• How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Reacties 0 aandelen
  • Classics – The Art Of Game Of Thrones by Marc Simonetti

    Marc Simonetti is a French concept artist and illustrator. Best known for his work on GRR Martin’s books “A Song of Ice and Fire”, and his Iron Throne, he’s also illustrated some of the most well-known fantasy and SciFi novels, such as The Discworld by Terry Pratchett, The Royal Assassin trilogy by Robin Hobb, Terry Goodkind’s “Sword of truth”, or Dune Saga by Frank Herbert.He’s also worked for many video game companies such as Activision, Ubisoft, Magic The Gathering, EA, Square Enix, and King Isle Entertainment. He has just released an art book, “Coverama,” and is currently working on several projects, including long feature films and concept art for video games, as a freelancer.His most recent work as a concept artist, which includes creating visual development and staging dramatic lighting and designs, is featured in Aladdin, Maleficent 2, Aquaman 2, and the upcoming Transformers Movie, Rise of the Beasts, among many others. He also serves as the Art Director at DNEG, one of the world’s leading visual effects and animation studios.
    #classics #art #game #thrones #marc
    Classics – The Art Of Game Of Thrones by Marc Simonetti
    Marc Simonetti is a French concept artist and illustrator. Best known for his work on GRR Martin’s books “A Song of Ice and Fire”, and his Iron Throne, he’s also illustrated some of the most well-known fantasy and SciFi novels, such as The Discworld by Terry Pratchett, The Royal Assassin trilogy by Robin Hobb, Terry Goodkind’s “Sword of truth”, or Dune Saga by Frank Herbert.He’s also worked for many video game companies such as Activision, Ubisoft, Magic The Gathering, EA, Square Enix, and King Isle Entertainment. He has just released an art book, “Coverama,” and is currently working on several projects, including long feature films and concept art for video games, as a freelancer.His most recent work as a concept artist, which includes creating visual development and staging dramatic lighting and designs, is featured in Aladdin, Maleficent 2, Aquaman 2, and the upcoming Transformers Movie, Rise of the Beasts, among many others. He also serves as the Art Director at DNEG, one of the world’s leading visual effects and animation studios. #classics #art #game #thrones #marc
    WWW.IAMAG.CO
    Classics – The Art Of Game Of Thrones by Marc Simonetti
    Marc Simonetti is a French concept artist and illustrator. Best known for his work on GRR Martin’s books “A Song of Ice and Fire”, and his Iron Throne, he’s also illustrated some of the most well-known fantasy and SciFi novels, such as The Discworld by Terry Pratchett, The Royal Assassin trilogy by Robin Hobb, Terry Goodkind’s “Sword of truth”, or Dune Saga by Frank Herbert.He’s also worked for many video game companies such as Activision, Ubisoft, Magic The Gathering, EA, Square Enix, and King Isle Entertainment. He has just released an art book, “Coverama,” and is currently working on several projects, including long feature films and concept art for video games, as a freelancer.His most recent work as a concept artist, which includes creating visual development and staging dramatic lighting and designs, is featured in Aladdin, Maleficent 2, Aquaman 2, and the upcoming Transformers Movie, Rise of the Beasts, among many others. He also serves as the Art Director at DNEG, one of the world’s leading visual effects and animation studios.
    11 Reacties 0 aandelen
  • What AI’s impact on individuals means for the health workforce and industry

    Transcript    
    PETER LEE: “In American primary care, the missing workforce is stunning in magnitude, the shortfall estimated to reach up to 48,000 doctors within the next dozen years. China and other countries with aging populations can expect drastic shortfalls, as well. Just last month, I asked a respected colleague retiring from primary care who he would recommend as a replacement; he told me bluntly that, other than expensive concierge care practices, he could not think of anyone, even for himself. This mismatch between need and supply will only grow, and the US is far from alone among developed countries in facing it.”      
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.     The book passage I read at the top is from “Chapter 4: Trust but Verify,” which was written by Zak.
    You know, it’s no secret that in the US and elsewhere shortages in medical staff and the rise of clinician burnout are affecting the quality of patient care for the worse. In our book, we predicted that generative AI would be something that might help address these issues.
    So in this episode, we’ll delve into how individual performance gains that our previous guests have described might affect the healthcare workforce as a whole, and on the patient side, we’ll look into the influence of generative AI on the consumerization of healthcare. Now, since all of this consumes such a huge fraction of the overall economy, we’ll also get into what a general-purpose technology as disruptive as generative AI might mean in the context of labor markets and beyond.  
    To help us do that, I’m pleased to welcome Ethan Mollick and Azeem Azhar.
    Ethan Mollick is the Ralph J. Roberts Distinguished Faculty Scholar, a Rowan Fellow, and an associate professor at the Wharton School of the University of Pennsylvania. His research into the effects of AI on work, entrepreneurship, and education is applied by organizations around the world, leading him to be named one of Time magazine’s most influential people in AI for 2024. He’s also the author of the New York Times best-selling book Co-Intelligence.
    Azeem Azhar is an author, founder, investor, and one of the most thoughtful and influential voices on the interplay between disruptive emerging technologies and business and society. In his best-selling book, The Exponential Age, and in his highly regarded newsletter and podcast, Exponential View, he explores how technologies like AI are reshaping everything from healthcare to geopolitics.
    Ethan and Azeem are two leading thinkers on the ways that disruptive technologies—and especially AI—affect our work, our jobs, our business enterprises, and whole industries. As economists, they are trying to work out whether we are in the midst of an economic revolution as profound as the shift from an agrarian to an industrial society.Here is my interview with Ethan Mollick:
    LEE: Ethan, welcome.
    ETHAN MOLLICK: So happy to be here, thank you.
    LEE: I described you as a professor at Wharton, which I think most of the people who listen to this podcast series know of as an elite business school. So it might surprise some people that you study AI. And beyond that, you know, that I would seek you out to talk about AI in medicine.So to get started, how and why did it happen that you’ve become one of the leading experts on AI?
    MOLLICK: It’s actually an interesting story. I’ve been AI-adjacent my whole career. When I wasmy PhD at MIT, I worked with Marvin Minskyand the MITMedia Labs AI group. But I was never the technical AI guy. I was the person who was trying to explain AI to everybody else who didn’t understand it.
    And then I became very interested in, how do you train and teach? And AI was always a part of that. I was building games for teaching, teaching tools that were used in hospitals and elsewhere, simulations. So when LLMs burst into the scene, I had already been using them and had a good sense of what they could do. And between that and, kind of, being practically oriented and getting some of the first research projects underway, especially under education and AI and performance, I became sort of a go-to person in the field.
    And once you’re in a field where nobody knows what’s going on and we’re all making it up as we go along—I thought it’s funny that you led with the idea that you have a couple of months head start for GPT-4, right. Like that’s all we have at this point, is a few months’ head start.So being a few months ahead is good enough to be an expert at this point. Whether it should be or not is a different question.
    LEE: Well, if I understand correctly, leading AI companies like OpenAI, Anthropic, and others have now sought you out as someone who should get early access to really start to do early assessments and gauge early reactions. How has that been?
    MOLLICK: So, I mean, I think the bigger picture is less about me than about two things that tells us about the state of AI right now.
    One, nobody really knows what’s going on, right. So in a lot of ways, if it wasn’t for your work, Peter, like, I don’t think people would be thinking about medicine as much because these systems weren’t built for medicine. They weren’t built to change education. They weren’t built to write memos. They, like, they weren’t built to do any of these things. They weren’t really built to do anything in particular. It turns out they’re just good at many things.
    And to the extent that the labs work on them, they care about their coding ability above everything else and maybe math and science secondarily. They don’t think about the fact that it expresses high empathy. They don’t think about its accuracy and diagnosis or where it’s inaccurate. They don’t think about how it’s changing education forever.
    So one part of this is the fact that they go to my Twitter feed or ask me for advice is an indicator of where they are, too, which is they’re not thinking about this. And the fact that a few months’ head start continues to give you a lead tells you that we are at the very cutting edge. These labs aren’t sitting on projects for two years and then releasing them. Months after a project is complete or sooner, it’s out the door. Like, there’s very little delay. So we’re kind of all in the same boat here, which is a very unusual space for a new technology.
    LEE: And I, you know, explained that you’re at Wharton. Are you an odd fit as a faculty member at Wharton, or is this a trend now even in business schools that AI experts are becoming key members of the faculty?
    MOLLICK: I mean, it’s a little of both, right. It’s faculty, so everybody does everything. I’m a professor of innovation-entrepreneurship. I’ve launched startups before and working on that and education means I think about, how do organizations redesign themselves? How do they take advantage of these kinds of problems? So medicine’s always been very central to that, right. A lot of people in my MBA class have been MDs either switching, you know, careers or else looking to advance from being sort of individual contributors to running teams. So I don’t think that’s that bad a fit. But I also think this is general-purpose technology; it’s going to touch everything. The focus on this is medicine, but Microsoft does far more than medicine, right. It’s … there’s transformation happening in literally every field, in every country. This is a widespread effect.
    So I don’t think we should be surprised that business schools matter on this because we care about management. There’s a long tradition of management and medicine going together. There’s actually a great academic paper that shows that teaching hospitals that also have MBA programs associated with them have higher management scores and perform better. So I think that these are not as foreign concepts, especially as medicine continues to get more complicated.
    LEE: Yeah. Well, in fact, I want to dive a little deeper on these issues of management, of entrepreneurship, um, education. But before doing that, if I could just stay focused on you. There is always something interesting to hear from people about their first encounters with AI. And throughout this entire series, I’ve been doing that both pre-generative AI and post-generative AI. So you, sort of, hinted at the pre-generative AI. You were in Minsky’s lab. Can you say a little bit more about that early encounter? And then tell us about your first encounters with generative AI.
    MOLLICK: Yeah. Those are great questions. So first of all, when I was at the media lab, that was pre-the current boom in sort of, you know, even in the old-school machine learning kind of space. So there was a lot of potential directions to head in. While I was there, there were projects underway, for example, to record every interaction small children had. One of the professors was recording everything their baby interacted with in the hope that maybe that would give them a hint about how to build an AI system.
    There was a bunch of projects underway that were about labeling every concept and how they relate to other concepts. So, like, it was very much Wild West of, like, how do we make an AI work—which has been this repeated problem in AI, which is, what is this thing?
    The fact that it was just like brute force over the corpus of all human knowledge turns out to be a little bit of like a, you know, it’s a miracle and a little bit of a disappointment in some wayscompared to how elaborate some of this was. So, you know, I think that, that was sort of my first encounters in sort of the intellectual way.
    The generative AI encounters actually started with the original, sort of, GPT-3, or, you know, earlier versions. And it was actually game-based. So I played games like AI Dungeon. And as an educator, I realized, oh my gosh, this stuff could write essays at a fourth-grade level. That’s really going to change the way, like, middle school works, was my thinking at the time. And I was posting about that back in, you know, 2021 that this is a big deal. But I think everybody was taken surprise, including the AI companies themselves, by, you know, ChatGPT, by GPT-3.5. The difference in degree turned out to be a difference in kind.
    LEE: Yeah, you know, if I think back, even with GPT-3, and certainly this was the case with GPT-2, it was, at least, you know, from where I was sitting, it was hard to get people to really take this seriously and pay attention.
    MOLLICK: Yes.
    LEE: You know, it’s remarkable. Within Microsoft, I think a turning point was the use of GPT-3 to do code completions. And that was actually productized as GitHub Copilot, the very first version. That, I think, is where there was widespread belief. But, you know, in a way, I think there is, even for me early on, a sense of denial and skepticism. Did you have those initially at any point?
    MOLLICK: Yeah, I mean, it still happens today, right. Like, this is a weird technology. You know, the original denial and skepticism was, I couldn’t see where this was going. It didn’t seem like a miracle because, you know, of course computers can complete code for you. Like, what else are they supposed to do? Of course, computers can give you answers to questions and write fun things. So there’s difference of moving into a world of generative AI. I think a lot of people just thought that’s what computers could do. So it made the conversations a little weird. But even today, faced with these, you know, with very strong reasoner models that operate at the level of PhD students, I think a lot of people have issues with it, right.
    I mean, first of all, they seem intuitive to use, but they’re not always intuitive to use because the first use case that everyone puts AI to, it fails at because they use it like Google or some other use case. And then it’s genuinely upsetting in a lot of ways. I think, you know, I write in my book about the idea of three sleepless nights. That hasn’t changed. Like, you have to have an intellectual crisis to some extent, you know, and I think people do a lot to avoid having that existential angst of like, “Oh my god, what does it mean that a machine could think—apparently think—like a person?”
    So, I mean, I see resistance now. I saw resistance then. And then on top of all of that, there’s the fact that the curve of the technology is quite great. I mean, the price of GPT-4 level intelligence from, you know, when it was released has dropped 99.97% at this point, right.
    LEE: Yes. Mm-hmm.
    MOLLICK: I mean, I could run a GPT-4 class system basically on my phone. Microsoft’s releasing things that can almost run on like, you know, like it fits in almost no space, that are almost as good as the original GPT-4 models. I mean, I don’t think people have a sense of how fast the trajectory is moving either.
    LEE: Yeah, you know, there’s something that I think about often. There is this existential dread, or will this technology replace me? But I think the first people to feel that are researchers—people encountering this for the first time. You know, if you were working, let’s say, in Bayesian reasoning or in traditional, let’s say, Gaussian mixture model based, you know, speech recognition, you do get this feeling, Oh, my god, this technology has just solved the problem that I’ve dedicated my life to. And there is this really difficult period where you have to cope with that. And I think this is going to be spreading, you know, in more and more walks of life. And so this … at what point does that sort of sense of dread hit you, if ever?
    MOLLICK: I mean, you know, it’s not even dread as much as like, you know, Tyler Cowen wrote that it’s impossible to not feel a little bit of sadness as you use these AI systems, too. Because, like, I was talking to a friend, just as the most minor example, and his talent that he was very proud of was he was very good at writing limericks for birthday cards. He’d write these limericks. Everyone was always amused by them.And now, you know, GPT-4 and GPT-4.5, they made limericks obsolete. Like, anyone can write a good limerick, right. So this was a talent, and it was a little sad. Like, this thing that you cared about mattered.
    You know, as academics, we’re a little used to dead ends, right, and like, you know, some getting the lap. But the idea that entire fields are hitting that way. Like in medicine, there’s a lot of support systems that are now obsolete. And the question is how quickly you change that. In education, a lot of our techniques are obsolete.
    What do you do to change that? You know, it’s like the fact that this brute force technology is good enough to solve so many problems is weird, right. And it’s not just the end of, you know, of our research angles that matter, too. Like, for example, I ran this, you know, 14-person-plus, multimillion-dollar effort at Wharton to build these teaching simulations, and we’re very proud of them. It took years of work to build one.
    Now we’ve built a system that can build teaching simulations on demand by you talking to it with one team member. And, you know, you literally can create any simulation by having a discussion with the AI. I mean, you know, there’s a switch to a new form of excitement, but there is a little bit of like, this mattered to me, and, you know, now I have to change how I do things. I mean, adjustment happens. But if you haven’t had that displacement, I think that’s a good indicator that you haven’t really faced AI yet.
    LEE: Yeah, what’s so interesting just listening to you is you use words like sadness, and yet I can see the—and hear the—excitement in your voice and your body language. So, you know, that’s also kind of an interesting aspect of all of this. 
    MOLLICK: Yeah, I mean, I think there’s something on the other side, right. But, like, I can’t say that I haven’t had moments where like, ughhhh, but then there’s joy and basically like also, you know, freeing stuff up. I mean, I think about doctors or professors, right. These are jobs that bundle together lots of different tasks that you would never have put together, right. If you’re a doctor, you would never have expected the same person to be good at keeping up with the research and being a good diagnostician and being a good manager and being good with people and being good with hand skills.
    Like, who would ever want that kind of bundle? That’s not something you’re all good at, right. And a lot of our stress of our job comes from the fact that we suck at some of it. And so to the extent that AI steps in for that, you kind of feel bad about some of the stuff that it’s doing that you wanted to do. But it’s much more uplifting to be like, I don’t have to do this stuff I’m bad anymore, or I get the support to make myself good at it. And the stuff that I really care about, I can focus on more. Well, because we are at kind of a unique moment where whatever you’re best at, you’re still better than AI. And I think it’s an ongoing question about how long that lasts. But for right now, like you’re not going to say, OK, AI replaces me entirely in my job in medicine. It’s very unlikely.
    But you will say it replaces these 17 things I’m bad at, but I never liked that anyway. So it’s a period of both excitement and a little anxiety.
    LEE: Yeah, I’m going to want to get back to this question about in what ways AI may or may not replace doctors or some of what doctors and nurses and other clinicians do. But before that, let’s get into, I think, the real meat of this conversation. In previous episodes of this podcast, we talked to clinicians and healthcare administrators and technology developers that are very rapidly injecting AI today to do various forms of workforce automation, you know, automatically writing a clinical encounter note, automatically filling out a referral letter or request for prior authorization for some reimbursement to an insurance company.
    And so these sorts of things are intended not only to make things more efficient and lower costs but also to reduce various forms of drudgery, cognitive burden on frontline health workers. So how do you think about the impact of AI on that aspect of workforce, and, you know, what would you expect will happen over the next few years in terms of impact on efficiency and costs?
    MOLLICK: So I mean, this is a case where I think we’re facing the big bright problem in AI in a lot of ways, which is that this is … at the individual level, there’s lots of performance gains to be gained, right. The problem, though, is that we as individuals fit into systems, in medicine as much as anywhere else or more so, right. Which is that you could individually boost your performance, but it’s also about systems that fit along with this, right.
    So, you know, if you could automatically, you know, record an encounter, if you could automatically make notes, does that change what you should be expecting for notes or the value of those notes or what they’re for? How do we take what one person does and validate it across the organization and roll it out for everybody without making it a 10-year process that it feels like IT in medicine often is? Like, so we’re in this really interesting period where there’s incredible amounts of individual innovation in productivity and performance improvements in this field, like very high levels of it, but not necessarily seeing that same thing translate to organizational efficiency or gains.
    And one of my big concerns is seeing that happen. We’re seeing that in nonmedical problems, the same kind of thing, which is, you know, we’ve got research showing 20 and 40% performance improvements, like not uncommon to see those things. But then the organization doesn’t capture it; the system doesn’t capture it. Because the individuals are doing their own work and the systems don’t have the ability to, kind of, learn or adapt as a result.
    LEE: You know, where are those productivity gains going, then, when you get to the organizational level?
    MOLLICK: Well, they’re dying for a few reasons. One is, there’s a tendency for individual contributors to underestimate the power of management, right.
    Practices associated with good management increase happiness, decrease, you know, issues, increase success rates. In the same way, about 40%, as far as we can tell, of the US advantage over other companies, of US firms, has to do with management ability. Like, management is a big deal. Organizing is a big deal. Thinking about how you coordinate is a big deal.
    At the individual level, when things get stuck there, right, you can’t start bringing them up to how systems work together. It becomes, How do I deal with a doctor that has a 60% performance improvement? We really only have one thing in our playbook for doing that right now, which is, OK, we could fire 40% of the other doctors and still have a performance gain, which is not the answer you want to see happen.
    So because of that, people are hiding their use. They’re actually hiding their use for lots of reasons.
    And it’s a weird case because the people who are able to figure out best how to use these systems, for a lot of use cases, they’re actually clinicians themselves because they’re experimenting all the time. Like, they have to take those encounter notes. And if they figure out a better way to do it, they figure that out. You don’t want to wait for, you know, a med tech company to figure that out and then sell that back to you when it can be done by the physicians themselves.
    So we’re just not used to a period where everybody’s innovating and where the management structure isn’t in place to take advantage of that. And so we’re seeing things stalled at the individual level, and people are often, especially in risk-averse organizations or organizations where there’s lots of regulatory hurdles, people are so afraid of the regulatory piece that they don’t even bother trying to make change.
    LEE: If you are, you know, the leader of a hospital or a clinic or a whole health system, how should you approach this? You know, how should you be trying to extract positive success out of AI?
    MOLLICK: So I think that you need to embrace the right kind of risk, right. We don’t want to put risk on our patients … like, we don’t want to put uninformed risk. But innovation involves risk to how organizations operate. They involve change. So I think part of this is embracing the idea that R&D has to happen in organizations again.
    What’s happened over the last 20 years or so has been organizations giving that up. Partially, that’s a trend to focus on what you’re good at and not try and do this other stuff. Partially, it’s because it’s outsourced now to software companies that, like, Salesforce tells you how to organize your sales team. Workforce tells you how to organize your organization. Consultants come in and will tell you how to make change based on the average of what other people are doing in your field.
    So companies and organizations and hospital systems have all started to give up their ability to create their own organizational change. And when I talk to organizations, I often say they have to have two approaches. They have to think about the crowd and the lab.
    So the crowd is the idea of how to empower clinicians and administrators and supporter networks to start using AI and experimenting in ethical, legal ways and then sharing that information with each other. And the lab is, how are we doing R&D about the approach of how toAI to work, not just in direct patient care, right. But also fundamentally, like, what paperwork can you cut out? How can we better explain procedures? Like, what management role can this fill?
    And we need to be doing active experimentation on that. We can’t just wait for, you know, Microsoft to solve the problems. It has to be at the level of the organizations themselves.
    LEE: So let’s shift a little bit to the patient. You know, one of the things that we see, and I think everyone is seeing, is that people are turning to chatbots, like ChatGPT, actually to seek healthcare information for, you know, their own health or the health of their loved ones.
    And there was already, prior to all of this, a trend towards, let’s call it, consumerization of healthcare. So just in the business of healthcare delivery, do you think AI is going to hasten these kinds of trends, or from the consumer’s perspective, what … ?
    MOLLICK: I mean, absolutely, right. Like, all the early data that we have suggests that for most common medical problems, you should just consult AI, too, right. In fact, there is a real question to ask: at what point does it become unethical for doctors themselves to not ask for a second opinion from the AI because it’s cheap, right? You could overrule it or whatever you want, but like not asking seems foolish.
    I think the two places where there’s a burning almost, you know, moral imperative is … let’s say, you know, I’m in Philadelphia, I’m a professor, I have access to really good healthcare through the Hospital University of Pennsylvania system. I know doctors. You know, I’m lucky. I’m well connected. If, you know, something goes wrong, I have friends who I can talk to. I have specialists. I’m, you know, pretty well educated in this space.
    But for most people on the planet, they don’t have access to good medical care, they don’t have good health. It feels like it’s absolutely imperative to say when should you use AI and when not. Are there blind spots? What are those things?
    And I worry that, like, to me, that would be the crash project I’d be invoking because I’m doing the same thing in education, which is this system is not as good as being in a room with a great teacher who also uses AI to help you, but it’s better than not getting an, you know, to the level of education people get in many cases. Where should we be using it? How do we guide usage in the right way? Because the AI labs aren’t thinking about this. We have to.
    So, to me, there is a burning need here to understand this. And I worry that people will say, you know, everything that’s true—AI can hallucinate, AI can be biased. All of these things are absolutely true, but people are going to use it. The early indications are that it is quite useful. And unless we take the active role of saying, here’s when to use it, here’s when not to use it, we don’t have a right to say, don’t use this system. And I think, you know, we have to be exploring that.
    LEE: What do people need to understand about AI? And what should schools, universities, and so on be teaching?
    MOLLICK: Those are, kind of, two separate questions in lot of ways. I think a lot of people want to teach AI skills, and I will tell you, as somebody who works in this space a lot, there isn’t like an easy, sort of, AI skill, right. I could teach you prompt engineering in two to three classes, but every indication we have is that for most people under most circumstances, the value of prompting, you know, any one case is probably not that useful.
    A lot of the tricks are disappearing because the AI systems are just starting to use them themselves. So asking good questions, being a good manager, being a good thinker tend to be important, but like magic tricks around making, you know, the AI do something because you use the right phrase used to be something that was real but is rapidly disappearing.
    So I worry when people say teach AI skills. No one’s been able to articulate to me as somebody who knows AI very well and teaches classes on AI, what those AI skills that everyone should learn are, right.
    I mean, there’s value in learning a little bit how the models work. There’s a value in working with these systems. A lot of it’s just hands on keyboard kind of work. But, like, we don’t have an easy slam dunk “this is what you learn in the world of AI” because the systems are getting better, and as they get better, they get less sensitive to these prompting techniques. They get better prompting themselves. They solve problems spontaneously and start being agentic. So it’s a hard problem to ask about, like, what do you train someone on? I think getting people experience in hands-on-keyboards, getting them to … there’s like four things I could teach you about AI, and two of them are already starting to disappear.
    But, like, one is be direct. Like, tell the AI exactly what you want. That’s very helpful. Second, provide as much context as possible. That can include things like acting as a doctor, but also all the information you have. The third is give it step-by-step directions—that’s becoming less important. And the fourth is good and bad examples of the kind of output you want. Those four, that’s like, that’s it as far as the research telling you what to do, and the rest is building intuition.
    LEE: I’m really impressed that you didn’t give the answer, “Well, everyone should be teaching my book, Co-Intelligence.”MOLLICK: Oh, no, sorry! Everybody should be teaching my book Co-Intelligence. I apologize.LEE: It’s good to chuckle about that, but actually, I can’t think of a better book, like, if you were to assign a textbook in any professional education space, I think Co-Intelligence would be number one on my list. Are there other things that you think are essential reading?
    MOLLICK: That’s a really good question. I think that a lot of things are evolving very quickly. I happen to, kind of, hit a sweet spot with Co-Intelligence to some degree because I talk about how I used it, and I was, sort of, an advanced user of these systems.
    So, like, it’s, sort of, like my Twitter feed, my online newsletter. I’m just trying to, kind of, in some ways, it’s about trying to make people aware of what these systems can do by just showing a lot, right. Rather than picking one thing, and, like, this is a general-purpose technology. Let’s use it for this. And, like, everybody gets a light bulb for a different reason. So more than reading, it is using, you know, and that can be Copilot or whatever your favorite tool is.
    But using it. Voice modes help a lot. In terms of readings, I mean, I think that there is a couple of good guides to understanding AI that were originally blog posts. I think Tim Lee has one called Understanding AI, and it had a good overview …
    LEE: Yeah, that’s a great one.
    MOLLICK: … of that topic that I think explains how transformers work, which can give you some mental sense. I thinkKarpathyhas some really nice videos of use that I would recommend.
    Like on the medical side, I think the book that you did, if you’re in medicine, you should read that. I think that that’s very valuable. But like all we can offer are hints in some ways. Like there isn’t … if you’re looking for the instruction manual, I think it can be very frustrating because it’s like you want the best practices and procedures laid out, and we cannot do that, right. That’s not how a system like this works.
    LEE: Yeah.
    MOLLICK: It’s not a person, but thinking about it like a person can be helpful, right.
    LEE: One of the things that has been sort of a fun project for me for the last few years is I have been a founding board member of a new medical school at Kaiser Permanente. And, you know, that medical school curriculum is being formed in this era. But it’s been perplexing to understand, you know, what this means for a medical school curriculum. And maybe even more perplexing for me, at least, is the accrediting bodies, which are extremely important in US medical schools; how accreditors should think about what’s necessary here.
    Besides the things that you’ve … the, kind of, four key ideas you mentioned, if you were talking to the board of directors of the LCMEaccrediting body, what’s the one thing you would want them to really internalize?
    MOLLICK: This is both a fast-moving and vital area. This can’t be viewed like a usual change, which, “Let’s see how this works.” Because it’s, like, the things that make medical technologies hard to do, which is like unclear results, limited, you know, expensive use cases where it rolls out slowly. So one or two, you know, advanced medical facilities get access to, you know, proton beams or something else at multi-billion dollars of cost, and that takes a while to diffuse out. That’s not happening here. This is all happening at the same time, all at once. This is now … AI is part of medicine.
    I mean, there’s a minor point that I’d make that actually is a really important one, which is large language models, generative AI overall, work incredibly differently than other forms of AI. So the other worry I have with some of these accreditors is they blend together algorithmic forms of AI, which medicine has been trying for long time—decision support, algorithmic methods, like, medicine more so than other places has been thinking about those issues. Generative AI, even though it uses the same underlying techniques, is a completely different beast.
    So, like, even just take the most simple thing of algorithmic aversion, which is a well-understood problem in medicine, right. Which is, so you have a tool that could tell you as a radiologist, you know, the chance of this being cancer; you don’t like it, you overrule it, right.
    We don’t find algorithmic aversion happening with LLMs in the same way. People actually enjoy using them because it’s more like working with a person. The flaws are different. The approach is different. So you need to both view this as universal applicable today, which makes it urgent, but also as something that is not the same as your other form of AI, and your AI working group that is thinking about how to solve this problem is not the right people here.
    LEE: You know, I think the world has been trained because of the magic of web search to view computers as question-answering machines. Ask a question, get an answer.
    MOLLICK: Yes. Yes.
    LEE: Write a query, get results. And as I have interacted with medical professionals, you can see that medical professionals have that model of a machine in mind. And I think that’s partly, I think psychologically, why hallucination is so alarming. Because you have a mental model of a computer as a machine that has absolutely rock-solid perfect memory recall.
    But the thing that was so powerful in Co-Intelligence, and we tried to get at this in our book also, is that’s not the sweet spot. It’s this sort of deeper interaction, more of a collaboration. And I thought your use of the term Co-Intelligence really just even in the title of the book tried to capture this. When I think about education, it seems like that’s the first step, to get past this concept of a machine being just a question-answering machine. Do you have a reaction to that idea?
    MOLLICK: I think that’s very powerful. You know, we’ve been trained over so many years at both using computers but also in science fiction, right. Computers are about cold logic, right. They will give you the right answer, but if you ask it what love is, they explode, right. Like that’s the classic way you defeat the evil robot in Star Trek, right. “Love does not compute.”Instead, we have a system that makes mistakes, is warm, beats doctors in empathy in almost every controlled study on the subject, right. Like, absolutely can outwrite you in a sonnet but will absolutely struggle with giving you the right answer every time. And I think our mental models are just broken for this. And I think you’re absolutely right. And that’s part of what I thought your book does get at really well is, like, this is a different thing. It’s also generally applicable. Again, the model in your head should be kind of like a person even though it isn’t, right.
    There’s a lot of warnings and caveats to it, but if you start from person, smart person you’re talking to, your mental model will be more accurate than smart machine, even though both are flawed examples, right. So it will make mistakes; it will make errors. The question is, what do you trust it on? What do you not trust it? As you get to know a model, you’ll get to understand, like, I totally don’t trust it for this, but I absolutely trust it for that, right.
    LEE: All right. So we’re getting to the end of the time we have together. And so I’d just like to get now into something a little bit more provocative. And I get the question all the time. You know, will AI replace doctors? In medicine and other advanced knowledge work, project out five to 10 years. What do think happens?
    MOLLICK: OK, so first of all, let’s acknowledge systems change much more slowly than individual use. You know, doctors are not individual actors; they’re part of systems, right. So not just the system of a patient who like may or may not want to talk to a machine instead of a person but also legal systems and administrative systems and systems that allocate labor and systems that train people.
    So, like, it’s hard to imagine that in five to 10 years medicine being so upended that even if AI was better than doctors at every single thing doctors do, that we’d actually see as radical a change in medicine as you might in other fields. I think you will see faster changes happen in consulting and law and, you know, coding, other spaces than medicine.
    But I do think that there is good reason to suspect that AI will outperform people while still having flaws, right. That’s the difference. We’re already seeing that for common medical questions in enough randomized controlled trials that, you know, best doctors beat AI, but the AI beats the mean doctor, right. Like, that’s just something we should acknowledge is happening at this point.
    Now, will that work in your specialty? No. Will that work with all the contingent social knowledge that you have in your space? Probably not.
    Like, these are vignettes, right. But, like, that’s kind of where things are. So let’s assume, right … you’re asking two questions. One is, how good will AI get?
    LEE: Yeah.
    MOLLICK: And we don’t know the answer to that question. I will tell you that your colleagues at Microsoft and increasingly the labs, the AI labs themselves, are all saying they think they’ll have a machine smarter than a human at every intellectual task in the next two to three years. If that doesn’t happen, that makes it easier to assume the future, but let’s just assume that that’s the case. I think medicine starts to change with the idea that people feel obligated to use this to help for everything.
    Your patients will be using it, and it will be your advisor and helper at the beginning phases, right. And I think that I expect people to be better at empathy. I expect better bedside manner. I expect management tasks to become easier. I think administrative burden might lighten if we handle this right way or much worse if we handle it badly. Diagnostic accuracy will increase, right.
    And then there’s a set of discovery pieces happening, too, right. One of the core goals of all the AI companies is to accelerate medical research. How does that happen and how does that affect us is a, kind of, unknown question. So I think clinicians are in both the eye of the storm and surrounded by it, right. Like, they can resist AI use for longer than most other fields, but everything around them is going to be affected by it.
    LEE: Well, Ethan, this has been really a fantastic conversation. And, you know, I think in contrast to all the other conversations we’ve had, this one gives especially the leaders in healthcare, you know, people actually trying to lead their organizations into the future, whether it’s in education or in delivery, a lot to think about. So I really appreciate you joining.
    MOLLICK: Thank you.  
    I’m a computing researcher who works with people who are right in the middle of today’s bleeding-edge developments in AI. And because of that, I often lose sight of how to talk to a broader audience about what it’s all about. And so I think one of Ethan’s superpowers is that he has this knack for explaining complex topics in AI in a really accessible way, getting right to the most important points without making it so simple as to be useless. That’s why I rarely miss an opportunity to read up on his latest work.
    One of the first things I learned from Ethan is the intuition that you can, sort of, think of AI as a very knowledgeable intern. In other words, think of it as a persona that you can interact with, but you also need to be a manager for it and to always assess the work that it does.
    In our discussion, Ethan went further to stress that there is, because of that, a serious education gap. You know, over the last decade or two, we’ve all been trained, mainly by search engines, to think of computers as question-answering machines. In medicine, in fact, there’s a question-answering application that is really popular called UpToDate. Doctors use it all the time. But generative AI systems like ChatGPT are different. There’s therefore a challenge in how to break out of the old-fashioned mindset of search to get the full value out of generative AI.
    The other big takeaway for me was that Ethan pointed out while it’s easy to see productivity gains from AI at the individual level, those same gains, at least today, don’t often translate automatically to organization-wide or system-wide gains. And one, of course, has to conclude that it takes more than just making individuals more productive; the whole system also has to adjust to the realities of AI.
    Here’s now my interview with Azeem Azhar:
    LEE: Azeem, welcome.
    AZEEM AZHAR: Peter, thank you so much for having me. 
    LEE: You know, I think you’re extremely well known in the world. But still, some of the listeners of this podcast series might not have encountered you before.
    And so one of the ways I like to ask people to introduce themselves is, how do you explain to your parents what you do every day?
    AZHAR: Well, I’m very lucky in that way because my mother was the person who got me into computers more than 40 years ago. And I still have that first computer, a ZX81 with a Z80 chip …
    LEE: Oh wow.
    AZHAR: … to this day. It sits in my study, all seven and a half thousand transistors and Bakelite plastic that it is. And my parents were both economists, and economics is deeply connected with technology in some sense. And I grew up in the late ’70s and the early ’80s. And that was a time of tremendous optimism around technology. It was space opera, science fiction, robots, and of course, the personal computer and, you know, Bill Gates and Steve Jobs. So that’s where I started.
    And so, in a way, my mother and my dad, who passed away a few years ago, had always known me as someone who was fiddling with computers but also thinking about economics and society. And so, in a way, it’s easier to explain to them because they’re the ones who nurtured the environment that allowed me to research technology and AI and think about what it means to firms and to the economy at large.
    LEE: I always like to understand the origin story. And what I mean by that is, you know, what was your first encounter with generative AI? And what was that like? What did you go through?
    AZHAR: The first real moment was when Midjourney and Stable Diffusion emerged in that summer of 2022. I’d been away on vacation, and I came back—and I’d been off grid, in fact—and the world had really changed.
    Now, I’d been aware of GPT-3 and GPT-2, which I played around with and with BERT, the original transformer paper about seven or eight years ago, but it was the moment where I could talk to my computer, and it could produce these images, and it could be refined in natural language that really made me think we’ve crossed into a new domain. We’ve gone from AI being highly discriminative to AI that’s able to explore the world in particular ways. And then it was a few months later that ChatGPT came out—November, the 30th.
    And I think it was the next day or the day after that I said to my team, everyone has to use this, and we have to meet every morning and discuss how we experimented the day before. And we did that for three or four months. And, you know, it was really clear to me in that interface at that point that, you know, we’d absolutely pass some kind of threshold.
    LEE: And who’s the we that you were experimenting with?
    AZHAR: So I have a team of four who support me. They’re mostly researchers of different types. I mean, it’s almost like one of those jokes. You know, I have a sociologist, an economist, and an astrophysicist. And, you know, they walk into the bar,or they walk into our virtual team room, and we try to solve problems.
    LEE: Well, so let’s get now into brass tacks here. And I think I want to start maybe just with an exploration of the economics of all this and economic realities. Because I think in a lot of your work—for example, in your book—you look pretty deeply at how automation generally and AI specifically are transforming certain sectors like finance, manufacturing, and you have a really, kind of, insightful focus on what this means for productivity and which ways, you know, efficiencies are found.  
    And then you, sort of, balance that with risks, things that can and do go wrong. And so as you take that background and looking at all those other sectors, in what ways are the same patterns playing out or likely to play out in healthcare and medicine?
    AZHAR: I’m sure we will see really remarkable parallels but also new things going on. I mean, medicine has a particular quality compared to other sectors in the sense that it’s highly regulated, market structure is very different country to country, and it’s an incredibly broad field. I mean, just think about taking a Tylenol and going through laparoscopic surgery. Having an MRI and seeing a physio. I mean, this is all medicine. I mean, it’s hard to imagine a sector that ismore broad than that.
    So I think we can start to break it down, and, you know, where we’re seeing things with generative AI will be that the, sort of, softest entry point, which is the medical scribing. And I’m sure many of us have been with clinicians who have a medical scribe running alongside—they’re all on Surface Pros I noticed, right?They’re on the tablet computers, and they’re scribing away.
    And what that’s doing is, in the words of my friend Eric Topol, it’s giving the clinician time back, right. They have time back from days that are extremely busy and, you know, full of administrative overload. So I think you can obviously do a great deal with reducing that overload.
    And within my team, we have a view, which is if you do something five times in a week, you should be writing an automation for it. And if you’re a doctor, you’re probably reviewing your notes, writing the prescriptions, and so on several times a day. So those are things that can clearly be automated, and the human can be in the loop. But I think there are so many other ways just within the clinic that things can help.
    So, one of my friends, my friend from my junior school—I’ve known him since I was 9—is an oncologist who’s also deeply into machine learning, and he’s in Cambridge in the UK. And he built with Microsoft Research a suite of imaging AI tools from his own discipline, which they then open sourced.
    So that’s another way that you have an impact, which is that you actually enable the, you know, generalist, specialist, polymath, whatever they are in health systems to be able to get this technology, to tune it to their requirements, to use it, to encourage some grassroots adoption in a system that’s often been very, very heavily centralized.
    LEE: Yeah.
    AZHAR: And then I think there are some other things that are going on that I find really, really exciting. So one is the consumerization of healthcare. So I have one of those sleep tracking rings, the Oura.
    LEE: Yup.
    AZHAR: That is building a data stream that we’ll be able to apply more and more AI to. I mean, right now, it’s applying traditional, I suspect, machine learning, but you can imagine that as we start to get more data, we start to get more used to measuring ourselves, we create this sort of pot, a personal asset that we can turn AI to.
    And there’s still another category. And that other category is one of the completely novel ways in which we can enable patient care and patient pathway. And there’s a fantastic startup in the UK called Neko Health, which, I mean, does physicals, MRI scans, and blood tests, and so on.
    It’s hard to imagine Neko existing without the sort of advanced data, machine learning, AI that we’ve seen emerge over the last decade. So, I mean, I think that there are so many ways in which the temperature is slowly being turned up to encourage a phase change within the healthcare sector.
    And last but not least, I do think that these tools can also be very, very supportive of a clinician’s life cycle. I think we, as patients, we’re a bit …  I don’t know if we’re as grateful as we should be for our clinicians who are putting in 90-hour weeks.But you can imagine a world where AI is able to support not just the clinicians’ workload but also their sense of stress, their sense of burnout.
    So just in those five areas, Peter, I sort of imagine we could start to fundamentally transform over the course of many years, of course, the way in which people think about their health and their interactions with healthcare systems
    LEE: I love how you break that down. And I want to press on a couple of things.
    You also touched on the fact that medicine is, at least in most of the world, is a highly regulated industry. I guess finance is the same way, but they also feel different because the, like, finance sector has to be very responsive to consumers, and consumers are sensitive to, you know, an abundance of choice; they are sensitive to price. Is there something unique about medicine besides being regulated?
    AZHAR: I mean, there absolutely is. And in finance, as well, you have much clearer end states. So if you’re not in the consumer space, but you’re in the, you know, asset management space, you have to essentially deliver returns against the volatility or risk boundary, right. That’s what you have to go out and do. And I think if you’re in the consumer industry, you can come back to very, very clear measures, net promoter score being a very good example.
    In the case of medicine and healthcare, it is much more complicated because as far as the clinician is concerned, people are individuals, and we have our own parts and our own responses. If we didn’t, there would never be a need for a differential diagnosis. There’d never be a need for, you know, Let’s try azithromycin first, and then if that doesn’t work, we’ll go to vancomycin, or, you know, whatever it happens to be. You would just know. But ultimately, you know, people are quite different. The symptoms that they’re showing are quite different, and also their compliance is really, really different.
    I had a back problem that had to be dealt with by, you know, a physio and extremely boring exercises four times a week, but I was ruthless in complying, and my physio was incredibly surprised. He’d say well no one ever does this, and I said, well you know the thing is that I kind of just want to get this thing to go away.
    LEE: Yeah.
    AZHAR: And I think that that’s why medicine is and healthcare is so different and more complex. But I also think that’s why AI can be really, really helpful. I mean, we didn’t talk about, you know, AI in its ability to potentially do this, which is to extend the clinician’s presence throughout the week.
    LEE: Right. Yeah.
    AZHAR: The idea that maybe some part of what the clinician would do if you could talk to them on Wednesday, Thursday, and Friday could be delivered through an app or a chatbot just as a way of encouraging the compliance, which is often, especially with older patients, one reason why conditions, you know, linger on for longer.
    LEE: You know, just staying on the regulatory thing, as I’ve thought about this, the one regulated sector that I think seems to have some parallels to healthcare is energy delivery, energy distribution.
    Because like healthcare, as a consumer, I don’t have choice in who delivers electricity to my house. And even though I care about it being cheap or at least not being overcharged, I don’t have an abundance of choice. I can’t do price comparisons.
    And there’s something about that, just speaking as a consumer of both energy and a consumer of healthcare, that feels similar. Whereas other regulated industries, you know, somehow, as a consumer, I feel like I have a lot more direct influence and power. Does that make any sense to someone, you know, like you, who’s really much more expert in how economic systems work?
    AZHAR: I mean, in a sense, one part of that is very, very true. You have a limited panel of energy providers you can go to, and in the US, there may be places where you have no choice.
    I think the area where it’s slightly different is that as a consumer or a patient, you can actually make meaningful choices and changes yourself using these technologies, and people used to joke about you know asking Dr. Google. But Dr. Google is not terrible, particularly if you go to WebMD. And, you know, when I look at long-range change, many of the regulations that exist around healthcare delivery were formed at a point before people had access to good quality information at the touch of their fingertips or when educational levels in general were much, much lower. And many regulations existed because of the incumbent power of particular professional sectors.
    I’ll give you an example from the United Kingdom. So I have had asthma all of my life. That means I’ve been taking my inhaler, Ventolin, and maybe a steroid inhaler for nearly 50 years. That means that I know … actually, I’ve got more experience, and I—in some sense—know more about it than a general practitioner.
    LEE: Yeah.
    AZHAR: And until a few years ago, I would have to go to a general practitioner to get this drug that I’ve been taking for five decades, and there they are, age 30 or whatever it is. And a few years ago, the regulations changed. And now pharmacies can … or pharmacists can prescribe those types of drugs under certain conditions directly.
    LEE: Right.
    AZHAR: That was not to do with technology. That was to do with incumbent lock-in. So when we look at the medical industry, the healthcare space, there are some parallels with energy, but there are a few little things that the ability that the consumer has to put in some effort to learn about their condition, but also the fact that some of the regulations that exist just exist because certain professions are powerful.
    LEE: Yeah, one last question while we’re still on economics. There seems to be a conundrum about productivity and efficiency in healthcare delivery because I’ve never encountered a doctor or a nurse that wants to be able to handle even more patients than they’re doing on a daily basis.
    And so, you know, if productivity means simply, well, your rounds can now handle 16 patients instead of eight patients, that doesn’t seem necessarily to be a desirable thing. So how can we or should we be thinking about efficiency and productivity since obviously costs are, in most of the developed world, are a huge, huge problem?
    AZHAR: Yes, and when you described doubling the number of patients on the round, I imagined you buying them all roller skates so they could just whizz aroundthe hospital faster and faster than ever before.
    We can learn from what happened with the introduction of electricity. Electricity emerged at the end of the 19th century, around the same time that cars were emerging as a product, and car makers were very small and very artisanal. And in the early 1900s, some really smart car makers figured out that electricity was going to be important. And they bought into this technology by putting pendant lights in their workshops so they could “visit more patients.” Right?
    LEE: Yeah, yeah.
    AZHAR: They could effectively spend more hours working, and that was a productivity enhancement, and it was noticeable. But, of course, electricity fundamentally changed the productivity by orders of magnitude of people who made cars starting with Henry Ford because he was able to reorganize his factories around the electrical delivery of power and to therefore have the moving assembly line, which 10xed the productivity of that system.
    So when we think about how AI will affect the clinician, the nurse, the doctor, it’s much easier for us to imagine it as the pendant light that just has them working later …
    LEE: Right.
    AZHAR: … than it is to imagine a reconceptualization of the relationship between the clinician and the people they care for.
    And I’m not sure. I don’t think anybody knows what that looks like. But, you know, I do think that there will be a way that this changes, and you can see that scale out factor. And it may be, Peter, that what we end up doing is we end up saying, OK, because we have these brilliant AIs, there’s a lower level of training and cost and expense that’s required for a broader range of conditions that need treating. And that expands the market, right. That expands the market hugely. It’s what has happened in the market for taxis or ride sharing. The introduction of Uber and the GPS system …
    LEE: Yup.
    AZHAR: … has meant many more people now earn their living driving people around in their cars. And at least in London, you had to be reasonably highly trained to do that.
    So I can see a reorganization is possible. Of course, entrenched interests, the economic flow … and there are many entrenched interests, particularly in the US between the health systems and the, you know, professional bodies that might slow things down. But I think a reimagining is possible.
    And if I may, I’ll give you one example of that, which is, if you go to countries outside of the US where there are many more sick people per doctor, they have incentives to change the way they deliver their healthcare. And well before there was AI of this quality around, there was a few cases of health systems in India—Aravind Eye Carewas one, and Narayana Hrudayalayawas another. And in the latter, they were a cardiac care unit where you couldn’t get enough heart surgeons.
    LEE: Yeah, yep.
    AZHAR: So specially trained nurses would operate under the supervision of a single surgeon who would supervise many in parallel. So there are ways of increasing the quality of care, reducing the cost, but it does require a systems change. And we can’t expect a single bright algorithm to do it on its own.
    LEE: Yeah, really, really interesting. So now let’s get into regulation. And let me start with this question. You know, there are several startup companies I’m aware of that are pushing on, I think, a near-term future possibility that a medical AI for consumer might be allowed, say, to prescribe a medication for you, something that would normally require a doctor or a pharmacist, you know, that is certified in some way, licensed to do. Do you think we’ll get to a point where for certain regulated activities, humans are more or less cut out of the loop?
    AZHAR: Well, humans would have been in the loop because they would have provided the training data, they would have done the oversight, the quality control. But to your question in general, would we delegate an important decision entirely to a tested set of algorithms? I’m sure we will. We already do that. I delegate less important decisions like, What time should I leave for the airport to Waze. I delegate more important decisions to the automated braking in my car. We will do this at certain levels of risk and threshold.
    If I come back to my example of prescribing Ventolin. It’s really unclear to me that the prescription of Ventolin, this incredibly benign bronchodilator that is only used by people who’ve been through the asthma process, needs to be prescribed by someone who’s gone through 10 years or 12 years of medical training. And why that couldn’t be prescribed by an algorithm or an AI system.
    LEE: Right. Yep. Yep.
    AZHAR: So, you know, I absolutely think that that will be the case and could be the case. I can’t really see what the objections are. And the real issue is where do you draw the line of where you say, “Listen, this is too important,” or “The cost is too great,” or “The side effects are too high,” and therefore this is a point at which we want to have some, you know, human taking personal responsibility, having a liability framework in place, having a sense that there is a person with legal agency who signed off on this decision. And that line I suspect will start fairly low, and what we’d expect to see would be that that would rise progressively over time.
    LEE: What you just said, that scenario of your personal asthma medication, is really interesting because your personal AI might have the benefit of 50 years of your own experience with that medication. So, in a way, there is at least the data potential for, let’s say, the next prescription to be more personalized and more tailored specifically for you.
    AZHAR: Yes. Well, let’s dig into this because I think this is super interesting, and we can look at how things have changed. So 15 years ago, if I had a bad asthma attack, which I might have once a year, I would have needed to go and see my general physician.
    In the UK, it’s very difficult to get an appointment. I would have had to see someone privately who didn’t know me at all because I’ve just walked in off the street, and I would explain my situation. It would take me half a day. Productivity lost. I’ve been miserable for a couple of days with severe wheezing. Then a few years ago the system changed, a protocol changed, and now I have a thing called a rescue pack, which includes prednisolone steroids. It includes something else I’ve just forgotten, and an antibiotic in case I get an upper respiratory tract infection, and I have an “algorithm.” It’s called a protocol. It’s printed out. It’s a flowchart
    I answer various questions, and then I say, “I’m going to prescribe this to myself.” You know, UK doctors don’t prescribe prednisolone, or prednisone as you may call it in the US, at the drop of a hat, right. It’s a powerful steroid. I can self-administer, and I can now get that repeat prescription without seeing a physician a couple of times a year. And the algorithm, the “AI” is, it’s obviously been done in PowerPoint naturally, and it’s a bunch of arrows.Surely, surely, an AI system is going to be more sophisticated, more nuanced, and give me more assurance that I’m making the right decision around something like that.
    LEE: Yeah. Well, at a minimum, the AI should be able to make that PowerPoint the next time.AZHAR: Yeah, yeah. Thank god for Clippy. Yes.
    LEE: So, you know, I think in our book, we had a lot of certainty about most of the things we’ve discussed here, but one chapter where I felt we really sort of ran out of ideas, frankly, was on regulation. And, you know, what we ended up doing for that chapter is … I can’t remember if it was Carey’s or Zak’s idea, but we asked GPT-4 to have a conversation, a debate with itself, about regulation. And we made some minor commentary on that.
    And really, I think we took that approach because we just didn’t have much to offer. By the way, in our defense, I don’t think anyone else had any better ideas anyway.
    AZHAR: Right.
    LEE: And so now two years later, do we have better ideas about the need for regulation, the frameworks around which those regulations should be developed, and, you know, what should this look like?
    AZHAR: So regulation is going to be in some cases very helpful because it provides certainty for the clinician that they’re doing the right thing, that they are still insured for what they’re doing, and it provides some degree of confidence for the patient. And we need to make sure that the claims that are made stand up to quite rigorous levels, where ideally there are RCTs, and there are the classic set of processes you go through.
    You do also want to be able to experiment, and so the question is: as a regulator, how can you enable conditions for there to be experimentation? And what is experimentation? Experimentation is learning so that every element of the system can learn from this experience.
    So finding that space where there can be bit of experimentation, I think, becomes very, very important. And a lot of this is about experience, so I think the first digital therapeutics have received FDA approval, which means there are now people within the FDA who understand how you go about running an approvals process for that, and what that ends up looking like—and of course what we’re very good at doing in this sort of modern hyper-connected world—is we can share that expertise, that knowledge, that experience very, very quickly.
    So you go from one approval a year to a hundred approvals a year to a thousand approvals a year. So we will then actually, I suspect, need to think about what is it to approve digital therapeutics because, unlike big biological molecules, we can generate these digital therapeutics at the rate of knots.
    LEE: Yes.
    AZHAR: Every road in Hayes Valley in San Francisco, right, is churning out new startups who will want to do things like this. So then, I think about, what does it mean to get approved if indeed it gets approved? But we can also go really far with things that don’t require approval.
    I come back to my sleep tracking ring. So I’ve been wearing this for a few years, and when I go and see my doctor or I have my annual checkup, one of the first things that he asks is how have I been sleeping. And in fact, I even sync my sleep tracking data to their medical record system, so he’s saying … hearing what I’m saying, but he’s actually pulling up the real data going, This patient’s lying to me again. Of course, I’m very truthful with my doctor, as we should all be.LEE: You know, actually, that brings up a point that consumer-facing health AI has to deal with pop science, bad science, you know, weird stuff that you hear on Reddit. And because one of the things that consumers want to know always is, you know, what’s the truth?
    AZHAR: Right.
    LEE: What can I rely on? And I think that somehow feels different than an AI that you actually put in the hands of, let’s say, a licensed practitioner. And so the regulatory issues seem very, very different for these two cases somehow.
    AZHAR: I agree, they’re very different. And I think for a lot of areas, you will want to build AI systems that are first and foremost for the clinician, even if they have patient extensions, that idea that the clinician can still be with a patient during the week.
    And you’ll do that anyway because you need the data, and you also need a little bit of a liability shield to have like a sensible person who’s been trained around that. And I think that’s going to be a very important pathway for many AI medical crossovers. We’re going to go through the clinician.
    LEE: Yeah.
    AZHAR: But I also do recognize what you say about the, kind of, kooky quackery that exists on Reddit. Although on Creatine, Reddit may yet prove to have been right.LEE: Yeah, that’s right. Yes, yeah, absolutely. Yeah.
    AZHAR: Sometimes it’s right. And I think that it serves a really good role as a field of extreme experimentation. So if you’re somebody who makes a continuous glucose monitor traditionally given to diabetics but now lots of people will wear them—and sports people will wear them—you probably gathered a lot of extreme tail distribution data by reading the Reddit/biohackers …
    LEE: Yes.
    AZHAR: … for the last few years, where people were doing things that you would never want them to really do with the CGM. And so I think we shouldn’t understate how important that petri dish can be for helping us learn what could happen next.
    LEE: Oh, I think it’s absolutely going to be essential and a bigger thing in the future. So I think I just want to close here then with one last question. And I always try to be a little bit provocative with this.
    And so as you look ahead to what doctors and nurses and patients might be doing two years from now, five years from now, 10 years from now, do you have any kind of firm predictions?
    AZHAR: I’m going to push the boat out, and I’m going to go further out than closer in.
    LEE: OK.AZHAR: As patients, we will have many, many more touch points and interaction with our biomarkers and our health. We’ll be reading how well we feel through an array of things. And some of them we’ll be wearing directly, like sleep trackers and watches.
    And so we’ll have a better sense of what’s happening in our lives. It’s like the moment you go from paper bank statements that arrive every month to being able to see your account in real time.
    LEE: Yes.
    AZHAR: And I suspect we’ll have … we’ll still have interactions with clinicians because societies that get richer see doctors more, societies that get older see doctors more, and we’re going to be doing both of those over the coming 10 years. But there will be a sense, I think, of continuous health engagement, not in an overbearing way, but just in a sense that we know it’s there, we can check in with it, it’s likely to be data that is compiled on our behalf somewhere centrally and delivered through a user experience that reinforces agency rather than anxiety.
    And we’re learning how to do that slowly. I don’t think the health apps on our phones and devices have yet quite got that right. And that could help us personalize problems before they arise, and again, I use my experience for things that I’ve tracked really, really well. And I know from my data and from how I’m feeling when I’m on the verge of one of those severe asthma attacks that hits me once a year, and I can take a little bit of preemptive measure, so I think that that will become progressively more common and that sense that we will know our baselines.
    I mean, when you think about being an athlete, which is something I think about, but I could never ever do,but what happens is you start with your detailed baselines, and that’s what your health coach looks at every three or four months. For most of us, we have no idea of our baselines. You we get our blood pressure measured once a year. We will have baselines, and that will help us on an ongoing basis to better understand and be in control of our health. And then if the product designers get it right, it will be done in a way that doesn’t feel invasive, but it’ll be done in a way that feels enabling. We’ll still be engaging with clinicians augmented by AI systems more and more because they will also have gone up the stack. They won’t be spending their time on just “take two Tylenol and have a lie down” type of engagements because that will be dealt with earlier on in the system. And so we will be there in a very, very different set of relationships. And they will feel that they have different ways of looking after our health.
    LEE: Azeem, it’s so comforting to hear such a wonderfully optimistic picture of the future of healthcare. And I actually agree with everything you’ve said.
    Let me just thank you again for joining this conversation. I think it’s been really fascinating. And I think somehow the systemic issues, the systemic issues that you tend to just see with such clarity, I think are going to be the most, kind of, profound drivers of change in the future. So thank you so much.
    AZHAR: Well, thank you, it’s been my pleasure, Peter, thank you.  
    I always think of Azeem as a systems thinker. He’s always able to take the experiences of new technologies at an individual level and then project out to what this could mean for whole organizations and whole societies.
    In our conversation, I felt that Azeem really connected some of what we learned in a previous episode—for example, from Chrissy Farr—on the evolving consumerization of healthcare to the broader workforce and economic impacts that we’ve heard about from Ethan Mollick.  
    Azeem’s personal story about managing his asthma was also a great example. You know, he imagines a future, as do I, where personal AI might assist and remember decades of personal experience with a condition like asthma and thereby know more than any human being could possibly know in a deeply personalized and effective way, leading to better care. Azeem’s relentless optimism about our AI future was also so heartening to hear.
    Both of these conversations leave me really optimistic about the future of AI in medicine. At the same time, it is pretty sobering to realize just how much we’ll all need to change in pretty fundamental and maybe even in radical ways. I think a big insight I got from these conversations is how we interact with machines is going to have to be altered not only at the individual level, but at the company level and maybe even at the societal level.
    Since my conversation with Ethan and Azeem, there have been some pretty important developments that speak directly to this. Just last week at Build, which is Microsoft’s yearly developer conference, we announced a slew of AI agent technologies. Our CEO, Satya Nadella, in fact, started his keynote by going online in a GitHub developer environment and then assigning a coding task to an AI agent, basically treating that AI as a full-fledged member of a development team. Other agents, for example, a meeting facilitator, a data analyst, a business researcher, travel agent, and more were also shown during the conference.
    But pertinent to healthcare specifically, what really blew me away was the demonstration of a healthcare orchestrator agent. And the specific thing here was in Stanford’s cancer treatment center, when they are trying to decide on potentially experimental treatments for cancer patients, they convene a meeting of experts. That is typically called a tumor board. And so this AI healthcare orchestrator agent actually participated as a full-fledged member of a tumor board meeting to help bring data together, make sure that the latest medical knowledge was brought to bear, and to assist in the decision-making around a patient’s cancer treatment. It was pretty amazing.A big thank-you again to Ethan and Azeem for sharing their knowledge and understanding of the dynamics between AI and society more broadly. And to our listeners, thank you for joining us. I’m really excited for the upcoming episodes, including discussions on medical students’ experiences with AI and AI’s influence on the operation of health systems and public health departments. We hope you’ll continue to tune in.
    Until next time.
    #what #ais #impact #individuals #means
    What AI’s impact on individuals means for the health workforce and industry
    Transcript     PETER LEE: “In American primary care, the missing workforce is stunning in magnitude, the shortfall estimated to reach up to 48,000 doctors within the next dozen years. China and other countries with aging populations can expect drastic shortfalls, as well. Just last month, I asked a respected colleague retiring from primary care who he would recommend as a replacement; he told me bluntly that, other than expensive concierge care practices, he could not think of anyone, even for himself. This mismatch between need and supply will only grow, and the US is far from alone among developed countries in facing it.”       This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.     The book passage I read at the top is from “Chapter 4: Trust but Verify,” which was written by Zak. You know, it’s no secret that in the US and elsewhere shortages in medical staff and the rise of clinician burnout are affecting the quality of patient care for the worse. In our book, we predicted that generative AI would be something that might help address these issues. So in this episode, we’ll delve into how individual performance gains that our previous guests have described might affect the healthcare workforce as a whole, and on the patient side, we’ll look into the influence of generative AI on the consumerization of healthcare. Now, since all of this consumes such a huge fraction of the overall economy, we’ll also get into what a general-purpose technology as disruptive as generative AI might mean in the context of labor markets and beyond.   To help us do that, I’m pleased to welcome Ethan Mollick and Azeem Azhar. Ethan Mollick is the Ralph J. Roberts Distinguished Faculty Scholar, a Rowan Fellow, and an associate professor at the Wharton School of the University of Pennsylvania. His research into the effects of AI on work, entrepreneurship, and education is applied by organizations around the world, leading him to be named one of Time magazine’s most influential people in AI for 2024. He’s also the author of the New York Times best-selling book Co-Intelligence. Azeem Azhar is an author, founder, investor, and one of the most thoughtful and influential voices on the interplay between disruptive emerging technologies and business and society. In his best-selling book, The Exponential Age, and in his highly regarded newsletter and podcast, Exponential View, he explores how technologies like AI are reshaping everything from healthcare to geopolitics. Ethan and Azeem are two leading thinkers on the ways that disruptive technologies—and especially AI—affect our work, our jobs, our business enterprises, and whole industries. As economists, they are trying to work out whether we are in the midst of an economic revolution as profound as the shift from an agrarian to an industrial society.Here is my interview with Ethan Mollick: LEE: Ethan, welcome. ETHAN MOLLICK: So happy to be here, thank you. LEE: I described you as a professor at Wharton, which I think most of the people who listen to this podcast series know of as an elite business school. So it might surprise some people that you study AI. And beyond that, you know, that I would seek you out to talk about AI in medicine.So to get started, how and why did it happen that you’ve become one of the leading experts on AI? MOLLICK: It’s actually an interesting story. I’ve been AI-adjacent my whole career. When I wasmy PhD at MIT, I worked with Marvin Minskyand the MITMedia Labs AI group. But I was never the technical AI guy. I was the person who was trying to explain AI to everybody else who didn’t understand it. And then I became very interested in, how do you train and teach? And AI was always a part of that. I was building games for teaching, teaching tools that were used in hospitals and elsewhere, simulations. So when LLMs burst into the scene, I had already been using them and had a good sense of what they could do. And between that and, kind of, being practically oriented and getting some of the first research projects underway, especially under education and AI and performance, I became sort of a go-to person in the field. And once you’re in a field where nobody knows what’s going on and we’re all making it up as we go along—I thought it’s funny that you led with the idea that you have a couple of months head start for GPT-4, right. Like that’s all we have at this point, is a few months’ head start.So being a few months ahead is good enough to be an expert at this point. Whether it should be or not is a different question. LEE: Well, if I understand correctly, leading AI companies like OpenAI, Anthropic, and others have now sought you out as someone who should get early access to really start to do early assessments and gauge early reactions. How has that been? MOLLICK: So, I mean, I think the bigger picture is less about me than about two things that tells us about the state of AI right now. One, nobody really knows what’s going on, right. So in a lot of ways, if it wasn’t for your work, Peter, like, I don’t think people would be thinking about medicine as much because these systems weren’t built for medicine. They weren’t built to change education. They weren’t built to write memos. They, like, they weren’t built to do any of these things. They weren’t really built to do anything in particular. It turns out they’re just good at many things. And to the extent that the labs work on them, they care about their coding ability above everything else and maybe math and science secondarily. They don’t think about the fact that it expresses high empathy. They don’t think about its accuracy and diagnosis or where it’s inaccurate. They don’t think about how it’s changing education forever. So one part of this is the fact that they go to my Twitter feed or ask me for advice is an indicator of where they are, too, which is they’re not thinking about this. And the fact that a few months’ head start continues to give you a lead tells you that we are at the very cutting edge. These labs aren’t sitting on projects for two years and then releasing them. Months after a project is complete or sooner, it’s out the door. Like, there’s very little delay. So we’re kind of all in the same boat here, which is a very unusual space for a new technology. LEE: And I, you know, explained that you’re at Wharton. Are you an odd fit as a faculty member at Wharton, or is this a trend now even in business schools that AI experts are becoming key members of the faculty? MOLLICK: I mean, it’s a little of both, right. It’s faculty, so everybody does everything. I’m a professor of innovation-entrepreneurship. I’ve launched startups before and working on that and education means I think about, how do organizations redesign themselves? How do they take advantage of these kinds of problems? So medicine’s always been very central to that, right. A lot of people in my MBA class have been MDs either switching, you know, careers or else looking to advance from being sort of individual contributors to running teams. So I don’t think that’s that bad a fit. But I also think this is general-purpose technology; it’s going to touch everything. The focus on this is medicine, but Microsoft does far more than medicine, right. It’s … there’s transformation happening in literally every field, in every country. This is a widespread effect. So I don’t think we should be surprised that business schools matter on this because we care about management. There’s a long tradition of management and medicine going together. There’s actually a great academic paper that shows that teaching hospitals that also have MBA programs associated with them have higher management scores and perform better. So I think that these are not as foreign concepts, especially as medicine continues to get more complicated. LEE: Yeah. Well, in fact, I want to dive a little deeper on these issues of management, of entrepreneurship, um, education. But before doing that, if I could just stay focused on you. There is always something interesting to hear from people about their first encounters with AI. And throughout this entire series, I’ve been doing that both pre-generative AI and post-generative AI. So you, sort of, hinted at the pre-generative AI. You were in Minsky’s lab. Can you say a little bit more about that early encounter? And then tell us about your first encounters with generative AI. MOLLICK: Yeah. Those are great questions. So first of all, when I was at the media lab, that was pre-the current boom in sort of, you know, even in the old-school machine learning kind of space. So there was a lot of potential directions to head in. While I was there, there were projects underway, for example, to record every interaction small children had. One of the professors was recording everything their baby interacted with in the hope that maybe that would give them a hint about how to build an AI system. There was a bunch of projects underway that were about labeling every concept and how they relate to other concepts. So, like, it was very much Wild West of, like, how do we make an AI work—which has been this repeated problem in AI, which is, what is this thing? The fact that it was just like brute force over the corpus of all human knowledge turns out to be a little bit of like a, you know, it’s a miracle and a little bit of a disappointment in some wayscompared to how elaborate some of this was. So, you know, I think that, that was sort of my first encounters in sort of the intellectual way. The generative AI encounters actually started with the original, sort of, GPT-3, or, you know, earlier versions. And it was actually game-based. So I played games like AI Dungeon. And as an educator, I realized, oh my gosh, this stuff could write essays at a fourth-grade level. That’s really going to change the way, like, middle school works, was my thinking at the time. And I was posting about that back in, you know, 2021 that this is a big deal. But I think everybody was taken surprise, including the AI companies themselves, by, you know, ChatGPT, by GPT-3.5. The difference in degree turned out to be a difference in kind. LEE: Yeah, you know, if I think back, even with GPT-3, and certainly this was the case with GPT-2, it was, at least, you know, from where I was sitting, it was hard to get people to really take this seriously and pay attention. MOLLICK: Yes. LEE: You know, it’s remarkable. Within Microsoft, I think a turning point was the use of GPT-3 to do code completions. And that was actually productized as GitHub Copilot, the very first version. That, I think, is where there was widespread belief. But, you know, in a way, I think there is, even for me early on, a sense of denial and skepticism. Did you have those initially at any point? MOLLICK: Yeah, I mean, it still happens today, right. Like, this is a weird technology. You know, the original denial and skepticism was, I couldn’t see where this was going. It didn’t seem like a miracle because, you know, of course computers can complete code for you. Like, what else are they supposed to do? Of course, computers can give you answers to questions and write fun things. So there’s difference of moving into a world of generative AI. I think a lot of people just thought that’s what computers could do. So it made the conversations a little weird. But even today, faced with these, you know, with very strong reasoner models that operate at the level of PhD students, I think a lot of people have issues with it, right. I mean, first of all, they seem intuitive to use, but they’re not always intuitive to use because the first use case that everyone puts AI to, it fails at because they use it like Google or some other use case. And then it’s genuinely upsetting in a lot of ways. I think, you know, I write in my book about the idea of three sleepless nights. That hasn’t changed. Like, you have to have an intellectual crisis to some extent, you know, and I think people do a lot to avoid having that existential angst of like, “Oh my god, what does it mean that a machine could think—apparently think—like a person?” So, I mean, I see resistance now. I saw resistance then. And then on top of all of that, there’s the fact that the curve of the technology is quite great. I mean, the price of GPT-4 level intelligence from, you know, when it was released has dropped 99.97% at this point, right. LEE: Yes. Mm-hmm. MOLLICK: I mean, I could run a GPT-4 class system basically on my phone. Microsoft’s releasing things that can almost run on like, you know, like it fits in almost no space, that are almost as good as the original GPT-4 models. I mean, I don’t think people have a sense of how fast the trajectory is moving either. LEE: Yeah, you know, there’s something that I think about often. There is this existential dread, or will this technology replace me? But I think the first people to feel that are researchers—people encountering this for the first time. You know, if you were working, let’s say, in Bayesian reasoning or in traditional, let’s say, Gaussian mixture model based, you know, speech recognition, you do get this feeling, Oh, my god, this technology has just solved the problem that I’ve dedicated my life to. And there is this really difficult period where you have to cope with that. And I think this is going to be spreading, you know, in more and more walks of life. And so this … at what point does that sort of sense of dread hit you, if ever? MOLLICK: I mean, you know, it’s not even dread as much as like, you know, Tyler Cowen wrote that it’s impossible to not feel a little bit of sadness as you use these AI systems, too. Because, like, I was talking to a friend, just as the most minor example, and his talent that he was very proud of was he was very good at writing limericks for birthday cards. He’d write these limericks. Everyone was always amused by them.And now, you know, GPT-4 and GPT-4.5, they made limericks obsolete. Like, anyone can write a good limerick, right. So this was a talent, and it was a little sad. Like, this thing that you cared about mattered. You know, as academics, we’re a little used to dead ends, right, and like, you know, some getting the lap. But the idea that entire fields are hitting that way. Like in medicine, there’s a lot of support systems that are now obsolete. And the question is how quickly you change that. In education, a lot of our techniques are obsolete. What do you do to change that? You know, it’s like the fact that this brute force technology is good enough to solve so many problems is weird, right. And it’s not just the end of, you know, of our research angles that matter, too. Like, for example, I ran this, you know, 14-person-plus, multimillion-dollar effort at Wharton to build these teaching simulations, and we’re very proud of them. It took years of work to build one. Now we’ve built a system that can build teaching simulations on demand by you talking to it with one team member. And, you know, you literally can create any simulation by having a discussion with the AI. I mean, you know, there’s a switch to a new form of excitement, but there is a little bit of like, this mattered to me, and, you know, now I have to change how I do things. I mean, adjustment happens. But if you haven’t had that displacement, I think that’s a good indicator that you haven’t really faced AI yet. LEE: Yeah, what’s so interesting just listening to you is you use words like sadness, and yet I can see the—and hear the—excitement in your voice and your body language. So, you know, that’s also kind of an interesting aspect of all of this.  MOLLICK: Yeah, I mean, I think there’s something on the other side, right. But, like, I can’t say that I haven’t had moments where like, ughhhh, but then there’s joy and basically like also, you know, freeing stuff up. I mean, I think about doctors or professors, right. These are jobs that bundle together lots of different tasks that you would never have put together, right. If you’re a doctor, you would never have expected the same person to be good at keeping up with the research and being a good diagnostician and being a good manager and being good with people and being good with hand skills. Like, who would ever want that kind of bundle? That’s not something you’re all good at, right. And a lot of our stress of our job comes from the fact that we suck at some of it. And so to the extent that AI steps in for that, you kind of feel bad about some of the stuff that it’s doing that you wanted to do. But it’s much more uplifting to be like, I don’t have to do this stuff I’m bad anymore, or I get the support to make myself good at it. And the stuff that I really care about, I can focus on more. Well, because we are at kind of a unique moment where whatever you’re best at, you’re still better than AI. And I think it’s an ongoing question about how long that lasts. But for right now, like you’re not going to say, OK, AI replaces me entirely in my job in medicine. It’s very unlikely. But you will say it replaces these 17 things I’m bad at, but I never liked that anyway. So it’s a period of both excitement and a little anxiety. LEE: Yeah, I’m going to want to get back to this question about in what ways AI may or may not replace doctors or some of what doctors and nurses and other clinicians do. But before that, let’s get into, I think, the real meat of this conversation. In previous episodes of this podcast, we talked to clinicians and healthcare administrators and technology developers that are very rapidly injecting AI today to do various forms of workforce automation, you know, automatically writing a clinical encounter note, automatically filling out a referral letter or request for prior authorization for some reimbursement to an insurance company. And so these sorts of things are intended not only to make things more efficient and lower costs but also to reduce various forms of drudgery, cognitive burden on frontline health workers. So how do you think about the impact of AI on that aspect of workforce, and, you know, what would you expect will happen over the next few years in terms of impact on efficiency and costs? MOLLICK: So I mean, this is a case where I think we’re facing the big bright problem in AI in a lot of ways, which is that this is … at the individual level, there’s lots of performance gains to be gained, right. The problem, though, is that we as individuals fit into systems, in medicine as much as anywhere else or more so, right. Which is that you could individually boost your performance, but it’s also about systems that fit along with this, right. So, you know, if you could automatically, you know, record an encounter, if you could automatically make notes, does that change what you should be expecting for notes or the value of those notes or what they’re for? How do we take what one person does and validate it across the organization and roll it out for everybody without making it a 10-year process that it feels like IT in medicine often is? Like, so we’re in this really interesting period where there’s incredible amounts of individual innovation in productivity and performance improvements in this field, like very high levels of it, but not necessarily seeing that same thing translate to organizational efficiency or gains. And one of my big concerns is seeing that happen. We’re seeing that in nonmedical problems, the same kind of thing, which is, you know, we’ve got research showing 20 and 40% performance improvements, like not uncommon to see those things. But then the organization doesn’t capture it; the system doesn’t capture it. Because the individuals are doing their own work and the systems don’t have the ability to, kind of, learn or adapt as a result. LEE: You know, where are those productivity gains going, then, when you get to the organizational level? MOLLICK: Well, they’re dying for a few reasons. One is, there’s a tendency for individual contributors to underestimate the power of management, right. Practices associated with good management increase happiness, decrease, you know, issues, increase success rates. In the same way, about 40%, as far as we can tell, of the US advantage over other companies, of US firms, has to do with management ability. Like, management is a big deal. Organizing is a big deal. Thinking about how you coordinate is a big deal. At the individual level, when things get stuck there, right, you can’t start bringing them up to how systems work together. It becomes, How do I deal with a doctor that has a 60% performance improvement? We really only have one thing in our playbook for doing that right now, which is, OK, we could fire 40% of the other doctors and still have a performance gain, which is not the answer you want to see happen. So because of that, people are hiding their use. They’re actually hiding their use for lots of reasons. And it’s a weird case because the people who are able to figure out best how to use these systems, for a lot of use cases, they’re actually clinicians themselves because they’re experimenting all the time. Like, they have to take those encounter notes. And if they figure out a better way to do it, they figure that out. You don’t want to wait for, you know, a med tech company to figure that out and then sell that back to you when it can be done by the physicians themselves. So we’re just not used to a period where everybody’s innovating and where the management structure isn’t in place to take advantage of that. And so we’re seeing things stalled at the individual level, and people are often, especially in risk-averse organizations or organizations where there’s lots of regulatory hurdles, people are so afraid of the regulatory piece that they don’t even bother trying to make change. LEE: If you are, you know, the leader of a hospital or a clinic or a whole health system, how should you approach this? You know, how should you be trying to extract positive success out of AI? MOLLICK: So I think that you need to embrace the right kind of risk, right. We don’t want to put risk on our patients … like, we don’t want to put uninformed risk. But innovation involves risk to how organizations operate. They involve change. So I think part of this is embracing the idea that R&D has to happen in organizations again. What’s happened over the last 20 years or so has been organizations giving that up. Partially, that’s a trend to focus on what you’re good at and not try and do this other stuff. Partially, it’s because it’s outsourced now to software companies that, like, Salesforce tells you how to organize your sales team. Workforce tells you how to organize your organization. Consultants come in and will tell you how to make change based on the average of what other people are doing in your field. So companies and organizations and hospital systems have all started to give up their ability to create their own organizational change. And when I talk to organizations, I often say they have to have two approaches. They have to think about the crowd and the lab. So the crowd is the idea of how to empower clinicians and administrators and supporter networks to start using AI and experimenting in ethical, legal ways and then sharing that information with each other. And the lab is, how are we doing R&D about the approach of how toAI to work, not just in direct patient care, right. But also fundamentally, like, what paperwork can you cut out? How can we better explain procedures? Like, what management role can this fill? And we need to be doing active experimentation on that. We can’t just wait for, you know, Microsoft to solve the problems. It has to be at the level of the organizations themselves. LEE: So let’s shift a little bit to the patient. You know, one of the things that we see, and I think everyone is seeing, is that people are turning to chatbots, like ChatGPT, actually to seek healthcare information for, you know, their own health or the health of their loved ones. And there was already, prior to all of this, a trend towards, let’s call it, consumerization of healthcare. So just in the business of healthcare delivery, do you think AI is going to hasten these kinds of trends, or from the consumer’s perspective, what … ? MOLLICK: I mean, absolutely, right. Like, all the early data that we have suggests that for most common medical problems, you should just consult AI, too, right. In fact, there is a real question to ask: at what point does it become unethical for doctors themselves to not ask for a second opinion from the AI because it’s cheap, right? You could overrule it or whatever you want, but like not asking seems foolish. I think the two places where there’s a burning almost, you know, moral imperative is … let’s say, you know, I’m in Philadelphia, I’m a professor, I have access to really good healthcare through the Hospital University of Pennsylvania system. I know doctors. You know, I’m lucky. I’m well connected. If, you know, something goes wrong, I have friends who I can talk to. I have specialists. I’m, you know, pretty well educated in this space. But for most people on the planet, they don’t have access to good medical care, they don’t have good health. It feels like it’s absolutely imperative to say when should you use AI and when not. Are there blind spots? What are those things? And I worry that, like, to me, that would be the crash project I’d be invoking because I’m doing the same thing in education, which is this system is not as good as being in a room with a great teacher who also uses AI to help you, but it’s better than not getting an, you know, to the level of education people get in many cases. Where should we be using it? How do we guide usage in the right way? Because the AI labs aren’t thinking about this. We have to. So, to me, there is a burning need here to understand this. And I worry that people will say, you know, everything that’s true—AI can hallucinate, AI can be biased. All of these things are absolutely true, but people are going to use it. The early indications are that it is quite useful. And unless we take the active role of saying, here’s when to use it, here’s when not to use it, we don’t have a right to say, don’t use this system. And I think, you know, we have to be exploring that. LEE: What do people need to understand about AI? And what should schools, universities, and so on be teaching? MOLLICK: Those are, kind of, two separate questions in lot of ways. I think a lot of people want to teach AI skills, and I will tell you, as somebody who works in this space a lot, there isn’t like an easy, sort of, AI skill, right. I could teach you prompt engineering in two to three classes, but every indication we have is that for most people under most circumstances, the value of prompting, you know, any one case is probably not that useful. A lot of the tricks are disappearing because the AI systems are just starting to use them themselves. So asking good questions, being a good manager, being a good thinker tend to be important, but like magic tricks around making, you know, the AI do something because you use the right phrase used to be something that was real but is rapidly disappearing. So I worry when people say teach AI skills. No one’s been able to articulate to me as somebody who knows AI very well and teaches classes on AI, what those AI skills that everyone should learn are, right. I mean, there’s value in learning a little bit how the models work. There’s a value in working with these systems. A lot of it’s just hands on keyboard kind of work. But, like, we don’t have an easy slam dunk “this is what you learn in the world of AI” because the systems are getting better, and as they get better, they get less sensitive to these prompting techniques. They get better prompting themselves. They solve problems spontaneously and start being agentic. So it’s a hard problem to ask about, like, what do you train someone on? I think getting people experience in hands-on-keyboards, getting them to … there’s like four things I could teach you about AI, and two of them are already starting to disappear. But, like, one is be direct. Like, tell the AI exactly what you want. That’s very helpful. Second, provide as much context as possible. That can include things like acting as a doctor, but also all the information you have. The third is give it step-by-step directions—that’s becoming less important. And the fourth is good and bad examples of the kind of output you want. Those four, that’s like, that’s it as far as the research telling you what to do, and the rest is building intuition. LEE: I’m really impressed that you didn’t give the answer, “Well, everyone should be teaching my book, Co-Intelligence.”MOLLICK: Oh, no, sorry! Everybody should be teaching my book Co-Intelligence. I apologize.LEE: It’s good to chuckle about that, but actually, I can’t think of a better book, like, if you were to assign a textbook in any professional education space, I think Co-Intelligence would be number one on my list. Are there other things that you think are essential reading? MOLLICK: That’s a really good question. I think that a lot of things are evolving very quickly. I happen to, kind of, hit a sweet spot with Co-Intelligence to some degree because I talk about how I used it, and I was, sort of, an advanced user of these systems. So, like, it’s, sort of, like my Twitter feed, my online newsletter. I’m just trying to, kind of, in some ways, it’s about trying to make people aware of what these systems can do by just showing a lot, right. Rather than picking one thing, and, like, this is a general-purpose technology. Let’s use it for this. And, like, everybody gets a light bulb for a different reason. So more than reading, it is using, you know, and that can be Copilot or whatever your favorite tool is. But using it. Voice modes help a lot. In terms of readings, I mean, I think that there is a couple of good guides to understanding AI that were originally blog posts. I think Tim Lee has one called Understanding AI, and it had a good overview … LEE: Yeah, that’s a great one. MOLLICK: … of that topic that I think explains how transformers work, which can give you some mental sense. I thinkKarpathyhas some really nice videos of use that I would recommend. Like on the medical side, I think the book that you did, if you’re in medicine, you should read that. I think that that’s very valuable. But like all we can offer are hints in some ways. Like there isn’t … if you’re looking for the instruction manual, I think it can be very frustrating because it’s like you want the best practices and procedures laid out, and we cannot do that, right. That’s not how a system like this works. LEE: Yeah. MOLLICK: It’s not a person, but thinking about it like a person can be helpful, right. LEE: One of the things that has been sort of a fun project for me for the last few years is I have been a founding board member of a new medical school at Kaiser Permanente. And, you know, that medical school curriculum is being formed in this era. But it’s been perplexing to understand, you know, what this means for a medical school curriculum. And maybe even more perplexing for me, at least, is the accrediting bodies, which are extremely important in US medical schools; how accreditors should think about what’s necessary here. Besides the things that you’ve … the, kind of, four key ideas you mentioned, if you were talking to the board of directors of the LCMEaccrediting body, what’s the one thing you would want them to really internalize? MOLLICK: This is both a fast-moving and vital area. This can’t be viewed like a usual change, which, “Let’s see how this works.” Because it’s, like, the things that make medical technologies hard to do, which is like unclear results, limited, you know, expensive use cases where it rolls out slowly. So one or two, you know, advanced medical facilities get access to, you know, proton beams or something else at multi-billion dollars of cost, and that takes a while to diffuse out. That’s not happening here. This is all happening at the same time, all at once. This is now … AI is part of medicine. I mean, there’s a minor point that I’d make that actually is a really important one, which is large language models, generative AI overall, work incredibly differently than other forms of AI. So the other worry I have with some of these accreditors is they blend together algorithmic forms of AI, which medicine has been trying for long time—decision support, algorithmic methods, like, medicine more so than other places has been thinking about those issues. Generative AI, even though it uses the same underlying techniques, is a completely different beast. So, like, even just take the most simple thing of algorithmic aversion, which is a well-understood problem in medicine, right. Which is, so you have a tool that could tell you as a radiologist, you know, the chance of this being cancer; you don’t like it, you overrule it, right. We don’t find algorithmic aversion happening with LLMs in the same way. People actually enjoy using them because it’s more like working with a person. The flaws are different. The approach is different. So you need to both view this as universal applicable today, which makes it urgent, but also as something that is not the same as your other form of AI, and your AI working group that is thinking about how to solve this problem is not the right people here. LEE: You know, I think the world has been trained because of the magic of web search to view computers as question-answering machines. Ask a question, get an answer. MOLLICK: Yes. Yes. LEE: Write a query, get results. And as I have interacted with medical professionals, you can see that medical professionals have that model of a machine in mind. And I think that’s partly, I think psychologically, why hallucination is so alarming. Because you have a mental model of a computer as a machine that has absolutely rock-solid perfect memory recall. But the thing that was so powerful in Co-Intelligence, and we tried to get at this in our book also, is that’s not the sweet spot. It’s this sort of deeper interaction, more of a collaboration. And I thought your use of the term Co-Intelligence really just even in the title of the book tried to capture this. When I think about education, it seems like that’s the first step, to get past this concept of a machine being just a question-answering machine. Do you have a reaction to that idea? MOLLICK: I think that’s very powerful. You know, we’ve been trained over so many years at both using computers but also in science fiction, right. Computers are about cold logic, right. They will give you the right answer, but if you ask it what love is, they explode, right. Like that’s the classic way you defeat the evil robot in Star Trek, right. “Love does not compute.”Instead, we have a system that makes mistakes, is warm, beats doctors in empathy in almost every controlled study on the subject, right. Like, absolutely can outwrite you in a sonnet but will absolutely struggle with giving you the right answer every time. And I think our mental models are just broken for this. And I think you’re absolutely right. And that’s part of what I thought your book does get at really well is, like, this is a different thing. It’s also generally applicable. Again, the model in your head should be kind of like a person even though it isn’t, right. There’s a lot of warnings and caveats to it, but if you start from person, smart person you’re talking to, your mental model will be more accurate than smart machine, even though both are flawed examples, right. So it will make mistakes; it will make errors. The question is, what do you trust it on? What do you not trust it? As you get to know a model, you’ll get to understand, like, I totally don’t trust it for this, but I absolutely trust it for that, right. LEE: All right. So we’re getting to the end of the time we have together. And so I’d just like to get now into something a little bit more provocative. And I get the question all the time. You know, will AI replace doctors? In medicine and other advanced knowledge work, project out five to 10 years. What do think happens? MOLLICK: OK, so first of all, let’s acknowledge systems change much more slowly than individual use. You know, doctors are not individual actors; they’re part of systems, right. So not just the system of a patient who like may or may not want to talk to a machine instead of a person but also legal systems and administrative systems and systems that allocate labor and systems that train people. So, like, it’s hard to imagine that in five to 10 years medicine being so upended that even if AI was better than doctors at every single thing doctors do, that we’d actually see as radical a change in medicine as you might in other fields. I think you will see faster changes happen in consulting and law and, you know, coding, other spaces than medicine. But I do think that there is good reason to suspect that AI will outperform people while still having flaws, right. That’s the difference. We’re already seeing that for common medical questions in enough randomized controlled trials that, you know, best doctors beat AI, but the AI beats the mean doctor, right. Like, that’s just something we should acknowledge is happening at this point. Now, will that work in your specialty? No. Will that work with all the contingent social knowledge that you have in your space? Probably not. Like, these are vignettes, right. But, like, that’s kind of where things are. So let’s assume, right … you’re asking two questions. One is, how good will AI get? LEE: Yeah. MOLLICK: And we don’t know the answer to that question. I will tell you that your colleagues at Microsoft and increasingly the labs, the AI labs themselves, are all saying they think they’ll have a machine smarter than a human at every intellectual task in the next two to three years. If that doesn’t happen, that makes it easier to assume the future, but let’s just assume that that’s the case. I think medicine starts to change with the idea that people feel obligated to use this to help for everything. Your patients will be using it, and it will be your advisor and helper at the beginning phases, right. And I think that I expect people to be better at empathy. I expect better bedside manner. I expect management tasks to become easier. I think administrative burden might lighten if we handle this right way or much worse if we handle it badly. Diagnostic accuracy will increase, right. And then there’s a set of discovery pieces happening, too, right. One of the core goals of all the AI companies is to accelerate medical research. How does that happen and how does that affect us is a, kind of, unknown question. So I think clinicians are in both the eye of the storm and surrounded by it, right. Like, they can resist AI use for longer than most other fields, but everything around them is going to be affected by it. LEE: Well, Ethan, this has been really a fantastic conversation. And, you know, I think in contrast to all the other conversations we’ve had, this one gives especially the leaders in healthcare, you know, people actually trying to lead their organizations into the future, whether it’s in education or in delivery, a lot to think about. So I really appreciate you joining. MOLLICK: Thank you.   I’m a computing researcher who works with people who are right in the middle of today’s bleeding-edge developments in AI. And because of that, I often lose sight of how to talk to a broader audience about what it’s all about. And so I think one of Ethan’s superpowers is that he has this knack for explaining complex topics in AI in a really accessible way, getting right to the most important points without making it so simple as to be useless. That’s why I rarely miss an opportunity to read up on his latest work. One of the first things I learned from Ethan is the intuition that you can, sort of, think of AI as a very knowledgeable intern. In other words, think of it as a persona that you can interact with, but you also need to be a manager for it and to always assess the work that it does. In our discussion, Ethan went further to stress that there is, because of that, a serious education gap. You know, over the last decade or two, we’ve all been trained, mainly by search engines, to think of computers as question-answering machines. In medicine, in fact, there’s a question-answering application that is really popular called UpToDate. Doctors use it all the time. But generative AI systems like ChatGPT are different. There’s therefore a challenge in how to break out of the old-fashioned mindset of search to get the full value out of generative AI. The other big takeaway for me was that Ethan pointed out while it’s easy to see productivity gains from AI at the individual level, those same gains, at least today, don’t often translate automatically to organization-wide or system-wide gains. And one, of course, has to conclude that it takes more than just making individuals more productive; the whole system also has to adjust to the realities of AI. Here’s now my interview with Azeem Azhar: LEE: Azeem, welcome. AZEEM AZHAR: Peter, thank you so much for having me.  LEE: You know, I think you’re extremely well known in the world. But still, some of the listeners of this podcast series might not have encountered you before. And so one of the ways I like to ask people to introduce themselves is, how do you explain to your parents what you do every day? AZHAR: Well, I’m very lucky in that way because my mother was the person who got me into computers more than 40 years ago. And I still have that first computer, a ZX81 with a Z80 chip … LEE: Oh wow. AZHAR: … to this day. It sits in my study, all seven and a half thousand transistors and Bakelite plastic that it is. And my parents were both economists, and economics is deeply connected with technology in some sense. And I grew up in the late ’70s and the early ’80s. And that was a time of tremendous optimism around technology. It was space opera, science fiction, robots, and of course, the personal computer and, you know, Bill Gates and Steve Jobs. So that’s where I started. And so, in a way, my mother and my dad, who passed away a few years ago, had always known me as someone who was fiddling with computers but also thinking about economics and society. And so, in a way, it’s easier to explain to them because they’re the ones who nurtured the environment that allowed me to research technology and AI and think about what it means to firms and to the economy at large. LEE: I always like to understand the origin story. And what I mean by that is, you know, what was your first encounter with generative AI? And what was that like? What did you go through? AZHAR: The first real moment was when Midjourney and Stable Diffusion emerged in that summer of 2022. I’d been away on vacation, and I came back—and I’d been off grid, in fact—and the world had really changed. Now, I’d been aware of GPT-3 and GPT-2, which I played around with and with BERT, the original transformer paper about seven or eight years ago, but it was the moment where I could talk to my computer, and it could produce these images, and it could be refined in natural language that really made me think we’ve crossed into a new domain. We’ve gone from AI being highly discriminative to AI that’s able to explore the world in particular ways. And then it was a few months later that ChatGPT came out—November, the 30th. And I think it was the next day or the day after that I said to my team, everyone has to use this, and we have to meet every morning and discuss how we experimented the day before. And we did that for three or four months. And, you know, it was really clear to me in that interface at that point that, you know, we’d absolutely pass some kind of threshold. LEE: And who’s the we that you were experimenting with? AZHAR: So I have a team of four who support me. They’re mostly researchers of different types. I mean, it’s almost like one of those jokes. You know, I have a sociologist, an economist, and an astrophysicist. And, you know, they walk into the bar,or they walk into our virtual team room, and we try to solve problems. LEE: Well, so let’s get now into brass tacks here. And I think I want to start maybe just with an exploration of the economics of all this and economic realities. Because I think in a lot of your work—for example, in your book—you look pretty deeply at how automation generally and AI specifically are transforming certain sectors like finance, manufacturing, and you have a really, kind of, insightful focus on what this means for productivity and which ways, you know, efficiencies are found.   And then you, sort of, balance that with risks, things that can and do go wrong. And so as you take that background and looking at all those other sectors, in what ways are the same patterns playing out or likely to play out in healthcare and medicine? AZHAR: I’m sure we will see really remarkable parallels but also new things going on. I mean, medicine has a particular quality compared to other sectors in the sense that it’s highly regulated, market structure is very different country to country, and it’s an incredibly broad field. I mean, just think about taking a Tylenol and going through laparoscopic surgery. Having an MRI and seeing a physio. I mean, this is all medicine. I mean, it’s hard to imagine a sector that ismore broad than that. So I think we can start to break it down, and, you know, where we’re seeing things with generative AI will be that the, sort of, softest entry point, which is the medical scribing. And I’m sure many of us have been with clinicians who have a medical scribe running alongside—they’re all on Surface Pros I noticed, right?They’re on the tablet computers, and they’re scribing away. And what that’s doing is, in the words of my friend Eric Topol, it’s giving the clinician time back, right. They have time back from days that are extremely busy and, you know, full of administrative overload. So I think you can obviously do a great deal with reducing that overload. And within my team, we have a view, which is if you do something five times in a week, you should be writing an automation for it. And if you’re a doctor, you’re probably reviewing your notes, writing the prescriptions, and so on several times a day. So those are things that can clearly be automated, and the human can be in the loop. But I think there are so many other ways just within the clinic that things can help. So, one of my friends, my friend from my junior school—I’ve known him since I was 9—is an oncologist who’s also deeply into machine learning, and he’s in Cambridge in the UK. And he built with Microsoft Research a suite of imaging AI tools from his own discipline, which they then open sourced. So that’s another way that you have an impact, which is that you actually enable the, you know, generalist, specialist, polymath, whatever they are in health systems to be able to get this technology, to tune it to their requirements, to use it, to encourage some grassroots adoption in a system that’s often been very, very heavily centralized. LEE: Yeah. AZHAR: And then I think there are some other things that are going on that I find really, really exciting. So one is the consumerization of healthcare. So I have one of those sleep tracking rings, the Oura. LEE: Yup. AZHAR: That is building a data stream that we’ll be able to apply more and more AI to. I mean, right now, it’s applying traditional, I suspect, machine learning, but you can imagine that as we start to get more data, we start to get more used to measuring ourselves, we create this sort of pot, a personal asset that we can turn AI to. And there’s still another category. And that other category is one of the completely novel ways in which we can enable patient care and patient pathway. And there’s a fantastic startup in the UK called Neko Health, which, I mean, does physicals, MRI scans, and blood tests, and so on. It’s hard to imagine Neko existing without the sort of advanced data, machine learning, AI that we’ve seen emerge over the last decade. So, I mean, I think that there are so many ways in which the temperature is slowly being turned up to encourage a phase change within the healthcare sector. And last but not least, I do think that these tools can also be very, very supportive of a clinician’s life cycle. I think we, as patients, we’re a bit …  I don’t know if we’re as grateful as we should be for our clinicians who are putting in 90-hour weeks.But you can imagine a world where AI is able to support not just the clinicians’ workload but also their sense of stress, their sense of burnout. So just in those five areas, Peter, I sort of imagine we could start to fundamentally transform over the course of many years, of course, the way in which people think about their health and their interactions with healthcare systems LEE: I love how you break that down. And I want to press on a couple of things. You also touched on the fact that medicine is, at least in most of the world, is a highly regulated industry. I guess finance is the same way, but they also feel different because the, like, finance sector has to be very responsive to consumers, and consumers are sensitive to, you know, an abundance of choice; they are sensitive to price. Is there something unique about medicine besides being regulated? AZHAR: I mean, there absolutely is. And in finance, as well, you have much clearer end states. So if you’re not in the consumer space, but you’re in the, you know, asset management space, you have to essentially deliver returns against the volatility or risk boundary, right. That’s what you have to go out and do. And I think if you’re in the consumer industry, you can come back to very, very clear measures, net promoter score being a very good example. In the case of medicine and healthcare, it is much more complicated because as far as the clinician is concerned, people are individuals, and we have our own parts and our own responses. If we didn’t, there would never be a need for a differential diagnosis. There’d never be a need for, you know, Let’s try azithromycin first, and then if that doesn’t work, we’ll go to vancomycin, or, you know, whatever it happens to be. You would just know. But ultimately, you know, people are quite different. The symptoms that they’re showing are quite different, and also their compliance is really, really different. I had a back problem that had to be dealt with by, you know, a physio and extremely boring exercises four times a week, but I was ruthless in complying, and my physio was incredibly surprised. He’d say well no one ever does this, and I said, well you know the thing is that I kind of just want to get this thing to go away. LEE: Yeah. AZHAR: And I think that that’s why medicine is and healthcare is so different and more complex. But I also think that’s why AI can be really, really helpful. I mean, we didn’t talk about, you know, AI in its ability to potentially do this, which is to extend the clinician’s presence throughout the week. LEE: Right. Yeah. AZHAR: The idea that maybe some part of what the clinician would do if you could talk to them on Wednesday, Thursday, and Friday could be delivered through an app or a chatbot just as a way of encouraging the compliance, which is often, especially with older patients, one reason why conditions, you know, linger on for longer. LEE: You know, just staying on the regulatory thing, as I’ve thought about this, the one regulated sector that I think seems to have some parallels to healthcare is energy delivery, energy distribution. Because like healthcare, as a consumer, I don’t have choice in who delivers electricity to my house. And even though I care about it being cheap or at least not being overcharged, I don’t have an abundance of choice. I can’t do price comparisons. And there’s something about that, just speaking as a consumer of both energy and a consumer of healthcare, that feels similar. Whereas other regulated industries, you know, somehow, as a consumer, I feel like I have a lot more direct influence and power. Does that make any sense to someone, you know, like you, who’s really much more expert in how economic systems work? AZHAR: I mean, in a sense, one part of that is very, very true. You have a limited panel of energy providers you can go to, and in the US, there may be places where you have no choice. I think the area where it’s slightly different is that as a consumer or a patient, you can actually make meaningful choices and changes yourself using these technologies, and people used to joke about you know asking Dr. Google. But Dr. Google is not terrible, particularly if you go to WebMD. And, you know, when I look at long-range change, many of the regulations that exist around healthcare delivery were formed at a point before people had access to good quality information at the touch of their fingertips or when educational levels in general were much, much lower. And many regulations existed because of the incumbent power of particular professional sectors. I’ll give you an example from the United Kingdom. So I have had asthma all of my life. That means I’ve been taking my inhaler, Ventolin, and maybe a steroid inhaler for nearly 50 years. That means that I know … actually, I’ve got more experience, and I—in some sense—know more about it than a general practitioner. LEE: Yeah. AZHAR: And until a few years ago, I would have to go to a general practitioner to get this drug that I’ve been taking for five decades, and there they are, age 30 or whatever it is. And a few years ago, the regulations changed. And now pharmacies can … or pharmacists can prescribe those types of drugs under certain conditions directly. LEE: Right. AZHAR: That was not to do with technology. That was to do with incumbent lock-in. So when we look at the medical industry, the healthcare space, there are some parallels with energy, but there are a few little things that the ability that the consumer has to put in some effort to learn about their condition, but also the fact that some of the regulations that exist just exist because certain professions are powerful. LEE: Yeah, one last question while we’re still on economics. There seems to be a conundrum about productivity and efficiency in healthcare delivery because I’ve never encountered a doctor or a nurse that wants to be able to handle even more patients than they’re doing on a daily basis. And so, you know, if productivity means simply, well, your rounds can now handle 16 patients instead of eight patients, that doesn’t seem necessarily to be a desirable thing. So how can we or should we be thinking about efficiency and productivity since obviously costs are, in most of the developed world, are a huge, huge problem? AZHAR: Yes, and when you described doubling the number of patients on the round, I imagined you buying them all roller skates so they could just whizz aroundthe hospital faster and faster than ever before. We can learn from what happened with the introduction of electricity. Electricity emerged at the end of the 19th century, around the same time that cars were emerging as a product, and car makers were very small and very artisanal. And in the early 1900s, some really smart car makers figured out that electricity was going to be important. And they bought into this technology by putting pendant lights in their workshops so they could “visit more patients.” Right? LEE: Yeah, yeah. AZHAR: They could effectively spend more hours working, and that was a productivity enhancement, and it was noticeable. But, of course, electricity fundamentally changed the productivity by orders of magnitude of people who made cars starting with Henry Ford because he was able to reorganize his factories around the electrical delivery of power and to therefore have the moving assembly line, which 10xed the productivity of that system. So when we think about how AI will affect the clinician, the nurse, the doctor, it’s much easier for us to imagine it as the pendant light that just has them working later … LEE: Right. AZHAR: … than it is to imagine a reconceptualization of the relationship between the clinician and the people they care for. And I’m not sure. I don’t think anybody knows what that looks like. But, you know, I do think that there will be a way that this changes, and you can see that scale out factor. And it may be, Peter, that what we end up doing is we end up saying, OK, because we have these brilliant AIs, there’s a lower level of training and cost and expense that’s required for a broader range of conditions that need treating. And that expands the market, right. That expands the market hugely. It’s what has happened in the market for taxis or ride sharing. The introduction of Uber and the GPS system … LEE: Yup. AZHAR: … has meant many more people now earn their living driving people around in their cars. And at least in London, you had to be reasonably highly trained to do that. So I can see a reorganization is possible. Of course, entrenched interests, the economic flow … and there are many entrenched interests, particularly in the US between the health systems and the, you know, professional bodies that might slow things down. But I think a reimagining is possible. And if I may, I’ll give you one example of that, which is, if you go to countries outside of the US where there are many more sick people per doctor, they have incentives to change the way they deliver their healthcare. And well before there was AI of this quality around, there was a few cases of health systems in India—Aravind Eye Carewas one, and Narayana Hrudayalayawas another. And in the latter, they were a cardiac care unit where you couldn’t get enough heart surgeons. LEE: Yeah, yep. AZHAR: So specially trained nurses would operate under the supervision of a single surgeon who would supervise many in parallel. So there are ways of increasing the quality of care, reducing the cost, but it does require a systems change. And we can’t expect a single bright algorithm to do it on its own. LEE: Yeah, really, really interesting. So now let’s get into regulation. And let me start with this question. You know, there are several startup companies I’m aware of that are pushing on, I think, a near-term future possibility that a medical AI for consumer might be allowed, say, to prescribe a medication for you, something that would normally require a doctor or a pharmacist, you know, that is certified in some way, licensed to do. Do you think we’ll get to a point where for certain regulated activities, humans are more or less cut out of the loop? AZHAR: Well, humans would have been in the loop because they would have provided the training data, they would have done the oversight, the quality control. But to your question in general, would we delegate an important decision entirely to a tested set of algorithms? I’m sure we will. We already do that. I delegate less important decisions like, What time should I leave for the airport to Waze. I delegate more important decisions to the automated braking in my car. We will do this at certain levels of risk and threshold. If I come back to my example of prescribing Ventolin. It’s really unclear to me that the prescription of Ventolin, this incredibly benign bronchodilator that is only used by people who’ve been through the asthma process, needs to be prescribed by someone who’s gone through 10 years or 12 years of medical training. And why that couldn’t be prescribed by an algorithm or an AI system. LEE: Right. Yep. Yep. AZHAR: So, you know, I absolutely think that that will be the case and could be the case. I can’t really see what the objections are. And the real issue is where do you draw the line of where you say, “Listen, this is too important,” or “The cost is too great,” or “The side effects are too high,” and therefore this is a point at which we want to have some, you know, human taking personal responsibility, having a liability framework in place, having a sense that there is a person with legal agency who signed off on this decision. And that line I suspect will start fairly low, and what we’d expect to see would be that that would rise progressively over time. LEE: What you just said, that scenario of your personal asthma medication, is really interesting because your personal AI might have the benefit of 50 years of your own experience with that medication. So, in a way, there is at least the data potential for, let’s say, the next prescription to be more personalized and more tailored specifically for you. AZHAR: Yes. Well, let’s dig into this because I think this is super interesting, and we can look at how things have changed. So 15 years ago, if I had a bad asthma attack, which I might have once a year, I would have needed to go and see my general physician. In the UK, it’s very difficult to get an appointment. I would have had to see someone privately who didn’t know me at all because I’ve just walked in off the street, and I would explain my situation. It would take me half a day. Productivity lost. I’ve been miserable for a couple of days with severe wheezing. Then a few years ago the system changed, a protocol changed, and now I have a thing called a rescue pack, which includes prednisolone steroids. It includes something else I’ve just forgotten, and an antibiotic in case I get an upper respiratory tract infection, and I have an “algorithm.” It’s called a protocol. It’s printed out. It’s a flowchart I answer various questions, and then I say, “I’m going to prescribe this to myself.” You know, UK doctors don’t prescribe prednisolone, or prednisone as you may call it in the US, at the drop of a hat, right. It’s a powerful steroid. I can self-administer, and I can now get that repeat prescription without seeing a physician a couple of times a year. And the algorithm, the “AI” is, it’s obviously been done in PowerPoint naturally, and it’s a bunch of arrows.Surely, surely, an AI system is going to be more sophisticated, more nuanced, and give me more assurance that I’m making the right decision around something like that. LEE: Yeah. Well, at a minimum, the AI should be able to make that PowerPoint the next time.AZHAR: Yeah, yeah. Thank god for Clippy. Yes. LEE: So, you know, I think in our book, we had a lot of certainty about most of the things we’ve discussed here, but one chapter where I felt we really sort of ran out of ideas, frankly, was on regulation. And, you know, what we ended up doing for that chapter is … I can’t remember if it was Carey’s or Zak’s idea, but we asked GPT-4 to have a conversation, a debate with itself, about regulation. And we made some minor commentary on that. And really, I think we took that approach because we just didn’t have much to offer. By the way, in our defense, I don’t think anyone else had any better ideas anyway. AZHAR: Right. LEE: And so now two years later, do we have better ideas about the need for regulation, the frameworks around which those regulations should be developed, and, you know, what should this look like? AZHAR: So regulation is going to be in some cases very helpful because it provides certainty for the clinician that they’re doing the right thing, that they are still insured for what they’re doing, and it provides some degree of confidence for the patient. And we need to make sure that the claims that are made stand up to quite rigorous levels, where ideally there are RCTs, and there are the classic set of processes you go through. You do also want to be able to experiment, and so the question is: as a regulator, how can you enable conditions for there to be experimentation? And what is experimentation? Experimentation is learning so that every element of the system can learn from this experience. So finding that space where there can be bit of experimentation, I think, becomes very, very important. And a lot of this is about experience, so I think the first digital therapeutics have received FDA approval, which means there are now people within the FDA who understand how you go about running an approvals process for that, and what that ends up looking like—and of course what we’re very good at doing in this sort of modern hyper-connected world—is we can share that expertise, that knowledge, that experience very, very quickly. So you go from one approval a year to a hundred approvals a year to a thousand approvals a year. So we will then actually, I suspect, need to think about what is it to approve digital therapeutics because, unlike big biological molecules, we can generate these digital therapeutics at the rate of knots. LEE: Yes. AZHAR: Every road in Hayes Valley in San Francisco, right, is churning out new startups who will want to do things like this. So then, I think about, what does it mean to get approved if indeed it gets approved? But we can also go really far with things that don’t require approval. I come back to my sleep tracking ring. So I’ve been wearing this for a few years, and when I go and see my doctor or I have my annual checkup, one of the first things that he asks is how have I been sleeping. And in fact, I even sync my sleep tracking data to their medical record system, so he’s saying … hearing what I’m saying, but he’s actually pulling up the real data going, This patient’s lying to me again. Of course, I’m very truthful with my doctor, as we should all be.LEE: You know, actually, that brings up a point that consumer-facing health AI has to deal with pop science, bad science, you know, weird stuff that you hear on Reddit. And because one of the things that consumers want to know always is, you know, what’s the truth? AZHAR: Right. LEE: What can I rely on? And I think that somehow feels different than an AI that you actually put in the hands of, let’s say, a licensed practitioner. And so the regulatory issues seem very, very different for these two cases somehow. AZHAR: I agree, they’re very different. And I think for a lot of areas, you will want to build AI systems that are first and foremost for the clinician, even if they have patient extensions, that idea that the clinician can still be with a patient during the week. And you’ll do that anyway because you need the data, and you also need a little bit of a liability shield to have like a sensible person who’s been trained around that. And I think that’s going to be a very important pathway for many AI medical crossovers. We’re going to go through the clinician. LEE: Yeah. AZHAR: But I also do recognize what you say about the, kind of, kooky quackery that exists on Reddit. Although on Creatine, Reddit may yet prove to have been right.LEE: Yeah, that’s right. Yes, yeah, absolutely. Yeah. AZHAR: Sometimes it’s right. And I think that it serves a really good role as a field of extreme experimentation. So if you’re somebody who makes a continuous glucose monitor traditionally given to diabetics but now lots of people will wear them—and sports people will wear them—you probably gathered a lot of extreme tail distribution data by reading the Reddit/biohackers … LEE: Yes. AZHAR: … for the last few years, where people were doing things that you would never want them to really do with the CGM. And so I think we shouldn’t understate how important that petri dish can be for helping us learn what could happen next. LEE: Oh, I think it’s absolutely going to be essential and a bigger thing in the future. So I think I just want to close here then with one last question. And I always try to be a little bit provocative with this. And so as you look ahead to what doctors and nurses and patients might be doing two years from now, five years from now, 10 years from now, do you have any kind of firm predictions? AZHAR: I’m going to push the boat out, and I’m going to go further out than closer in. LEE: OK.AZHAR: As patients, we will have many, many more touch points and interaction with our biomarkers and our health. We’ll be reading how well we feel through an array of things. And some of them we’ll be wearing directly, like sleep trackers and watches. And so we’ll have a better sense of what’s happening in our lives. It’s like the moment you go from paper bank statements that arrive every month to being able to see your account in real time. LEE: Yes. AZHAR: And I suspect we’ll have … we’ll still have interactions with clinicians because societies that get richer see doctors more, societies that get older see doctors more, and we’re going to be doing both of those over the coming 10 years. But there will be a sense, I think, of continuous health engagement, not in an overbearing way, but just in a sense that we know it’s there, we can check in with it, it’s likely to be data that is compiled on our behalf somewhere centrally and delivered through a user experience that reinforces agency rather than anxiety. And we’re learning how to do that slowly. I don’t think the health apps on our phones and devices have yet quite got that right. And that could help us personalize problems before they arise, and again, I use my experience for things that I’ve tracked really, really well. And I know from my data and from how I’m feeling when I’m on the verge of one of those severe asthma attacks that hits me once a year, and I can take a little bit of preemptive measure, so I think that that will become progressively more common and that sense that we will know our baselines. I mean, when you think about being an athlete, which is something I think about, but I could never ever do,but what happens is you start with your detailed baselines, and that’s what your health coach looks at every three or four months. For most of us, we have no idea of our baselines. You we get our blood pressure measured once a year. We will have baselines, and that will help us on an ongoing basis to better understand and be in control of our health. And then if the product designers get it right, it will be done in a way that doesn’t feel invasive, but it’ll be done in a way that feels enabling. We’ll still be engaging with clinicians augmented by AI systems more and more because they will also have gone up the stack. They won’t be spending their time on just “take two Tylenol and have a lie down” type of engagements because that will be dealt with earlier on in the system. And so we will be there in a very, very different set of relationships. And they will feel that they have different ways of looking after our health. LEE: Azeem, it’s so comforting to hear such a wonderfully optimistic picture of the future of healthcare. And I actually agree with everything you’ve said. Let me just thank you again for joining this conversation. I think it’s been really fascinating. And I think somehow the systemic issues, the systemic issues that you tend to just see with such clarity, I think are going to be the most, kind of, profound drivers of change in the future. So thank you so much. AZHAR: Well, thank you, it’s been my pleasure, Peter, thank you.   I always think of Azeem as a systems thinker. He’s always able to take the experiences of new technologies at an individual level and then project out to what this could mean for whole organizations and whole societies. In our conversation, I felt that Azeem really connected some of what we learned in a previous episode—for example, from Chrissy Farr—on the evolving consumerization of healthcare to the broader workforce and economic impacts that we’ve heard about from Ethan Mollick.   Azeem’s personal story about managing his asthma was also a great example. You know, he imagines a future, as do I, where personal AI might assist and remember decades of personal experience with a condition like asthma and thereby know more than any human being could possibly know in a deeply personalized and effective way, leading to better care. Azeem’s relentless optimism about our AI future was also so heartening to hear. Both of these conversations leave me really optimistic about the future of AI in medicine. At the same time, it is pretty sobering to realize just how much we’ll all need to change in pretty fundamental and maybe even in radical ways. I think a big insight I got from these conversations is how we interact with machines is going to have to be altered not only at the individual level, but at the company level and maybe even at the societal level. Since my conversation with Ethan and Azeem, there have been some pretty important developments that speak directly to this. Just last week at Build, which is Microsoft’s yearly developer conference, we announced a slew of AI agent technologies. Our CEO, Satya Nadella, in fact, started his keynote by going online in a GitHub developer environment and then assigning a coding task to an AI agent, basically treating that AI as a full-fledged member of a development team. Other agents, for example, a meeting facilitator, a data analyst, a business researcher, travel agent, and more were also shown during the conference. But pertinent to healthcare specifically, what really blew me away was the demonstration of a healthcare orchestrator agent. And the specific thing here was in Stanford’s cancer treatment center, when they are trying to decide on potentially experimental treatments for cancer patients, they convene a meeting of experts. That is typically called a tumor board. And so this AI healthcare orchestrator agent actually participated as a full-fledged member of a tumor board meeting to help bring data together, make sure that the latest medical knowledge was brought to bear, and to assist in the decision-making around a patient’s cancer treatment. It was pretty amazing.A big thank-you again to Ethan and Azeem for sharing their knowledge and understanding of the dynamics between AI and society more broadly. And to our listeners, thank you for joining us. I’m really excited for the upcoming episodes, including discussions on medical students’ experiences with AI and AI’s influence on the operation of health systems and public health departments. We hope you’ll continue to tune in. Until next time. #what #ais #impact #individuals #means
    WWW.MICROSOFT.COM
    What AI’s impact on individuals means for the health workforce and industry
    Transcript [MUSIC]    [BOOK PASSAGE]  PETER LEE: “In American primary care, the missing workforce is stunning in magnitude, the shortfall estimated to reach up to 48,000 doctors within the next dozen years. China and other countries with aging populations can expect drastic shortfalls, as well. Just last month, I asked a respected colleague retiring from primary care who he would recommend as a replacement; he told me bluntly that, other than expensive concierge care practices, he could not think of anyone, even for himself. This mismatch between need and supply will only grow, and the US is far from alone among developed countries in facing it.” [END OF BOOK PASSAGE]    [THEME MUSIC]    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.      [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 4: Trust but Verify,” which was written by Zak. You know, it’s no secret that in the US and elsewhere shortages in medical staff and the rise of clinician burnout are affecting the quality of patient care for the worse. In our book, we predicted that generative AI would be something that might help address these issues. So in this episode, we’ll delve into how individual performance gains that our previous guests have described might affect the healthcare workforce as a whole, and on the patient side, we’ll look into the influence of generative AI on the consumerization of healthcare. Now, since all of this consumes such a huge fraction of the overall economy, we’ll also get into what a general-purpose technology as disruptive as generative AI might mean in the context of labor markets and beyond.   To help us do that, I’m pleased to welcome Ethan Mollick and Azeem Azhar. Ethan Mollick is the Ralph J. Roberts Distinguished Faculty Scholar, a Rowan Fellow, and an associate professor at the Wharton School of the University of Pennsylvania. His research into the effects of AI on work, entrepreneurship, and education is applied by organizations around the world, leading him to be named one of Time magazine’s most influential people in AI for 2024. He’s also the author of the New York Times best-selling book Co-Intelligence. Azeem Azhar is an author, founder, investor, and one of the most thoughtful and influential voices on the interplay between disruptive emerging technologies and business and society. In his best-selling book, The Exponential Age, and in his highly regarded newsletter and podcast, Exponential View, he explores how technologies like AI are reshaping everything from healthcare to geopolitics. Ethan and Azeem are two leading thinkers on the ways that disruptive technologies—and especially AI—affect our work, our jobs, our business enterprises, and whole industries. As economists, they are trying to work out whether we are in the midst of an economic revolution as profound as the shift from an agrarian to an industrial society. [TRANSITION MUSIC] Here is my interview with Ethan Mollick: LEE: Ethan, welcome. ETHAN MOLLICK: So happy to be here, thank you. LEE: I described you as a professor at Wharton, which I think most of the people who listen to this podcast series know of as an elite business school. So it might surprise some people that you study AI. And beyond that, you know, that I would seek you out to talk about AI in medicine. [LAUGHTER] So to get started, how and why did it happen that you’ve become one of the leading experts on AI? MOLLICK: It’s actually an interesting story. I’ve been AI-adjacent my whole career. When I was [getting] my PhD at MIT, I worked with Marvin Minsky (opens in new tab) and the MIT [Massachusetts Institute of Technology] Media Labs AI group. But I was never the technical AI guy. I was the person who was trying to explain AI to everybody else who didn’t understand it. And then I became very interested in, how do you train and teach? And AI was always a part of that. I was building games for teaching, teaching tools that were used in hospitals and elsewhere, simulations. So when LLMs burst into the scene, I had already been using them and had a good sense of what they could do. And between that and, kind of, being practically oriented and getting some of the first research projects underway, especially under education and AI and performance, I became sort of a go-to person in the field. And once you’re in a field where nobody knows what’s going on and we’re all making it up as we go along—I thought it’s funny that you led with the idea that you have a couple of months head start for GPT-4, right. Like that’s all we have at this point, is a few months’ head start. [LAUGHTER] So being a few months ahead is good enough to be an expert at this point. Whether it should be or not is a different question. LEE: Well, if I understand correctly, leading AI companies like OpenAI, Anthropic, and others have now sought you out as someone who should get early access to really start to do early assessments and gauge early reactions. How has that been? MOLLICK: So, I mean, I think the bigger picture is less about me than about two things that tells us about the state of AI right now. One, nobody really knows what’s going on, right. So in a lot of ways, if it wasn’t for your work, Peter, like, I don’t think people would be thinking about medicine as much because these systems weren’t built for medicine. They weren’t built to change education. They weren’t built to write memos. They, like, they weren’t built to do any of these things. They weren’t really built to do anything in particular. It turns out they’re just good at many things. And to the extent that the labs work on them, they care about their coding ability above everything else and maybe math and science secondarily. They don’t think about the fact that it expresses high empathy. They don’t think about its accuracy and diagnosis or where it’s inaccurate. They don’t think about how it’s changing education forever. So one part of this is the fact that they go to my Twitter feed or ask me for advice is an indicator of where they are, too, which is they’re not thinking about this. And the fact that a few months’ head start continues to give you a lead tells you that we are at the very cutting edge. These labs aren’t sitting on projects for two years and then releasing them. Months after a project is complete or sooner, it’s out the door. Like, there’s very little delay. So we’re kind of all in the same boat here, which is a very unusual space for a new technology. LEE: And I, you know, explained that you’re at Wharton. Are you an odd fit as a faculty member at Wharton, or is this a trend now even in business schools that AI experts are becoming key members of the faculty? MOLLICK: I mean, it’s a little of both, right. It’s faculty, so everybody does everything. I’m a professor of innovation-entrepreneurship. I’ve launched startups before and working on that and education means I think about, how do organizations redesign themselves? How do they take advantage of these kinds of problems? So medicine’s always been very central to that, right. A lot of people in my MBA class have been MDs either switching, you know, careers or else looking to advance from being sort of individual contributors to running teams. So I don’t think that’s that bad a fit. But I also think this is general-purpose technology; it’s going to touch everything. The focus on this is medicine, but Microsoft does far more than medicine, right. It’s … there’s transformation happening in literally every field, in every country. This is a widespread effect. So I don’t think we should be surprised that business schools matter on this because we care about management. There’s a long tradition of management and medicine going together. There’s actually a great academic paper that shows that teaching hospitals that also have MBA programs associated with them have higher management scores and perform better (opens in new tab). So I think that these are not as foreign concepts, especially as medicine continues to get more complicated. LEE: Yeah. Well, in fact, I want to dive a little deeper on these issues of management, of entrepreneurship, um, education. But before doing that, if I could just stay focused on you. There is always something interesting to hear from people about their first encounters with AI. And throughout this entire series, I’ve been doing that both pre-generative AI and post-generative AI. So you, sort of, hinted at the pre-generative AI. You were in Minsky’s lab. Can you say a little bit more about that early encounter? And then tell us about your first encounters with generative AI. MOLLICK: Yeah. Those are great questions. So first of all, when I was at the media lab, that was pre-the current boom in sort of, you know, even in the old-school machine learning kind of space. So there was a lot of potential directions to head in. While I was there, there were projects underway, for example, to record every interaction small children had. One of the professors was recording everything their baby interacted with in the hope that maybe that would give them a hint about how to build an AI system. There was a bunch of projects underway that were about labeling every concept and how they relate to other concepts. So, like, it was very much Wild West of, like, how do we make an AI work—which has been this repeated problem in AI, which is, what is this thing? The fact that it was just like brute force over the corpus of all human knowledge turns out to be a little bit of like a, you know, it’s a miracle and a little bit of a disappointment in some ways [LAUGHTER] compared to how elaborate some of this was. So, you know, I think that, that was sort of my first encounters in sort of the intellectual way. The generative AI encounters actually started with the original, sort of, GPT-3, or, you know, earlier versions. And it was actually game-based. So I played games like AI Dungeon. And as an educator, I realized, oh my gosh, this stuff could write essays at a fourth-grade level. That’s really going to change the way, like, middle school works, was my thinking at the time. And I was posting about that back in, you know, 2021 that this is a big deal. But I think everybody was taken surprise, including the AI companies themselves, by, you know, ChatGPT, by GPT-3.5. The difference in degree turned out to be a difference in kind. LEE: Yeah, you know, if I think back, even with GPT-3, and certainly this was the case with GPT-2, it was, at least, you know, from where I was sitting, it was hard to get people to really take this seriously and pay attention. MOLLICK: Yes. LEE: You know, it’s remarkable. Within Microsoft, I think a turning point was the use of GPT-3 to do code completions. And that was actually productized as GitHub Copilot (opens in new tab), the very first version. That, I think, is where there was widespread belief. But, you know, in a way, I think there is, even for me early on, a sense of denial and skepticism. Did you have those initially at any point? MOLLICK: Yeah, I mean, it still happens today, right. Like, this is a weird technology. You know, the original denial and skepticism was, I couldn’t see where this was going. It didn’t seem like a miracle because, you know, of course computers can complete code for you. Like, what else are they supposed to do? Of course, computers can give you answers to questions and write fun things. So there’s difference of moving into a world of generative AI. I think a lot of people just thought that’s what computers could do. So it made the conversations a little weird. But even today, faced with these, you know, with very strong reasoner models that operate at the level of PhD students, I think a lot of people have issues with it, right. I mean, first of all, they seem intuitive to use, but they’re not always intuitive to use because the first use case that everyone puts AI to, it fails at because they use it like Google or some other use case. And then it’s genuinely upsetting in a lot of ways. I think, you know, I write in my book about the idea of three sleepless nights. That hasn’t changed. Like, you have to have an intellectual crisis to some extent, you know, and I think people do a lot to avoid having that existential angst of like, “Oh my god, what does it mean that a machine could think—apparently think—like a person?” So, I mean, I see resistance now. I saw resistance then. And then on top of all of that, there’s the fact that the curve of the technology is quite great. I mean, the price of GPT-4 level intelligence from, you know, when it was released has dropped 99.97% at this point, right. LEE: Yes. Mm-hmm. MOLLICK: I mean, I could run a GPT-4 class system basically on my phone. Microsoft’s releasing things that can almost run on like, you know, like it fits in almost no space, that are almost as good as the original GPT-4 models. I mean, I don’t think people have a sense of how fast the trajectory is moving either. LEE: Yeah, you know, there’s something that I think about often. There is this existential dread, or will this technology replace me? But I think the first people to feel that are researchers—people encountering this for the first time. You know, if you were working, let’s say, in Bayesian reasoning or in traditional, let’s say, Gaussian mixture model based, you know, speech recognition, you do get this feeling, Oh, my god, this technology has just solved the problem that I’ve dedicated my life to. And there is this really difficult period where you have to cope with that. And I think this is going to be spreading, you know, in more and more walks of life. And so this … at what point does that sort of sense of dread hit you, if ever? MOLLICK: I mean, you know, it’s not even dread as much as like, you know, Tyler Cowen wrote that it’s impossible to not feel a little bit of sadness as you use these AI systems, too. Because, like, I was talking to a friend, just as the most minor example, and his talent that he was very proud of was he was very good at writing limericks for birthday cards. He’d write these limericks. Everyone was always amused by them. [LAUGHTER] And now, you know, GPT-4 and GPT-4.5, they made limericks obsolete. Like, anyone can write a good limerick, right. So this was a talent, and it was a little sad. Like, this thing that you cared about mattered. You know, as academics, we’re a little used to dead ends, right, and like, you know, some getting the lap. But the idea that entire fields are hitting that way. Like in medicine, there’s a lot of support systems that are now obsolete. And the question is how quickly you change that. In education, a lot of our techniques are obsolete. What do you do to change that? You know, it’s like the fact that this brute force technology is good enough to solve so many problems is weird, right. And it’s not just the end of, you know, of our research angles that matter, too. Like, for example, I ran this, you know, 14-person-plus, multimillion-dollar effort at Wharton to build these teaching simulations, and we’re very proud of them. It took years of work to build one. Now we’ve built a system that can build teaching simulations on demand by you talking to it with one team member. And, you know, you literally can create any simulation by having a discussion with the AI. I mean, you know, there’s a switch to a new form of excitement, but there is a little bit of like, this mattered to me, and, you know, now I have to change how I do things. I mean, adjustment happens. But if you haven’t had that displacement, I think that’s a good indicator that you haven’t really faced AI yet. LEE: Yeah, what’s so interesting just listening to you is you use words like sadness, and yet I can see the—and hear the—excitement in your voice and your body language. So, you know, that’s also kind of an interesting aspect of all of this.  MOLLICK: Yeah, I mean, I think there’s something on the other side, right. But, like, I can’t say that I haven’t had moments where like, ughhhh, but then there’s joy and basically like also, you know, freeing stuff up. I mean, I think about doctors or professors, right. These are jobs that bundle together lots of different tasks that you would never have put together, right. If you’re a doctor, you would never have expected the same person to be good at keeping up with the research and being a good diagnostician and being a good manager and being good with people and being good with hand skills. Like, who would ever want that kind of bundle? That’s not something you’re all good at, right. And a lot of our stress of our job comes from the fact that we suck at some of it. And so to the extent that AI steps in for that, you kind of feel bad about some of the stuff that it’s doing that you wanted to do. But it’s much more uplifting to be like, I don’t have to do this stuff I’m bad anymore, or I get the support to make myself good at it. And the stuff that I really care about, I can focus on more. Well, because we are at kind of a unique moment where whatever you’re best at, you’re still better than AI. And I think it’s an ongoing question about how long that lasts. But for right now, like you’re not going to say, OK, AI replaces me entirely in my job in medicine. It’s very unlikely. But you will say it replaces these 17 things I’m bad at, but I never liked that anyway. So it’s a period of both excitement and a little anxiety. LEE: Yeah, I’m going to want to get back to this question about in what ways AI may or may not replace doctors or some of what doctors and nurses and other clinicians do. But before that, let’s get into, I think, the real meat of this conversation. In previous episodes of this podcast, we talked to clinicians and healthcare administrators and technology developers that are very rapidly injecting AI today to do various forms of workforce automation, you know, automatically writing a clinical encounter note, automatically filling out a referral letter or request for prior authorization for some reimbursement to an insurance company. And so these sorts of things are intended not only to make things more efficient and lower costs but also to reduce various forms of drudgery, cognitive burden on frontline health workers. So how do you think about the impact of AI on that aspect of workforce, and, you know, what would you expect will happen over the next few years in terms of impact on efficiency and costs? MOLLICK: So I mean, this is a case where I think we’re facing the big bright problem in AI in a lot of ways, which is that this is … at the individual level, there’s lots of performance gains to be gained, right. The problem, though, is that we as individuals fit into systems, in medicine as much as anywhere else or more so, right. Which is that you could individually boost your performance, but it’s also about systems that fit along with this, right. So, you know, if you could automatically, you know, record an encounter, if you could automatically make notes, does that change what you should be expecting for notes or the value of those notes or what they’re for? How do we take what one person does and validate it across the organization and roll it out for everybody without making it a 10-year process that it feels like IT in medicine often is? Like, so we’re in this really interesting period where there’s incredible amounts of individual innovation in productivity and performance improvements in this field, like very high levels of it, but not necessarily seeing that same thing translate to organizational efficiency or gains. And one of my big concerns is seeing that happen. We’re seeing that in nonmedical problems, the same kind of thing, which is, you know, we’ve got research showing 20 and 40% performance improvements, like not uncommon to see those things. But then the organization doesn’t capture it; the system doesn’t capture it. Because the individuals are doing their own work and the systems don’t have the ability to, kind of, learn or adapt as a result. LEE: You know, where are those productivity gains going, then, when you get to the organizational level? MOLLICK: Well, they’re dying for a few reasons. One is, there’s a tendency for individual contributors to underestimate the power of management, right. Practices associated with good management increase happiness, decrease, you know, issues, increase success rates. In the same way, about 40%, as far as we can tell, of the US advantage over other companies, of US firms, has to do with management ability. Like, management is a big deal. Organizing is a big deal. Thinking about how you coordinate is a big deal. At the individual level, when things get stuck there, right, you can’t start bringing them up to how systems work together. It becomes, How do I deal with a doctor that has a 60% performance improvement? We really only have one thing in our playbook for doing that right now, which is, OK, we could fire 40% of the other doctors and still have a performance gain, which is not the answer you want to see happen. So because of that, people are hiding their use. They’re actually hiding their use for lots of reasons. And it’s a weird case because the people who are able to figure out best how to use these systems, for a lot of use cases, they’re actually clinicians themselves because they’re experimenting all the time. Like, they have to take those encounter notes. And if they figure out a better way to do it, they figure that out. You don’t want to wait for, you know, a med tech company to figure that out and then sell that back to you when it can be done by the physicians themselves. So we’re just not used to a period where everybody’s innovating and where the management structure isn’t in place to take advantage of that. And so we’re seeing things stalled at the individual level, and people are often, especially in risk-averse organizations or organizations where there’s lots of regulatory hurdles, people are so afraid of the regulatory piece that they don’t even bother trying to make change. LEE: If you are, you know, the leader of a hospital or a clinic or a whole health system, how should you approach this? You know, how should you be trying to extract positive success out of AI? MOLLICK: So I think that you need to embrace the right kind of risk, right. We don’t want to put risk on our patients … like, we don’t want to put uninformed risk. But innovation involves risk to how organizations operate. They involve change. So I think part of this is embracing the idea that R&D has to happen in organizations again. What’s happened over the last 20 years or so has been organizations giving that up. Partially, that’s a trend to focus on what you’re good at and not try and do this other stuff. Partially, it’s because it’s outsourced now to software companies that, like, Salesforce tells you how to organize your sales team. Workforce tells you how to organize your organization. Consultants come in and will tell you how to make change based on the average of what other people are doing in your field. So companies and organizations and hospital systems have all started to give up their ability to create their own organizational change. And when I talk to organizations, I often say they have to have two approaches. They have to think about the crowd and the lab. So the crowd is the idea of how to empower clinicians and administrators and supporter networks to start using AI and experimenting in ethical, legal ways and then sharing that information with each other. And the lab is, how are we doing R&D about the approach of how to [get] AI to work, not just in direct patient care, right. But also fundamentally, like, what paperwork can you cut out? How can we better explain procedures? Like, what management role can this fill? And we need to be doing active experimentation on that. We can’t just wait for, you know, Microsoft to solve the problems. It has to be at the level of the organizations themselves. LEE: So let’s shift a little bit to the patient. You know, one of the things that we see, and I think everyone is seeing, is that people are turning to chatbots, like ChatGPT, actually to seek healthcare information for, you know, their own health or the health of their loved ones. And there was already, prior to all of this, a trend towards, let’s call it, consumerization of healthcare. So just in the business of healthcare delivery, do you think AI is going to hasten these kinds of trends, or from the consumer’s perspective, what … ? MOLLICK: I mean, absolutely, right. Like, all the early data that we have suggests that for most common medical problems, you should just consult AI, too, right. In fact, there is a real question to ask: at what point does it become unethical for doctors themselves to not ask for a second opinion from the AI because it’s cheap, right? You could overrule it or whatever you want, but like not asking seems foolish. I think the two places where there’s a burning almost, you know, moral imperative is … let’s say, you know, I’m in Philadelphia, I’m a professor, I have access to really good healthcare through the Hospital University of Pennsylvania system. I know doctors. You know, I’m lucky. I’m well connected. If, you know, something goes wrong, I have friends who I can talk to. I have specialists. I’m, you know, pretty well educated in this space. But for most people on the planet, they don’t have access to good medical care, they don’t have good health. It feels like it’s absolutely imperative to say when should you use AI and when not. Are there blind spots? What are those things? And I worry that, like, to me, that would be the crash project I’d be invoking because I’m doing the same thing in education, which is this system is not as good as being in a room with a great teacher who also uses AI to help you, but it’s better than not getting an, you know, to the level of education people get in many cases. Where should we be using it? How do we guide usage in the right way? Because the AI labs aren’t thinking about this. We have to. So, to me, there is a burning need here to understand this. And I worry that people will say, you know, everything that’s true—AI can hallucinate, AI can be biased. All of these things are absolutely true, but people are going to use it. The early indications are that it is quite useful. And unless we take the active role of saying, here’s when to use it, here’s when not to use it, we don’t have a right to say, don’t use this system. And I think, you know, we have to be exploring that. LEE: What do people need to understand about AI? And what should schools, universities, and so on be teaching? MOLLICK: Those are, kind of, two separate questions in lot of ways. I think a lot of people want to teach AI skills, and I will tell you, as somebody who works in this space a lot, there isn’t like an easy, sort of, AI skill, right. I could teach you prompt engineering in two to three classes, but every indication we have is that for most people under most circumstances, the value of prompting, you know, any one case is probably not that useful. A lot of the tricks are disappearing because the AI systems are just starting to use them themselves. So asking good questions, being a good manager, being a good thinker tend to be important, but like magic tricks around making, you know, the AI do something because you use the right phrase used to be something that was real but is rapidly disappearing. So I worry when people say teach AI skills. No one’s been able to articulate to me as somebody who knows AI very well and teaches classes on AI, what those AI skills that everyone should learn are, right. I mean, there’s value in learning a little bit how the models work. There’s a value in working with these systems. A lot of it’s just hands on keyboard kind of work. But, like, we don’t have an easy slam dunk “this is what you learn in the world of AI” because the systems are getting better, and as they get better, they get less sensitive to these prompting techniques. They get better prompting themselves. They solve problems spontaneously and start being agentic. So it’s a hard problem to ask about, like, what do you train someone on? I think getting people experience in hands-on-keyboards, getting them to … there’s like four things I could teach you about AI, and two of them are already starting to disappear. But, like, one is be direct. Like, tell the AI exactly what you want. That’s very helpful. Second, provide as much context as possible. That can include things like acting as a doctor, but also all the information you have. The third is give it step-by-step directions—that’s becoming less important. And the fourth is good and bad examples of the kind of output you want. Those four, that’s like, that’s it as far as the research telling you what to do, and the rest is building intuition. LEE: I’m really impressed that you didn’t give the answer, “Well, everyone should be teaching my book, Co-Intelligence.” [LAUGHS] MOLLICK: Oh, no, sorry! Everybody should be teaching my book Co-Intelligence. I apologize. [LAUGHTER] LEE: It’s good to chuckle about that, but actually, I can’t think of a better book, like, if you were to assign a textbook in any professional education space, I think Co-Intelligence would be number one on my list. Are there other things that you think are essential reading? MOLLICK: That’s a really good question. I think that a lot of things are evolving very quickly. I happen to, kind of, hit a sweet spot with Co-Intelligence to some degree because I talk about how I used it, and I was, sort of, an advanced user of these systems. So, like, it’s, sort of, like my Twitter feed, my online newsletter. I’m just trying to, kind of, in some ways, it’s about trying to make people aware of what these systems can do by just showing a lot, right. Rather than picking one thing, and, like, this is a general-purpose technology. Let’s use it for this. And, like, everybody gets a light bulb for a different reason. So more than reading, it is using, you know, and that can be Copilot or whatever your favorite tool is. But using it. Voice modes help a lot. In terms of readings, I mean, I think that there is a couple of good guides to understanding AI that were originally blog posts. I think Tim Lee has one called Understanding AI (opens in new tab), and it had a good overview … LEE: Yeah, that’s a great one. MOLLICK: … of that topic that I think explains how transformers work, which can give you some mental sense. I think [Andrej] Karpathy (opens in new tab) has some really nice videos of use that I would recommend. Like on the medical side, I think the book that you did, if you’re in medicine, you should read that. I think that that’s very valuable. But like all we can offer are hints in some ways. Like there isn’t … if you’re looking for the instruction manual, I think it can be very frustrating because it’s like you want the best practices and procedures laid out, and we cannot do that, right. That’s not how a system like this works. LEE: Yeah. MOLLICK: It’s not a person, but thinking about it like a person can be helpful, right. LEE: One of the things that has been sort of a fun project for me for the last few years is I have been a founding board member of a new medical school at Kaiser Permanente. And, you know, that medical school curriculum is being formed in this era. But it’s been perplexing to understand, you know, what this means for a medical school curriculum. And maybe even more perplexing for me, at least, is the accrediting bodies, which are extremely important in US medical schools; how accreditors should think about what’s necessary here. Besides the things that you’ve … the, kind of, four key ideas you mentioned, if you were talking to the board of directors of the LCME [Liaison Committee on Medical Education] accrediting body, what’s the one thing you would want them to really internalize? MOLLICK: This is both a fast-moving and vital area. This can’t be viewed like a usual change, which [is], “Let’s see how this works.” Because it’s, like, the things that make medical technologies hard to do, which is like unclear results, limited, you know, expensive use cases where it rolls out slowly. So one or two, you know, advanced medical facilities get access to, you know, proton beams or something else at multi-billion dollars of cost, and that takes a while to diffuse out. That’s not happening here. This is all happening at the same time, all at once. This is now … AI is part of medicine. I mean, there’s a minor point that I’d make that actually is a really important one, which is large language models, generative AI overall, work incredibly differently than other forms of AI. So the other worry I have with some of these accreditors is they blend together algorithmic forms of AI, which medicine has been trying for long time—decision support, algorithmic methods, like, medicine more so than other places has been thinking about those issues. Generative AI, even though it uses the same underlying techniques, is a completely different beast. So, like, even just take the most simple thing of algorithmic aversion, which is a well-understood problem in medicine, right. Which is, so you have a tool that could tell you as a radiologist, you know, the chance of this being cancer; you don’t like it, you overrule it, right. We don’t find algorithmic aversion happening with LLMs in the same way. People actually enjoy using them because it’s more like working with a person. The flaws are different. The approach is different. So you need to both view this as universal applicable today, which makes it urgent, but also as something that is not the same as your other form of AI, and your AI working group that is thinking about how to solve this problem is not the right people here. LEE: You know, I think the world has been trained because of the magic of web search to view computers as question-answering machines. Ask a question, get an answer. MOLLICK: Yes. Yes. LEE: Write a query, get results. And as I have interacted with medical professionals, you can see that medical professionals have that model of a machine in mind. And I think that’s partly, I think psychologically, why hallucination is so alarming. Because you have a mental model of a computer as a machine that has absolutely rock-solid perfect memory recall. But the thing that was so powerful in Co-Intelligence, and we tried to get at this in our book also, is that’s not the sweet spot. It’s this sort of deeper interaction, more of a collaboration. And I thought your use of the term Co-Intelligence really just even in the title of the book tried to capture this. When I think about education, it seems like that’s the first step, to get past this concept of a machine being just a question-answering machine. Do you have a reaction to that idea? MOLLICK: I think that’s very powerful. You know, we’ve been trained over so many years at both using computers but also in science fiction, right. Computers are about cold logic, right. They will give you the right answer, but if you ask it what love is, they explode, right. Like that’s the classic way you defeat the evil robot in Star Trek, right. “Love does not compute.” [LAUGHTER] Instead, we have a system that makes mistakes, is warm, beats doctors in empathy in almost every controlled study on the subject, right. Like, absolutely can outwrite you in a sonnet but will absolutely struggle with giving you the right answer every time. And I think our mental models are just broken for this. And I think you’re absolutely right. And that’s part of what I thought your book does get at really well is, like, this is a different thing. It’s also generally applicable. Again, the model in your head should be kind of like a person even though it isn’t, right. There’s a lot of warnings and caveats to it, but if you start from person, smart person you’re talking to, your mental model will be more accurate than smart machine, even though both are flawed examples, right. So it will make mistakes; it will make errors. The question is, what do you trust it on? What do you not trust it? As you get to know a model, you’ll get to understand, like, I totally don’t trust it for this, but I absolutely trust it for that, right. LEE: All right. So we’re getting to the end of the time we have together. And so I’d just like to get now into something a little bit more provocative. And I get the question all the time. You know, will AI replace doctors? In medicine and other advanced knowledge work, project out five to 10 years. What do think happens? MOLLICK: OK, so first of all, let’s acknowledge systems change much more slowly than individual use. You know, doctors are not individual actors; they’re part of systems, right. So not just the system of a patient who like may or may not want to talk to a machine instead of a person but also legal systems and administrative systems and systems that allocate labor and systems that train people. So, like, it’s hard to imagine that in five to 10 years medicine being so upended that even if AI was better than doctors at every single thing doctors do, that we’d actually see as radical a change in medicine as you might in other fields. I think you will see faster changes happen in consulting and law and, you know, coding, other spaces than medicine. But I do think that there is good reason to suspect that AI will outperform people while still having flaws, right. That’s the difference. We’re already seeing that for common medical questions in enough randomized controlled trials that, you know, best doctors beat AI, but the AI beats the mean doctor, right. Like, that’s just something we should acknowledge is happening at this point. Now, will that work in your specialty? No. Will that work with all the contingent social knowledge that you have in your space? Probably not. Like, these are vignettes, right. But, like, that’s kind of where things are. So let’s assume, right … you’re asking two questions. One is, how good will AI get? LEE: Yeah. MOLLICK: And we don’t know the answer to that question. I will tell you that your colleagues at Microsoft and increasingly the labs, the AI labs themselves, are all saying they think they’ll have a machine smarter than a human at every intellectual task in the next two to three years. If that doesn’t happen, that makes it easier to assume the future, but let’s just assume that that’s the case. I think medicine starts to change with the idea that people feel obligated to use this to help for everything. Your patients will be using it, and it will be your advisor and helper at the beginning phases, right. And I think that I expect people to be better at empathy. I expect better bedside manner. I expect management tasks to become easier. I think administrative burden might lighten if we handle this right way or much worse if we handle it badly. Diagnostic accuracy will increase, right. And then there’s a set of discovery pieces happening, too, right. One of the core goals of all the AI companies is to accelerate medical research. How does that happen and how does that affect us is a, kind of, unknown question. So I think clinicians are in both the eye of the storm and surrounded by it, right. Like, they can resist AI use for longer than most other fields, but everything around them is going to be affected by it. LEE: Well, Ethan, this has been really a fantastic conversation. And, you know, I think in contrast to all the other conversations we’ve had, this one gives especially the leaders in healthcare, you know, people actually trying to lead their organizations into the future, whether it’s in education or in delivery, a lot to think about. So I really appreciate you joining. MOLLICK: Thank you. [TRANSITION MUSIC]   I’m a computing researcher who works with people who are right in the middle of today’s bleeding-edge developments in AI. And because of that, I often lose sight of how to talk to a broader audience about what it’s all about. And so I think one of Ethan’s superpowers is that he has this knack for explaining complex topics in AI in a really accessible way, getting right to the most important points without making it so simple as to be useless. That’s why I rarely miss an opportunity to read up on his latest work. One of the first things I learned from Ethan is the intuition that you can, sort of, think of AI as a very knowledgeable intern. In other words, think of it as a persona that you can interact with, but you also need to be a manager for it and to always assess the work that it does. In our discussion, Ethan went further to stress that there is, because of that, a serious education gap. You know, over the last decade or two, we’ve all been trained, mainly by search engines, to think of computers as question-answering machines. In medicine, in fact, there’s a question-answering application that is really popular called UpToDate (opens in new tab). Doctors use it all the time. But generative AI systems like ChatGPT are different. There’s therefore a challenge in how to break out of the old-fashioned mindset of search to get the full value out of generative AI. The other big takeaway for me was that Ethan pointed out while it’s easy to see productivity gains from AI at the individual level, those same gains, at least today, don’t often translate automatically to organization-wide or system-wide gains. And one, of course, has to conclude that it takes more than just making individuals more productive; the whole system also has to adjust to the realities of AI. Here’s now my interview with Azeem Azhar: LEE: Azeem, welcome. AZEEM AZHAR: Peter, thank you so much for having me.  LEE: You know, I think you’re extremely well known in the world. But still, some of the listeners of this podcast series might not have encountered you before. And so one of the ways I like to ask people to introduce themselves is, how do you explain to your parents what you do every day? AZHAR: Well, I’m very lucky in that way because my mother was the person who got me into computers more than 40 years ago. And I still have that first computer, a ZX81 with a Z80 chip … LEE: Oh wow. AZHAR: … to this day. It sits in my study, all seven and a half thousand transistors and Bakelite plastic that it is. And my parents were both economists, and economics is deeply connected with technology in some sense. And I grew up in the late ’70s and the early ’80s. And that was a time of tremendous optimism around technology. It was space opera, science fiction, robots, and of course, the personal computer and, you know, Bill Gates and Steve Jobs. So that’s where I started. And so, in a way, my mother and my dad, who passed away a few years ago, had always known me as someone who was fiddling with computers but also thinking about economics and society. And so, in a way, it’s easier to explain to them because they’re the ones who nurtured the environment that allowed me to research technology and AI and think about what it means to firms and to the economy at large. LEE: I always like to understand the origin story. And what I mean by that is, you know, what was your first encounter with generative AI? And what was that like? What did you go through? AZHAR: The first real moment was when Midjourney and Stable Diffusion emerged in that summer of 2022. I’d been away on vacation, and I came back—and I’d been off grid, in fact—and the world had really changed. Now, I’d been aware of GPT-3 and GPT-2, which I played around with and with BERT, the original transformer paper about seven or eight years ago, but it was the moment where I could talk to my computer, and it could produce these images, and it could be refined in natural language that really made me think we’ve crossed into a new domain. We’ve gone from AI being highly discriminative to AI that’s able to explore the world in particular ways. And then it was a few months later that ChatGPT came out—November, the 30th. And I think it was the next day or the day after that I said to my team, everyone has to use this, and we have to meet every morning and discuss how we experimented the day before. And we did that for three or four months. And, you know, it was really clear to me in that interface at that point that, you know, we’d absolutely pass some kind of threshold. LEE: And who’s the we that you were experimenting with? AZHAR: So I have a team of four who support me. They’re mostly researchers of different types. I mean, it’s almost like one of those jokes. You know, I have a sociologist, an economist, and an astrophysicist. And, you know, they walk into the bar, [LAUGHTER] or they walk into our virtual team room, and we try to solve problems. LEE: Well, so let’s get now into brass tacks here. And I think I want to start maybe just with an exploration of the economics of all this and economic realities. Because I think in a lot of your work—for example, in your book—you look pretty deeply at how automation generally and AI specifically are transforming certain sectors like finance, manufacturing, and you have a really, kind of, insightful focus on what this means for productivity and which ways, you know, efficiencies are found.   And then you, sort of, balance that with risks, things that can and do go wrong. And so as you take that background and looking at all those other sectors, in what ways are the same patterns playing out or likely to play out in healthcare and medicine? AZHAR: I’m sure we will see really remarkable parallels but also new things going on. I mean, medicine has a particular quality compared to other sectors in the sense that it’s highly regulated, market structure is very different country to country, and it’s an incredibly broad field. I mean, just think about taking a Tylenol and going through laparoscopic surgery. Having an MRI and seeing a physio. I mean, this is all medicine. I mean, it’s hard to imagine a sector that is [LAUGHS] more broad than that. So I think we can start to break it down, and, you know, where we’re seeing things with generative AI will be that the, sort of, softest entry point, which is the medical scribing. And I’m sure many of us have been with clinicians who have a medical scribe running alongside—they’re all on Surface Pros I noticed, right? [LAUGHTER] They’re on the tablet computers, and they’re scribing away. And what that’s doing is, in the words of my friend Eric Topol, it’s giving the clinician time back (opens in new tab), right. They have time back from days that are extremely busy and, you know, full of administrative overload. So I think you can obviously do a great deal with reducing that overload. And within my team, we have a view, which is if you do something five times in a week, you should be writing an automation for it. And if you’re a doctor, you’re probably reviewing your notes, writing the prescriptions, and so on several times a day. So those are things that can clearly be automated, and the human can be in the loop. But I think there are so many other ways just within the clinic that things can help. So, one of my friends, my friend from my junior school—I’ve known him since I was 9—is an oncologist who’s also deeply into machine learning, and he’s in Cambridge in the UK. And he built with Microsoft Research a suite of imaging AI tools from his own discipline, which they then open sourced. So that’s another way that you have an impact, which is that you actually enable the, you know, generalist, specialist, polymath, whatever they are in health systems to be able to get this technology, to tune it to their requirements, to use it, to encourage some grassroots adoption in a system that’s often been very, very heavily centralized. LEE: Yeah. AZHAR: And then I think there are some other things that are going on that I find really, really exciting. So one is the consumerization of healthcare. So I have one of those sleep tracking rings, the Oura (opens in new tab). LEE: Yup. AZHAR: That is building a data stream that we’ll be able to apply more and more AI to. I mean, right now, it’s applying traditional, I suspect, machine learning, but you can imagine that as we start to get more data, we start to get more used to measuring ourselves, we create this sort of pot, a personal asset that we can turn AI to. And there’s still another category. And that other category is one of the completely novel ways in which we can enable patient care and patient pathway. And there’s a fantastic startup in the UK called Neko Health (opens in new tab), which, I mean, does physicals, MRI scans, and blood tests, and so on. It’s hard to imagine Neko existing without the sort of advanced data, machine learning, AI that we’ve seen emerge over the last decade. So, I mean, I think that there are so many ways in which the temperature is slowly being turned up to encourage a phase change within the healthcare sector. And last but not least, I do think that these tools can also be very, very supportive of a clinician’s life cycle. I think we, as patients, we’re a bit …  I don’t know if we’re as grateful as we should be for our clinicians who are putting in 90-hour weeks. [LAUGHTER] But you can imagine a world where AI is able to support not just the clinicians’ workload but also their sense of stress, their sense of burnout. So just in those five areas, Peter, I sort of imagine we could start to fundamentally transform over the course of many years, of course, the way in which people think about their health and their interactions with healthcare systems LEE: I love how you break that down. And I want to press on a couple of things. You also touched on the fact that medicine is, at least in most of the world, is a highly regulated industry. I guess finance is the same way, but they also feel different because the, like, finance sector has to be very responsive to consumers, and consumers are sensitive to, you know, an abundance of choice; they are sensitive to price. Is there something unique about medicine besides being regulated? AZHAR: I mean, there absolutely is. And in finance, as well, you have much clearer end states. So if you’re not in the consumer space, but you’re in the, you know, asset management space, you have to essentially deliver returns against the volatility or risk boundary, right. That’s what you have to go out and do. And I think if you’re in the consumer industry, you can come back to very, very clear measures, net promoter score being a very good example. In the case of medicine and healthcare, it is much more complicated because as far as the clinician is concerned, people are individuals, and we have our own parts and our own responses. If we didn’t, there would never be a need for a differential diagnosis. There’d never be a need for, you know, Let’s try azithromycin first, and then if that doesn’t work, we’ll go to vancomycin, or, you know, whatever it happens to be. You would just know. But ultimately, you know, people are quite different. The symptoms that they’re showing are quite different, and also their compliance is really, really different. I had a back problem that had to be dealt with by, you know, a physio and extremely boring exercises four times a week, but I was ruthless in complying, and my physio was incredibly surprised. He’d say well no one ever does this, and I said, well you know the thing is that I kind of just want to get this thing to go away. LEE: Yeah. AZHAR: And I think that that’s why medicine is and healthcare is so different and more complex. But I also think that’s why AI can be really, really helpful. I mean, we didn’t talk about, you know, AI in its ability to potentially do this, which is to extend the clinician’s presence throughout the week. LEE: Right. Yeah. AZHAR: The idea that maybe some part of what the clinician would do if you could talk to them on Wednesday, Thursday, and Friday could be delivered through an app or a chatbot just as a way of encouraging the compliance, which is often, especially with older patients, one reason why conditions, you know, linger on for longer. LEE: You know, just staying on the regulatory thing, as I’ve thought about this, the one regulated sector that I think seems to have some parallels to healthcare is energy delivery, energy distribution. Because like healthcare, as a consumer, I don’t have choice in who delivers electricity to my house. And even though I care about it being cheap or at least not being overcharged, I don’t have an abundance of choice. I can’t do price comparisons. And there’s something about that, just speaking as a consumer of both energy and a consumer of healthcare, that feels similar. Whereas other regulated industries, you know, somehow, as a consumer, I feel like I have a lot more direct influence and power. Does that make any sense to someone, you know, like you, who’s really much more expert in how economic systems work? AZHAR: I mean, in a sense, one part of that is very, very true. You have a limited panel of energy providers you can go to, and in the US, there may be places where you have no choice. I think the area where it’s slightly different is that as a consumer or a patient, you can actually make meaningful choices and changes yourself using these technologies, and people used to joke about you know asking Dr. Google. But Dr. Google is not terrible, particularly if you go to WebMD. And, you know, when I look at long-range change, many of the regulations that exist around healthcare delivery were formed at a point before people had access to good quality information at the touch of their fingertips or when educational levels in general were much, much lower. And many regulations existed because of the incumbent power of particular professional sectors. I’ll give you an example from the United Kingdom. So I have had asthma all of my life. That means I’ve been taking my inhaler, Ventolin, and maybe a steroid inhaler for nearly 50 years. That means that I know … actually, I’ve got more experience, and I—in some sense—know more about it than a general practitioner. LEE: Yeah. AZHAR: And until a few years ago, I would have to go to a general practitioner to get this drug that I’ve been taking for five decades, and there they are, age 30 or whatever it is. And a few years ago, the regulations changed. And now pharmacies can … or pharmacists can prescribe those types of drugs under certain conditions directly. LEE: Right. AZHAR: That was not to do with technology. That was to do with incumbent lock-in. So when we look at the medical industry, the healthcare space, there are some parallels with energy, but there are a few little things that the ability that the consumer has to put in some effort to learn about their condition, but also the fact that some of the regulations that exist just exist because certain professions are powerful. LEE: Yeah, one last question while we’re still on economics. There seems to be a conundrum about productivity and efficiency in healthcare delivery because I’ve never encountered a doctor or a nurse that wants to be able to handle even more patients than they’re doing on a daily basis. And so, you know, if productivity means simply, well, your rounds can now handle 16 patients instead of eight patients, that doesn’t seem necessarily to be a desirable thing. So how can we or should we be thinking about efficiency and productivity since obviously costs are, in most of the developed world, are a huge, huge problem? AZHAR: Yes, and when you described doubling the number of patients on the round, I imagined you buying them all roller skates so they could just whizz around [LAUGHTER] the hospital faster and faster than ever before. We can learn from what happened with the introduction of electricity. Electricity emerged at the end of the 19th century, around the same time that cars were emerging as a product, and car makers were very small and very artisanal. And in the early 1900s, some really smart car makers figured out that electricity was going to be important. And they bought into this technology by putting pendant lights in their workshops so they could “visit more patients.” Right? LEE: Yeah, yeah. AZHAR: They could effectively spend more hours working, and that was a productivity enhancement, and it was noticeable. But, of course, electricity fundamentally changed the productivity by orders of magnitude of people who made cars starting with Henry Ford because he was able to reorganize his factories around the electrical delivery of power and to therefore have the moving assembly line, which 10xed the productivity of that system. So when we think about how AI will affect the clinician, the nurse, the doctor, it’s much easier for us to imagine it as the pendant light that just has them working later … LEE: Right. AZHAR: … than it is to imagine a reconceptualization of the relationship between the clinician and the people they care for. And I’m not sure. I don’t think anybody knows what that looks like. But, you know, I do think that there will be a way that this changes, and you can see that scale out factor. And it may be, Peter, that what we end up doing is we end up saying, OK, because we have these brilliant AIs, there’s a lower level of training and cost and expense that’s required for a broader range of conditions that need treating. And that expands the market, right. That expands the market hugely. It’s what has happened in the market for taxis or ride sharing. The introduction of Uber and the GPS system … LEE: Yup. AZHAR: … has meant many more people now earn their living driving people around in their cars. And at least in London, you had to be reasonably highly trained to do that. So I can see a reorganization is possible. Of course, entrenched interests, the economic flow … and there are many entrenched interests, particularly in the US between the health systems and the, you know, professional bodies that might slow things down. But I think a reimagining is possible. And if I may, I’ll give you one example of that, which is, if you go to countries outside of the US where there are many more sick people per doctor, they have incentives to change the way they deliver their healthcare. And well before there was AI of this quality around, there was a few cases of health systems in India—Aravind Eye Care (opens in new tab) was one, and Narayana Hrudayalaya [now known as Narayana Health (opens in new tab)] was another. And in the latter, they were a cardiac care unit where you couldn’t get enough heart surgeons. LEE: Yeah, yep. AZHAR: So specially trained nurses would operate under the supervision of a single surgeon who would supervise many in parallel. So there are ways of increasing the quality of care, reducing the cost, but it does require a systems change. And we can’t expect a single bright algorithm to do it on its own. LEE: Yeah, really, really interesting. So now let’s get into regulation. And let me start with this question. You know, there are several startup companies I’m aware of that are pushing on, I think, a near-term future possibility that a medical AI for consumer might be allowed, say, to prescribe a medication for you, something that would normally require a doctor or a pharmacist, you know, that is certified in some way, licensed to do. Do you think we’ll get to a point where for certain regulated activities, humans are more or less cut out of the loop? AZHAR: Well, humans would have been in the loop because they would have provided the training data, they would have done the oversight, the quality control. But to your question in general, would we delegate an important decision entirely to a tested set of algorithms? I’m sure we will. We already do that. I delegate less important decisions like, What time should I leave for the airport to Waze. I delegate more important decisions to the automated braking in my car. We will do this at certain levels of risk and threshold. If I come back to my example of prescribing Ventolin. It’s really unclear to me that the prescription of Ventolin, this incredibly benign bronchodilator that is only used by people who’ve been through the asthma process, needs to be prescribed by someone who’s gone through 10 years or 12 years of medical training. And why that couldn’t be prescribed by an algorithm or an AI system. LEE: Right. Yep. Yep. AZHAR: So, you know, I absolutely think that that will be the case and could be the case. I can’t really see what the objections are. And the real issue is where do you draw the line of where you say, “Listen, this is too important,” or “The cost is too great,” or “The side effects are too high,” and therefore this is a point at which we want to have some, you know, human taking personal responsibility, having a liability framework in place, having a sense that there is a person with legal agency who signed off on this decision. And that line I suspect will start fairly low, and what we’d expect to see would be that that would rise progressively over time. LEE: What you just said, that scenario of your personal asthma medication, is really interesting because your personal AI might have the benefit of 50 years of your own experience with that medication. So, in a way, there is at least the data potential for, let’s say, the next prescription to be more personalized and more tailored specifically for you. AZHAR: Yes. Well, let’s dig into this because I think this is super interesting, and we can look at how things have changed. So 15 years ago, if I had a bad asthma attack, which I might have once a year, I would have needed to go and see my general physician. In the UK, it’s very difficult to get an appointment. I would have had to see someone privately who didn’t know me at all because I’ve just walked in off the street, and I would explain my situation. It would take me half a day. Productivity lost. I’ve been miserable for a couple of days with severe wheezing. Then a few years ago the system changed, a protocol changed, and now I have a thing called a rescue pack, which includes prednisolone steroids. It includes something else I’ve just forgotten, and an antibiotic in case I get an upper respiratory tract infection, and I have an “algorithm.” It’s called a protocol. It’s printed out. It’s a flowchart I answer various questions, and then I say, “I’m going to prescribe this to myself.” You know, UK doctors don’t prescribe prednisolone, or prednisone as you may call it in the US, at the drop of a hat, right. It’s a powerful steroid. I can self-administer, and I can now get that repeat prescription without seeing a physician a couple of times a year. And the algorithm, the “AI” is, it’s obviously been done in PowerPoint naturally, and it’s a bunch of arrows. [LAUGHS] Surely, surely, an AI system is going to be more sophisticated, more nuanced, and give me more assurance that I’m making the right decision around something like that. LEE: Yeah. Well, at a minimum, the AI should be able to make that PowerPoint the next time. [LAUGHS] AZHAR: Yeah, yeah. Thank god for Clippy. Yes. LEE: So, you know, I think in our book, we had a lot of certainty about most of the things we’ve discussed here, but one chapter where I felt we really sort of ran out of ideas, frankly, was on regulation. And, you know, what we ended up doing for that chapter is … I can’t remember if it was Carey’s or Zak’s idea, but we asked GPT-4 to have a conversation, a debate with itself [LAUGHS], about regulation. And we made some minor commentary on that. And really, I think we took that approach because we just didn’t have much to offer. By the way, in our defense, I don’t think anyone else had any better ideas anyway. AZHAR: Right. LEE: And so now two years later, do we have better ideas about the need for regulation, the frameworks around which those regulations should be developed, and, you know, what should this look like? AZHAR: So regulation is going to be in some cases very helpful because it provides certainty for the clinician that they’re doing the right thing, that they are still insured for what they’re doing, and it provides some degree of confidence for the patient. And we need to make sure that the claims that are made stand up to quite rigorous levels, where ideally there are RCTs [randomized control trials], and there are the classic set of processes you go through. You do also want to be able to experiment, and so the question is: as a regulator, how can you enable conditions for there to be experimentation? And what is experimentation? Experimentation is learning so that every element of the system can learn from this experience. So finding that space where there can be bit of experimentation, I think, becomes very, very important. And a lot of this is about experience, so I think the first digital therapeutics have received FDA approval, which means there are now people within the FDA who understand how you go about running an approvals process for that, and what that ends up looking like—and of course what we’re very good at doing in this sort of modern hyper-connected world—is we can share that expertise, that knowledge, that experience very, very quickly. So you go from one approval a year to a hundred approvals a year to a thousand approvals a year. So we will then actually, I suspect, need to think about what is it to approve digital therapeutics because, unlike big biological molecules, we can generate these digital therapeutics at the rate of knots [very rapidly]. LEE: Yes. AZHAR: Every road in Hayes Valley in San Francisco, right, is churning out new startups who will want to do things like this. So then, I think about, what does it mean to get approved if indeed it gets approved? But we can also go really far with things that don’t require approval. I come back to my sleep tracking ring. So I’ve been wearing this for a few years, and when I go and see my doctor or I have my annual checkup, one of the first things that he asks is how have I been sleeping. And in fact, I even sync my sleep tracking data to their medical record system, so he’s saying … hearing what I’m saying, but he’s actually pulling up the real data going, This patient’s lying to me again. Of course, I’m very truthful with my doctor, as we should all be. [LAUGHTER] LEE: You know, actually, that brings up a point that consumer-facing health AI has to deal with pop science, bad science, you know, weird stuff that you hear on Reddit. And because one of the things that consumers want to know always is, you know, what’s the truth? AZHAR: Right. LEE: What can I rely on? And I think that somehow feels different than an AI that you actually put in the hands of, let’s say, a licensed practitioner. And so the regulatory issues seem very, very different for these two cases somehow. AZHAR: I agree, they’re very different. And I think for a lot of areas, you will want to build AI systems that are first and foremost for the clinician, even if they have patient extensions, that idea that the clinician can still be with a patient during the week. And you’ll do that anyway because you need the data, and you also need a little bit of a liability shield to have like a sensible person who’s been trained around that. And I think that’s going to be a very important pathway for many AI medical crossovers. We’re going to go through the clinician. LEE: Yeah. AZHAR: But I also do recognize what you say about the, kind of, kooky quackery that exists on Reddit. Although on Creatine, Reddit may yet prove to have been right. [LAUGHTER] LEE: Yeah, that’s right. Yes, yeah, absolutely. Yeah. AZHAR: Sometimes it’s right. And I think that it serves a really good role as a field of extreme experimentation. So if you’re somebody who makes a continuous glucose monitor traditionally given to diabetics but now lots of people will wear them—and sports people will wear them—you probably gathered a lot of extreme tail distribution data by reading the Reddit/biohackers … LEE: Yes. AZHAR: … for the last few years, where people were doing things that you would never want them to really do with the CGM [continuous glucose monitor]. And so I think we shouldn’t understate how important that petri dish can be for helping us learn what could happen next. LEE: Oh, I think it’s absolutely going to be essential and a bigger thing in the future. So I think I just want to close here then with one last question. And I always try to be a little bit provocative with this. And so as you look ahead to what doctors and nurses and patients might be doing two years from now, five years from now, 10 years from now, do you have any kind of firm predictions? AZHAR: I’m going to push the boat out, and I’m going to go further out than closer in. LEE: OK. [LAUGHS] AZHAR: As patients, we will have many, many more touch points and interaction with our biomarkers and our health. We’ll be reading how well we feel through an array of things. And some of them we’ll be wearing directly, like sleep trackers and watches. And so we’ll have a better sense of what’s happening in our lives. It’s like the moment you go from paper bank statements that arrive every month to being able to see your account in real time. LEE: Yes. AZHAR: And I suspect we’ll have … we’ll still have interactions with clinicians because societies that get richer see doctors more, societies that get older see doctors more, and we’re going to be doing both of those over the coming 10 years. But there will be a sense, I think, of continuous health engagement, not in an overbearing way, but just in a sense that we know it’s there, we can check in with it, it’s likely to be data that is compiled on our behalf somewhere centrally and delivered through a user experience that reinforces agency rather than anxiety. And we’re learning how to do that slowly. I don’t think the health apps on our phones and devices have yet quite got that right. And that could help us personalize problems before they arise, and again, I use my experience for things that I’ve tracked really, really well. And I know from my data and from how I’m feeling when I’m on the verge of one of those severe asthma attacks that hits me once a year, and I can take a little bit of preemptive measure, so I think that that will become progressively more common and that sense that we will know our baselines. I mean, when you think about being an athlete, which is something I think about, but I could never ever do, [LAUGHTER] but what happens is you start with your detailed baselines, and that’s what your health coach looks at every three or four months. For most of us, we have no idea of our baselines. You we get our blood pressure measured once a year. We will have baselines, and that will help us on an ongoing basis to better understand and be in control of our health. And then if the product designers get it right, it will be done in a way that doesn’t feel invasive, but it’ll be done in a way that feels enabling. We’ll still be engaging with clinicians augmented by AI systems more and more because they will also have gone up the stack. They won’t be spending their time on just “take two Tylenol and have a lie down” type of engagements because that will be dealt with earlier on in the system. And so we will be there in a very, very different set of relationships. And they will feel that they have different ways of looking after our health. LEE: Azeem, it’s so comforting to hear such a wonderfully optimistic picture of the future of healthcare. And I actually agree with everything you’ve said. Let me just thank you again for joining this conversation. I think it’s been really fascinating. And I think somehow the systemic issues, the systemic issues that you tend to just see with such clarity, I think are going to be the most, kind of, profound drivers of change in the future. So thank you so much. AZHAR: Well, thank you, it’s been my pleasure, Peter, thank you. [TRANSITION MUSIC]   I always think of Azeem as a systems thinker. He’s always able to take the experiences of new technologies at an individual level and then project out to what this could mean for whole organizations and whole societies. In our conversation, I felt that Azeem really connected some of what we learned in a previous episode—for example, from Chrissy Farr—on the evolving consumerization of healthcare to the broader workforce and economic impacts that we’ve heard about from Ethan Mollick.   Azeem’s personal story about managing his asthma was also a great example. You know, he imagines a future, as do I, where personal AI might assist and remember decades of personal experience with a condition like asthma and thereby know more than any human being could possibly know in a deeply personalized and effective way, leading to better care. Azeem’s relentless optimism about our AI future was also so heartening to hear. Both of these conversations leave me really optimistic about the future of AI in medicine. At the same time, it is pretty sobering to realize just how much we’ll all need to change in pretty fundamental and maybe even in radical ways. I think a big insight I got from these conversations is how we interact with machines is going to have to be altered not only at the individual level, but at the company level and maybe even at the societal level. Since my conversation with Ethan and Azeem, there have been some pretty important developments that speak directly to this. Just last week at Build (opens in new tab), which is Microsoft’s yearly developer conference, we announced a slew of AI agent technologies. Our CEO, Satya Nadella, in fact, started his keynote by going online in a GitHub developer environment and then assigning a coding task to an AI agent, basically treating that AI as a full-fledged member of a development team. Other agents, for example, a meeting facilitator, a data analyst, a business researcher, travel agent, and more were also shown during the conference. But pertinent to healthcare specifically, what really blew me away was the demonstration of a healthcare orchestrator agent. And the specific thing here was in Stanford’s cancer treatment center, when they are trying to decide on potentially experimental treatments for cancer patients, they convene a meeting of experts. That is typically called a tumor board. And so this AI healthcare orchestrator agent actually participated as a full-fledged member of a tumor board meeting to help bring data together, make sure that the latest medical knowledge was brought to bear, and to assist in the decision-making around a patient’s cancer treatment. It was pretty amazing. [THEME MUSIC] A big thank-you again to Ethan and Azeem for sharing their knowledge and understanding of the dynamics between AI and society more broadly. And to our listeners, thank you for joining us. I’m really excited for the upcoming episodes, including discussions on medical students’ experiences with AI and AI’s influence on the operation of health systems and public health departments. We hope you’ll continue to tune in. Until next time. [MUSIC FADES]
    11 Reacties 0 aandelen
  • Days of Play 2025 comes to PlayStation Store May 28

    The Days of Play celebration comes to PlayStation Store, featuring numerous games all available at discount for a limited time*, starting May 28! You can get a preview of just some of the titles** that’ll be included ahead of the promotion’s go-live time right here.

    The full list will include the likes of Call of Duty: Black Ops 6 – Cross-Gen Bundle, WWE 2K25 Standard Edition, Astro Bot, The Last of Us Part II Remasteredand Red Dead Redemption 2. 

    The full list will include the likes of Call of Duty: Black Ops 6 – Cross-Gen Bundle, WWE 2K25 Standard Edition, Astro Botand The Last of Us Part II Remastered. 

    The full list will include the likes of Call of Duty: Black Ops 6 – Cross-Gen Bundle, WWE 2K25 Standard Edition, Astro Botand The Last of Us Part II Remastered. 

    And there are many more games beyond the titles listed below. When the dedicated promotion page goes live on PlayStation Store on May 28, head there to see the full list and find out your regional discount pricing. 

    And there’s plenty more Days of Play related-celebrations to enjoy! Check out the full range of activities, offers and more in the Days of Play announcement post. 

    A Plague Tale: Innocence

    A Plague Tale: Requiem

    After the Fall® – Complete Edition

    Agatha Christie – Murder on the Orient Express

    Age of Mythology: Retold Standard Edition

    Age of Wonders 4

    AI LIMIT

    AI LIMIT Deluxe Edition

    AI: THE SOMNIUM FILES

    AI: THE SOMNIUM FILES – nirvanA Initiative

    Airport Police Contraband Simulator – Border Patrol

    Akimbot

    Alan Wake 2 Deluxe Edition

    Alan Wake Remastered

    Alien: Isolation – THE COLLECTION

    Alien: Rogue Incursion VR Deluxe

    Ambulance Life: A Paramedic Simulator

    Amerzone – The Explorer’s Legacy

    ANIMAL WELL

    Another Crab’s Treasure

    Arcade Paradise

    Arizona Sunshine® 2 Deluxe Edition

    Arizona Sunshine® Remake

    Arma Reforger

    Assassin’s Creed Valhalla Deluxe

    Assassin’s Creed Valhalla Ragnarök Edition

    Assassin’s Creed® IV Black Flag™

    Assassin’s Creed® Mirage Deluxe Edition

    Assassin’s Creed® Odyssey Deluxe Edition

    Assassin’s Creed® Odyssey Gold Edition

    Assetto Corsa

    ASTRO BOT

    ASTRO BOT Digital Deluxe Edition

    ASTRONEER: Glitchwalkers Edition

    Atomfall

    Atomic Heart

    Atomic Heart – Premium Edition

    Avatar: Frontiers of Pandora Deluxe Edition

    Avatar: Frontiers of Pandora™ Gold Edition

    Back 4 Blood: Standard Edition

    Back 4 Blood: Ultimate Edition

    Balatro

    Banishers: Ghosts of New Eden

    Bassmaster® Fishing: 2022 Bassmaster Classic®

    Batman: Arkham Collection

    Battlefield™ 2042

    Ben 10: Power Trip

    Bendy and the Dark Revival

    Bendy and the Ink Machine

    Bendy: Studio Collection

    Beyond Galaxyland

    Bionic Bay

    BioShock: The Collection

    Blasphemous

    Blasphemous + Blasphemous 2 Bundle

    Blood Omen 2: Legacy of Kain

    Blood Omen: Legacy of Kain

    Bluey: The Videogame

    Bomb Rush Cyberfunk

    Borderlands 3

    Borderlands 3 Super Deluxe Edition

    Bratz™: Flaunt Your Fashion

    Bugsnax

    Bulletstorm: Full Clip Edition

    Bus Simulator

    Bus Simulator 21 Next Stop – Gold Edition

    Call of Duty®: Black Ops 6 – Cross-Gen Bundle

    Call of the Wild: The Angler™ – Ultimate Fishing Bundle

    Capes

    CARRION

    Cat Quest III

    CATAN® – Console Edition Deluxe

    Chicory: A Colorful Tale

    Children of Morta: Complete Edition

    Cities: Skylines – Mayor’s Edition

    Cities: Skylines – Premium Edition 2

    Citizen Sleeper

    CityDriver

    COCOON

    CONSCRIPT – Digital Deluxe Edition

    Construction Simulator

    Construction Simulator – Gold Edition

    Control: Ultimate Edition

    Coral Island

    Creed: Rise to Glory – Championship Edition™

    CRISIS CORE -FINAL FANTASY VII- REUNION DIGITAL DELUXE EDITION

    Croc Legend of the Gobbos

    Crow Country

    Crusader Kings III: Royal Edition

    Cult of the Lamb

    Cyberpunk 2077

    Cyberpunk 2077: Phantom Liberty

    Cyberpunk 2077: Ultimate Edition

    Dakar Desert Rally

    Dakar Desert Rally – Deluxe Edition

    Danganronpa 1•2 Reload

    Danganronpa S: Ultimate Summer Camp

    Danganronpa V3: Killing Harmony

    Darkest Dungeon II

    Darkest Dungeon II: Oblivion Edition

    Darkest Dungeon®

    DayZ

    DayZ Cool Edition

    DayZ Frostline

    Dead Cells

    Dead Island 2

    Dead Island Definitive Edition

    Dead Space

    DEATH NOTE Killer Within

    DEATHLOOP

    Deep Rock Galactic

    Deus Ex: Mankind Divided – Digital Deluxe Edition

    Devil May Cry 5 Deluxe + Vergil

    Devil May Cry 5 Special Edition

    Devil May Cry HD Collection & 4SE Bundle

    Dishonored 2

    Dishonored® Definitive Edition

    Dishonored®: Death of the Outsider™ – Deluxe Bundle

    Disney Epic Mickey: Rebrushed

    DISSIDIA® FINAL FANTASY® NT

    DOOM

    DOOM Eternal Standard Edition

    Dragon Age™: The Veilguard

    DRAGON QUEST BUILDERS

    DRAGON QUEST BUILDERS 2

    DRAGON QUEST III HD-2D Remake

    DRAGON QUEST XI S: Echoes of an Elusive Age – Definitive Edition

    DREDGE

    DREDGE: Expansion Bundle

    Duke Nukem 3D: 20th Anniversary World Tour

    Dungeons 4

    Dying Light

    Dying Light 2 Stay Human

    EA SPORTS FC™ 25 Standard Edition

    EA SPORTS™ Madden NFL 25

    EARTH DEFENSE FORCE 5

    EARTH DEFENSE FORCE 6

    EARTH DEFENSE FORCE: WORLD BROTHERS 2 Deluxe Edition

    Eiyuden Chronicle: Hundred Heroes

    Empire of the Ants

    ENDER LILIES: Quietus of the Knights

    ENDER MAGNOLIA: Bloom in the Mist

    Endling – Extinction is Forever

    Eternights

    Expeditions: A MudRunner Game

    Expeditions: A MudRunner Game – Supreme Edition

    Fallout 4: Game of the Year Edition

    Fallout 76

    Far Cry Primal

    Far Cry New Dawn Deluxe Edition

    FF7R EPISODE INTERmissionFINAL FANTASY I-VI Bundle

    FINAL FANTASY VII REBIRTH Digital Deluxe Edition

    FINAL FANTASY VII REMAKE

    FINAL FANTASY VII REMAKE & REBIRTH Twin Pack

    FINAL FANTASY VII REMAKE INTERGRADE

    Fire Pro Wrestling World

    Five Nights at Freddy’s: Help Wanted 2

    Forever Skies

    Forklift Simulator

    Forza Horizon 5 Premium Edition

    Forza Horizon 5 Standard Edition

    Funko Fusion

    Ghostbusters: Spirits Unleashed Ecto Edition

    Ghostrunner

    Ghostrunner 2

    Ghostrunner 2 Brutal Edition

    Ghostwire: Tokyo

    Goat Simulator 3

    Goat Simulator: Remastered

    Goat Simulator: The GOATY

    Golf With Your Friends – Ultimate Edition

    Goodbye Volcano High

    Gotham Knights

    Granblue Fantasy Versus: Rising Standard Edition

    Grand Theft Auto V

    Grand Theft Auto V: Premium Edition

    Grand Theft Auto: The Trilogy – The Definitive Edition

    GRIS

    GTA Online: Megalodon Shark Cash Card

    Guilty Gear -Strive-

    Hades

    Harold Halibut

    Harry Potter: Quidditch Champions

    Have a Nice Death

    Heavenly Bodies

    Heavy Cargo – The Truck Simulator

    Hell Let Loose

    High On Life

    High On Life + DLC Bundle

    Highway Police Simulator

    HITMAN 3 – Trinity Pack

    HITMAN World of Assassination – Deluxe Edition

    Horizon Chase 2

    Horizon Forbidden West™ Complete Edition

    HOT WHEELS UNLEASHED™ 2 – Turbocharged

    HOT WHEELS UNLEASHED™ 2 – Turbocharged – Deluxe Edition

    HOT WHEELS UNLEASHED™ 2 – Turbocharged – Legendary Edition

    HUMANITY

    Immortals of Aveum™ Deluxe Edition

    Indiana Jones and the Great Circle

    Indiana Jones and the Great Circle Premium Edition

    INDIKA

    Infernax

    Infinity Strash: DRAGON QUEST The Adventure of Dai

    Insurgency: Sandstorm

    Insurgency: Sandstorm – Gold Edition

    It Takes Two

    Jak and Daxter Bundle

    Jurassic World Evolution: Return to Jurassic Park

    Kena: Bridge of Spirits

    Kentucky Route Zero: TV Edition

    Killer Klowns From Outer Space: Digital Deluxe Edition

    Killer Klowns From Outer Space: The Game

    Kingdom Come: Deliverance II

    Kingdom Come: Deliverance Royal Edition

    L.A. Noire

    LEGO® Harry Potter™ Collection

    LEGO® 2K Drive

    LEGO® 2K Drive Awesome Rivals Edition

    LEGO® Batman™ 3: Beyond Gotham

    LEGO® Harry Potter™ Collection

    LEGO® Horizon Adventures™

    LEGO® Star Wars™: The Skywalker Saga

    LEGO® Star Wars™: The Skywalker Saga Galactic Edition

    Life is Strange: Double Exposure Deluxe Edition

    Like a Dragon: Infinite Wealth

    Like a Dragon: Infinite Wealth Ultimate Edition

    LIVE A LIVE

    Lords of the Fallen

    Lorelei and the Laser Eyes

    Made in Abyss: Binary Star Falling into Darkness

    Mafia: Definitive Edition

    Mafia: Trilogy

    Maneater

    Marvel’s Guardians of the Galaxy

    Marvel’s Midnight Suns Enhanced Edition

    Marvel’s Midnight Suns Legendary Edition

    Marvel’s Spider-Man 2 Digital Deluxe Edition

    Master Detective Archives: RAIN CODE Plus

    Master Detective Archives: RAIN CODE Plus – Digital Deluxe Edition

    Matchbox™ Driving Adventures

    Metaphor: ReFantazio

    Metro Awakening

    Metro Awakening + Arizona Sunshine® 2

    Metro Exodus: Gold Edition

    Metro Saga Bundle

    Minecraft Dungeons: Ultimate Edition

    Minecraft Legends

    Minecraft Legends Deluxe Edition

    MLB® The Show™ 25

    Monster Energy Supercross 25 – Special Edition

    Monster Energy Supercross 25 – The Official Video Game

    Monster Energy Supercross 25 X Monster Jam™ Showdown – Dirt Master Edition

    Monster High™ Skulltimate Secrets™

    Monster Jam™ Showdown

    Monster Jam™ Showdown – Big Air Edition

    Moonlighter

    Moonscars

    Mortal Kombat™ 1

    Mortal Shell

    Mortal Shell: The Virtuous Cycle

    MotoGP™25

    Moving Out

    MudRunner – American Wilds Edition

    MX vs ATV Legends

    MX vs ATV Legends – 2024 AMA Pro Motocross Championship

    My Friend Peppa Pig

    My Little Pony: A Zephyr Heights Mystery

    NARUTO X BORUTO Ultimate Ninja STORM CONNECTIONS

    NARUTO X BORUTO Ultimate Ninja STORM CONNECTIONS Ultimate Edition

    NBA 2K25 All-Star Edition

    NBA 2K25 Tournament Edition

    Need for Speed™ Unbound

    Need for Speed™ Unbound Ultimate Collection

    NEO: The World Ends with You

    Neon White

    Neva

    New Tales from the Borderlands

    Nick Jr. Party Adventure

    Nickelodeon Kart Racers 3: Slime Speedway

    NieR Replicant ver.1.22474487139…

    NieR: Automata™ Game of the YoRHa Edition

    Nine Sols

    No Man’s Sky

    Nobody Wants to Die

    OCTOPATH TRAVELER II

    Oddworld: Soulstorm Enhanced Edition

    ON THE ROAD – The Truck Simulator

    Onee Chanbara Origin

    Outer Wilds

    Overcooked! All You Can Eat

    Pacific Drive

    PAW Patrol Mighty Pups Adventure Bay

    PAW Patrol: Grand Prix

    PAYDAY 3

    PGA TOUR 2K25

    PGA TOUR 2K25 Legend Edition

    Phasmophobia

    Planet Coaster 2: Deluxe Edition

    Police Simulator: Patrol Officers: Gold Edition

    Quake 1 & 2 Bundle

    Railway Empire 2

    Ravenswatch

    Red Dead Online

    Red Dead Redemption

    Remnant II® – Standard Edition

    Remnant II® – Ultimate Edition

    Remnant: From the Ashes

    REVEIL

    REVEIL – Funhouse Edition

    Rez Infinite

    RIDE 5

    RIDE 5 – Special Edition

    Riders Republic™ 360 Edition

    Riders Republic™ Skate Edition

    Risk of Rain

    Risk of Rain 2

    Road Maintenance Simulator 2 + Winter Services

    Road Redemption

    Robin Hood – Sherwood Builders

    Rogue Waters

    Romancing SaGa 2: Revenge of the Seven

    Romancing SaGa -Minstrel Song- Remastered

    Rugby 25

    Saints Row

    Saints Row Gold Edition

    SAMURAI MAIDEN

    SAND LAND Deluxe Edition

    Sayonara Wild Hearts

    Sea of Thieves

    Sea of Thieves: 2025 Premium Edition

    SEASON: A letter to the future

    SHADOW OF THE COLOSSUS

    Shadow of the Tomb Raider Definitive Edition

    Shadow Tactics: Aiko’s Choice

    Shadow Tactics: Aiko’s Choice – Deluxe Edition

    Shredders

    Shredders – 540INDY Edition

    Sid Meier’s Civilization VI

    Sid Meier’s Civilization® VII

    Sid Meier’s Civilization® VII Deluxe Edition

    Sifu

    Skull and Bones Premium Edition

    SKULL AND BONES™

    Skyrim Anniversary Edition + Fallout 4 G.O.T.Y Bundle

    Sledders

    Slime Rancher

    Slime Rancher 2

    Slitterhead

    Sniper Ghost Warrior Contracts 2 Complete Edition

    Sniper Ghost Warrior Contracts Full Arsenal Edition

    SnowRunner – 2-Year Anniversary Edition

    SnowRunner – 4-Year Anniversary Edition

    Solar Ash

    Songs of Conquest

    SOUTH PARK: SNOW DAY!

    SOUTH PARK: SNOW DAY! Digital Deluxe

    SpellForce III Reforced

    SpellForce III Reforced: Complete Edition

    SpongeBob SquarePants™: The Patrick Star Game

    STAR WARS Jedi: Survivor™

    Star Wars Outlaws

    Star Wars Outlaws Ultimate Edition

    STAR WARS™ Battlefront™ Ultimate Edition

    STAR WARS™ Battlefront™ II

    STAR WARS™ Jedi Cross-Gen Bundle Edition

    STAR WARS™: Dark Forces Remaster

    STAR WARS™: Squadrons

    Starship Troopers: Extermination

    Stellaris: Console Edition

    Still Wakes the Deep

    Stranded Deep

    Stray

    Subnautica

    Subnautica: Below Zero

    Suicide Squad: Kill the Justice League

    Surviving Mars

    Survivor – Castaway Island

    SWORD ART ONLINE Fractured Daydream

    SWORD ART ONLINE Fractured Daydream Premium Edition

    SYNDUALITY Echo of Ada

    SYNDUALITY Echo of Ada Ultimate Edition

    Taiko no Tatsujin: Rhythm Festival The Setlist Edition

    Tails of Iron 2: Whiskers of Winter

    Tales of Graces f Remastered Deluxe Edition

    Tales of Kenzera™: ZAU

    Taxi Life – Supporter Edition

    Tchia

    Teardown

    Teenage Mutant Ninja Turtles: Shredder’s Revenge

    TEKKEN 8

    TEKKEN 8 Season 2 Ultimate Edition

    Temtem

    Terminator: Resistance

    Terminator: Resistance Enhanced

    Test Drive Unlimited Solar Crown – Gold Edition

    Test Drive Unlimited Solar Crown – Silver Streets Edition

    Tetris® Effect: Connected

    Thank Goodness You’re Here!

    The 7th Guest VR

    The Arkane Collection

    The Case of the Golden Idol

    The Crew Motorfest Deluxe Edition

    The Crew Motorfest Gold Edition

    The Elder Scrolls Online

    The Elder Scrolls V: Skyrim Special Edition

    The Escapists 2 – Game of the Year Edition

    The Evil Within 2

    THE FOREST

    THE KING OF FIGHTERS XV Standard Edition

    THE KING OF FIGHTERS XV Ultimate Edition

    The Last of Us Part II

    The Last of Us Part II Digital Deluxe Edition

    The Last of Us™ Part I

    The Last of Us™ Part II Remastered

    The Quarry

    The Sims™ 4 Cats and Dogs Plus My First Pet Stuff Bundle

    The Sims™ 4 Get Famous

    The Sims™ 4 High School Years Expansion Pack

    The Sims™ 4 Horse Ranch Expansion Pack

    The Sims™ 4 Lovestruck Expansion Pack

    The Smurfs – Mission Vileaf

    The Stanley Parable: Ultra Deluxe

    The Stone of Madness

    The Stone of Madness Special Edition

    The Texas Chain Saw Massacre

    The Thing: Remastered

    The Walking Dead: A New Frontier

    The Witcher 3: Wild Hunt

    The Wizards: Dark Times – Brotherhood

    theHunter: Call of the Wild™

    Thief: Master Thief Edition

    Thumper

    TIEBREAK+: Official Game of the ATP and WTA

    Tintin Reporter – Cigars of the Pharaoh

    Tiny Tina’s Wonderlands: Chaotic Great Edition

    Titan Quest

    Tom Clancy’s The Division 2

    Tom Clancy’s The Division 2 – Ultimate Edition

    Tomb Raider I-III Remastered Starring Lara Croft

    Tomb Raider I-VI Remastered

    Tomb Raider IV-VI Remastered

    Tomb Raider: Definitive Survivor Trilogy

    Tomb Raider: Legend

    TopSpin 2K25 Cross-Gen Digital Edition

    TopSpin 2K25 Grand Slam® Edition

    Torchlight II

    Torchlight III

    Towers of Aghasba

    Townsmen VR

    Train Sim World® 5: Special Edition

    TRANSFORMERS: EARTHSPARK – Expedition

    Trepang2

    Tropico 6 – Next Gen Edition

    Trover Saves the Universe

    Truck and Logistics Simulator

    Truck Simulator Cargo Driver 2024 – EURO

    TUNIC

    Turok Trilogy Bundle

    UFO ROBOT GRENDIZER – The Feast of the Wolves

    UFO ROBOT GRENDIZER – The Feast of the Wolves – Deluxe Edition

    UNDER NIGHT IN-BIRTH II Sys:Celes Deluxe Edition

    Undisputed

    Unknown 9: Awakening

    Unpacking

    UNRAILED!

    Untitled Goose Game

    V Rising Legacy of Castlevania Edition

    Viewfinder

    Visions of Mana

    Way of the Hunter

    Welcome to ParadiZe – Zombot Edition

    What Remains of Edith Finch

    Wolfenstein: The Two-Pack

    Wolfenstein® II: The New Colossus™

    World War Z

    World War Z: Aftermath

    Worms Armageddon: Anniversary Edition

    Worms W.M.D

    Wreckfest – Complete Edition

    WrestleQuest

    WWE 2K25 Standard Edition

    WWE 2K25 The Bloodline Edition

    Ys Origin

    Zero Escape: The Nonary Games

    *The Days of Play 2025 promotion on PlayStation Store starts May 28 at 00.00AM PDT/BST/JST and ends June 11 at 23:59 PDT/BST/JST.**Games and discounts may differ by region. Please check your local PlayStation Store page at go-live. 
    #days #play #comes #playstation #store
    Days of Play 2025 comes to PlayStation Store May 28
    The Days of Play celebration comes to PlayStation Store, featuring numerous games all available at discount for a limited time*, starting May 28! You can get a preview of just some of the titles** that’ll be included ahead of the promotion’s go-live time right here. The full list will include the likes of Call of Duty: Black Ops 6 – Cross-Gen Bundle, WWE 2K25 Standard Edition, Astro Bot, The Last of Us Part II Remasteredand Red Dead Redemption 2.  The full list will include the likes of Call of Duty: Black Ops 6 – Cross-Gen Bundle, WWE 2K25 Standard Edition, Astro Botand The Last of Us Part II Remastered.  The full list will include the likes of Call of Duty: Black Ops 6 – Cross-Gen Bundle, WWE 2K25 Standard Edition, Astro Botand The Last of Us Part II Remastered.  And there are many more games beyond the titles listed below. When the dedicated promotion page goes live on PlayStation Store on May 28, head there to see the full list and find out your regional discount pricing.  And there’s plenty more Days of Play related-celebrations to enjoy! Check out the full range of activities, offers and more in the Days of Play announcement post.  A Plague Tale: Innocence A Plague Tale: Requiem After the Fall® – Complete Edition Agatha Christie – Murder on the Orient Express Age of Mythology: Retold Standard Edition Age of Wonders 4 AI LIMIT AI LIMIT Deluxe Edition AI: THE SOMNIUM FILES AI: THE SOMNIUM FILES – nirvanA Initiative Airport Police Contraband Simulator – Border Patrol Akimbot Alan Wake 2 Deluxe Edition Alan Wake Remastered Alien: Isolation – THE COLLECTION Alien: Rogue Incursion VR Deluxe Ambulance Life: A Paramedic Simulator Amerzone – The Explorer’s Legacy ANIMAL WELL Another Crab’s Treasure Arcade Paradise Arizona Sunshine® 2 Deluxe Edition Arizona Sunshine® Remake Arma Reforger Assassin’s Creed Valhalla Deluxe Assassin’s Creed Valhalla Ragnarök Edition Assassin’s Creed® IV Black Flag™ Assassin’s Creed® Mirage Deluxe Edition Assassin’s Creed® Odyssey Deluxe Edition Assassin’s Creed® Odyssey Gold Edition Assetto Corsa ASTRO BOT ASTRO BOT Digital Deluxe Edition ASTRONEER: Glitchwalkers Edition Atomfall Atomic Heart Atomic Heart – Premium Edition Avatar: Frontiers of Pandora Deluxe Edition Avatar: Frontiers of Pandora™ Gold Edition Back 4 Blood: Standard Edition Back 4 Blood: Ultimate Edition Balatro Banishers: Ghosts of New Eden Bassmaster® Fishing: 2022 Bassmaster Classic® Batman: Arkham Collection Battlefield™ 2042 Ben 10: Power Trip Bendy and the Dark Revival Bendy and the Ink Machine Bendy: Studio Collection Beyond Galaxyland Bionic Bay BioShock: The Collection Blasphemous Blasphemous + Blasphemous 2 Bundle Blood Omen 2: Legacy of Kain Blood Omen: Legacy of Kain Bluey: The Videogame Bomb Rush Cyberfunk Borderlands 3 Borderlands 3 Super Deluxe Edition Bratz™: Flaunt Your Fashion Bugsnax Bulletstorm: Full Clip Edition Bus Simulator Bus Simulator 21 Next Stop – Gold Edition Call of Duty®: Black Ops 6 – Cross-Gen Bundle Call of the Wild: The Angler™ – Ultimate Fishing Bundle Capes CARRION Cat Quest III CATAN® – Console Edition Deluxe Chicory: A Colorful Tale Children of Morta: Complete Edition Cities: Skylines – Mayor’s Edition Cities: Skylines – Premium Edition 2 Citizen Sleeper CityDriver COCOON CONSCRIPT – Digital Deluxe Edition Construction Simulator Construction Simulator – Gold Edition Control: Ultimate Edition Coral Island Creed: Rise to Glory – Championship Edition™ CRISIS CORE -FINAL FANTASY VII- REUNION DIGITAL DELUXE EDITION Croc Legend of the Gobbos Crow Country Crusader Kings III: Royal Edition Cult of the Lamb Cyberpunk 2077 Cyberpunk 2077: Phantom Liberty Cyberpunk 2077: Ultimate Edition Dakar Desert Rally Dakar Desert Rally – Deluxe Edition Danganronpa 1•2 Reload Danganronpa S: Ultimate Summer Camp Danganronpa V3: Killing Harmony Darkest Dungeon II Darkest Dungeon II: Oblivion Edition Darkest Dungeon® DayZ DayZ Cool Edition DayZ Frostline Dead Cells Dead Island 2 Dead Island Definitive Edition Dead Space DEATH NOTE Killer Within DEATHLOOP Deep Rock Galactic Deus Ex: Mankind Divided – Digital Deluxe Edition Devil May Cry 5 Deluxe + Vergil Devil May Cry 5 Special Edition Devil May Cry HD Collection & 4SE Bundle Dishonored 2 Dishonored® Definitive Edition Dishonored®: Death of the Outsider™ – Deluxe Bundle Disney Epic Mickey: Rebrushed DISSIDIA® FINAL FANTASY® NT DOOM DOOM Eternal Standard Edition Dragon Age™: The Veilguard DRAGON QUEST BUILDERS DRAGON QUEST BUILDERS 2 DRAGON QUEST III HD-2D Remake DRAGON QUEST XI S: Echoes of an Elusive Age – Definitive Edition DREDGE DREDGE: Expansion Bundle Duke Nukem 3D: 20th Anniversary World Tour Dungeons 4 Dying Light Dying Light 2 Stay Human EA SPORTS FC™ 25 Standard Edition EA SPORTS™ Madden NFL 25 EARTH DEFENSE FORCE 5 EARTH DEFENSE FORCE 6 EARTH DEFENSE FORCE: WORLD BROTHERS 2 Deluxe Edition Eiyuden Chronicle: Hundred Heroes Empire of the Ants ENDER LILIES: Quietus of the Knights ENDER MAGNOLIA: Bloom in the Mist Endling – Extinction is Forever Eternights Expeditions: A MudRunner Game Expeditions: A MudRunner Game – Supreme Edition Fallout 4: Game of the Year Edition Fallout 76 Far Cry Primal Far Cry New Dawn Deluxe Edition FF7R EPISODE INTERmissionFINAL FANTASY I-VI Bundle FINAL FANTASY VII REBIRTH Digital Deluxe Edition FINAL FANTASY VII REMAKE FINAL FANTASY VII REMAKE & REBIRTH Twin Pack FINAL FANTASY VII REMAKE INTERGRADE Fire Pro Wrestling World Five Nights at Freddy’s: Help Wanted 2 Forever Skies Forklift Simulator Forza Horizon 5 Premium Edition Forza Horizon 5 Standard Edition Funko Fusion Ghostbusters: Spirits Unleashed Ecto Edition Ghostrunner Ghostrunner 2 Ghostrunner 2 Brutal Edition Ghostwire: Tokyo Goat Simulator 3 Goat Simulator: Remastered Goat Simulator: The GOATY Golf With Your Friends – Ultimate Edition Goodbye Volcano High Gotham Knights Granblue Fantasy Versus: Rising Standard Edition Grand Theft Auto V Grand Theft Auto V: Premium Edition Grand Theft Auto: The Trilogy – The Definitive Edition GRIS GTA Online: Megalodon Shark Cash Card Guilty Gear -Strive- Hades Harold Halibut Harry Potter: Quidditch Champions Have a Nice Death Heavenly Bodies Heavy Cargo – The Truck Simulator Hell Let Loose High On Life High On Life + DLC Bundle Highway Police Simulator HITMAN 3 – Trinity Pack HITMAN World of Assassination – Deluxe Edition Horizon Chase 2 Horizon Forbidden West™ Complete Edition HOT WHEELS UNLEASHED™ 2 – Turbocharged HOT WHEELS UNLEASHED™ 2 – Turbocharged – Deluxe Edition HOT WHEELS UNLEASHED™ 2 – Turbocharged – Legendary Edition HUMANITY Immortals of Aveum™ Deluxe Edition Indiana Jones and the Great Circle Indiana Jones and the Great Circle Premium Edition INDIKA Infernax Infinity Strash: DRAGON QUEST The Adventure of Dai Insurgency: Sandstorm Insurgency: Sandstorm – Gold Edition It Takes Two Jak and Daxter Bundle Jurassic World Evolution: Return to Jurassic Park Kena: Bridge of Spirits Kentucky Route Zero: TV Edition Killer Klowns From Outer Space: Digital Deluxe Edition Killer Klowns From Outer Space: The Game Kingdom Come: Deliverance II Kingdom Come: Deliverance Royal Edition L.A. Noire LEGO® Harry Potter™ Collection LEGO® 2K Drive LEGO® 2K Drive Awesome Rivals Edition LEGO® Batman™ 3: Beyond Gotham LEGO® Harry Potter™ Collection LEGO® Horizon Adventures™ LEGO® Star Wars™: The Skywalker Saga LEGO® Star Wars™: The Skywalker Saga Galactic Edition Life is Strange: Double Exposure Deluxe Edition Like a Dragon: Infinite Wealth Like a Dragon: Infinite Wealth Ultimate Edition LIVE A LIVE Lords of the Fallen Lorelei and the Laser Eyes Made in Abyss: Binary Star Falling into Darkness Mafia: Definitive Edition Mafia: Trilogy Maneater Marvel’s Guardians of the Galaxy Marvel’s Midnight Suns Enhanced Edition Marvel’s Midnight Suns Legendary Edition Marvel’s Spider-Man 2 Digital Deluxe Edition Master Detective Archives: RAIN CODE Plus Master Detective Archives: RAIN CODE Plus – Digital Deluxe Edition Matchbox™ Driving Adventures Metaphor: ReFantazio Metro Awakening Metro Awakening + Arizona Sunshine® 2 Metro Exodus: Gold Edition Metro Saga Bundle Minecraft Dungeons: Ultimate Edition Minecraft Legends Minecraft Legends Deluxe Edition MLB® The Show™ 25 Monster Energy Supercross 25 – Special Edition Monster Energy Supercross 25 – The Official Video Game Monster Energy Supercross 25 X Monster Jam™ Showdown – Dirt Master Edition Monster High™ Skulltimate Secrets™ Monster Jam™ Showdown Monster Jam™ Showdown – Big Air Edition Moonlighter Moonscars Mortal Kombat™ 1 Mortal Shell Mortal Shell: The Virtuous Cycle MotoGP™25 Moving Out MudRunner – American Wilds Edition MX vs ATV Legends MX vs ATV Legends – 2024 AMA Pro Motocross Championship My Friend Peppa Pig My Little Pony: A Zephyr Heights Mystery NARUTO X BORUTO Ultimate Ninja STORM CONNECTIONS NARUTO X BORUTO Ultimate Ninja STORM CONNECTIONS Ultimate Edition NBA 2K25 All-Star Edition NBA 2K25 Tournament Edition Need for Speed™ Unbound Need for Speed™ Unbound Ultimate Collection NEO: The World Ends with You Neon White Neva New Tales from the Borderlands Nick Jr. Party Adventure Nickelodeon Kart Racers 3: Slime Speedway NieR Replicant ver.1.22474487139… NieR: Automata™ Game of the YoRHa Edition Nine Sols No Man’s Sky Nobody Wants to Die OCTOPATH TRAVELER II Oddworld: Soulstorm Enhanced Edition ON THE ROAD – The Truck Simulator Onee Chanbara Origin Outer Wilds Overcooked! All You Can Eat Pacific Drive PAW Patrol Mighty Pups Adventure Bay PAW Patrol: Grand Prix PAYDAY 3 PGA TOUR 2K25 PGA TOUR 2K25 Legend Edition Phasmophobia Planet Coaster 2: Deluxe Edition Police Simulator: Patrol Officers: Gold Edition Quake 1 & 2 Bundle Railway Empire 2 Ravenswatch Red Dead Online Red Dead Redemption Remnant II® – Standard Edition Remnant II® – Ultimate Edition Remnant: From the Ashes REVEIL REVEIL – Funhouse Edition Rez Infinite RIDE 5 RIDE 5 – Special Edition Riders Republic™ 360 Edition Riders Republic™ Skate Edition Risk of Rain Risk of Rain 2 Road Maintenance Simulator 2 + Winter Services Road Redemption Robin Hood – Sherwood Builders Rogue Waters Romancing SaGa 2: Revenge of the Seven Romancing SaGa -Minstrel Song- Remastered Rugby 25 Saints Row Saints Row Gold Edition SAMURAI MAIDEN SAND LAND Deluxe Edition Sayonara Wild Hearts Sea of Thieves Sea of Thieves: 2025 Premium Edition SEASON: A letter to the future SHADOW OF THE COLOSSUS Shadow of the Tomb Raider Definitive Edition Shadow Tactics: Aiko’s Choice Shadow Tactics: Aiko’s Choice – Deluxe Edition Shredders Shredders – 540INDY Edition Sid Meier’s Civilization VI Sid Meier’s Civilization® VII Sid Meier’s Civilization® VII Deluxe Edition Sifu Skull and Bones Premium Edition SKULL AND BONES™ Skyrim Anniversary Edition + Fallout 4 G.O.T.Y Bundle Sledders Slime Rancher Slime Rancher 2 Slitterhead Sniper Ghost Warrior Contracts 2 Complete Edition Sniper Ghost Warrior Contracts Full Arsenal Edition SnowRunner – 2-Year Anniversary Edition SnowRunner – 4-Year Anniversary Edition Solar Ash Songs of Conquest SOUTH PARK: SNOW DAY! SOUTH PARK: SNOW DAY! Digital Deluxe SpellForce III Reforced SpellForce III Reforced: Complete Edition SpongeBob SquarePants™: The Patrick Star Game STAR WARS Jedi: Survivor™ Star Wars Outlaws Star Wars Outlaws Ultimate Edition STAR WARS™ Battlefront™ Ultimate Edition STAR WARS™ Battlefront™ II STAR WARS™ Jedi Cross-Gen Bundle Edition STAR WARS™: Dark Forces Remaster STAR WARS™: Squadrons Starship Troopers: Extermination Stellaris: Console Edition Still Wakes the Deep Stranded Deep Stray Subnautica Subnautica: Below Zero Suicide Squad: Kill the Justice League Surviving Mars Survivor – Castaway Island SWORD ART ONLINE Fractured Daydream SWORD ART ONLINE Fractured Daydream Premium Edition SYNDUALITY Echo of Ada SYNDUALITY Echo of Ada Ultimate Edition Taiko no Tatsujin: Rhythm Festival The Setlist Edition Tails of Iron 2: Whiskers of Winter Tales of Graces f Remastered Deluxe Edition Tales of Kenzera™: ZAU Taxi Life – Supporter Edition Tchia Teardown Teenage Mutant Ninja Turtles: Shredder’s Revenge TEKKEN 8 TEKKEN 8 Season 2 Ultimate Edition Temtem Terminator: Resistance Terminator: Resistance Enhanced Test Drive Unlimited Solar Crown – Gold Edition Test Drive Unlimited Solar Crown – Silver Streets Edition Tetris® Effect: Connected Thank Goodness You’re Here! The 7th Guest VR The Arkane Collection The Case of the Golden Idol The Crew Motorfest Deluxe Edition The Crew Motorfest Gold Edition The Elder Scrolls Online The Elder Scrolls V: Skyrim Special Edition The Escapists 2 – Game of the Year Edition The Evil Within 2 THE FOREST THE KING OF FIGHTERS XV Standard Edition THE KING OF FIGHTERS XV Ultimate Edition The Last of Us Part II The Last of Us Part II Digital Deluxe Edition The Last of Us™ Part I The Last of Us™ Part II Remastered The Quarry The Sims™ 4 Cats and Dogs Plus My First Pet Stuff Bundle The Sims™ 4 Get Famous The Sims™ 4 High School Years Expansion Pack The Sims™ 4 Horse Ranch Expansion Pack The Sims™ 4 Lovestruck Expansion Pack The Smurfs – Mission Vileaf The Stanley Parable: Ultra Deluxe The Stone of Madness The Stone of Madness Special Edition The Texas Chain Saw Massacre The Thing: Remastered The Walking Dead: A New Frontier The Witcher 3: Wild Hunt The Wizards: Dark Times – Brotherhood theHunter: Call of the Wild™ Thief: Master Thief Edition Thumper TIEBREAK+: Official Game of the ATP and WTA Tintin Reporter – Cigars of the Pharaoh Tiny Tina’s Wonderlands: Chaotic Great Edition Titan Quest Tom Clancy’s The Division 2 Tom Clancy’s The Division 2 – Ultimate Edition Tomb Raider I-III Remastered Starring Lara Croft Tomb Raider I-VI Remastered Tomb Raider IV-VI Remastered Tomb Raider: Definitive Survivor Trilogy Tomb Raider: Legend TopSpin 2K25 Cross-Gen Digital Edition TopSpin 2K25 Grand Slam® Edition Torchlight II Torchlight III Towers of Aghasba Townsmen VR Train Sim World® 5: Special Edition TRANSFORMERS: EARTHSPARK – Expedition Trepang2 Tropico 6 – Next Gen Edition Trover Saves the Universe Truck and Logistics Simulator Truck Simulator Cargo Driver 2024 – EURO TUNIC Turok Trilogy Bundle UFO ROBOT GRENDIZER – The Feast of the Wolves UFO ROBOT GRENDIZER – The Feast of the Wolves – Deluxe Edition UNDER NIGHT IN-BIRTH II Sys:Celes Deluxe Edition Undisputed Unknown 9: Awakening Unpacking UNRAILED! Untitled Goose Game V Rising Legacy of Castlevania Edition Viewfinder Visions of Mana Way of the Hunter Welcome to ParadiZe – Zombot Edition What Remains of Edith Finch Wolfenstein: The Two-Pack Wolfenstein® II: The New Colossus™ World War Z World War Z: Aftermath Worms Armageddon: Anniversary Edition Worms W.M.D Wreckfest – Complete Edition WrestleQuest WWE 2K25 Standard Edition WWE 2K25 The Bloodline Edition Ys Origin Zero Escape: The Nonary Games *The Days of Play 2025 promotion on PlayStation Store starts May 28 at 00.00AM PDT/BST/JST and ends June 11 at 23:59 PDT/BST/JST.**Games and discounts may differ by region. Please check your local PlayStation Store page at go-live.  #days #play #comes #playstation #store
    BLOG.PLAYSTATION.COM
    Days of Play 2025 comes to PlayStation Store May 28
    The Days of Play celebration comes to PlayStation Store, featuring numerous games all available at discount for a limited time*, starting May 28! You can get a preview of just some of the titles** that’ll be included ahead of the promotion’s go-live time right here. The full list will include the likes of Call of Duty: Black Ops 6 – Cross-Gen Bundle (45% off), WWE 2K25 Standard Edition (30% off), Astro Bot (15% off), The Last of Us Part II Remastered (20% off) and Red Dead Redemption 2 (75% off).  The full list will include the likes of Call of Duty: Black Ops 6 – Cross-Gen Bundle (45% off), WWE 2K25 Standard Edition (30% off), Astro Bot (17% off) and The Last of Us Part II Remastered (20% off).  The full list will include the likes of Call of Duty: Black Ops 6 – Cross-Gen Bundle (45% off), WWE 2K25 Standard Edition (30% off), Astro Bot (17% off) and The Last of Us Part II Remastered (20% off).  And there are many more games beyond the titles listed below. When the dedicated promotion page goes live on PlayStation Store on May 28, head there to see the full list and find out your regional discount pricing.  And there’s plenty more Days of Play related-celebrations to enjoy! Check out the full range of activities, offers and more in the Days of Play announcement post.  A Plague Tale: Innocence A Plague Tale: Requiem After the Fall® – Complete Edition Agatha Christie – Murder on the Orient Express Age of Mythology: Retold Standard Edition Age of Wonders 4 AI LIMIT AI LIMIT Deluxe Edition AI: THE SOMNIUM FILES AI: THE SOMNIUM FILES – nirvanA Initiative Airport Police Contraband Simulator – Border Patrol Akimbot Alan Wake 2 Deluxe Edition Alan Wake Remastered Alien: Isolation – THE COLLECTION Alien: Rogue Incursion VR Deluxe Ambulance Life: A Paramedic Simulator Amerzone – The Explorer’s Legacy ANIMAL WELL Another Crab’s Treasure Arcade Paradise Arizona Sunshine® 2 Deluxe Edition Arizona Sunshine® Remake Arma Reforger Assassin’s Creed Valhalla Deluxe Assassin’s Creed Valhalla Ragnarök Edition Assassin’s Creed® IV Black Flag™ Assassin’s Creed® Mirage Deluxe Edition Assassin’s Creed® Odyssey Deluxe Edition Assassin’s Creed® Odyssey Gold Edition Assetto Corsa ASTRO BOT ASTRO BOT Digital Deluxe Edition ASTRONEER: Glitchwalkers Edition Atomfall Atomic Heart Atomic Heart – Premium Edition Avatar: Frontiers of Pandora Deluxe Edition Avatar: Frontiers of Pandora™ Gold Edition Back 4 Blood: Standard Edition Back 4 Blood: Ultimate Edition Balatro Banishers: Ghosts of New Eden Bassmaster® Fishing: 2022 Bassmaster Classic® Batman: Arkham Collection Battlefield™ 2042 Ben 10: Power Trip Bendy and the Dark Revival Bendy and the Ink Machine Bendy: Studio Collection Beyond Galaxyland Bionic Bay BioShock: The Collection Blasphemous Blasphemous + Blasphemous 2 Bundle Blood Omen 2: Legacy of Kain Blood Omen: Legacy of Kain Bluey: The Videogame Bomb Rush Cyberfunk Borderlands 3 Borderlands 3 Super Deluxe Edition Bratz™: Flaunt Your Fashion Bugsnax Bulletstorm: Full Clip Edition Bus Simulator Bus Simulator 21 Next Stop – Gold Edition Call of Duty®: Black Ops 6 – Cross-Gen Bundle Call of the Wild: The Angler™ – Ultimate Fishing Bundle Capes CARRION Cat Quest III CATAN® – Console Edition Deluxe Chicory: A Colorful Tale Children of Morta: Complete Edition Cities: Skylines – Mayor’s Edition Cities: Skylines – Premium Edition 2 Citizen Sleeper CityDriver COCOON CONSCRIPT – Digital Deluxe Edition Construction Simulator Construction Simulator – Gold Edition Control: Ultimate Edition Coral Island Creed: Rise to Glory – Championship Edition™ CRISIS CORE -FINAL FANTASY VII- REUNION DIGITAL DELUXE EDITION Croc Legend of the Gobbos Crow Country Crusader Kings III: Royal Edition Cult of the Lamb Cyberpunk 2077 Cyberpunk 2077: Phantom Liberty Cyberpunk 2077: Ultimate Edition Dakar Desert Rally Dakar Desert Rally – Deluxe Edition Danganronpa 1•2 Reload Danganronpa S: Ultimate Summer Camp Danganronpa V3: Killing Harmony Darkest Dungeon II Darkest Dungeon II: Oblivion Edition Darkest Dungeon® DayZ DayZ Cool Edition DayZ Frostline Dead Cells Dead Island 2 Dead Island Definitive Edition Dead Space DEATH NOTE Killer Within DEATHLOOP Deep Rock Galactic Deus Ex: Mankind Divided – Digital Deluxe Edition Devil May Cry 5 Deluxe + Vergil Devil May Cry 5 Special Edition Devil May Cry HD Collection & 4SE Bundle Dishonored 2 Dishonored® Definitive Edition Dishonored®: Death of the Outsider™ – Deluxe Bundle Disney Epic Mickey: Rebrushed DISSIDIA® FINAL FANTASY® NT DOOM DOOM Eternal Standard Edition Dragon Age™: The Veilguard DRAGON QUEST BUILDERS DRAGON QUEST BUILDERS 2 DRAGON QUEST III HD-2D Remake DRAGON QUEST XI S: Echoes of an Elusive Age – Definitive Edition DREDGE DREDGE: Expansion Bundle Duke Nukem 3D: 20th Anniversary World Tour Dungeons 4 Dying Light Dying Light 2 Stay Human EA SPORTS FC™ 25 Standard Edition EA SPORTS™ Madden NFL 25 EARTH DEFENSE FORCE 5 EARTH DEFENSE FORCE 6 EARTH DEFENSE FORCE: WORLD BROTHERS 2 Deluxe Edition Eiyuden Chronicle: Hundred Heroes Empire of the Ants ENDER LILIES: Quietus of the Knights ENDER MAGNOLIA: Bloom in the Mist Endling – Extinction is Forever Eternights Expeditions: A MudRunner Game Expeditions: A MudRunner Game – Supreme Edition Fallout 4: Game of the Year Edition Fallout 76 Far Cry Primal Far Cry New Dawn Deluxe Edition FF7R EPISODE INTERmission (New Story Content Featuring Yuffie) FINAL FANTASY I-VI Bundle FINAL FANTASY VII REBIRTH Digital Deluxe Edition FINAL FANTASY VII REMAKE FINAL FANTASY VII REMAKE & REBIRTH Twin Pack FINAL FANTASY VII REMAKE INTERGRADE Fire Pro Wrestling World Five Nights at Freddy’s: Help Wanted 2 Forever Skies Forklift Simulator Forza Horizon 5 Premium Edition Forza Horizon 5 Standard Edition Funko Fusion Ghostbusters: Spirits Unleashed Ecto Edition Ghostrunner Ghostrunner 2 Ghostrunner 2 Brutal Edition Ghostwire: Tokyo Goat Simulator 3 Goat Simulator: Remastered Goat Simulator: The GOATY Golf With Your Friends – Ultimate Edition Goodbye Volcano High Gotham Knights Granblue Fantasy Versus: Rising Standard Edition Grand Theft Auto V Grand Theft Auto V: Premium Edition Grand Theft Auto: The Trilogy – The Definitive Edition GRIS GTA Online: Megalodon Shark Cash Card Guilty Gear -Strive- Hades Harold Halibut Harry Potter: Quidditch Champions Have a Nice Death Heavenly Bodies Heavy Cargo – The Truck Simulator Hell Let Loose High On Life High On Life + DLC Bundle Highway Police Simulator HITMAN 3 – Trinity Pack HITMAN World of Assassination – Deluxe Edition Horizon Chase 2 Horizon Forbidden West™ Complete Edition HOT WHEELS UNLEASHED™ 2 – Turbocharged HOT WHEELS UNLEASHED™ 2 – Turbocharged – Deluxe Edition HOT WHEELS UNLEASHED™ 2 – Turbocharged – Legendary Edition HUMANITY Immortals of Aveum™ Deluxe Edition Indiana Jones and the Great Circle Indiana Jones and the Great Circle Premium Edition INDIKA Infernax Infinity Strash: DRAGON QUEST The Adventure of Dai Insurgency: Sandstorm Insurgency: Sandstorm – Gold Edition It Takes Two Jak and Daxter Bundle Jurassic World Evolution: Return to Jurassic Park Kena: Bridge of Spirits Kentucky Route Zero: TV Edition Killer Klowns From Outer Space: Digital Deluxe Edition Killer Klowns From Outer Space: The Game Kingdom Come: Deliverance II Kingdom Come: Deliverance Royal Edition L.A. Noire LEGO® Harry Potter™ Collection LEGO® 2K Drive LEGO® 2K Drive Awesome Rivals Edition LEGO® Batman™ 3: Beyond Gotham LEGO® Harry Potter™ Collection LEGO® Horizon Adventures™ LEGO® Star Wars™: The Skywalker Saga LEGO® Star Wars™: The Skywalker Saga Galactic Edition Life is Strange: Double Exposure Deluxe Edition Like a Dragon: Infinite Wealth Like a Dragon: Infinite Wealth Ultimate Edition LIVE A LIVE Lords of the Fallen Lorelei and the Laser Eyes Made in Abyss: Binary Star Falling into Darkness Mafia: Definitive Edition Mafia: Trilogy Maneater Marvel’s Guardians of the Galaxy Marvel’s Midnight Suns Enhanced Edition Marvel’s Midnight Suns Legendary Edition Marvel’s Spider-Man 2 Digital Deluxe Edition Master Detective Archives: RAIN CODE Plus Master Detective Archives: RAIN CODE Plus – Digital Deluxe Edition Matchbox™ Driving Adventures Metaphor: ReFantazio Metro Awakening Metro Awakening + Arizona Sunshine® 2 Metro Exodus: Gold Edition Metro Saga Bundle Minecraft Dungeons: Ultimate Edition Minecraft Legends Minecraft Legends Deluxe Edition MLB® The Show™ 25 Monster Energy Supercross 25 – Special Edition Monster Energy Supercross 25 – The Official Video Game Monster Energy Supercross 25 X Monster Jam™ Showdown – Dirt Master Edition Monster High™ Skulltimate Secrets™ Monster Jam™ Showdown Monster Jam™ Showdown – Big Air Edition Moonlighter Moonscars Mortal Kombat™ 1 Mortal Shell Mortal Shell: The Virtuous Cycle MotoGP™25 Moving Out MudRunner – American Wilds Edition MX vs ATV Legends MX vs ATV Legends – 2024 AMA Pro Motocross Championship My Friend Peppa Pig My Little Pony: A Zephyr Heights Mystery NARUTO X BORUTO Ultimate Ninja STORM CONNECTIONS NARUTO X BORUTO Ultimate Ninja STORM CONNECTIONS Ultimate Edition NBA 2K25 All-Star Edition NBA 2K25 Tournament Edition Need for Speed™ Unbound Need for Speed™ Unbound Ultimate Collection NEO: The World Ends with You Neon White Neva New Tales from the Borderlands Nick Jr. Party Adventure Nickelodeon Kart Racers 3: Slime Speedway NieR Replicant ver.1.22474487139… NieR: Automata™ Game of the YoRHa Edition Nine Sols No Man’s Sky Nobody Wants to Die OCTOPATH TRAVELER II Oddworld: Soulstorm Enhanced Edition ON THE ROAD – The Truck Simulator Onee Chanbara Origin Outer Wilds Overcooked! All You Can Eat Pacific Drive PAW Patrol Mighty Pups Save Adventure Bay PAW Patrol: Grand Prix PAYDAY 3 PGA TOUR 2K25 PGA TOUR 2K25 Legend Edition Phasmophobia Planet Coaster 2: Deluxe Edition Police Simulator: Patrol Officers: Gold Edition Quake 1 & 2 Bundle Railway Empire 2 Ravenswatch Red Dead Online Red Dead Redemption Remnant II® – Standard Edition Remnant II® – Ultimate Edition Remnant: From the Ashes REVEIL REVEIL – Funhouse Edition Rez Infinite RIDE 5 RIDE 5 – Special Edition Riders Republic™ 360 Edition Riders Republic™ Skate Edition Risk of Rain Risk of Rain 2 Road Maintenance Simulator 2 + Winter Services Road Redemption Robin Hood – Sherwood Builders Rogue Waters Romancing SaGa 2: Revenge of the Seven Romancing SaGa -Minstrel Song- Remastered Rugby 25 Saints Row Saints Row Gold Edition SAMURAI MAIDEN SAND LAND Deluxe Edition Sayonara Wild Hearts Sea of Thieves Sea of Thieves: 2025 Premium Edition SEASON: A letter to the future SHADOW OF THE COLOSSUS Shadow of the Tomb Raider Definitive Edition Shadow Tactics: Aiko’s Choice Shadow Tactics: Aiko’s Choice – Deluxe Edition Shredders Shredders – 540INDY Edition Sid Meier’s Civilization VI Sid Meier’s Civilization® VII Sid Meier’s Civilization® VII Deluxe Edition Sifu Skull and Bones Premium Edition SKULL AND BONES™ Skyrim Anniversary Edition + Fallout 4 G.O.T.Y Bundle Sledders Slime Rancher Slime Rancher 2 Slitterhead Sniper Ghost Warrior Contracts 2 Complete Edition Sniper Ghost Warrior Contracts Full Arsenal Edition SnowRunner – 2-Year Anniversary Edition SnowRunner – 4-Year Anniversary Edition Solar Ash Songs of Conquest SOUTH PARK: SNOW DAY! SOUTH PARK: SNOW DAY! Digital Deluxe SpellForce III Reforced SpellForce III Reforced: Complete Edition SpongeBob SquarePants™: The Patrick Star Game STAR WARS Jedi: Survivor™ Star Wars Outlaws Star Wars Outlaws Ultimate Edition STAR WARS™ Battlefront™ Ultimate Edition STAR WARS™ Battlefront™ II STAR WARS™ Jedi Cross-Gen Bundle Edition STAR WARS™: Dark Forces Remaster STAR WARS™: Squadrons Starship Troopers: Extermination Stellaris: Console Edition Still Wakes the Deep Stranded Deep Stray Subnautica Subnautica: Below Zero Suicide Squad: Kill the Justice League Surviving Mars Survivor – Castaway Island SWORD ART ONLINE Fractured Daydream SWORD ART ONLINE Fractured Daydream Premium Edition SYNDUALITY Echo of Ada SYNDUALITY Echo of Ada Ultimate Edition Taiko no Tatsujin: Rhythm Festival The Setlist Edition Tails of Iron 2: Whiskers of Winter Tales of Graces f Remastered Deluxe Edition Tales of Kenzera™: ZAU Taxi Life – Supporter Edition Tchia Teardown Teenage Mutant Ninja Turtles: Shredder’s Revenge TEKKEN 8 TEKKEN 8 Season 2 Ultimate Edition Temtem Terminator: Resistance Terminator: Resistance Enhanced Test Drive Unlimited Solar Crown – Gold Edition Test Drive Unlimited Solar Crown – Silver Streets Edition Tetris® Effect: Connected Thank Goodness You’re Here! The 7th Guest VR The Arkane Collection The Case of the Golden Idol The Crew Motorfest Deluxe Edition The Crew Motorfest Gold Edition The Elder Scrolls Online The Elder Scrolls V: Skyrim Special Edition The Escapists 2 – Game of the Year Edition The Evil Within 2 THE FOREST THE KING OF FIGHTERS XV Standard Edition THE KING OF FIGHTERS XV Ultimate Edition The Last of Us Part II The Last of Us Part II Digital Deluxe Edition The Last of Us™ Part I The Last of Us™ Part II Remastered The Quarry The Sims™ 4 Cats and Dogs Plus My First Pet Stuff Bundle The Sims™ 4 Get Famous The Sims™ 4 High School Years Expansion Pack The Sims™ 4 Horse Ranch Expansion Pack The Sims™ 4 Lovestruck Expansion Pack The Smurfs – Mission Vileaf The Stanley Parable: Ultra Deluxe The Stone of Madness The Stone of Madness Special Edition The Texas Chain Saw Massacre The Thing: Remastered The Walking Dead: A New Frontier The Witcher 3: Wild Hunt The Wizards: Dark Times – Brotherhood theHunter: Call of the Wild™ Thief: Master Thief Edition Thumper TIEBREAK+: Official Game of the ATP and WTA Tintin Reporter – Cigars of the Pharaoh Tiny Tina’s Wonderlands: Chaotic Great Edition Titan Quest Tom Clancy’s The Division 2 Tom Clancy’s The Division 2 – Ultimate Edition Tomb Raider I-III Remastered Starring Lara Croft Tomb Raider I-VI Remastered Tomb Raider IV-VI Remastered Tomb Raider: Definitive Survivor Trilogy Tomb Raider: Legend TopSpin 2K25 Cross-Gen Digital Edition TopSpin 2K25 Grand Slam® Edition Torchlight II Torchlight III Towers of Aghasba Townsmen VR Train Sim World® 5: Special Edition TRANSFORMERS: EARTHSPARK – Expedition Trepang2 Tropico 6 – Next Gen Edition Trover Saves the Universe Truck and Logistics Simulator Truck Simulator Cargo Driver 2024 – EURO TUNIC Turok Trilogy Bundle UFO ROBOT GRENDIZER – The Feast of the Wolves UFO ROBOT GRENDIZER – The Feast of the Wolves – Deluxe Edition UNDER NIGHT IN-BIRTH II Sys:Celes Deluxe Edition Undisputed Unknown 9: Awakening Unpacking UNRAILED! Untitled Goose Game V Rising Legacy of Castlevania Edition Viewfinder Visions of Mana Way of the Hunter Welcome to ParadiZe – Zombot Edition What Remains of Edith Finch Wolfenstein: The Two-Pack Wolfenstein® II: The New Colossus™ World War Z World War Z: Aftermath Worms Armageddon: Anniversary Edition Worms W.M.D Wreckfest – Complete Edition WrestleQuest WWE 2K25 Standard Edition WWE 2K25 The Bloodline Edition Ys Origin Zero Escape: The Nonary Games *The Days of Play 2025 promotion on PlayStation Store starts May 28 at 00.00AM PDT/BST/JST and ends June 11 at 23:59 PDT/BST/JST.**Games and discounts may differ by region. Please check your local PlayStation Store page at go-live. 
    3 Reacties 0 aandelen