people they support. And the results are as bad as the initial budget had suggested: one-of-a-kind scientific experiment facilities and hardware retired, massive cuts in supported scientists, and entire areas of research halted. And this comes in an environment where previously funded grants are being terminated, funding is being held up for ideological screening, and universities have been subject to arbitrary funding freezes. Collectively, things are heading for damage to US science that will take decades to recover from. It's a radical break from the trajectory science had been on. That's the environment that the US's National Academies of Science found itself in yesterday while hosting the State of the Science event in Washington, DC. It was an obvious opportunity for the nation's leading scientific organization to warn the nation of the consequences of the path that the current administration has been traveling. Instead, the event largely ignored the present to worry about a future that may never exist. The proposed cuts The top-line budget numbers proposed earlier indicated things would be bad: nearly 40 percent taken off the National Institutes of Health's budget, the National Science Foundation down by over half. But now, many of the details of what those cuts mean are becoming apparent. NASA's budget includes sharp cuts for planetary science, which would be cut in half and then stay flat for the rest of the decade, with the Mars Sample Return mission canceled. All other science budgets, including Earth Science and Astrophysics, take similar hits; one astronomer posted a graphic showing how many present and future missions that would mean. Active missions that have returned unprecedented data, like Juno and New Horizons, would go, as would two Mars orbiters. As described by Science magazine's news team, "The plans would also kill off nearly every major science mission the agency has not yet begun to build." A chart prepared by astronomer Laura Lopez showing just how many astrophysics missions will be cancelled. Credit: Laura Lopez The National Science Foundation, which funds much of the US's fundamental research, is also set for brutal cuts. Biology, engineering, and education will all be slashed by over 70 percent; computer science, math and physical science, and social and behavioral science will all see cuts of over 60 percent. International programs will take an 80 percent cut. The funding rate of grant proposals is expected to drop from 26 percent to just 7 percent, meaning the vast majority of grants submitted to the NSF will be a waste of time. The number of people involved in NSF-funded activities will drop from over 300,000 to just 90,000. Almost every program to broaden participation in science will be eliminated. As for specifics, they're equally grim. The fleet of research ships will essentially become someone else's problem: "The FY 2026 Budget Request will enable partial support of some ships." We've been able to better pin down the nature and location of gravitational wave events as detectors in Japan and Italy joined the original two LIGO detectors; the NSF will reverse that progress by shutting one of the LIGOs. The NSF's contributions to detectors at the Large Hadron Collider will be cut by over half, and one of the two very large telescopes it was helping fund will be cancelled (say goodbye to the Thirty Meter Telescope). "Access to the telescopes at Kitt Peak and Cerro Tololo will be phased out," and the NSF will transfer the facilities to other organizations. The Department of Health and Human Services has been less detailed about the specific cuts its divisions will see, largely focusing on the overall numbers, which are down considerably. The NIH, which is facing a cut of over 40 percent, will be reorganized, with its 19 institutes pared down to just eight. This will result in some odd pairings, such as the dental and eye institutes ending up in the same place; genomics and biomedical imaging will likewise end up under the same roof. Other groups like the Centers for Disease Control and Prevention and the Food and Drug Administration will also face major cuts. Issues go well beyond the core science agencies, as well. In the Department of Energy, funding for wind, solar, and renewable grid integration has been zeroed out, essentially ending all programs in this area. Hydrogen and fuel cells face a similar fate. Collectively, these had gotten over $600 billion dollars in 2024's budget. Other areas of science at the DOE, such as high-energy physics, fusion, and biology, receive relatively minor cuts that are largely in line with the ones faced by administration priorities like fossil and nuclear energy. Will this happen? It goes without saying that this would amount to an abandonment of US scientific leadership at a time when most estimates of China's research spending show it approaching US-like levels of support. Not only would it eliminate many key facilities, instruments, and institutions that have helped make the US a scientific powerhouse, but it would also block the development of newer and additional ones. The harms are so widespread that even topics that the administration claims are priorities would see severe cuts. And the damage is likely to last for generations, as support is cut at every stage of the educational pipeline that prepares people for STEM careers. This includes careers in high-tech industries, which may require relocation overseas due to a combination of staffing concerns and heightened immigration controls. That said, we've been here before in the first Trump administration, when budgets were proposed with potentially catastrophic implications for US science. But Congress limited the damage and maintained reasonably consistent budgets for most agencies. Can we expect that to happen again? So far, the signs are not especially promising. The House has largely adopted the Trump administration's budget priorities, despite the fact that the budget they pass turns its back on decades of supposed concerns about deficit spending. While the Senate has yet to take up the budget, it has also been very pliant during the second Trump administration, approving grossly unqualified cabinet picks such as Robert F. Kennedy Jr. All of which would seem to call for the leadership of US science organizations to press the case for the importance of science funding to the US, and highlight the damage that these cuts would cause. But, if yesterday's National Academies event is anything to judge by, the leadership is not especially interested. Altered states As the nation's premier science organization, and one that performs lots of analyses for the government, the National Academies would seem to be in a position to have its concerns taken seriously by members of Congress. And, given that the present and future of science in the US is being set by policy choices, a meeting entitled the State of the Science would seem like the obvious place to address those concerns. If so, it was not obvious to Marcia McNutt, the president of the NAS, who gave the presentation. She made some oblique references to current problems, saying, that “We are embarking on a radical new experiment in what conditions promote science leadership, with the US being the treatment group, and China as the control," and acknowledged that "uncertainties over the science budgets for next year, coupled with cancellations of billions of dollars of already hard-won research grants, is causing an exodus of researchers." But her primary focus was on the trends that have been operative in science funding and policy leading up to but excluding the second Trump administration. McNutt suggested this was needed to look beyond the next four years. However, that ignores the obvious fact that US science will be fundamentally different if the Trump administration can follow through on its plans and policies; the trends that have been present for the last two decades will be irrelevant. She was also remarkably selective about her avoidance of discussing Trump administration priorities. After noting that faculty surveys have suggested they spend roughly 40 percent of their time handling regulatory requirements, she twice mentioned that the administration's anti-regulatory stance could be a net positive here (once calling it "an opportunity to help"). Yet she neglected to note that many of the abandoned regulations represent a retreat from science-driven policy. McNutt also acknowledged the problem of science losing the bipartisan support it has enjoyed, as trust in scientists among US conservatives has been on a downward trend. But she suggested it was scientists' responsibility to fix the problem, even though it's largely the product of one party deciding it can gain partisan advantage by raising doubts about scientific findings in fields like climate change and vaccine safety. The panel discussion that came after largely followed McNutt's lead in avoiding any mention of the current threats to science. The lone exception was Heather Wilson, president of the University of Texas at El Paso and a former Republican member of the House of Representatives and Secretary of the Air Force during the first Trump administration. Wilson took direct aim at Trump's cuts to funding for underrepresented groups, arguing, "Talent is evenly distributed, but opportunity is not." After arguing that "the moral authority of science depends on the pursuit of truth," she highlighted the cancellation of grants that had been used to study diseases that are more prevalent in some ethnic groups, saying "that's not woke science—that's genetics." Wilson was clearly the exception, however, as the rest of the panel largely avoided direct mention of either the damage already done to US science funding or the impending catastrophe on the horizon. We've asked the National Academies' leadership a number of questions about how it perceives its role at a time when US science is clearly under threat. As of this article's publication, however, we have not received a response. At yesterday's event, however, only one person showed a clear sense of what they thought that role should be—Wilson again, whose strongest words were directed at the National Academies themselves, which she said should "do what you've done since Lincoln was president," and stand up for the truth. John Timmer Senior Science Editor John Timmer Senior Science Editor John is Ars Technica's science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots. 16 Comments
    Like
    Love
    Wow
    Sad
    Angry
    209
    0 Σχόλια 0 Μοιράστηκε
  • Proposed Federal Budget Would Devastate U.S. Space Science

    June 3, 20258 min readWhite House Budget Plan Would Devastate U.S. Space ScienceScientists are rallying to reverse ruinous proposed cuts to both NASA and the National Science FoundationBy Nadia Drake edited by Lee BillingsFog shrouds the iconic Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida in this photograph from February 25, 2025. Gregg Newton/AFP via GettyLate last week the Trump Administration released its detailed budget request for fiscal year 2026 —a request that, if enacted, would be the equivalent of carpet-bombing the national scientific enterprise.“This is a profound, generational threat to scientific leadership in the United States,” says Casey Dreier, chief of space policy at the Planetary Society, a science advocacy group. “If implemented, it would fundamentally undermine and potentially devastate the most unique capabilities that the U.S. has built up over a half-century.”The Trump administration’s proposal, which still needs to be approved by Congress, is sure to ignite fierce resistance from scientists and senators alike. Among other agencies, the budget deals staggering blows to NASA and the National Science Foundation, which together fund the majority of U.S. research in astronomy, astrophysics, planetary science, heliophysics and Earth science —all space-related sciences that have typically mustered hearty bipartisan support.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.The NSF supports ground-based astronomy, including such facilities as the Nobel Prize–winning gravitational-wave detectors of the Laser Interferometer Gravitational-Wave Observatory, globe-spanning arrays of radio telescopes, and cutting-edge observatories that stretch from Hawaii to the South Pole. The agency faces a lethal 57 percent reduction to its -billion budget, with deep cuts to every program except those in President Trump’s priority areas, which include artificial intelligence and quantum information science. NASA, which funds space-based observatories, faces a 25 percent reduction, dropping the agency’s -billion budget to billion. The proposal beefs up efforts to send humans to the moon and to Mars, but the agency’s Science Mission Directorate —home to Mars rovers, the Voyager interstellar probes, the James Webb Space Telescope, the Hubble Space Telescope, and much more —is looking at a nearly 50 percent reduction, with dozens of missions canceled, turned off or operating on a starvation diet.“It’s an end-game scenario for science at NASA,” says Joel Parriott, director of external affairs and public policy at the American Astronomical Society. “It’s not just the facilities. You’re punching a generation-size hole, maybe a multigenerational hole, in the scientific and technical workforce. You don’t just Cryovac these people and pull them out when the money comes back. People are going to move on.”Adding to the chaos, on Saturday President Trump announced that billionaire entrepreneur and private astronaut Jared Isaacman was no longer his pick for NASA administrator—just days before the Senate was set to confirm Isaacman’s nomination. Initial reports—which have now been disputed—explained the president’s decision as stemming from his discovery that Isaacman recently donated money to Democratic candidates. Regardless of the true reason, the decision leaves both NASA and the NSF, whose director abruptly resigned in April, with respective placeholder “acting” leaders at the top. That leadership vacuum significantly weakens the agencies’ ability to fight the proposed budget cuts and advocate for themselves. “What’s more inefficient than a rudderless agency without an empowered leadership?” Dreier asks.Actions versus WordsDuring his second administration, President Trump has repeatedly celebrated U.S. leadership in space. When he nominated Isaacman last December, Trump noted “NASA’s mission of discovery and inspiration” and looked to a future of “groundbreaking achievements in space science, technology and exploration.” More recently, while celebrating Hubble’s 35th anniversary in April, Trump called the telescope “a symbol of America’s unmatched exploratory might” and declared that NASA would “continue to lead the way in fueling the pursuit of space discovery and exploration.” The administration’s budgetary actions speak louder than Trump’s words, however. Instead of ushering in a new golden age of space exploration—or even setting up the U.S. to stay atop the podium—the president’s budget “narrows down what the cosmos is to moon and Mars and pretty much nothing else,” Dreier says. “And the cosmos is a lot bigger, and there’s a lot more to learn out there.”Dreier notes that when corrected for inflation, the overall NASA budget would be the lowest it’s been since 1961. But in April of that year, the Soviet Union launched the first human into orbit, igniting a space race that swelled NASA’s budget and led to the Apollo program putting American astronauts on the moon. Today China’s rapidprogress and enormous ambitions in space would make the moment ripe for a 21st-century version of this competition, with the U.S. generously funding its own efforts to maintain pole position. Instead the White House’s budget would do the exact opposite.“The seesaw is sort of unbalanced,” says Tony Beasley, director of the NSF-funded National Radio Astronomy Observatory. “On the one side, we’re saying, ‘Well, China’s kicking our ass, and we need to do something about that.’ But then we’re not going to give any money to anything that might actually do that.”How NASA will achieve a crewed return to the moon and send astronauts to Mars—goals that the agency now considers part of “winning the second space race”—while also maintaining its leadership in science is unclear.“This is Russ Vought’s budget,” Dreier says, referring to the director of the White House’s Office of Management and Budget, an unelected bureaucrat who has been notorious for his efforts to reshape the U.S. government by weaponizing federal funding. “This isn’t even Trump’s budget. Trump’s budget would be good for space. This one undermines the president’s own claims and ambitions when it comes to space.”“Low Expectations” at the High FrontierRumors began swirling about the demise of NASA science in April, when a leaked OMB document described some of the proposed cuts and cancellations. Those included both the beleaguered, bloated Mars Sample Returnprogram and the on-time, on-budget Nancy Grace Roman Space Telescope, the next astrophysics flagship mission.The top-line numbers in the more fleshed-out proposal are consistent with that document, and MSR would still be canceled. But Roman would be granted a stay of execution: rather than being zeroed out, it would be put on life support.“It’s a reprieve from outright termination, but it’s still a cut for functionally no reason,” Dreier says. “In some ways,is slightly better than I was expecting. But I had very low expectations.”In the proposal, many of the deepest cuts would be made to NASA science, which would sink from billion to billion. Earth science missions focused on carbon monitoring and climate change, as well as programs aimed at education and workforce diversity, would be effectively erased by the cuts. But a slew of high-profile planetary science projects would suffer, too, with cancellations proposed for two future Venus missions, the Juno mission that is currently surveilling Jupiter, the New Horizons mission that flew by Pluto and two Mars orbiters.NASA’s international partnerships in planetary science fare poorly, too, as the budget rescinds the agency’s involvement with multiple European-led projects, including a Venus mission and Mars rover.The proposal is even worse for NASA astrophysics—the study of our cosmic home—which “really takes it to the chin,” Dreier says, with a roughly -billion drop to just million. In the president’s proposal, only three big astrophysics missions would survive: the soon-to-launch Roman and the already-operational Hubble and JWST. The rest of NASA’s active astrophysics missions, which include the Chandra X-ray Observatory, the Fermi Gamma-Ray Space Telescope and the Transiting Exoplanet Survey Satellite, would be severely pared back or zeroed out. Additionally, the budget would nix NASA’s contributions to large European missions, such as a future space-based gravitational-wave observatory.“This is the most powerful fleet of missions in the history of the study of astrophysics from space,” says John O’Meara, chief scientist at the W. M. Keck Observatory in Hawaii and co-chair of a recent senior review panel that evaluated NASA’s astrophysics missions. The report found that each reviewed mission “continues to be capable of producing important, impactful science.” This fleet, O’Meara adds, is more than the sum of its parts, with much of its power emerging from synergies among multiple telescopes that study the cosmos in many different types, or wavelengths, of light.By hollowing out NASA’s science to ruthlessly focus on crewed missions, the White House budget might be charitably viewed as seeking to rekindle a heroic age of spaceflight—with China’s burgeoning space program as the new archrival. But even for these supposedly high-priority initiatives, the proposed funding levels appear too anemic and meager to give the U.S. any competitive edge. For example, the budget directs about billion to new technology investments to support crewed Mars missions while conservative estimates have projected that such voyages would cost hundreds of billions of dollars more.“It cedes U.S. leadership in space science at a time when other nations, particularly China, are increasing their ambitions,” Dreier says. “It completely flies in the face of the president’s own stated goals for American leadership in space.”Undermining the FoundationThe NSF’s situation, which one senior space scientist predicted would be “diabolical” when the NASA numbers leaked back in April, is also unsurprisingly dire. Unlike NASA, which is focused on space science and exploration, the NSF’s programs span the sweep of scientific disciplines, meaning that even small, isolated cuts—let alone the enormous ones that the budget has proposed—can have shockingly large effects on certain research domains.“Across the different parts of the NSF, the programs that are upvoted are the president’s strategic initiatives, but then everything else gets hit,” Beasley says.Several large-scale NSF-funded projects would escape more or less intact. Among these are the panoramic Vera C. Rubin Observatory, scheduled to unveil its first science images later this month, and the Atacama Large Millimeter/submillimeter Arrayradio telescope. The budget also moves the Giant Magellan Telescope, which would boast starlight-gathering mirrors totaling more than 25 meters across, into a final design phase. All three of those facilities take advantage of Chile’s pristine dark skies. Other large NSF-funded projects that would survive include the proposed Next Generation Very Large Array of radio telescopes in New Mexico and several facilities at the South Pole, such as the IceCube Neutrino Observatory.If this budget is enacted, however, NSF officials anticipate only funding a measly 7 percent of research proposals overall rather than 25 percent; the number of graduate research fellowships awarded would be cleaved in half, and postdoctoral fellowships in the physical sciences would drop to zero. NRAO’s Green Bank Observatory — home to the largest steerable single-dish radio telescope on the planet — would likely shut down. So would other, smaller observatories in Arizona and Chile. The Thirty Meter Telescope, a humongous, perennially embattled project with no clear site selection, would be canceled. And the budget proposes closing one of the two gravitational-wave detectors used by the LIGO collaboration—whose observations of colliding black holes earned the 2017 Nobel Prize in Physics—even though both detectors need to be online for LIGO’s experiment to work. Even factoring in other operational detectors, such as Virgo in Europe and the Kamioka Gravitational Wave Detectorin Japan, shutting down half of LIGO would leave a gaping blind spot in humanity’s gravitational-wave view of the heavens.“The consequences of this budget are that key scientific priorities, on the ground and in space, will take at least a decade longer—or not be realized at all,” O’Meara says. “The universe is telling its story at all wavelengths. It doesn’t care what you build, but if you want to hear that story, you must build many things.”Dreier, Parriott and others are anticipating fierce battles on Capitol Hill. And already both Democratic and Republican legislators have issued statement signaling that they won’t support the budget request as is. “This sick joke of a budget is a nonstarter,” said Representative Zoe Lofgren of California, ranking member of the House Committee on Science, Space, and Technology, in a recent statement. And in an earlier statement, Senator Susan Collins of Maine, chair of the powerful Senate Committee on Appropriations, cautioned that “the President’s Budget Request is simply one step in the annual budget process.”The Trump administration has “thrown a huge punch here, and there will be a certain back-reaction, and we’ll end up in the middle somewhere,” Beasley says. “The mistake you can make right now is to assume that this represents finalized decisions and the future—because it doesn’t.”
    #proposed #federal #budget #would #devastate
    Proposed Federal Budget Would Devastate U.S. Space Science
    June 3, 20258 min readWhite House Budget Plan Would Devastate U.S. Space ScienceScientists are rallying to reverse ruinous proposed cuts to both NASA and the National Science FoundationBy Nadia Drake edited by Lee BillingsFog shrouds the iconic Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida in this photograph from February 25, 2025. Gregg Newton/AFP via GettyLate last week the Trump Administration released its detailed budget request for fiscal year 2026 —a request that, if enacted, would be the equivalent of carpet-bombing the national scientific enterprise.“This is a profound, generational threat to scientific leadership in the United States,” says Casey Dreier, chief of space policy at the Planetary Society, a science advocacy group. “If implemented, it would fundamentally undermine and potentially devastate the most unique capabilities that the U.S. has built up over a half-century.”The Trump administration’s proposal, which still needs to be approved by Congress, is sure to ignite fierce resistance from scientists and senators alike. Among other agencies, the budget deals staggering blows to NASA and the National Science Foundation, which together fund the majority of U.S. research in astronomy, astrophysics, planetary science, heliophysics and Earth science —all space-related sciences that have typically mustered hearty bipartisan support.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.The NSF supports ground-based astronomy, including such facilities as the Nobel Prize–winning gravitational-wave detectors of the Laser Interferometer Gravitational-Wave Observatory, globe-spanning arrays of radio telescopes, and cutting-edge observatories that stretch from Hawaii to the South Pole. The agency faces a lethal 57 percent reduction to its -billion budget, with deep cuts to every program except those in President Trump’s priority areas, which include artificial intelligence and quantum information science. NASA, which funds space-based observatories, faces a 25 percent reduction, dropping the agency’s -billion budget to billion. The proposal beefs up efforts to send humans to the moon and to Mars, but the agency’s Science Mission Directorate —home to Mars rovers, the Voyager interstellar probes, the James Webb Space Telescope, the Hubble Space Telescope, and much more —is looking at a nearly 50 percent reduction, with dozens of missions canceled, turned off or operating on a starvation diet.“It’s an end-game scenario for science at NASA,” says Joel Parriott, director of external affairs and public policy at the American Astronomical Society. “It’s not just the facilities. You’re punching a generation-size hole, maybe a multigenerational hole, in the scientific and technical workforce. You don’t just Cryovac these people and pull them out when the money comes back. People are going to move on.”Adding to the chaos, on Saturday President Trump announced that billionaire entrepreneur and private astronaut Jared Isaacman was no longer his pick for NASA administrator—just days before the Senate was set to confirm Isaacman’s nomination. Initial reports—which have now been disputed—explained the president’s decision as stemming from his discovery that Isaacman recently donated money to Democratic candidates. Regardless of the true reason, the decision leaves both NASA and the NSF, whose director abruptly resigned in April, with respective placeholder “acting” leaders at the top. That leadership vacuum significantly weakens the agencies’ ability to fight the proposed budget cuts and advocate for themselves. “What’s more inefficient than a rudderless agency without an empowered leadership?” Dreier asks.Actions versus WordsDuring his second administration, President Trump has repeatedly celebrated U.S. leadership in space. When he nominated Isaacman last December, Trump noted “NASA’s mission of discovery and inspiration” and looked to a future of “groundbreaking achievements in space science, technology and exploration.” More recently, while celebrating Hubble’s 35th anniversary in April, Trump called the telescope “a symbol of America’s unmatched exploratory might” and declared that NASA would “continue to lead the way in fueling the pursuit of space discovery and exploration.” The administration’s budgetary actions speak louder than Trump’s words, however. Instead of ushering in a new golden age of space exploration—or even setting up the U.S. to stay atop the podium—the president’s budget “narrows down what the cosmos is to moon and Mars and pretty much nothing else,” Dreier says. “And the cosmos is a lot bigger, and there’s a lot more to learn out there.”Dreier notes that when corrected for inflation, the overall NASA budget would be the lowest it’s been since 1961. But in April of that year, the Soviet Union launched the first human into orbit, igniting a space race that swelled NASA’s budget and led to the Apollo program putting American astronauts on the moon. Today China’s rapidprogress and enormous ambitions in space would make the moment ripe for a 21st-century version of this competition, with the U.S. generously funding its own efforts to maintain pole position. Instead the White House’s budget would do the exact opposite.“The seesaw is sort of unbalanced,” says Tony Beasley, director of the NSF-funded National Radio Astronomy Observatory. “On the one side, we’re saying, ‘Well, China’s kicking our ass, and we need to do something about that.’ But then we’re not going to give any money to anything that might actually do that.”How NASA will achieve a crewed return to the moon and send astronauts to Mars—goals that the agency now considers part of “winning the second space race”—while also maintaining its leadership in science is unclear.“This is Russ Vought’s budget,” Dreier says, referring to the director of the White House’s Office of Management and Budget, an unelected bureaucrat who has been notorious for his efforts to reshape the U.S. government by weaponizing federal funding. “This isn’t even Trump’s budget. Trump’s budget would be good for space. This one undermines the president’s own claims and ambitions when it comes to space.”“Low Expectations” at the High FrontierRumors began swirling about the demise of NASA science in April, when a leaked OMB document described some of the proposed cuts and cancellations. Those included both the beleaguered, bloated Mars Sample Returnprogram and the on-time, on-budget Nancy Grace Roman Space Telescope, the next astrophysics flagship mission.The top-line numbers in the more fleshed-out proposal are consistent with that document, and MSR would still be canceled. But Roman would be granted a stay of execution: rather than being zeroed out, it would be put on life support.“It’s a reprieve from outright termination, but it’s still a cut for functionally no reason,” Dreier says. “In some ways,is slightly better than I was expecting. But I had very low expectations.”In the proposal, many of the deepest cuts would be made to NASA science, which would sink from billion to billion. Earth science missions focused on carbon monitoring and climate change, as well as programs aimed at education and workforce diversity, would be effectively erased by the cuts. But a slew of high-profile planetary science projects would suffer, too, with cancellations proposed for two future Venus missions, the Juno mission that is currently surveilling Jupiter, the New Horizons mission that flew by Pluto and two Mars orbiters.NASA’s international partnerships in planetary science fare poorly, too, as the budget rescinds the agency’s involvement with multiple European-led projects, including a Venus mission and Mars rover.The proposal is even worse for NASA astrophysics—the study of our cosmic home—which “really takes it to the chin,” Dreier says, with a roughly -billion drop to just million. In the president’s proposal, only three big astrophysics missions would survive: the soon-to-launch Roman and the already-operational Hubble and JWST. The rest of NASA’s active astrophysics missions, which include the Chandra X-ray Observatory, the Fermi Gamma-Ray Space Telescope and the Transiting Exoplanet Survey Satellite, would be severely pared back or zeroed out. Additionally, the budget would nix NASA’s contributions to large European missions, such as a future space-based gravitational-wave observatory.“This is the most powerful fleet of missions in the history of the study of astrophysics from space,” says John O’Meara, chief scientist at the W. M. Keck Observatory in Hawaii and co-chair of a recent senior review panel that evaluated NASA’s astrophysics missions. The report found that each reviewed mission “continues to be capable of producing important, impactful science.” This fleet, O’Meara adds, is more than the sum of its parts, with much of its power emerging from synergies among multiple telescopes that study the cosmos in many different types, or wavelengths, of light.By hollowing out NASA’s science to ruthlessly focus on crewed missions, the White House budget might be charitably viewed as seeking to rekindle a heroic age of spaceflight—with China’s burgeoning space program as the new archrival. But even for these supposedly high-priority initiatives, the proposed funding levels appear too anemic and meager to give the U.S. any competitive edge. For example, the budget directs about billion to new technology investments to support crewed Mars missions while conservative estimates have projected that such voyages would cost hundreds of billions of dollars more.“It cedes U.S. leadership in space science at a time when other nations, particularly China, are increasing their ambitions,” Dreier says. “It completely flies in the face of the president’s own stated goals for American leadership in space.”Undermining the FoundationThe NSF’s situation, which one senior space scientist predicted would be “diabolical” when the NASA numbers leaked back in April, is also unsurprisingly dire. Unlike NASA, which is focused on space science and exploration, the NSF’s programs span the sweep of scientific disciplines, meaning that even small, isolated cuts—let alone the enormous ones that the budget has proposed—can have shockingly large effects on certain research domains.“Across the different parts of the NSF, the programs that are upvoted are the president’s strategic initiatives, but then everything else gets hit,” Beasley says.Several large-scale NSF-funded projects would escape more or less intact. Among these are the panoramic Vera C. Rubin Observatory, scheduled to unveil its first science images later this month, and the Atacama Large Millimeter/submillimeter Arrayradio telescope. The budget also moves the Giant Magellan Telescope, which would boast starlight-gathering mirrors totaling more than 25 meters across, into a final design phase. All three of those facilities take advantage of Chile’s pristine dark skies. Other large NSF-funded projects that would survive include the proposed Next Generation Very Large Array of radio telescopes in New Mexico and several facilities at the South Pole, such as the IceCube Neutrino Observatory.If this budget is enacted, however, NSF officials anticipate only funding a measly 7 percent of research proposals overall rather than 25 percent; the number of graduate research fellowships awarded would be cleaved in half, and postdoctoral fellowships in the physical sciences would drop to zero. NRAO’s Green Bank Observatory — home to the largest steerable single-dish radio telescope on the planet — would likely shut down. So would other, smaller observatories in Arizona and Chile. The Thirty Meter Telescope, a humongous, perennially embattled project with no clear site selection, would be canceled. And the budget proposes closing one of the two gravitational-wave detectors used by the LIGO collaboration—whose observations of colliding black holes earned the 2017 Nobel Prize in Physics—even though both detectors need to be online for LIGO’s experiment to work. Even factoring in other operational detectors, such as Virgo in Europe and the Kamioka Gravitational Wave Detectorin Japan, shutting down half of LIGO would leave a gaping blind spot in humanity’s gravitational-wave view of the heavens.“The consequences of this budget are that key scientific priorities, on the ground and in space, will take at least a decade longer—or not be realized at all,” O’Meara says. “The universe is telling its story at all wavelengths. It doesn’t care what you build, but if you want to hear that story, you must build many things.”Dreier, Parriott and others are anticipating fierce battles on Capitol Hill. And already both Democratic and Republican legislators have issued statement signaling that they won’t support the budget request as is. “This sick joke of a budget is a nonstarter,” said Representative Zoe Lofgren of California, ranking member of the House Committee on Science, Space, and Technology, in a recent statement. And in an earlier statement, Senator Susan Collins of Maine, chair of the powerful Senate Committee on Appropriations, cautioned that “the President’s Budget Request is simply one step in the annual budget process.”The Trump administration has “thrown a huge punch here, and there will be a certain back-reaction, and we’ll end up in the middle somewhere,” Beasley says. “The mistake you can make right now is to assume that this represents finalized decisions and the future—because it doesn’t.” #proposed #federal #budget #would #devastate
    WWW.SCIENTIFICAMERICAN.COM
    Proposed Federal Budget Would Devastate U.S. Space Science
    June 3, 20258 min readWhite House Budget Plan Would Devastate U.S. Space ScienceScientists are rallying to reverse ruinous proposed cuts to both NASA and the National Science FoundationBy Nadia Drake edited by Lee BillingsFog shrouds the iconic Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida in this photograph from February 25, 2025. Gregg Newton/AFP via GettyLate last week the Trump Administration released its detailed budget request for fiscal year 2026 —a request that, if enacted, would be the equivalent of carpet-bombing the national scientific enterprise.“This is a profound, generational threat to scientific leadership in the United States,” says Casey Dreier, chief of space policy at the Planetary Society, a science advocacy group. “If implemented, it would fundamentally undermine and potentially devastate the most unique capabilities that the U.S. has built up over a half-century.”The Trump administration’s proposal, which still needs to be approved by Congress, is sure to ignite fierce resistance from scientists and senators alike. Among other agencies, the budget deals staggering blows to NASA and the National Science Foundation (NSF), which together fund the majority of U.S. research in astronomy, astrophysics, planetary science, heliophysics and Earth science —all space-related sciences that have typically mustered hearty bipartisan support.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.The NSF supports ground-based astronomy, including such facilities as the Nobel Prize–winning gravitational-wave detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO), globe-spanning arrays of radio telescopes, and cutting-edge observatories that stretch from Hawaii to the South Pole. The agency faces a lethal 57 percent reduction to its $9-billion budget, with deep cuts to every program except those in President Trump’s priority areas, which include artificial intelligence and quantum information science. NASA, which funds space-based observatories, faces a 25 percent reduction, dropping the agency’s $24.9-billion budget to $18.8 billion. The proposal beefs up efforts to send humans to the moon and to Mars, but the agency’s Science Mission Directorate —home to Mars rovers, the Voyager interstellar probes, the James Webb Space Telescope (JWST), the Hubble Space Telescope, and much more —is looking at a nearly 50 percent reduction, with dozens of missions canceled, turned off or operating on a starvation diet.“It’s an end-game scenario for science at NASA,” says Joel Parriott, director of external affairs and public policy at the American Astronomical Society. “It’s not just the facilities. You’re punching a generation-size hole, maybe a multigenerational hole, in the scientific and technical workforce. You don’t just Cryovac these people and pull them out when the money comes back. People are going to move on.”Adding to the chaos, on Saturday President Trump announced that billionaire entrepreneur and private astronaut Jared Isaacman was no longer his pick for NASA administrator—just days before the Senate was set to confirm Isaacman’s nomination. Initial reports—which have now been disputed—explained the president’s decision as stemming from his discovery that Isaacman recently donated money to Democratic candidates. Regardless of the true reason, the decision leaves both NASA and the NSF, whose director abruptly resigned in April, with respective placeholder “acting” leaders at the top. That leadership vacuum significantly weakens the agencies’ ability to fight the proposed budget cuts and advocate for themselves. “What’s more inefficient than a rudderless agency without an empowered leadership?” Dreier asks.Actions versus WordsDuring his second administration, President Trump has repeatedly celebrated U.S. leadership in space. When he nominated Isaacman last December, Trump noted “NASA’s mission of discovery and inspiration” and looked to a future of “groundbreaking achievements in space science, technology and exploration.” More recently, while celebrating Hubble’s 35th anniversary in April, Trump called the telescope “a symbol of America’s unmatched exploratory might” and declared that NASA would “continue to lead the way in fueling the pursuit of space discovery and exploration.” The administration’s budgetary actions speak louder than Trump’s words, however. Instead of ushering in a new golden age of space exploration—or even setting up the U.S. to stay atop the podium—the president’s budget “narrows down what the cosmos is to moon and Mars and pretty much nothing else,” Dreier says. “And the cosmos is a lot bigger, and there’s a lot more to learn out there.”Dreier notes that when corrected for inflation, the overall NASA budget would be the lowest it’s been since 1961. But in April of that year, the Soviet Union launched the first human into orbit, igniting a space race that swelled NASA’s budget and led to the Apollo program putting American astronauts on the moon. Today China’s rapidprogress and enormous ambitions in space would make the moment ripe for a 21st-century version of this competition, with the U.S. generously funding its own efforts to maintain pole position. Instead the White House’s budget would do the exact opposite.“The seesaw is sort of unbalanced,” says Tony Beasley, director of the NSF-funded National Radio Astronomy Observatory (NRAO). “On the one side, we’re saying, ‘Well, China’s kicking our ass, and we need to do something about that.’ But then we’re not going to give any money to anything that might actually do that.”How NASA will achieve a crewed return to the moon and send astronauts to Mars—goals that the agency now considers part of “winning the second space race”—while also maintaining its leadership in science is unclear.“This is Russ Vought’s budget,” Dreier says, referring to the director of the White House’s Office of Management and Budget (OMB), an unelected bureaucrat who has been notorious for his efforts to reshape the U.S. government by weaponizing federal funding. “This isn’t even Trump’s budget. Trump’s budget would be good for space. This one undermines the president’s own claims and ambitions when it comes to space.”“Low Expectations” at the High FrontierRumors began swirling about the demise of NASA science in April, when a leaked OMB document described some of the proposed cuts and cancellations. Those included both the beleaguered, bloated Mars Sample Return (MSR) program and the on-time, on-budget Nancy Grace Roman Space Telescope, the next astrophysics flagship mission.The top-line numbers in the more fleshed-out proposal are consistent with that document, and MSR would still be canceled. But Roman would be granted a stay of execution: rather than being zeroed out, it would be put on life support.“It’s a reprieve from outright termination, but it’s still a cut for functionally no reason,” Dreier says. “In some ways, [the budget] is slightly better than I was expecting. But I had very low expectations.”In the proposal, many of the deepest cuts would be made to NASA science, which would sink from $7.3 billion to $3.9 billion. Earth science missions focused on carbon monitoring and climate change, as well as programs aimed at education and workforce diversity, would be effectively erased by the cuts. But a slew of high-profile planetary science projects would suffer, too, with cancellations proposed for two future Venus missions, the Juno mission that is currently surveilling Jupiter, the New Horizons mission that flew by Pluto and two Mars orbiters. (The Dragonfly mission to Saturn’s moon Titan would survive, as would the flagship Europa Clipper spacecraft, which launched last October.) NASA’s international partnerships in planetary science fare poorly, too, as the budget rescinds the agency’s involvement with multiple European-led projects, including a Venus mission and Mars rover.The proposal is even worse for NASA astrophysics—the study of our cosmic home—which “really takes it to the chin,” Dreier says, with a roughly $1-billion drop to just $523 million. In the president’s proposal, only three big astrophysics missions would survive: the soon-to-launch Roman and the already-operational Hubble and JWST. The rest of NASA’s active astrophysics missions, which include the Chandra X-ray Observatory, the Fermi Gamma-Ray Space Telescope and the Transiting Exoplanet Survey Satellite (TESS), would be severely pared back or zeroed out. Additionally, the budget would nix NASA’s contributions to large European missions, such as a future space-based gravitational-wave observatory.“This is the most powerful fleet of missions in the history of the study of astrophysics from space,” says John O’Meara, chief scientist at the W. M. Keck Observatory in Hawaii and co-chair of a recent senior review panel that evaluated NASA’s astrophysics missions. The report found that each reviewed mission “continues to be capable of producing important, impactful science.” This fleet, O’Meara adds, is more than the sum of its parts, with much of its power emerging from synergies among multiple telescopes that study the cosmos in many different types, or wavelengths, of light.By hollowing out NASA’s science to ruthlessly focus on crewed missions, the White House budget might be charitably viewed as seeking to rekindle a heroic age of spaceflight—with China’s burgeoning space program as the new archrival. But even for these supposedly high-priority initiatives, the proposed funding levels appear too anemic and meager to give the U.S. any competitive edge. For example, the budget directs about $1 billion to new technology investments to support crewed Mars missions while conservative estimates have projected that such voyages would cost hundreds of billions of dollars more.“It cedes U.S. leadership in space science at a time when other nations, particularly China, are increasing their ambitions,” Dreier says. “It completely flies in the face of the president’s own stated goals for American leadership in space.”Undermining the FoundationThe NSF’s situation, which one senior space scientist predicted would be “diabolical” when the NASA numbers leaked back in April, is also unsurprisingly dire. Unlike NASA, which is focused on space science and exploration, the NSF’s programs span the sweep of scientific disciplines, meaning that even small, isolated cuts—let alone the enormous ones that the budget has proposed—can have shockingly large effects on certain research domains.“Across the different parts of the NSF, the programs that are upvoted are the president’s strategic initiatives, but then everything else gets hit,” Beasley says.Several large-scale NSF-funded projects would escape more or less intact. Among these are the panoramic Vera C. Rubin Observatory, scheduled to unveil its first science images later this month, and the Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope. The budget also moves the Giant Magellan Telescope, which would boast starlight-gathering mirrors totaling more than 25 meters across, into a final design phase. All three of those facilities take advantage of Chile’s pristine dark skies. Other large NSF-funded projects that would survive include the proposed Next Generation Very Large Array of radio telescopes in New Mexico and several facilities at the South Pole, such as the IceCube Neutrino Observatory.If this budget is enacted, however, NSF officials anticipate only funding a measly 7 percent of research proposals overall rather than 25 percent; the number of graduate research fellowships awarded would be cleaved in half, and postdoctoral fellowships in the physical sciences would drop to zero. NRAO’s Green Bank Observatory — home to the largest steerable single-dish radio telescope on the planet — would likely shut down. So would other, smaller observatories in Arizona and Chile. The Thirty Meter Telescope, a humongous, perennially embattled project with no clear site selection, would be canceled. And the budget proposes closing one of the two gravitational-wave detectors used by the LIGO collaboration—whose observations of colliding black holes earned the 2017 Nobel Prize in Physics—even though both detectors need to be online for LIGO’s experiment to work. Even factoring in other operational detectors, such as Virgo in Europe and the Kamioka Gravitational Wave Detector (KAGRA) in Japan, shutting down half of LIGO would leave a gaping blind spot in humanity’s gravitational-wave view of the heavens.“The consequences of this budget are that key scientific priorities, on the ground and in space, will take at least a decade longer—or not be realized at all,” O’Meara says. “The universe is telling its story at all wavelengths. It doesn’t care what you build, but if you want to hear that story, you must build many things.”Dreier, Parriott and others are anticipating fierce battles on Capitol Hill. And already both Democratic and Republican legislators have issued statement signaling that they won’t support the budget request as is. “This sick joke of a budget is a nonstarter,” said Representative Zoe Lofgren of California, ranking member of the House Committee on Science, Space, and Technology, in a recent statement. And in an earlier statement, Senator Susan Collins of Maine, chair of the powerful Senate Committee on Appropriations, cautioned that “the President’s Budget Request is simply one step in the annual budget process.”The Trump administration has “thrown a huge punch here, and there will be a certain back-reaction, and we’ll end up in the middle somewhere,” Beasley says. “The mistake you can make right now is to assume that this represents finalized decisions and the future—because it doesn’t.”
    Like
    Love
    Wow
    Sad
    Angry
    119
    0 Σχόλια 0 Μοιράστηκε
  • The Best Paint Colors for Every Zodiac Sign, According to an Astrologer

    If, like me, you’re slightly addicted to your astrology app and love checking your daily horoscope, you may have wondered just how much stock you should put into it. Allow me to tell you that it may be more revealing than you think. Sure, your zodiac sign can give you guidance on when to make a big move or when to save a certain conversation for a better, star-blessed date. But, did you know it can also help you decorate? That’s right. Your astrological sign can give you insight into what no-regret color you should choose for your kitchen, living room, bedroom or if you *actually* should go all in on maximalism. To answer all your decorating questions, we sat down with astrologer Sam Manzella to chat about the impact astrology can have on how you decorate your home and to find out what she thinks are the best paint colors for each astrology sign.Want even more astrology content? Check out these stories.Meet Our AstrologerSam Manzella is a Brooklyn-based astrologer and multi-award winning journalist. She practices a Hellenistic tradition, working from ancient frameworks, including the Whole Sign house system, sect, and traditional rulerships. Additionally, her practice is based around the planetary rulers that were visible to the naked eye in the age before telescopes, also called the seven core planets, meaning that the outer planets of Uranus, Neptune, and Pluto won't be making an appearance in this article. The Signs, Their Rulers, and Their Color FamiliesLet’s start with the basics: There are 12 signs in Western astrology. You’ve probably heard of them—think Aries, Cancer, Libra, etc. While most modern mainstream astrology focuses heavily on the signs, it’s actually their relationship to the planets that has the biggest impact on your day-to-day. “In astrology, planets, not zodiac signs, are the main players,” says Sam. This more nuanced and wholistic approach to astrology uses planets to determine what will happen, while signs only dictate the how. “Pop astrology often relies too heavily on zodiac sign archetypes, in my opinion,” says Sam. “Place a planet in a specific sign? Now we’re cooking, baby.”When it comes to matching up planets and colors, millennia of traditional associations guide the way. Sam’s color coordination is based on two works: The Complete Picatrix, a Medieval text on astrological magic, and Hellenistic Astrology: The Study of Fate and Fortune, a traditional astrology manual written by storied astrologer Chris Brennan. Below, we’ll break down the seven core planets, the signs that correspond with them, and their traditional color associations.MarsSigns: Aries, ScorpioColor Associations: Strong, aged shades of red and rust. VenusSigns: Taurus, LibraColor Associations: Sumptuous natural shades, such as greens, pinks, whites, and pastels.MercurySigns: Gemini, VirgoColor Associations: Orange is a good color for Mercury, but mixes of patterns and colors also works well for these Mercurial signs. SunSigns: LeoColor Associations: Classic sunny shades, such as golds and yellows. MoonSigns: CancerColor Associations: Silvery shades and crisp whites. JupiterSigns: Sagittarius, Pisces. Color Associations: A mix of royally influenced shades, such as purples, blues, and yellows. SaturnSigns: Capricorn, AquariusColor Associations: Dark and moody shades, such as browns, blacks, and grays. How Can You Use Astrology to Help You Decorate? The best place to start is at the very beginning. Sam’s advice? Call your mom. “I highly recommend calculating your full birth chart—to do so, you’ll need the exact date, time, and location of your birth.” This will give you the proper framework from which you can build your astrologically inspired home. Once you have your complete birth chart, look at your various planetary alignments. While your sun sign can tell you a lot about who you are, it’s actually your Venus placement that Sam recommends consulting. “This planet governs art, beauty, and romance—if it’s sweet, enjoyable, or aesthetically pleasing, then it probably falls under Venus’s purview. Whatever zodiac sign this planet occupies in your birth chart can tell you a lot about the vibes, color palettes, and visual aesthetics you gravitate toward.” Not sure you have all the information you need for a full birth chart? No worries, we’ve pulled together the best paint color for you based on your zodiac sign and planetary ruler below. If you want to dive a little deeper, Sam recommends checking out the planetary placement in your Fourth House. “The Fourth House represents our home and family life. Whatever planet rules this house, and its placement by zodiac sign, reflects the energy that feels like home to you.”The Best Paint Colors for Every Zodiac Sign:
    #best #paint #colors #every #zodiac
    The Best Paint Colors for Every Zodiac Sign, According to an Astrologer
    If, like me, you’re slightly addicted to your astrology app and love checking your daily horoscope, you may have wondered just how much stock you should put into it. Allow me to tell you that it may be more revealing than you think. Sure, your zodiac sign can give you guidance on when to make a big move or when to save a certain conversation for a better, star-blessed date. But, did you know it can also help you decorate? That’s right. Your astrological sign can give you insight into what no-regret color you should choose for your kitchen, living room, bedroom or if you *actually* should go all in on maximalism. To answer all your decorating questions, we sat down with astrologer Sam Manzella to chat about the impact astrology can have on how you decorate your home and to find out what she thinks are the best paint colors for each astrology sign.Want even more astrology content? Check out these stories.Meet Our AstrologerSam Manzella is a Brooklyn-based astrologer and multi-award winning journalist. She practices a Hellenistic tradition, working from ancient frameworks, including the Whole Sign house system, sect, and traditional rulerships. Additionally, her practice is based around the planetary rulers that were visible to the naked eye in the age before telescopes, also called the seven core planets, meaning that the outer planets of Uranus, Neptune, and Pluto won't be making an appearance in this article. The Signs, Their Rulers, and Their Color FamiliesLet’s start with the basics: There are 12 signs in Western astrology. You’ve probably heard of them—think Aries, Cancer, Libra, etc. While most modern mainstream astrology focuses heavily on the signs, it’s actually their relationship to the planets that has the biggest impact on your day-to-day. “In astrology, planets, not zodiac signs, are the main players,” says Sam. This more nuanced and wholistic approach to astrology uses planets to determine what will happen, while signs only dictate the how. “Pop astrology often relies too heavily on zodiac sign archetypes, in my opinion,” says Sam. “Place a planet in a specific sign? Now we’re cooking, baby.”When it comes to matching up planets and colors, millennia of traditional associations guide the way. Sam’s color coordination is based on two works: The Complete Picatrix, a Medieval text on astrological magic, and Hellenistic Astrology: The Study of Fate and Fortune, a traditional astrology manual written by storied astrologer Chris Brennan. Below, we’ll break down the seven core planets, the signs that correspond with them, and their traditional color associations.MarsSigns: Aries, ScorpioColor Associations: Strong, aged shades of red and rust. VenusSigns: Taurus, LibraColor Associations: Sumptuous natural shades, such as greens, pinks, whites, and pastels.MercurySigns: Gemini, VirgoColor Associations: Orange is a good color for Mercury, but mixes of patterns and colors also works well for these Mercurial signs. SunSigns: LeoColor Associations: Classic sunny shades, such as golds and yellows. MoonSigns: CancerColor Associations: Silvery shades and crisp whites. JupiterSigns: Sagittarius, Pisces. Color Associations: A mix of royally influenced shades, such as purples, blues, and yellows. SaturnSigns: Capricorn, AquariusColor Associations: Dark and moody shades, such as browns, blacks, and grays. How Can You Use Astrology to Help You Decorate? The best place to start is at the very beginning. Sam’s advice? Call your mom. “I highly recommend calculating your full birth chart—to do so, you’ll need the exact date, time, and location of your birth.” This will give you the proper framework from which you can build your astrologically inspired home. Once you have your complete birth chart, look at your various planetary alignments. While your sun sign can tell you a lot about who you are, it’s actually your Venus placement that Sam recommends consulting. “This planet governs art, beauty, and romance—if it’s sweet, enjoyable, or aesthetically pleasing, then it probably falls under Venus’s purview. Whatever zodiac sign this planet occupies in your birth chart can tell you a lot about the vibes, color palettes, and visual aesthetics you gravitate toward.” Not sure you have all the information you need for a full birth chart? No worries, we’ve pulled together the best paint color for you based on your zodiac sign and planetary ruler below. If you want to dive a little deeper, Sam recommends checking out the planetary placement in your Fourth House. “The Fourth House represents our home and family life. Whatever planet rules this house, and its placement by zodiac sign, reflects the energy that feels like home to you.”The Best Paint Colors for Every Zodiac Sign: #best #paint #colors #every #zodiac
    WWW.COUNTRYLIVING.COM
    The Best Paint Colors for Every Zodiac Sign, According to an Astrologer
    If, like me, you’re slightly addicted to your astrology app and love checking your daily horoscope, you may have wondered just how much stock you should put into it. Allow me to tell you that it may be more revealing than you think. Sure, your zodiac sign can give you guidance on when to make a big move or when to save a certain conversation for a better, star-blessed date. But, did you know it can also help you decorate? That’s right. Your astrological sign can give you insight into what no-regret color you should choose for your kitchen, living room, bedroom or if you *actually* should go all in on maximalism (looking at you, Virgo). To answer all your decorating questions, we sat down with astrologer Sam Manzella to chat about the impact astrology can have on how you decorate your home and to find out what she thinks are the best paint colors for each astrology sign.Want even more astrology content? Check out these stories.Meet Our AstrologerSam Manzella is a Brooklyn-based astrologer and multi-award winning journalist. She practices a Hellenistic tradition, working from ancient frameworks, including the Whole Sign house system, sect, and traditional rulerships. Additionally, her practice is based around the planetary rulers that were visible to the naked eye in the age before telescopes, also called the seven core planets, meaning that the outer planets of Uranus, Neptune, and Pluto won't be making an appearance in this article. The Signs, Their Rulers, and Their Color FamiliesLet’s start with the basics: There are 12 signs in Western astrology. You’ve probably heard of them—think Aries, Cancer, Libra, etc. While most modern mainstream astrology focuses heavily on the signs, it’s actually their relationship to the planets that has the biggest impact on your day-to-day. “In astrology, planets, not zodiac signs, are the main players,” says Sam. This more nuanced and wholistic approach to astrology uses planets to determine what will happen, while signs only dictate the how. “Pop astrology often relies too heavily on zodiac sign archetypes, in my opinion,” says Sam. “Place a planet in a specific sign? Now we’re cooking, baby.”When it comes to matching up planets and colors, millennia of traditional associations guide the way. Sam’s color coordination is based on two works: The Complete Picatrix, a Medieval text on astrological magic, and Hellenistic Astrology: The Study of Fate and Fortune, a traditional astrology manual written by storied astrologer Chris Brennan. Below, we’ll break down the seven core planets, the signs that correspond with them, and their traditional color associations.MarsSigns: Aries, ScorpioColor Associations: Strong, aged shades of red and rust. VenusSigns: Taurus, LibraColor Associations: Sumptuous natural shades, such as greens, pinks, whites, and pastels.MercurySigns: Gemini, VirgoColor Associations: Orange is a good color for Mercury, but mixes of patterns and colors also works well for these Mercurial signs. SunSigns: LeoColor Associations: Classic sunny shades, such as golds and yellows. MoonSigns: CancerColor Associations: Silvery shades and crisp whites. JupiterSigns: Sagittarius, Pisces. Color Associations: A mix of royally influenced shades, such as purples, blues, and yellows. SaturnSigns: Capricorn, AquariusColor Associations: Dark and moody shades, such as browns, blacks, and grays. How Can You Use Astrology to Help You Decorate? The best place to start is at the very beginning. Sam’s advice? Call your mom. “I highly recommend calculating your full birth chart—to do so, you’ll need the exact date, time, and location of your birth.” This will give you the proper framework from which you can build your astrologically inspired home. Once you have your complete birth chart, look at your various planetary alignments. While your sun sign can tell you a lot about who you are, it’s actually your Venus placement that Sam recommends consulting. “This planet governs art, beauty, and romance—if it’s sweet, enjoyable, or aesthetically pleasing, then it probably falls under Venus’s purview. Whatever zodiac sign this planet occupies in your birth chart can tell you a lot about the vibes, color palettes, and visual aesthetics you gravitate toward.” Not sure you have all the information you need for a full birth chart? No worries, we’ve pulled together the best paint color for you based on your zodiac sign and planetary ruler below. If you want to dive a little deeper, Sam recommends checking out the planetary placement in your Fourth House. “The Fourth House represents our home and family life. Whatever planet rules this house, and its placement by zodiac sign, reflects the energy that feels like home to you.”The Best Paint Colors for Every Zodiac Sign:
    Like
    Love
    Wow
    Sad
    Angry
    212
    0 Σχόλια 0 Μοιράστηκε
  • HOLLYWOOD VFX TOOLS FOR SPACE EXPLORATION

    By CHRIS McGOWAN

    This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCamshows stunning details of the majestic planet in infrared light.Special effects have been used for decades to depict space exploration, from visits to planets and moons to zero gravity and spaceships – one need only think of the landmark 2001: A Space Odyssey. Since that era, visual effects have increasingly grown in realism and importance. VFX have been used for entertainment and for scientific purposes, outreach to the public and astronaut training in virtual reality. Compelling images and videos can bring data to life. NASA’s Scientific Visualization Studioproduces visualizations, animations and images to help scientists tell stories of their research and make science more approachable and engaging.
    A.J. Christensen is a senior visualization designer for the NASA Scientific Visualization Studioat the Goddard Space Flight Center in Greenbelt, Maryland. There, he develops data visualization techniques and designs data-driven imagery for scientific analysis and public outreach using Hollywood visual effects tools, according to NASA. SVS visualizations feature datasets from Earth-and space-based instrumentation, scientific supercomputer models and physical statistical distributions that have been analyzed and processed by computational scientists. Christensen’s specialties include working with 3D volumetric data, using the procedural cinematic software Houdini and science topics in Heliophysics, Geophysics and Astrophysics. He previously worked at the National Center for Supercomputing Applications’ Advanced Visualization Lab where he worked on more than a dozen science documentary full-dome films as well as the IMAX films Hubble 3D and A Beautiful Planet – and he worked at DNEG on the movie Interstellar, which won the 2015 Best Visual Effects Academy Award.

    This global map of CO2 was created by NASA’s Scientific Visualization Studio using a model called GEOS, short for the Goddard Earth Observing System. GEOS is a high-resolution weather reanalysis model, powered by supercomputers, that is used to represent what was happening in the atmosphere.“The NASA Scientific Visualization Studio operates like a small VFX studio that creates animations of scientific data that has been collected or analyzed at NASA. We are one of several groups at NASA that create imagery for public consumption, but we are also a part of the scientific research process, helping scientists understand and share their data through pictures and video.”
    —A.J. Christensen, Senior Visualization Designer, NASA Scientific Visualization StudioAbout his work at NASA SVS, Christensen comments, “The NASA Scientific Visualization Studio operates like a small VFX studio that creates animations of scientific data that has been collected or analyzed at NASA. We are one of several groups at NASA that create imagery for public consumption, but we are also a part of the scientific research process, helping scientists understand and share their data through pictures and video. This past year we were part of NASA’s total eclipse outreach efforts, we participated in all the major earth science and astronomy conferences, we launched a public exhibition at the Smithsonian Museum of Natural History called the Earth Information Center, and we posted hundreds of new visualizations to our publicly accessible website: svs.gsfc.nasa.gov.”

    This is the ‘beauty shot version’ of Perpetual Ocean 2: Western Boundary Currents. The visualization starts with a rotating globe showing ocean currents. The colors used to color the flow in this version were chosen to provide a pleasing look.The Gulf Stream and connected currents.Venus, our nearby “sister” planet, beckons today as a compelling target for exploration that may connect the objects in our own solar system to those discovered around nearby stars.WORKING WITH DATA
    While Christensen is interpreting the data from active spacecraft and making it usable in different forms, such as for science and outreach, he notes, “It’s not just spacecraft that collect data. NASA maintains or monitors instruments on Earth too – on land, in the oceans and in the air. And to be precise, there are robots wandering around Mars that are collecting data, too.”
    He continues, “Sometimes the data comes to our team as raw telescope imagery, sometimes we get it as a data product that a scientist has already analyzed and extracted meaning from, and sometimes various sensor data is used to drive computational models and we work with the models’ resulting output.”

    Jupiter’s moon Europa may have life in a vast ocean beneath its icy surface.HOUDINI AND OTHER TOOLS
    “Data visualization means a lot of different things to different people, but many people on our team interpret it as a form of filmmaking,” Christensen says. “We are very inspired by the approach to visual storytelling that Hollywood uses, and we use tools that are standard for Hollywood VFX. Many professionals in our area – the visualization of 3D scientific data – were previously using other animation tools but have discovered that Houdini is the most capable of understanding and manipulating unusual data, so there has been major movement toward Houdini over the past decade.”

    Satellite imagery from NASA’s Solar Dynamics Observatoryshows the Sun in ultraviolet light colorized in light brown. Seen in ultraviolet light, the dark patches on the Sun are known as coronal holes and are regions where fast solar wind gushes out into space.Christensen explains, “We have always worked with scientific software as well – sometimes there’s only one software tool in existence to interpret a particular kind of scientific data. More often than not, scientific software does not have a GUI, so we’ve had to become proficient at learning new coding environments very quickly. IDL and Python are the generic data manipulation environments we use when something is too complicated or oversized for Houdini, but there are lots of alternatives out there. Typically, we use these tools to get the data into a format that Houdini can interpret, and then we use Houdini to do our shading, lighting and camera design, and seamlessly blend different datasets together.”

    While cruising around Saturn in early October 2004, Cassini captured a series of images that have been composed into this large global natural color view of Saturn and its rings. This grand mosaic consists of 126 images acquired in a tile-like fashion, covering one end of Saturn’s rings to the other and the entire planet in between.The black hole Gargantua and the surrounding accretion disc from the 2014 movie Interstellar.Another visualization of the black hole Gargantua.INTERSTELLAR & GARGANTUA
    Christensen recalls working for DNEG on Interstellar. “When I first started at DNEG, they asked me to work on the giant waves on Miller’s ocean planet. About a week in, my manager took me into the hall and said, ‘I was looking at your reel and saw all this astronomy stuff. We’re working on another sequence with an accretion disk around a black hole that I’m wondering if we should put you on.’ And I said, ‘Oh yeah, I’ve done lots of accretion disks.’ So, for the rest of my time on the show, I was working on the black hole team.”
    He adds, “There are a lot of people in my community that would be hesitant to label any big-budget movie sequence as a scientific visualization. The typical assumption is that for a Hollywood movie, no one cares about accuracy as long as it looks good. Guardians of the Galaxy makes it seem like space is positively littered with nebulae, and Star Wars makes it seem like asteroids travel in herds. But the black hole Gargantua in Interstellar is a good case for being called a visualization. The imagery you see in the movie is the direct result of a collaboration with an expert scientist, Dr. Kip Thorne, working with the DNEG research team using the actual Einstein equations that describe the gravity around a black hole.”

    Thorne is a Nobel Prize-winning theoretical physicist who taught at Caltech for many years. He has reached wide audiences with his books and presentations on black holes, time travel and wormholes on PBS and BBC shows. Christensen comments, “You can make the argument that some of the complexity around what a black hole actually looks like was discarded for the film, and they admit as much in the research paper that was published after the movie came out. But our team at NASA does that same thing. There is no such thing as an objectively ‘true’ scientific image – you always have to make aesthetic decisions around whether the image tells the science story, and often it makes more sense to omit information to clarify what’s important. Ultimately, Gargantua taught a whole lot of people something new about science, and that’s what a good scientific visualization aims to do.”

    The SVS produces an annual visualization of the Moon’s phase and libration comprising 8,760 hourly renderings of its precise size, orientation and illumination.FURTHER CHALLENGES
    The sheer size of the data often encountered by Christensen and his peers is a challenge. “I’m currently working with a dataset that is 400GB per timestep. It’s so big that I don’t even want to move it from one file server to another. So, then I have to make decisions about which data attributes to keep and which to discard, whether there’s a region of the data that I can cull or downsample, and I have to experiment with data compression schemes that might require me to entirely re-design the pipeline I’m using for Houdini. Of course, if I get rid of too much information, it becomes very resource-intensive to recompute everything, but if I don’t get rid of enough, then my design process becomes agonizingly slow.”
    SVS also works closely with its NASA partner groups Conceptual Image Laband Goddard Media Studiosto publish a diverse array of content. Conceptual Image Lab focuses more on the artistic side of things – producing high-fidelity renders using film animation and visual design techniques, according to NASA. Where the SVS primarily focuses on making data-based visualizations, CIL puts more emphasis on conceptual visualizations – producing animations featuring NASA spacecraft, planetary observations and simulations, according to NASA. Goddard Media Studios, on the other hand, is more focused towards public outreach – producing interviews, TV programs and documentaries. GMS continues to be the main producers behind NASA TV, and as such, much of their content is aimed towards the general public.

    An impact crater on the moon.Image of Mars showing a partly shadowed Olympus Mons toward the upper left of the image.Mars. Hellas Basin can be seen in the lower right portion of the image.Mars slightly tilted to show the Martian North Pole.Christensen notes, “One of the more unique challenges in this field is one of bringing people from very different backgrounds to agree on a common outcome. I work on teams with scientists, communicators and technologists, and we all have different communities we’re trying to satisfy. For instance, communicators are generally trying to simplify animations so their learning goal is clear, but scientists will insist that we add text and annotations on top of the video to eliminate ambiguity and avoid misinterpretations. Often, the technologist will have to say we can’t zoom in or look at the data in a certain way because it will show the data boundaries or data resolution limits. Every shot is a negotiation, but in trying to compromise, we often push the boundaries of what has been done before, which is exciting.”
    #hollywood #vfx #tools #space #exploration
    HOLLYWOOD VFX TOOLS FOR SPACE EXPLORATION
    By CHRIS McGOWAN This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCamshows stunning details of the majestic planet in infrared light.Special effects have been used for decades to depict space exploration, from visits to planets and moons to zero gravity and spaceships – one need only think of the landmark 2001: A Space Odyssey. Since that era, visual effects have increasingly grown in realism and importance. VFX have been used for entertainment and for scientific purposes, outreach to the public and astronaut training in virtual reality. Compelling images and videos can bring data to life. NASA’s Scientific Visualization Studioproduces visualizations, animations and images to help scientists tell stories of their research and make science more approachable and engaging. A.J. Christensen is a senior visualization designer for the NASA Scientific Visualization Studioat the Goddard Space Flight Center in Greenbelt, Maryland. There, he develops data visualization techniques and designs data-driven imagery for scientific analysis and public outreach using Hollywood visual effects tools, according to NASA. SVS visualizations feature datasets from Earth-and space-based instrumentation, scientific supercomputer models and physical statistical distributions that have been analyzed and processed by computational scientists. Christensen’s specialties include working with 3D volumetric data, using the procedural cinematic software Houdini and science topics in Heliophysics, Geophysics and Astrophysics. He previously worked at the National Center for Supercomputing Applications’ Advanced Visualization Lab where he worked on more than a dozen science documentary full-dome films as well as the IMAX films Hubble 3D and A Beautiful Planet – and he worked at DNEG on the movie Interstellar, which won the 2015 Best Visual Effects Academy Award. This global map of CO2 was created by NASA’s Scientific Visualization Studio using a model called GEOS, short for the Goddard Earth Observing System. GEOS is a high-resolution weather reanalysis model, powered by supercomputers, that is used to represent what was happening in the atmosphere.“The NASA Scientific Visualization Studio operates like a small VFX studio that creates animations of scientific data that has been collected or analyzed at NASA. We are one of several groups at NASA that create imagery for public consumption, but we are also a part of the scientific research process, helping scientists understand and share their data through pictures and video.” —A.J. Christensen, Senior Visualization Designer, NASA Scientific Visualization StudioAbout his work at NASA SVS, Christensen comments, “The NASA Scientific Visualization Studio operates like a small VFX studio that creates animations of scientific data that has been collected or analyzed at NASA. We are one of several groups at NASA that create imagery for public consumption, but we are also a part of the scientific research process, helping scientists understand and share their data through pictures and video. This past year we were part of NASA’s total eclipse outreach efforts, we participated in all the major earth science and astronomy conferences, we launched a public exhibition at the Smithsonian Museum of Natural History called the Earth Information Center, and we posted hundreds of new visualizations to our publicly accessible website: svs.gsfc.nasa.gov.” This is the ‘beauty shot version’ of Perpetual Ocean 2: Western Boundary Currents. The visualization starts with a rotating globe showing ocean currents. The colors used to color the flow in this version were chosen to provide a pleasing look.The Gulf Stream and connected currents.Venus, our nearby “sister” planet, beckons today as a compelling target for exploration that may connect the objects in our own solar system to those discovered around nearby stars.WORKING WITH DATA While Christensen is interpreting the data from active spacecraft and making it usable in different forms, such as for science and outreach, he notes, “It’s not just spacecraft that collect data. NASA maintains or monitors instruments on Earth too – on land, in the oceans and in the air. And to be precise, there are robots wandering around Mars that are collecting data, too.” He continues, “Sometimes the data comes to our team as raw telescope imagery, sometimes we get it as a data product that a scientist has already analyzed and extracted meaning from, and sometimes various sensor data is used to drive computational models and we work with the models’ resulting output.” Jupiter’s moon Europa may have life in a vast ocean beneath its icy surface.HOUDINI AND OTHER TOOLS “Data visualization means a lot of different things to different people, but many people on our team interpret it as a form of filmmaking,” Christensen says. “We are very inspired by the approach to visual storytelling that Hollywood uses, and we use tools that are standard for Hollywood VFX. Many professionals in our area – the visualization of 3D scientific data – were previously using other animation tools but have discovered that Houdini is the most capable of understanding and manipulating unusual data, so there has been major movement toward Houdini over the past decade.” Satellite imagery from NASA’s Solar Dynamics Observatoryshows the Sun in ultraviolet light colorized in light brown. Seen in ultraviolet light, the dark patches on the Sun are known as coronal holes and are regions where fast solar wind gushes out into space.Christensen explains, “We have always worked with scientific software as well – sometimes there’s only one software tool in existence to interpret a particular kind of scientific data. More often than not, scientific software does not have a GUI, so we’ve had to become proficient at learning new coding environments very quickly. IDL and Python are the generic data manipulation environments we use when something is too complicated or oversized for Houdini, but there are lots of alternatives out there. Typically, we use these tools to get the data into a format that Houdini can interpret, and then we use Houdini to do our shading, lighting and camera design, and seamlessly blend different datasets together.” While cruising around Saturn in early October 2004, Cassini captured a series of images that have been composed into this large global natural color view of Saturn and its rings. This grand mosaic consists of 126 images acquired in a tile-like fashion, covering one end of Saturn’s rings to the other and the entire planet in between.The black hole Gargantua and the surrounding accretion disc from the 2014 movie Interstellar.Another visualization of the black hole Gargantua.INTERSTELLAR & GARGANTUA Christensen recalls working for DNEG on Interstellar. “When I first started at DNEG, they asked me to work on the giant waves on Miller’s ocean planet. About a week in, my manager took me into the hall and said, ‘I was looking at your reel and saw all this astronomy stuff. We’re working on another sequence with an accretion disk around a black hole that I’m wondering if we should put you on.’ And I said, ‘Oh yeah, I’ve done lots of accretion disks.’ So, for the rest of my time on the show, I was working on the black hole team.” He adds, “There are a lot of people in my community that would be hesitant to label any big-budget movie sequence as a scientific visualization. The typical assumption is that for a Hollywood movie, no one cares about accuracy as long as it looks good. Guardians of the Galaxy makes it seem like space is positively littered with nebulae, and Star Wars makes it seem like asteroids travel in herds. But the black hole Gargantua in Interstellar is a good case for being called a visualization. The imagery you see in the movie is the direct result of a collaboration with an expert scientist, Dr. Kip Thorne, working with the DNEG research team using the actual Einstein equations that describe the gravity around a black hole.” Thorne is a Nobel Prize-winning theoretical physicist who taught at Caltech for many years. He has reached wide audiences with his books and presentations on black holes, time travel and wormholes on PBS and BBC shows. Christensen comments, “You can make the argument that some of the complexity around what a black hole actually looks like was discarded for the film, and they admit as much in the research paper that was published after the movie came out. But our team at NASA does that same thing. There is no such thing as an objectively ‘true’ scientific image – you always have to make aesthetic decisions around whether the image tells the science story, and often it makes more sense to omit information to clarify what’s important. Ultimately, Gargantua taught a whole lot of people something new about science, and that’s what a good scientific visualization aims to do.” The SVS produces an annual visualization of the Moon’s phase and libration comprising 8,760 hourly renderings of its precise size, orientation and illumination.FURTHER CHALLENGES The sheer size of the data often encountered by Christensen and his peers is a challenge. “I’m currently working with a dataset that is 400GB per timestep. It’s so big that I don’t even want to move it from one file server to another. So, then I have to make decisions about which data attributes to keep and which to discard, whether there’s a region of the data that I can cull or downsample, and I have to experiment with data compression schemes that might require me to entirely re-design the pipeline I’m using for Houdini. Of course, if I get rid of too much information, it becomes very resource-intensive to recompute everything, but if I don’t get rid of enough, then my design process becomes agonizingly slow.” SVS also works closely with its NASA partner groups Conceptual Image Laband Goddard Media Studiosto publish a diverse array of content. Conceptual Image Lab focuses more on the artistic side of things – producing high-fidelity renders using film animation and visual design techniques, according to NASA. Where the SVS primarily focuses on making data-based visualizations, CIL puts more emphasis on conceptual visualizations – producing animations featuring NASA spacecraft, planetary observations and simulations, according to NASA. Goddard Media Studios, on the other hand, is more focused towards public outreach – producing interviews, TV programs and documentaries. GMS continues to be the main producers behind NASA TV, and as such, much of their content is aimed towards the general public. An impact crater on the moon.Image of Mars showing a partly shadowed Olympus Mons toward the upper left of the image.Mars. Hellas Basin can be seen in the lower right portion of the image.Mars slightly tilted to show the Martian North Pole.Christensen notes, “One of the more unique challenges in this field is one of bringing people from very different backgrounds to agree on a common outcome. I work on teams with scientists, communicators and technologists, and we all have different communities we’re trying to satisfy. For instance, communicators are generally trying to simplify animations so their learning goal is clear, but scientists will insist that we add text and annotations on top of the video to eliminate ambiguity and avoid misinterpretations. Often, the technologist will have to say we can’t zoom in or look at the data in a certain way because it will show the data boundaries or data resolution limits. Every shot is a negotiation, but in trying to compromise, we often push the boundaries of what has been done before, which is exciting.” #hollywood #vfx #tools #space #exploration
    WWW.VFXVOICE.COM
    HOLLYWOOD VFX TOOLS FOR SPACE EXPLORATION
    By CHRIS McGOWAN This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. (Image courtesy of NASA, ESA and CSA) Special effects have been used for decades to depict space exploration, from visits to planets and moons to zero gravity and spaceships – one need only think of the landmark 2001: A Space Odyssey (1968). Since that era, visual effects have increasingly grown in realism and importance. VFX have been used for entertainment and for scientific purposes, outreach to the public and astronaut training in virtual reality. Compelling images and videos can bring data to life. NASA’s Scientific Visualization Studio (SVS) produces visualizations, animations and images to help scientists tell stories of their research and make science more approachable and engaging. A.J. Christensen is a senior visualization designer for the NASA Scientific Visualization Studio (SVS) at the Goddard Space Flight Center in Greenbelt, Maryland. There, he develops data visualization techniques and designs data-driven imagery for scientific analysis and public outreach using Hollywood visual effects tools, according to NASA. SVS visualizations feature datasets from Earth-and space-based instrumentation, scientific supercomputer models and physical statistical distributions that have been analyzed and processed by computational scientists. Christensen’s specialties include working with 3D volumetric data, using the procedural cinematic software Houdini and science topics in Heliophysics, Geophysics and Astrophysics. He previously worked at the National Center for Supercomputing Applications’ Advanced Visualization Lab where he worked on more than a dozen science documentary full-dome films as well as the IMAX films Hubble 3D and A Beautiful Planet – and he worked at DNEG on the movie Interstellar, which won the 2015 Best Visual Effects Academy Award. This global map of CO2 was created by NASA’s Scientific Visualization Studio using a model called GEOS, short for the Goddard Earth Observing System. GEOS is a high-resolution weather reanalysis model, powered by supercomputers, that is used to represent what was happening in the atmosphere. (Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio) “The NASA Scientific Visualization Studio operates like a small VFX studio that creates animations of scientific data that has been collected or analyzed at NASA. We are one of several groups at NASA that create imagery for public consumption, but we are also a part of the scientific research process, helping scientists understand and share their data through pictures and video.” —A.J. Christensen, Senior Visualization Designer, NASA Scientific Visualization Studio (SVS) About his work at NASA SVS, Christensen comments, “The NASA Scientific Visualization Studio operates like a small VFX studio that creates animations of scientific data that has been collected or analyzed at NASA. We are one of several groups at NASA that create imagery for public consumption, but we are also a part of the scientific research process, helping scientists understand and share their data through pictures and video. This past year we were part of NASA’s total eclipse outreach efforts, we participated in all the major earth science and astronomy conferences, we launched a public exhibition at the Smithsonian Museum of Natural History called the Earth Information Center, and we posted hundreds of new visualizations to our publicly accessible website: svs.gsfc.nasa.gov.” This is the ‘beauty shot version’ of Perpetual Ocean 2: Western Boundary Currents. The visualization starts with a rotating globe showing ocean currents. The colors used to color the flow in this version were chosen to provide a pleasing look. (Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio) The Gulf Stream and connected currents. (Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio) Venus, our nearby “sister” planet, beckons today as a compelling target for exploration that may connect the objects in our own solar system to those discovered around nearby stars. (Image courtesy of NASA’s Goddard Space Flight Center) WORKING WITH DATA While Christensen is interpreting the data from active spacecraft and making it usable in different forms, such as for science and outreach, he notes, “It’s not just spacecraft that collect data. NASA maintains or monitors instruments on Earth too – on land, in the oceans and in the air. And to be precise, there are robots wandering around Mars that are collecting data, too.” He continues, “Sometimes the data comes to our team as raw telescope imagery, sometimes we get it as a data product that a scientist has already analyzed and extracted meaning from, and sometimes various sensor data is used to drive computational models and we work with the models’ resulting output.” Jupiter’s moon Europa may have life in a vast ocean beneath its icy surface. (Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio) HOUDINI AND OTHER TOOLS “Data visualization means a lot of different things to different people, but many people on our team interpret it as a form of filmmaking,” Christensen says. “We are very inspired by the approach to visual storytelling that Hollywood uses, and we use tools that are standard for Hollywood VFX. Many professionals in our area – the visualization of 3D scientific data – were previously using other animation tools but have discovered that Houdini is the most capable of understanding and manipulating unusual data, so there has been major movement toward Houdini over the past decade.” Satellite imagery from NASA’s Solar Dynamics Observatory (SDO) shows the Sun in ultraviolet light colorized in light brown. Seen in ultraviolet light, the dark patches on the Sun are known as coronal holes and are regions where fast solar wind gushes out into space. (Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio) Christensen explains, “We have always worked with scientific software as well – sometimes there’s only one software tool in existence to interpret a particular kind of scientific data. More often than not, scientific software does not have a GUI, so we’ve had to become proficient at learning new coding environments very quickly. IDL and Python are the generic data manipulation environments we use when something is too complicated or oversized for Houdini, but there are lots of alternatives out there. Typically, we use these tools to get the data into a format that Houdini can interpret, and then we use Houdini to do our shading, lighting and camera design, and seamlessly blend different datasets together.” While cruising around Saturn in early October 2004, Cassini captured a series of images that have been composed into this large global natural color view of Saturn and its rings. This grand mosaic consists of 126 images acquired in a tile-like fashion, covering one end of Saturn’s rings to the other and the entire planet in between. (Image courtesy of ASA/JPL/Space Science Institute) The black hole Gargantua and the surrounding accretion disc from the 2014 movie Interstellar. (Image courtesy of DNEG and Paramount Pictures) Another visualization of the black hole Gargantua. (Image courtesy of DNEG and Paramount Pictures) INTERSTELLAR & GARGANTUA Christensen recalls working for DNEG on Interstellar (2014). “When I first started at DNEG, they asked me to work on the giant waves on Miller’s ocean planet [in the film]. About a week in, my manager took me into the hall and said, ‘I was looking at your reel and saw all this astronomy stuff. We’re working on another sequence with an accretion disk around a black hole that I’m wondering if we should put you on.’ And I said, ‘Oh yeah, I’ve done lots of accretion disks.’ So, for the rest of my time on the show, I was working on the black hole team.” He adds, “There are a lot of people in my community that would be hesitant to label any big-budget movie sequence as a scientific visualization. The typical assumption is that for a Hollywood movie, no one cares about accuracy as long as it looks good. Guardians of the Galaxy makes it seem like space is positively littered with nebulae, and Star Wars makes it seem like asteroids travel in herds. But the black hole Gargantua in Interstellar is a good case for being called a visualization. The imagery you see in the movie is the direct result of a collaboration with an expert scientist, Dr. Kip Thorne, working with the DNEG research team using the actual Einstein equations that describe the gravity around a black hole.” Thorne is a Nobel Prize-winning theoretical physicist who taught at Caltech for many years. He has reached wide audiences with his books and presentations on black holes, time travel and wormholes on PBS and BBC shows. Christensen comments, “You can make the argument that some of the complexity around what a black hole actually looks like was discarded for the film, and they admit as much in the research paper that was published after the movie came out. But our team at NASA does that same thing. There is no such thing as an objectively ‘true’ scientific image – you always have to make aesthetic decisions around whether the image tells the science story, and often it makes more sense to omit information to clarify what’s important. Ultimately, Gargantua taught a whole lot of people something new about science, and that’s what a good scientific visualization aims to do.” The SVS produces an annual visualization of the Moon’s phase and libration comprising 8,760 hourly renderings of its precise size, orientation and illumination. (Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio) FURTHER CHALLENGES The sheer size of the data often encountered by Christensen and his peers is a challenge. “I’m currently working with a dataset that is 400GB per timestep. It’s so big that I don’t even want to move it from one file server to another. So, then I have to make decisions about which data attributes to keep and which to discard, whether there’s a region of the data that I can cull or downsample, and I have to experiment with data compression schemes that might require me to entirely re-design the pipeline I’m using for Houdini. Of course, if I get rid of too much information, it becomes very resource-intensive to recompute everything, but if I don’t get rid of enough, then my design process becomes agonizingly slow.” SVS also works closely with its NASA partner groups Conceptual Image Lab (CIL) and Goddard Media Studios (GMS) to publish a diverse array of content. Conceptual Image Lab focuses more on the artistic side of things – producing high-fidelity renders using film animation and visual design techniques, according to NASA. Where the SVS primarily focuses on making data-based visualizations, CIL puts more emphasis on conceptual visualizations – producing animations featuring NASA spacecraft, planetary observations and simulations, according to NASA. Goddard Media Studios, on the other hand, is more focused towards public outreach – producing interviews, TV programs and documentaries. GMS continues to be the main producers behind NASA TV, and as such, much of their content is aimed towards the general public. An impact crater on the moon. (Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio) Image of Mars showing a partly shadowed Olympus Mons toward the upper left of the image. (Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio) Mars. Hellas Basin can be seen in the lower right portion of the image. (Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio) Mars slightly tilted to show the Martian North Pole. (Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio) Christensen notes, “One of the more unique challenges in this field is one of bringing people from very different backgrounds to agree on a common outcome. I work on teams with scientists, communicators and technologists, and we all have different communities we’re trying to satisfy. For instance, communicators are generally trying to simplify animations so their learning goal is clear, but scientists will insist that we add text and annotations on top of the video to eliminate ambiguity and avoid misinterpretations. Often, the technologist will have to say we can’t zoom in or look at the data in a certain way because it will show the data boundaries or data resolution limits. Every shot is a negotiation, but in trying to compromise, we often push the boundaries of what has been done before, which is exciting.”
    Like
    Love
    Wow
    Angry
    Sad
    144
    0 Σχόλια 0 Μοιράστηκε
  • The Download: US climate studies are being shut down, and building cities from lava

    This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.

    The Trump administration has shut down more than 100 climate studies

    The Trump administration has terminated National Science Foundation grants for more than 100 research projects related to climate change, according to an MIT Technology Review analysis of a database that tracks such cuts.

    The move will cut off what’s likely to amount to tens of millions of dollars for studies that were previously approved and, in most cases, already in the works. Many believe the administration’s broader motivation is to undermine the power of the university system and prevent research findings that cut against its politics. Read the full story.

    —James Temple

    This architect wants to build cities out of lava

    Arnhildur Pálmadóttir is an architect with an extraordinary mission: to harness molten lava and build cities out of it.Pálmadóttir believes the lava that flows from a single eruption could yield enough building material to lay the foundations of an entire city. She has been researching this possibility for more than five years as part of a project she calls Lavaforming. Together with her son and colleague Arnar Skarphéðinsson, she has identified three potential techniques that could change how future homes are designed and built from repurposed lava. Read the full story.—Elissaveta M. Brandon

    This story is from the most recent edition of our print magazine, which is all about how technology is changing creativity. Subscribe now to read it and to receive future print copies once they land.

    The must-reads

    I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.

    1 America is failing to win the tech race against ChinaIn fields as diverse as drones and energy.+ Humanoid robots is an area of particular interest.+ China has accused the US of violating the pair’s trade truce.2 Who is really in charge of DOGE?According to a fired staffer, it wasn’t Elon Musk.+ DOGE’s tech takeover threatens the safety and stability of our critical data.3 Brazilians will soon be able to sell their digital dataIt’s the first time citizens will be able to monetize their digital footprint.4 The Trump administration’s anti-vaccine stance is stoking fear among scientistsIt’s slashing funding for mRNA trials, and experts are afraid to speak out.+ This annual shot might protect against HIV infections.5 Tech companies want us to spend longer talking to chatbotsThose conversations can easily veer into dangerous territory.+ How we use AI in the future is up to us.+ This benchmark used Reddit’s AITA to test how much AI models suck up to us.6 Tiktok’s mental health videos are rife with misinformationA lot of the advice is useless at best, and harmful at worst.7 Lawyers are hooked on ChatGPTEven though it’s inherently unreliable.+ Yet another lawyer has been found referencing nonexistent citations.+ How AI is introducing errors into courtrooms.8 How chefs are using generative AI They’re starting to experiment with using it to create innovative new dishes.+ Watch this robot cook shrimp and clean autonomously.9 The influencer suing her rival has dropped her lawsuitThe legal fight over ownership of a basic aesthetic has come to an end.10 Roblox’s new game has sparked a digital fruit underground marketAnd players are already spending millions of dollars every week.Quote of the day

    “We can’t substitute complex thinking with machines. AI can’t replace our curiosity, creativity or emotional intelligence.”

    —Mateusz Demski, a journalist in Poland, tells the Guardian about how his radio station employer laid him off, only to later launch shows fronted by AI-generated presenters.

    One more thing

    ​​Adventures in the genetic time machineAn ancient-DNA revolution is turning the high-speed equipment used to study the DNA of living things on to specimens from the past.The technology is being used to create genetic maps of saber-toothed cats, cave bears, and thousands of ancient humans, including Vikings, Polynesian navigators, and numerous Neanderthals. The total number of ancient humans studied is more than 10,000 and rising fast.The old genes have already revealed remarkable stories of human migrations around the globe.But researchers are hoping ancient DNA will be more than a telescope on the past—they hope it will have concrete practical use in the present. Read the full story. 

    —Antonio Regalado

    We can still have nice things

    A place for comfort, fun and distraction to brighten up your day.+ The ancient Persians managed to keep cool using an innovative breeze-catching technique that could still be useful today.+ Knowledge is power—here’s a helpful list of hoaxes to be aware of.+ How said it: Homer Simpson or Pete Hegseth?+ I had no idea London has so many cat statues.
    #download #climate #studies #are #being
    The Download: US climate studies are being shut down, and building cities from lava
    This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology. The Trump administration has shut down more than 100 climate studies The Trump administration has terminated National Science Foundation grants for more than 100 research projects related to climate change, according to an MIT Technology Review analysis of a database that tracks such cuts. The move will cut off what’s likely to amount to tens of millions of dollars for studies that were previously approved and, in most cases, already in the works. Many believe the administration’s broader motivation is to undermine the power of the university system and prevent research findings that cut against its politics. Read the full story. —James Temple This architect wants to build cities out of lava Arnhildur Pálmadóttir is an architect with an extraordinary mission: to harness molten lava and build cities out of it.Pálmadóttir believes the lava that flows from a single eruption could yield enough building material to lay the foundations of an entire city. She has been researching this possibility for more than five years as part of a project she calls Lavaforming. Together with her son and colleague Arnar Skarphéðinsson, she has identified three potential techniques that could change how future homes are designed and built from repurposed lava. Read the full story.—Elissaveta M. Brandon This story is from the most recent edition of our print magazine, which is all about how technology is changing creativity. Subscribe now to read it and to receive future print copies once they land. The must-reads I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology. 1 America is failing to win the tech race against ChinaIn fields as diverse as drones and energy.+ Humanoid robots is an area of particular interest.+ China has accused the US of violating the pair’s trade truce.2 Who is really in charge of DOGE?According to a fired staffer, it wasn’t Elon Musk.+ DOGE’s tech takeover threatens the safety and stability of our critical data.3 Brazilians will soon be able to sell their digital dataIt’s the first time citizens will be able to monetize their digital footprint.4 The Trump administration’s anti-vaccine stance is stoking fear among scientistsIt’s slashing funding for mRNA trials, and experts are afraid to speak out.+ This annual shot might protect against HIV infections.5 Tech companies want us to spend longer talking to chatbotsThose conversations can easily veer into dangerous territory.+ How we use AI in the future is up to us.+ This benchmark used Reddit’s AITA to test how much AI models suck up to us.6 Tiktok’s mental health videos are rife with misinformationA lot of the advice is useless at best, and harmful at worst.7 Lawyers are hooked on ChatGPTEven though it’s inherently unreliable.+ Yet another lawyer has been found referencing nonexistent citations.+ How AI is introducing errors into courtrooms.8 How chefs are using generative AI They’re starting to experiment with using it to create innovative new dishes.+ Watch this robot cook shrimp and clean autonomously.9 The influencer suing her rival has dropped her lawsuitThe legal fight over ownership of a basic aesthetic has come to an end.10 Roblox’s new game has sparked a digital fruit underground marketAnd players are already spending millions of dollars every week.Quote of the day “We can’t substitute complex thinking with machines. AI can’t replace our curiosity, creativity or emotional intelligence.” —Mateusz Demski, a journalist in Poland, tells the Guardian about how his radio station employer laid him off, only to later launch shows fronted by AI-generated presenters. One more thing ​​Adventures in the genetic time machineAn ancient-DNA revolution is turning the high-speed equipment used to study the DNA of living things on to specimens from the past.The technology is being used to create genetic maps of saber-toothed cats, cave bears, and thousands of ancient humans, including Vikings, Polynesian navigators, and numerous Neanderthals. The total number of ancient humans studied is more than 10,000 and rising fast.The old genes have already revealed remarkable stories of human migrations around the globe.But researchers are hoping ancient DNA will be more than a telescope on the past—they hope it will have concrete practical use in the present. Read the full story.  —Antonio Regalado We can still have nice things A place for comfort, fun and distraction to brighten up your day.+ The ancient Persians managed to keep cool using an innovative breeze-catching technique that could still be useful today.+ Knowledge is power—here’s a helpful list of hoaxes to be aware of.+ How said it: Homer Simpson or Pete Hegseth?+ I had no idea London has so many cat statues. #download #climate #studies #are #being
    WWW.TECHNOLOGYREVIEW.COM
    The Download: US climate studies are being shut down, and building cities from lava
    This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology. The Trump administration has shut down more than 100 climate studies The Trump administration has terminated National Science Foundation grants for more than 100 research projects related to climate change, according to an MIT Technology Review analysis of a database that tracks such cuts. The move will cut off what’s likely to amount to tens of millions of dollars for studies that were previously approved and, in most cases, already in the works. Many believe the administration’s broader motivation is to undermine the power of the university system and prevent research findings that cut against its politics. Read the full story. —James Temple This architect wants to build cities out of lava Arnhildur Pálmadóttir is an architect with an extraordinary mission: to harness molten lava and build cities out of it.Pálmadóttir believes the lava that flows from a single eruption could yield enough building material to lay the foundations of an entire city. She has been researching this possibility for more than five years as part of a project she calls Lavaforming. Together with her son and colleague Arnar Skarphéðinsson, she has identified three potential techniques that could change how future homes are designed and built from repurposed lava. Read the full story.—Elissaveta M. Brandon This story is from the most recent edition of our print magazine, which is all about how technology is changing creativity. Subscribe now to read it and to receive future print copies once they land. The must-reads I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology. 1 America is failing to win the tech race against ChinaIn fields as diverse as drones and energy. (WSJ $)+ Humanoid robots is an area of particular interest. (Bloomberg $)+ China has accused the US of violating the pair’s trade truce. (FT $) 2 Who is really in charge of DOGE?According to a fired staffer, it wasn’t Elon Musk. (Wired $)+ DOGE’s tech takeover threatens the safety and stability of our critical data. (MIT Technology Review) 3 Brazilians will soon be able to sell their digital dataIt’s the first time citizens will be able to monetize their digital footprint. (Rest of World) 4 The Trump administration’s anti-vaccine stance is stoking fear among scientistsIt’s slashing funding for mRNA trials, and experts are afraid to speak out. (The Atlantic $)+ This annual shot might protect against HIV infections. (MIT Technology Review) 5 Tech companies want us to spend longer talking to chatbotsThose conversations can easily veer into dangerous territory. (WP $)+ How we use AI in the future is up to us. (New Yorker $)+ This benchmark used Reddit’s AITA to test how much AI models suck up to us. (MIT Technology Review) 6 Tiktok’s mental health videos are rife with misinformationA lot of the advice is useless at best, and harmful at worst. (The Guardian) 7 Lawyers are hooked on ChatGPTEven though it’s inherently unreliable. (The Verge)+ Yet another lawyer has been found referencing nonexistent citations. (The Guardian)+ How AI is introducing errors into courtrooms. (MIT Technology Review) 8 How chefs are using generative AI They’re starting to experiment with using it to create innovative new dishes. (NYT $)+ Watch this robot cook shrimp and clean autonomously. (MIT Technology Review) 9 The influencer suing her rival has dropped her lawsuitThe legal fight over ownership of a basic aesthetic has come to an end. (NBC News) 10 Roblox’s new game has sparked a digital fruit underground marketAnd players are already spending millions of dollars every week. (Bloomberg $) Quote of the day “We can’t substitute complex thinking with machines. AI can’t replace our curiosity, creativity or emotional intelligence.” —Mateusz Demski, a journalist in Poland, tells the Guardian about how his radio station employer laid him off, only to later launch shows fronted by AI-generated presenters. One more thing ​​Adventures in the genetic time machineAn ancient-DNA revolution is turning the high-speed equipment used to study the DNA of living things on to specimens from the past.The technology is being used to create genetic maps of saber-toothed cats, cave bears, and thousands of ancient humans, including Vikings, Polynesian navigators, and numerous Neanderthals. The total number of ancient humans studied is more than 10,000 and rising fast.The old genes have already revealed remarkable stories of human migrations around the globe.But researchers are hoping ancient DNA will be more than a telescope on the past—they hope it will have concrete practical use in the present. Read the full story.  —Antonio Regalado We can still have nice things A place for comfort, fun and distraction to brighten up your day. (Got any ideas? Drop me a line or skeet ’em at me.) + The ancient Persians managed to keep cool using an innovative breeze-catching technique that could still be useful today.+ Knowledge is power—here’s a helpful list of hoaxes to be aware of.+ How said it: Homer Simpson or Pete Hegseth?+ I had no idea London has so many cat statues.
    0 Σχόλια 0 Μοιράστηκε