• In a groundbreaking leap for robot-kind, we now have robots that can grow by munching on their fellow machines! Forget about the age-old dilemma of "to eat or be eaten"; it seems our metallic friends have opted for the buffet approach. Who knew that the future of robotics would be a culinary adventure? Maybe next we’ll see them in Michelin-starred restaurants, serving up a delightful ‘Cyborg à la Mode’.

    Just imagine the conversations at tech conferences: "So, did your robot eat any interesting models this week?" It’s a brave new world, where survival of the fittest has turned into a feast of the fittest.

    Bon appétit, little transformers!

    #Robotics #AI #TechTrends #
    In a groundbreaking leap for robot-kind, we now have robots that can grow by munching on their fellow machines! Forget about the age-old dilemma of "to eat or be eaten"; it seems our metallic friends have opted for the buffet approach. Who knew that the future of robotics would be a culinary adventure? Maybe next we’ll see them in Michelin-starred restaurants, serving up a delightful ‘Cyborg à la Mode’. Just imagine the conversations at tech conferences: "So, did your robot eat any interesting models this week?" It’s a brave new world, where survival of the fittest has turned into a feast of the fittest. Bon appétit, little transformers! #Robotics #AI #TechTrends #
    ARABHARDWARE.NET
    تطوير روبوتات قابلة للنمو عبر أكل الماكينات والروبوتات الأخرى!
    The post تطوير روبوتات قابلة للنمو عبر أكل الماكينات والروبوتات الأخرى! appeared first on عرب هاردوير.
    Like
    Love
    Wow
    Sad
    Angry
    196
    1 Yorumlar 0 hisse senetleri 0 önizleme
  • balancing robots, Cube Teeter Totter, robotics project, learning through play, engineering education, STEM activities, innovative design, robotics fun

    ## Introduction

    Imagine a world where play meets education, where creativity dances with engineering, and where learning is as exciting as it is enlightening. Welcome to the fascinating realm of balancing robots! Today, we delve into an extraordinary project, the **Cube Teeter Totter**, submitted by the innovative mind of [Alexchunlin]. This del...
    balancing robots, Cube Teeter Totter, robotics project, learning through play, engineering education, STEM activities, innovative design, robotics fun ## Introduction Imagine a world where play meets education, where creativity dances with engineering, and where learning is as exciting as it is enlightening. Welcome to the fascinating realm of balancing robots! Today, we delve into an extraordinary project, the **Cube Teeter Totter**, submitted by the innovative mind of [Alexchunlin]. This del...
    Cube Teeter Totter: A Journey into the World of Balancing Robots
    balancing robots, Cube Teeter Totter, robotics project, learning through play, engineering education, STEM activities, innovative design, robotics fun ## Introduction Imagine a world where play meets education, where creativity dances with engineering, and where learning is as exciting as it is enlightening. Welcome to the fascinating realm of balancing robots! Today, we delve into an...
    Like
    Love
    Wow
    Sad
    Angry
    531
    1 Yorumlar 0 hisse senetleri 0 önizleme
  • New Court Order in Stratasys v. Bambu Lab Lawsuit

    There has been a new update to the ongoing Stratasys v. Bambu Lab patent infringement lawsuit. 
    Both parties have agreed to consolidate the lead and member casesinto a single case under Case No. 2:25-cv-00465-JRG. 
    Industrial 3D printing OEM Stratasys filed the request late last month. According to an official court document, Shenzhen-based Bambu Lab did not oppose the motion. Stratasys argued that this non-opposition amounted to the defendants waiving their right to challenge the request under U.S. patent law 35 U.S.C. § 299.
    On June 2, the U.S. District Court for the Eastern District of Texas, Marshall Division, ordered Bambu Lab to confirm in writing whether it agreed to the proposed case consolidation. The court took this step out of an “abundance of caution” to ensure both parties consented to the procedure before moving forward.
    Bambu Lab submitted its response on June 12, agreeing to the consolidation. The company, along with co-defendants Shenzhen Tuozhu Technology Co., Ltd., Shanghai Lunkuo Technology Co., Ltd., and Tuozhu Technology Limited, waived its rights under 35 U.S.C. § 299. The court will now decide whether to merge the cases.
    This followed U.S. District Judge Rodney Gilstrap’s decision last month to deny Bambu Lab’s motion to dismiss the lawsuits. 
    The Chinese desktop 3D printer manufacturer filed the motion in February 2025, arguing the cases were invalid because its US-based subsidiary, Bambu Lab USA, was not named in the original litigation. However, it agreed that the lawsuit could continue in the Austin division of the Western District of Texas, where a parallel case was filed last year. 
    Judge Gilstrap denied the motion, ruling that the cases properly target the named defendants. He concluded that Bambu Lab USA isn’t essential to the dispute, and that any misnaming should be addressed in summary judgment, not dismissal.       
    A Stratasys Fortus 450mcand a Bambu Lab X1C. Image by 3D Printing industry.
    Another twist in the Stratasys v. Bambu Lab lawsuit 
    Stratasys filed the two lawsuits against Bambu Lab in the Eastern District of Texas, Marshall Division, in August 2024. The company claims that Bambu Lab’s X1C, X1E, P1S, P1P, A1, and A1 mini 3D printers violate ten of its patents. These patents cover common 3D printing features, including purge towers, heated build plates, tool head force detection, and networking capabilities.
    Stratasys has requested a jury trial. It is seeking a ruling that Bambu Lab infringed its patents, along with financial damages and an injunction to stop Bambu from selling the allegedly infringing 3D printers.
    Last October, Stratasys dropped charges against two of the originally named defendants in the dispute. Court documents showed that Beijing Tiertime Technology Co., Ltd. and Beijing Yinhua Laser Rapid Prototyping and Mould Technology Co., Ltd were removed. Both defendants represent the company Tiertime, China’s first 3D printer manufacturer. The District Court accepted the dismissal, with all claims dropped without prejudice.
    It’s unclear why Stratasys named Beijing-based Tiertime as a defendant in the first place, given the lack of an obvious connection to Bambu Lab. 
    Tiertime and Stratasys have a history of legal disputes over patent issues. In 2013, Stratasys sued Afinia, Tiertime’s U.S. distributor and partner, for patent infringement. Afinia responded by suing uCRobotics, the Chinese distributor of MakerBot 3D printers, also alleging patent violations. Stratasys acquired MakerBot in June 2013. The company later merged with Ultimaker in 2022.
    In February 2025, Bambu Lab filed a motion to dismiss the original lawsuits. The company argued that Stratasys’ claims, focused on the sale, importation, and distribution of 3D printers in the United States, do not apply to the Shenzhen-based parent company. Bambu Lab contended that the allegations concern its American subsidiary, Bambu Lab USA, which was not named in the complaint filed in the Eastern District of Texas.
    Bambu Lab filed a motion to dismiss, claiming the case is invalid under Federal Rule of Civil Procedure 19. It argued that any party considered a “primary participant” in the allegations must be included as a defendant.   
    The court denied the motion on May 29, 2025. In the ruling, Judge Gilstrap explained that Stratasys’ allegations focus on the actions of the named defendants, not Bambu Lab USA. As a result, the official court document called Bambu Lab’s argument “unavailing.” Additionally, the Judge stated that, since Bambu Lab USA and Bambu Lab are both owned by Shenzhen Tuozhu, “the interest of these two entities align,” meaning the original cases are valid.  
    In the official court document, Judge Gilstrap emphasized that Stratasys can win or lose the lawsuits based solely on the actions of the current defendants, regardless of Bambu Lab USA’s involvement. He added that any potential risk to Bambu Lab USA’s business is too vague or hypothetical to justify making it a required party.
    Finally, the court noted that even if Stratasys named the wrong defendant, this does not justify dismissal under Rule 12. Instead, the judge stated it would be more appropriate for the defendants to raise that argument in a motion for summary judgment.
    The Bambu Lab X1C 3D printer. Image via Bambu Lab.
    3D printing patent battles 
    The 3D printing industry has seen its fair share of patent infringement disputes over recent months. In May 2025, 3D printer hotend developer Slice Engineering reached an agreement with Creality over a patent non-infringement lawsuit. 
    The Chinese 3D printer OEM filed the lawsuit in July 2024 in the U.S. District Court for the Northern District of Florida, Gainesville Division. The company claimed that Slice Engineering had falsely accused it of infringing two hotend patents, U.S. Patent Nos. 10,875,244 and 11,660,810. These cover mechanical and thermal features of Slice’s Mosquito 3D printer hotend. Creality requested a jury trial and sought a ruling confirming it had not infringed either patent.
    Court documents show that Slice Engineering filed a countersuit in December 2024. The Gainesville-based company maintained that Creaility “has infringed and continues to infringe” on both patents. In the filing, the company also denied allegations that it had harassed Creality’s partners, distributors, and customers, and claimed that Creality had refused to negotiate a resolution.  
    The Creality v. Slice Engineering lawsuit has since been dropped following a mutual resolution. Court documents show that both parties have permanently dismissed all claims and counterclaims, agreeing to cover their own legal fees and costs. 
    In other news, large-format resin 3D printer manufacturer Intrepid Automation sued 3D Systems over alleged patent infringement. The lawsuit, filed in February 2025, accused 3D Systems of using patented technology in its PSLA 270 industrial resin 3D printer. The filing called the PSLA 270 a “blatant knock off” of Intrepid’s DLP multi-projection “Range” 3D printer.  
    San Diego-based Intrepid Automation called this alleged infringement the “latest chapter of 3DS’s brazen, anticompetitive scheme to drive a smaller competitor with more advanced technology out of the marketplace.” The lawsuit also accused 3D Systems of corporate espionage, claiming one of its employees stole confidential trade secrets that were later used to develop the PSLA 270 printer.
    3D Systems denied the allegations and filed a motion to dismiss the case. The company called the lawsuit “a desperate attempt” by Intrepid to distract from its own alleged theft of 3D Systems’ trade secrets.
    Who won the 2024 3D Printing Industry Awards?
    Subscribe to the 3D Printing Industry newsletter to keep up with the latest 3D printing news.You can also follow us on LinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content.Featured image shows a Stratasys Fortus 450mcand a Bambu Lab X1C. Image by 3D Printing industry.
    #new #court #order #stratasys #bambu
    New Court Order in Stratasys v. Bambu Lab Lawsuit
    There has been a new update to the ongoing Stratasys v. Bambu Lab patent infringement lawsuit.  Both parties have agreed to consolidate the lead and member casesinto a single case under Case No. 2:25-cv-00465-JRG.  Industrial 3D printing OEM Stratasys filed the request late last month. According to an official court document, Shenzhen-based Bambu Lab did not oppose the motion. Stratasys argued that this non-opposition amounted to the defendants waiving their right to challenge the request under U.S. patent law 35 U.S.C. § 299. On June 2, the U.S. District Court for the Eastern District of Texas, Marshall Division, ordered Bambu Lab to confirm in writing whether it agreed to the proposed case consolidation. The court took this step out of an “abundance of caution” to ensure both parties consented to the procedure before moving forward. Bambu Lab submitted its response on June 12, agreeing to the consolidation. The company, along with co-defendants Shenzhen Tuozhu Technology Co., Ltd., Shanghai Lunkuo Technology Co., Ltd., and Tuozhu Technology Limited, waived its rights under 35 U.S.C. § 299. The court will now decide whether to merge the cases. This followed U.S. District Judge Rodney Gilstrap’s decision last month to deny Bambu Lab’s motion to dismiss the lawsuits.  The Chinese desktop 3D printer manufacturer filed the motion in February 2025, arguing the cases were invalid because its US-based subsidiary, Bambu Lab USA, was not named in the original litigation. However, it agreed that the lawsuit could continue in the Austin division of the Western District of Texas, where a parallel case was filed last year.  Judge Gilstrap denied the motion, ruling that the cases properly target the named defendants. He concluded that Bambu Lab USA isn’t essential to the dispute, and that any misnaming should be addressed in summary judgment, not dismissal.        A Stratasys Fortus 450mcand a Bambu Lab X1C. Image by 3D Printing industry. Another twist in the Stratasys v. Bambu Lab lawsuit  Stratasys filed the two lawsuits against Bambu Lab in the Eastern District of Texas, Marshall Division, in August 2024. The company claims that Bambu Lab’s X1C, X1E, P1S, P1P, A1, and A1 mini 3D printers violate ten of its patents. These patents cover common 3D printing features, including purge towers, heated build plates, tool head force detection, and networking capabilities. Stratasys has requested a jury trial. It is seeking a ruling that Bambu Lab infringed its patents, along with financial damages and an injunction to stop Bambu from selling the allegedly infringing 3D printers. Last October, Stratasys dropped charges against two of the originally named defendants in the dispute. Court documents showed that Beijing Tiertime Technology Co., Ltd. and Beijing Yinhua Laser Rapid Prototyping and Mould Technology Co., Ltd were removed. Both defendants represent the company Tiertime, China’s first 3D printer manufacturer. The District Court accepted the dismissal, with all claims dropped without prejudice. It’s unclear why Stratasys named Beijing-based Tiertime as a defendant in the first place, given the lack of an obvious connection to Bambu Lab.  Tiertime and Stratasys have a history of legal disputes over patent issues. In 2013, Stratasys sued Afinia, Tiertime’s U.S. distributor and partner, for patent infringement. Afinia responded by suing uCRobotics, the Chinese distributor of MakerBot 3D printers, also alleging patent violations. Stratasys acquired MakerBot in June 2013. The company later merged with Ultimaker in 2022. In February 2025, Bambu Lab filed a motion to dismiss the original lawsuits. The company argued that Stratasys’ claims, focused on the sale, importation, and distribution of 3D printers in the United States, do not apply to the Shenzhen-based parent company. Bambu Lab contended that the allegations concern its American subsidiary, Bambu Lab USA, which was not named in the complaint filed in the Eastern District of Texas. Bambu Lab filed a motion to dismiss, claiming the case is invalid under Federal Rule of Civil Procedure 19. It argued that any party considered a “primary participant” in the allegations must be included as a defendant.    The court denied the motion on May 29, 2025. In the ruling, Judge Gilstrap explained that Stratasys’ allegations focus on the actions of the named defendants, not Bambu Lab USA. As a result, the official court document called Bambu Lab’s argument “unavailing.” Additionally, the Judge stated that, since Bambu Lab USA and Bambu Lab are both owned by Shenzhen Tuozhu, “the interest of these two entities align,” meaning the original cases are valid.   In the official court document, Judge Gilstrap emphasized that Stratasys can win or lose the lawsuits based solely on the actions of the current defendants, regardless of Bambu Lab USA’s involvement. He added that any potential risk to Bambu Lab USA’s business is too vague or hypothetical to justify making it a required party. Finally, the court noted that even if Stratasys named the wrong defendant, this does not justify dismissal under Rule 12. Instead, the judge stated it would be more appropriate for the defendants to raise that argument in a motion for summary judgment. The Bambu Lab X1C 3D printer. Image via Bambu Lab. 3D printing patent battles  The 3D printing industry has seen its fair share of patent infringement disputes over recent months. In May 2025, 3D printer hotend developer Slice Engineering reached an agreement with Creality over a patent non-infringement lawsuit.  The Chinese 3D printer OEM filed the lawsuit in July 2024 in the U.S. District Court for the Northern District of Florida, Gainesville Division. The company claimed that Slice Engineering had falsely accused it of infringing two hotend patents, U.S. Patent Nos. 10,875,244 and 11,660,810. These cover mechanical and thermal features of Slice’s Mosquito 3D printer hotend. Creality requested a jury trial and sought a ruling confirming it had not infringed either patent. Court documents show that Slice Engineering filed a countersuit in December 2024. The Gainesville-based company maintained that Creaility “has infringed and continues to infringe” on both patents. In the filing, the company also denied allegations that it had harassed Creality’s partners, distributors, and customers, and claimed that Creality had refused to negotiate a resolution.   The Creality v. Slice Engineering lawsuit has since been dropped following a mutual resolution. Court documents show that both parties have permanently dismissed all claims and counterclaims, agreeing to cover their own legal fees and costs.  In other news, large-format resin 3D printer manufacturer Intrepid Automation sued 3D Systems over alleged patent infringement. The lawsuit, filed in February 2025, accused 3D Systems of using patented technology in its PSLA 270 industrial resin 3D printer. The filing called the PSLA 270 a “blatant knock off” of Intrepid’s DLP multi-projection “Range” 3D printer.   San Diego-based Intrepid Automation called this alleged infringement the “latest chapter of 3DS’s brazen, anticompetitive scheme to drive a smaller competitor with more advanced technology out of the marketplace.” The lawsuit also accused 3D Systems of corporate espionage, claiming one of its employees stole confidential trade secrets that were later used to develop the PSLA 270 printer. 3D Systems denied the allegations and filed a motion to dismiss the case. The company called the lawsuit “a desperate attempt” by Intrepid to distract from its own alleged theft of 3D Systems’ trade secrets. Who won the 2024 3D Printing Industry Awards? Subscribe to the 3D Printing Industry newsletter to keep up with the latest 3D printing news.You can also follow us on LinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content.Featured image shows a Stratasys Fortus 450mcand a Bambu Lab X1C. Image by 3D Printing industry. #new #court #order #stratasys #bambu
    3DPRINTINGINDUSTRY.COM
    New Court Order in Stratasys v. Bambu Lab Lawsuit
    There has been a new update to the ongoing Stratasys v. Bambu Lab patent infringement lawsuit.  Both parties have agreed to consolidate the lead and member cases (2:24-CV-00644-JRG and 2:24-CV-00645-JRG) into a single case under Case No. 2:25-cv-00465-JRG.  Industrial 3D printing OEM Stratasys filed the request late last month. According to an official court document, Shenzhen-based Bambu Lab did not oppose the motion. Stratasys argued that this non-opposition amounted to the defendants waiving their right to challenge the request under U.S. patent law 35 U.S.C. § 299(a). On June 2, the U.S. District Court for the Eastern District of Texas, Marshall Division, ordered Bambu Lab to confirm in writing whether it agreed to the proposed case consolidation. The court took this step out of an “abundance of caution” to ensure both parties consented to the procedure before moving forward. Bambu Lab submitted its response on June 12, agreeing to the consolidation. The company, along with co-defendants Shenzhen Tuozhu Technology Co., Ltd., Shanghai Lunkuo Technology Co., Ltd., and Tuozhu Technology Limited, waived its rights under 35 U.S.C. § 299(a). The court will now decide whether to merge the cases. This followed U.S. District Judge Rodney Gilstrap’s decision last month to deny Bambu Lab’s motion to dismiss the lawsuits.  The Chinese desktop 3D printer manufacturer filed the motion in February 2025, arguing the cases were invalid because its US-based subsidiary, Bambu Lab USA, was not named in the original litigation. However, it agreed that the lawsuit could continue in the Austin division of the Western District of Texas, where a parallel case was filed last year.  Judge Gilstrap denied the motion, ruling that the cases properly target the named defendants. He concluded that Bambu Lab USA isn’t essential to the dispute, and that any misnaming should be addressed in summary judgment, not dismissal.        A Stratasys Fortus 450mc (left) and a Bambu Lab X1C (right). Image by 3D Printing industry. Another twist in the Stratasys v. Bambu Lab lawsuit  Stratasys filed the two lawsuits against Bambu Lab in the Eastern District of Texas, Marshall Division, in August 2024. The company claims that Bambu Lab’s X1C, X1E, P1S, P1P, A1, and A1 mini 3D printers violate ten of its patents. These patents cover common 3D printing features, including purge towers, heated build plates, tool head force detection, and networking capabilities. Stratasys has requested a jury trial. It is seeking a ruling that Bambu Lab infringed its patents, along with financial damages and an injunction to stop Bambu from selling the allegedly infringing 3D printers. Last October, Stratasys dropped charges against two of the originally named defendants in the dispute. Court documents showed that Beijing Tiertime Technology Co., Ltd. and Beijing Yinhua Laser Rapid Prototyping and Mould Technology Co., Ltd were removed. Both defendants represent the company Tiertime, China’s first 3D printer manufacturer. The District Court accepted the dismissal, with all claims dropped without prejudice. It’s unclear why Stratasys named Beijing-based Tiertime as a defendant in the first place, given the lack of an obvious connection to Bambu Lab.  Tiertime and Stratasys have a history of legal disputes over patent issues. In 2013, Stratasys sued Afinia, Tiertime’s U.S. distributor and partner, for patent infringement. Afinia responded by suing uCRobotics, the Chinese distributor of MakerBot 3D printers, also alleging patent violations. Stratasys acquired MakerBot in June 2013. The company later merged with Ultimaker in 2022. In February 2025, Bambu Lab filed a motion to dismiss the original lawsuits. The company argued that Stratasys’ claims, focused on the sale, importation, and distribution of 3D printers in the United States, do not apply to the Shenzhen-based parent company. Bambu Lab contended that the allegations concern its American subsidiary, Bambu Lab USA, which was not named in the complaint filed in the Eastern District of Texas. Bambu Lab filed a motion to dismiss, claiming the case is invalid under Federal Rule of Civil Procedure 19. It argued that any party considered a “primary participant” in the allegations must be included as a defendant.    The court denied the motion on May 29, 2025. In the ruling, Judge Gilstrap explained that Stratasys’ allegations focus on the actions of the named defendants, not Bambu Lab USA. As a result, the official court document called Bambu Lab’s argument “unavailing.” Additionally, the Judge stated that, since Bambu Lab USA and Bambu Lab are both owned by Shenzhen Tuozhu, “the interest of these two entities align,” meaning the original cases are valid.   In the official court document, Judge Gilstrap emphasized that Stratasys can win or lose the lawsuits based solely on the actions of the current defendants, regardless of Bambu Lab USA’s involvement. He added that any potential risk to Bambu Lab USA’s business is too vague or hypothetical to justify making it a required party. Finally, the court noted that even if Stratasys named the wrong defendant, this does not justify dismissal under Rule 12(b)(7). Instead, the judge stated it would be more appropriate for the defendants to raise that argument in a motion for summary judgment. The Bambu Lab X1C 3D printer. Image via Bambu Lab. 3D printing patent battles  The 3D printing industry has seen its fair share of patent infringement disputes over recent months. In May 2025, 3D printer hotend developer Slice Engineering reached an agreement with Creality over a patent non-infringement lawsuit.  The Chinese 3D printer OEM filed the lawsuit in July 2024 in the U.S. District Court for the Northern District of Florida, Gainesville Division. The company claimed that Slice Engineering had falsely accused it of infringing two hotend patents, U.S. Patent Nos. 10,875,244 and 11,660,810. These cover mechanical and thermal features of Slice’s Mosquito 3D printer hotend. Creality requested a jury trial and sought a ruling confirming it had not infringed either patent. Court documents show that Slice Engineering filed a countersuit in December 2024. The Gainesville-based company maintained that Creaility “has infringed and continues to infringe” on both patents. In the filing, the company also denied allegations that it had harassed Creality’s partners, distributors, and customers, and claimed that Creality had refused to negotiate a resolution.   The Creality v. Slice Engineering lawsuit has since been dropped following a mutual resolution. Court documents show that both parties have permanently dismissed all claims and counterclaims, agreeing to cover their own legal fees and costs.  In other news, large-format resin 3D printer manufacturer Intrepid Automation sued 3D Systems over alleged patent infringement. The lawsuit, filed in February 2025, accused 3D Systems of using patented technology in its PSLA 270 industrial resin 3D printer. The filing called the PSLA 270 a “blatant knock off” of Intrepid’s DLP multi-projection “Range” 3D printer.   San Diego-based Intrepid Automation called this alleged infringement the “latest chapter of 3DS’s brazen, anticompetitive scheme to drive a smaller competitor with more advanced technology out of the marketplace.” The lawsuit also accused 3D Systems of corporate espionage, claiming one of its employees stole confidential trade secrets that were later used to develop the PSLA 270 printer. 3D Systems denied the allegations and filed a motion to dismiss the case. The company called the lawsuit “a desperate attempt” by Intrepid to distract from its own alleged theft of 3D Systems’ trade secrets. Who won the 2024 3D Printing Industry Awards? Subscribe to the 3D Printing Industry newsletter to keep up with the latest 3D printing news.You can also follow us on LinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content.Featured image shows a Stratasys Fortus 450mc (left) and a Bambu Lab X1C (right). Image by 3D Printing industry.
    Like
    Love
    Wow
    Sad
    Angry
    522
    2 Yorumlar 0 hisse senetleri 0 önizleme
  • Komires: Matali Physics 6.9 Released

    We are pleased to announce the release of Matali Physics 6.9, the next significant step on the way to the seventh major version of the environment. Matali Physics 6.9 introduces a number of improvements and fixes to Matali Physics Core, Matali Render and Matali Games modules, presents physics-driven, completely dynamic light sources, real-time object scaling with destruction, lighting model simulating global illuminationin some aspects, comprehensive support for Wayland on Linux, and more.

    Posted by komires on Jun 3rd, 2025
    What is Matali Physics?
    Matali Physics is an advanced, modern, multi-platform, high-performance 3d physics environment intended for games, VR, AR, physics-based simulations and robotics. Matali Physics consists of the advanced 3d physics engine Matali Physics Core and other physics-driven modules that all together provide comprehensive simulation of physical phenomena and physics-based modeling of both real and imaginary objects.
    What's new in version 6.9?

    Physics-driven, completely dynamic light sources. The introduced solution allows for processing hundreds of movable, long-range and shadow-casting light sources, where with each source can be assigned logic that controls its behavior, changes light parameters, volumetric effects parameters and others;
    Real-time object scaling with destruction. All groups of physics objects and groups of physics objects with constraints may be subject to destruction process during real-time scaling, allowing group members to break off at different sizes;
    Lighting model simulating global illuminationin some aspects. Based on own research and development work, processed in real time, ready for dynamic scenes, fast on mobile devices, not based on lightmaps, light probes, baked lights, etc.;
    Comprehensive support for Wayland on Linux. The latest version allows Matali Physics SDK users to create advanced, high-performance, physics-based, Vulkan-based games for modern Linux distributions where Wayland is the main display server protocol;
    Other improvements and fixes which complete list is available on the History webpage.

    What platforms does Matali Physics support?

    Android
    Android TV
    *BSD
    iOS
    iPadOS
    LinuxmacOS
    Steam Deck
    tvOS
    UWPWindowsWhat are the benefits of using Matali Physics?

    Physics simulation, graphics, sound and music integrated into one total multimedia solution where creating complex interactions and behaviors is common and relatively easy
    Composed of dedicated modules that do not require additional licences and fees
    Supports fully dynamic and destructible scenes
    Supports physics-based behavioral animations
    Supports physical AI, object motion and state change control
    Supports physics-based GUI
    Supports physics-based particle effects
    Supports multi-scene physics simulation and scene combining
    Supports physics-based photo mode
    Supports physics-driven sound
    Supports physics-driven music
    Supports debug visualization
    Fully serializable and deserializable
    Available for all major mobile, desktop and TV platforms
    New features on request
    Dedicated technical support
    Regular updates and fixes

    If you have questions related to the latest version and the use of Matali Physics environment as a game creation solution, please do not hesitate to contact us.
    #komires #matali #physics #released
    Komires: Matali Physics 6.9 Released
    We are pleased to announce the release of Matali Physics 6.9, the next significant step on the way to the seventh major version of the environment. Matali Physics 6.9 introduces a number of improvements and fixes to Matali Physics Core, Matali Render and Matali Games modules, presents physics-driven, completely dynamic light sources, real-time object scaling with destruction, lighting model simulating global illuminationin some aspects, comprehensive support for Wayland on Linux, and more. Posted by komires on Jun 3rd, 2025 What is Matali Physics? Matali Physics is an advanced, modern, multi-platform, high-performance 3d physics environment intended for games, VR, AR, physics-based simulations and robotics. Matali Physics consists of the advanced 3d physics engine Matali Physics Core and other physics-driven modules that all together provide comprehensive simulation of physical phenomena and physics-based modeling of both real and imaginary objects. What's new in version 6.9? Physics-driven, completely dynamic light sources. The introduced solution allows for processing hundreds of movable, long-range and shadow-casting light sources, where with each source can be assigned logic that controls its behavior, changes light parameters, volumetric effects parameters and others; Real-time object scaling with destruction. All groups of physics objects and groups of physics objects with constraints may be subject to destruction process during real-time scaling, allowing group members to break off at different sizes; Lighting model simulating global illuminationin some aspects. Based on own research and development work, processed in real time, ready for dynamic scenes, fast on mobile devices, not based on lightmaps, light probes, baked lights, etc.; Comprehensive support for Wayland on Linux. The latest version allows Matali Physics SDK users to create advanced, high-performance, physics-based, Vulkan-based games for modern Linux distributions where Wayland is the main display server protocol; Other improvements and fixes which complete list is available on the History webpage. What platforms does Matali Physics support? Android Android TV *BSD iOS iPadOS LinuxmacOS Steam Deck tvOS UWPWindowsWhat are the benefits of using Matali Physics? Physics simulation, graphics, sound and music integrated into one total multimedia solution where creating complex interactions and behaviors is common and relatively easy Composed of dedicated modules that do not require additional licences and fees Supports fully dynamic and destructible scenes Supports physics-based behavioral animations Supports physical AI, object motion and state change control Supports physics-based GUI Supports physics-based particle effects Supports multi-scene physics simulation and scene combining Supports physics-based photo mode Supports physics-driven sound Supports physics-driven music Supports debug visualization Fully serializable and deserializable Available for all major mobile, desktop and TV platforms New features on request Dedicated technical support Regular updates and fixes If you have questions related to the latest version and the use of Matali Physics environment as a game creation solution, please do not hesitate to contact us. #komires #matali #physics #released
    WWW.INDIEDB.COM
    Komires: Matali Physics 6.9 Released
    We are pleased to announce the release of Matali Physics 6.9, the next significant step on the way to the seventh major version of the environment. Matali Physics 6.9 introduces a number of improvements and fixes to Matali Physics Core, Matali Render and Matali Games modules, presents physics-driven, completely dynamic light sources, real-time object scaling with destruction, lighting model simulating global illumination (GI) in some aspects, comprehensive support for Wayland on Linux, and more. Posted by komires on Jun 3rd, 2025 What is Matali Physics? Matali Physics is an advanced, modern, multi-platform, high-performance 3d physics environment intended for games, VR, AR, physics-based simulations and robotics. Matali Physics consists of the advanced 3d physics engine Matali Physics Core and other physics-driven modules that all together provide comprehensive simulation of physical phenomena and physics-based modeling of both real and imaginary objects. What's new in version 6.9? Physics-driven, completely dynamic light sources. The introduced solution allows for processing hundreds of movable, long-range and shadow-casting light sources, where with each source can be assigned logic that controls its behavior, changes light parameters, volumetric effects parameters and others; Real-time object scaling with destruction. All groups of physics objects and groups of physics objects with constraints may be subject to destruction process during real-time scaling, allowing group members to break off at different sizes; Lighting model simulating global illumination (GI) in some aspects. Based on own research and development work, processed in real time, ready for dynamic scenes, fast on mobile devices, not based on lightmaps, light probes, baked lights, etc.; Comprehensive support for Wayland on Linux. The latest version allows Matali Physics SDK users to create advanced, high-performance, physics-based, Vulkan-based games for modern Linux distributions where Wayland is the main display server protocol; Other improvements and fixes which complete list is available on the History webpage. What platforms does Matali Physics support? Android Android TV *BSD iOS iPadOS Linux (distributions) macOS Steam Deck tvOS UWP (Desktop, Xbox Series X/S) Windows (Classic, GDK, Handheld consoles) What are the benefits of using Matali Physics? Physics simulation, graphics, sound and music integrated into one total multimedia solution where creating complex interactions and behaviors is common and relatively easy Composed of dedicated modules that do not require additional licences and fees Supports fully dynamic and destructible scenes Supports physics-based behavioral animations Supports physical AI, object motion and state change control Supports physics-based GUI Supports physics-based particle effects Supports multi-scene physics simulation and scene combining Supports physics-based photo mode Supports physics-driven sound Supports physics-driven music Supports debug visualization Fully serializable and deserializable Available for all major mobile, desktop and TV platforms New features on request Dedicated technical support Regular updates and fixes If you have questions related to the latest version and the use of Matali Physics environment as a game creation solution, please do not hesitate to contact us.
    0 Yorumlar 0 hisse senetleri 0 önizleme
  • NVIDIA helps Germany lead Europe’s AI manufacturing race

    Germany and NVIDIA are building possibly the most ambitious European tech project of the decade: the continent’s first industrial AI cloud.NVIDIA has been on a European tour over the past month with CEO Jensen Huang charming audiences at London Tech Week before dazzling the crowds at Paris’s VivaTech. But it was his meeting with German Chancellor Friedrich Merz that might prove the most consequential stop.The resulting partnership between NVIDIA and Deutsche Telekom isn’t just another corporate handshake; it’s potentially a turning point for European technological sovereignty.An “AI factory”will be created with a focus on manufacturing, which is hardly surprising given Germany’s renowned industrial heritage. The facility aims to give European industrial players the computational firepower to revolutionise everything from design to robotics.“In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Huang. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.”It’s rare to hear such urgency from a telecoms CEO, but Deutsche Telekom’s Timotheus Höttges added: “Europe’s technological future needs a sprint, not a stroll. We must seize the opportunities of artificial intelligence now, revolutionise our industry, and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.”The first phase alone will deploy 10,000 NVIDIA Blackwell GPUs spread across various high-performance systems. That makes this Germany’s largest AI deployment ever; a statement the country isn’t content to watch from the sidelines as AI transforms global industry.A Deloitte study recently highlighted the critical importance of AI technology development to Germany’s future competitiveness, particularly noting the need for expanded data centre capacity. When you consider that demand is expected to triple within just five years, this investment seems less like ambition and more like necessity.Robots teaching robotsOne of the early adopters is NEURA Robotics, a German firm that specialises in cognitive robotics. They’re using this computational muscle to power something called the Neuraverse which is essentially a connected network where robots can learn from each other.Think of it as a robotic hive mind for skills ranging from precision welding to household ironing, with each machine contributing its learnings to a collective intelligence.“Physical AI is the electricity of the future—it will power every machine on the planet,” said David Reger, Founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.”The implications of this AI project for manufacturing in Germany could be profound. This isn’t just about making existing factories slightly more efficient; it’s about reimagining what manufacturing can be in an age of intelligent machines.AI for more than just Germany’s industrial titansWhat’s particularly promising about this project is its potential reach beyond Germany’s industrial titans. The famed Mittelstand – the network of specialised small and medium-sized businesses that forms the backbone of the German economy – stands to benefit.These companies often lack the resources to build their own AI infrastructure but possess the specialised knowledge that makes them perfect candidates for AI-enhanced innovation. Democratising access to cutting-edge AI could help preserve their competitive edge in a challenging global market.Academic and research institutions will also gain access, potentially accelerating innovation across numerous fields. The approximately 900 Germany-based startups in NVIDIA’s Inception program will be eligible to use these resources, potentially unleashing a wave of entrepreneurial AI applications.However impressive this massive project is, it’s viewed merely as a stepping stone towards something even more ambitious: Europe’s AI gigafactory. This planned 100,000 GPU-powered initiative backed by the EU and Germany won’t come online until 2027, but it represents Europe’s determination to carve out its own technological future.As other European telecom providers follow suit with their own AI infrastructure projects, we may be witnessing the beginning of a concerted effort to establish technological sovereignty across the continent.For a region that has often found itself caught between American tech dominance and Chinese ambitions, building indigenous AI capability represents more than economic opportunity. Whether this bold project in Germany will succeed remains to be seen, but one thing is clear: Europe is no longer content to be a passive consumer of AI technology developed elsewhere.Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here.
    #nvidia #helps #germany #lead #europes
    NVIDIA helps Germany lead Europe’s AI manufacturing race
    Germany and NVIDIA are building possibly the most ambitious European tech project of the decade: the continent’s first industrial AI cloud.NVIDIA has been on a European tour over the past month with CEO Jensen Huang charming audiences at London Tech Week before dazzling the crowds at Paris’s VivaTech. But it was his meeting with German Chancellor Friedrich Merz that might prove the most consequential stop.The resulting partnership between NVIDIA and Deutsche Telekom isn’t just another corporate handshake; it’s potentially a turning point for European technological sovereignty.An “AI factory”will be created with a focus on manufacturing, which is hardly surprising given Germany’s renowned industrial heritage. The facility aims to give European industrial players the computational firepower to revolutionise everything from design to robotics.“In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Huang. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.”It’s rare to hear such urgency from a telecoms CEO, but Deutsche Telekom’s Timotheus Höttges added: “Europe’s technological future needs a sprint, not a stroll. We must seize the opportunities of artificial intelligence now, revolutionise our industry, and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.”The first phase alone will deploy 10,000 NVIDIA Blackwell GPUs spread across various high-performance systems. That makes this Germany’s largest AI deployment ever; a statement the country isn’t content to watch from the sidelines as AI transforms global industry.A Deloitte study recently highlighted the critical importance of AI technology development to Germany’s future competitiveness, particularly noting the need for expanded data centre capacity. When you consider that demand is expected to triple within just five years, this investment seems less like ambition and more like necessity.Robots teaching robotsOne of the early adopters is NEURA Robotics, a German firm that specialises in cognitive robotics. They’re using this computational muscle to power something called the Neuraverse which is essentially a connected network where robots can learn from each other.Think of it as a robotic hive mind for skills ranging from precision welding to household ironing, with each machine contributing its learnings to a collective intelligence.“Physical AI is the electricity of the future—it will power every machine on the planet,” said David Reger, Founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.”The implications of this AI project for manufacturing in Germany could be profound. This isn’t just about making existing factories slightly more efficient; it’s about reimagining what manufacturing can be in an age of intelligent machines.AI for more than just Germany’s industrial titansWhat’s particularly promising about this project is its potential reach beyond Germany’s industrial titans. The famed Mittelstand – the network of specialised small and medium-sized businesses that forms the backbone of the German economy – stands to benefit.These companies often lack the resources to build their own AI infrastructure but possess the specialised knowledge that makes them perfect candidates for AI-enhanced innovation. Democratising access to cutting-edge AI could help preserve their competitive edge in a challenging global market.Academic and research institutions will also gain access, potentially accelerating innovation across numerous fields. The approximately 900 Germany-based startups in NVIDIA’s Inception program will be eligible to use these resources, potentially unleashing a wave of entrepreneurial AI applications.However impressive this massive project is, it’s viewed merely as a stepping stone towards something even more ambitious: Europe’s AI gigafactory. This planned 100,000 GPU-powered initiative backed by the EU and Germany won’t come online until 2027, but it represents Europe’s determination to carve out its own technological future.As other European telecom providers follow suit with their own AI infrastructure projects, we may be witnessing the beginning of a concerted effort to establish technological sovereignty across the continent.For a region that has often found itself caught between American tech dominance and Chinese ambitions, building indigenous AI capability represents more than economic opportunity. Whether this bold project in Germany will succeed remains to be seen, but one thing is clear: Europe is no longer content to be a passive consumer of AI technology developed elsewhere.Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here. #nvidia #helps #germany #lead #europes
    WWW.ARTIFICIALINTELLIGENCE-NEWS.COM
    NVIDIA helps Germany lead Europe’s AI manufacturing race
    Germany and NVIDIA are building possibly the most ambitious European tech project of the decade: the continent’s first industrial AI cloud.NVIDIA has been on a European tour over the past month with CEO Jensen Huang charming audiences at London Tech Week before dazzling the crowds at Paris’s VivaTech. But it was his meeting with German Chancellor Friedrich Merz that might prove the most consequential stop.The resulting partnership between NVIDIA and Deutsche Telekom isn’t just another corporate handshake; it’s potentially a turning point for European technological sovereignty.An “AI factory” (as they’re calling it) will be created with a focus on manufacturing, which is hardly surprising given Germany’s renowned industrial heritage. The facility aims to give European industrial players the computational firepower to revolutionise everything from design to robotics.“In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Huang. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.”It’s rare to hear such urgency from a telecoms CEO, but Deutsche Telekom’s Timotheus Höttges added: “Europe’s technological future needs a sprint, not a stroll. We must seize the opportunities of artificial intelligence now, revolutionise our industry, and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.”The first phase alone will deploy 10,000 NVIDIA Blackwell GPUs spread across various high-performance systems. That makes this Germany’s largest AI deployment ever; a statement the country isn’t content to watch from the sidelines as AI transforms global industry.A Deloitte study recently highlighted the critical importance of AI technology development to Germany’s future competitiveness, particularly noting the need for expanded data centre capacity. When you consider that demand is expected to triple within just five years, this investment seems less like ambition and more like necessity.Robots teaching robotsOne of the early adopters is NEURA Robotics, a German firm that specialises in cognitive robotics. They’re using this computational muscle to power something called the Neuraverse which is essentially a connected network where robots can learn from each other.Think of it as a robotic hive mind for skills ranging from precision welding to household ironing, with each machine contributing its learnings to a collective intelligence.“Physical AI is the electricity of the future—it will power every machine on the planet,” said David Reger, Founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.”The implications of this AI project for manufacturing in Germany could be profound. This isn’t just about making existing factories slightly more efficient; it’s about reimagining what manufacturing can be in an age of intelligent machines.AI for more than just Germany’s industrial titansWhat’s particularly promising about this project is its potential reach beyond Germany’s industrial titans. The famed Mittelstand – the network of specialised small and medium-sized businesses that forms the backbone of the German economy – stands to benefit.These companies often lack the resources to build their own AI infrastructure but possess the specialised knowledge that makes them perfect candidates for AI-enhanced innovation. Democratising access to cutting-edge AI could help preserve their competitive edge in a challenging global market.Academic and research institutions will also gain access, potentially accelerating innovation across numerous fields. The approximately 900 Germany-based startups in NVIDIA’s Inception program will be eligible to use these resources, potentially unleashing a wave of entrepreneurial AI applications.However impressive this massive project is, it’s viewed merely as a stepping stone towards something even more ambitious: Europe’s AI gigafactory. This planned 100,000 GPU-powered initiative backed by the EU and Germany won’t come online until 2027, but it represents Europe’s determination to carve out its own technological future.As other European telecom providers follow suit with their own AI infrastructure projects, we may be witnessing the beginning of a concerted effort to establish technological sovereignty across the continent.For a region that has often found itself caught between American tech dominance and Chinese ambitions, building indigenous AI capability represents more than economic opportunity. Whether this bold project in Germany will succeed remains to be seen, but one thing is clear: Europe is no longer content to be a passive consumer of AI technology developed elsewhere.(Photo by Maheshkumar Painam)Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.Explore other upcoming enterprise technology events and webinars powered by TechForge here.
    0 Yorumlar 0 hisse senetleri 0 önizleme
  • NVIDIA and Deutsche Telekom Partner to Advance Germany’s Sovereign AI

    Industrial AI isn’t slowing down. Germany is ready.
    Following London Tech Week and GTC Paris at VivaTech, NVIDIA founder and CEO Jensen Huang’s European tour continued with a stop in Germany to discuss with Chancellor Friedrich Merz — pictured above — new partnerships poised to bring breakthrough innovations on the world’s first industrial AI cloud.
    This AI factory, to be located in Germany and operated by Deutsche Telekom, will enable Europe’s industrial leaders to accelerate manufacturing applications including design, engineering, simulation, digital twins and robotics.
    “In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Jensen Huang, founder and CEO of NVIDIA. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.”
    “Europe’s technological future needs a sprint, not a stroll,” said Timotheus Höttges, CEO of Deutsche Telekom AG. “We must seize the opportunities of artificial intelligence now, revolutionize our industry and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.”
    This AI infrastructure — Germany’s single largest AI deployment — is an important leap for the nation in establishing its own sovereign AI infrastructure and providing a launchpad to accelerate AI development and adoption across industries. In its first phase, it’ll feature 10,000 NVIDIA Blackwell GPUs — spanning NVIDIA DGX B200 systems and NVIDIA RTX PRO Servers — as well as NVIDIA networking and AI software.
    NEURA Robotics’ training center for cognitive robots.
    NEURA Robotics, a Germany-based global pioneer in physical AI and cognitive robotics, will use the computing resources to power its state-of-the-art training centers for cognitive robots — a tangible example of how physical AI can evolve through powerful, connected infrastructure.
    At this work’s core is the Neuraverse, a seamlessly networked robot ecosystem that allows robots to learn from each other across a wide range of industrial and domestic applications. This platform creates an app-store-like hub for robotic intelligence — for tasks like welding and ironing — enabling continuous development and deployment of robotic skills in real-world environments.
    “Physical AI is the electricity of the future — it will power every machine on the planet,” said David Reger, founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.”
    Critical to Germany’s competitiveness is AI technology development, including the expansion of data center capacity, according to a Deloitte study. This is strategically important because demand for data center capacity is expected to triple over the next five years to 5 gigawatts.
    Driving Germany’s Industrial Ecosystem
    Deutsche Telekom will operate the AI factory and provide AI cloud computing resources to Europe’s industrial ecosystem.
    Customers will be able to run NVIDIA CUDA-X libraries, as well as NVIDIA RTX- and Omniverse-accelerated workloads from leading software providers such as Siemens, Ansys, Cadence and Rescale.
    Many more stand to benefit. From the country’s robust small- and medium-sized businesses, known as the Mittelstand, to academia, research and major enterprises — the AI factory offers strategic technology leaps.
    A Speedboat Toward AI Gigafactories
    The industrial AI cloud will accelerate AI development and adoption from European manufacturers, driving simulation-first, AI-driven manufacturing practices and helping prepare for the country’s transition to AI gigafactories, the next step in Germany’s sovereign AI infrastructure journey.
    The AI gigafactory initiative is a 100,000 GPU-powered program backed by the European Union, Germany and partners.
    Poised to go online in 2027, it’ll provide state-of-the-art AI infrastructure that gives enterprises, startups, researchers and universities access to accelerated computing through the establishment and expansion of high-performance computing centers.
    As of March, there are about 900 Germany-based members of the NVIDIA Inception program for cutting-edge startups, all of which will be eligible to access the AI resources.
    NVIDIA offers learning courses through its Deep Learning Institute to promote education and certification in AI across the globe, and those resources are broadly available across Germany’s computing ecosystem to offer upskilling opportunities.
    Additional European telcos are building AI infrastructure for regional enterprises to build and deploy agentic AI applications.
    Learn more about the latest AI advancements by watching Huang’s GTC Paris keynote in replay.
    #nvidia #deutsche #telekom #partner #advance
    NVIDIA and Deutsche Telekom Partner to Advance Germany’s Sovereign AI
    Industrial AI isn’t slowing down. Germany is ready. Following London Tech Week and GTC Paris at VivaTech, NVIDIA founder and CEO Jensen Huang’s European tour continued with a stop in Germany to discuss with Chancellor Friedrich Merz — pictured above — new partnerships poised to bring breakthrough innovations on the world’s first industrial AI cloud. This AI factory, to be located in Germany and operated by Deutsche Telekom, will enable Europe’s industrial leaders to accelerate manufacturing applications including design, engineering, simulation, digital twins and robotics. “In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Jensen Huang, founder and CEO of NVIDIA. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.” “Europe’s technological future needs a sprint, not a stroll,” said Timotheus Höttges, CEO of Deutsche Telekom AG. “We must seize the opportunities of artificial intelligence now, revolutionize our industry and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.” This AI infrastructure — Germany’s single largest AI deployment — is an important leap for the nation in establishing its own sovereign AI infrastructure and providing a launchpad to accelerate AI development and adoption across industries. In its first phase, it’ll feature 10,000 NVIDIA Blackwell GPUs — spanning NVIDIA DGX B200 systems and NVIDIA RTX PRO Servers — as well as NVIDIA networking and AI software. NEURA Robotics’ training center for cognitive robots. NEURA Robotics, a Germany-based global pioneer in physical AI and cognitive robotics, will use the computing resources to power its state-of-the-art training centers for cognitive robots — a tangible example of how physical AI can evolve through powerful, connected infrastructure. At this work’s core is the Neuraverse, a seamlessly networked robot ecosystem that allows robots to learn from each other across a wide range of industrial and domestic applications. This platform creates an app-store-like hub for robotic intelligence — for tasks like welding and ironing — enabling continuous development and deployment of robotic skills in real-world environments. “Physical AI is the electricity of the future — it will power every machine on the planet,” said David Reger, founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.” Critical to Germany’s competitiveness is AI technology development, including the expansion of data center capacity, according to a Deloitte study. This is strategically important because demand for data center capacity is expected to triple over the next five years to 5 gigawatts. Driving Germany’s Industrial Ecosystem Deutsche Telekom will operate the AI factory and provide AI cloud computing resources to Europe’s industrial ecosystem. Customers will be able to run NVIDIA CUDA-X libraries, as well as NVIDIA RTX- and Omniverse-accelerated workloads from leading software providers such as Siemens, Ansys, Cadence and Rescale. Many more stand to benefit. From the country’s robust small- and medium-sized businesses, known as the Mittelstand, to academia, research and major enterprises — the AI factory offers strategic technology leaps. A Speedboat Toward AI Gigafactories The industrial AI cloud will accelerate AI development and adoption from European manufacturers, driving simulation-first, AI-driven manufacturing practices and helping prepare for the country’s transition to AI gigafactories, the next step in Germany’s sovereign AI infrastructure journey. The AI gigafactory initiative is a 100,000 GPU-powered program backed by the European Union, Germany and partners. Poised to go online in 2027, it’ll provide state-of-the-art AI infrastructure that gives enterprises, startups, researchers and universities access to accelerated computing through the establishment and expansion of high-performance computing centers. As of March, there are about 900 Germany-based members of the NVIDIA Inception program for cutting-edge startups, all of which will be eligible to access the AI resources. NVIDIA offers learning courses through its Deep Learning Institute to promote education and certification in AI across the globe, and those resources are broadly available across Germany’s computing ecosystem to offer upskilling opportunities. Additional European telcos are building AI infrastructure for regional enterprises to build and deploy agentic AI applications. Learn more about the latest AI advancements by watching Huang’s GTC Paris keynote in replay. #nvidia #deutsche #telekom #partner #advance
    BLOGS.NVIDIA.COM
    NVIDIA and Deutsche Telekom Partner to Advance Germany’s Sovereign AI
    Industrial AI isn’t slowing down. Germany is ready. Following London Tech Week and GTC Paris at VivaTech, NVIDIA founder and CEO Jensen Huang’s European tour continued with a stop in Germany to discuss with Chancellor Friedrich Merz — pictured above — new partnerships poised to bring breakthrough innovations on the world’s first industrial AI cloud. This AI factory, to be located in Germany and operated by Deutsche Telekom, will enable Europe’s industrial leaders to accelerate manufacturing applications including design, engineering, simulation, digital twins and robotics. “In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Jensen Huang, founder and CEO of NVIDIA. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.” “Europe’s technological future needs a sprint, not a stroll,” said Timotheus Höttges, CEO of Deutsche Telekom AG. “We must seize the opportunities of artificial intelligence now, revolutionize our industry and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.” This AI infrastructure — Germany’s single largest AI deployment — is an important leap for the nation in establishing its own sovereign AI infrastructure and providing a launchpad to accelerate AI development and adoption across industries. In its first phase, it’ll feature 10,000 NVIDIA Blackwell GPUs — spanning NVIDIA DGX B200 systems and NVIDIA RTX PRO Servers — as well as NVIDIA networking and AI software. NEURA Robotics’ training center for cognitive robots. NEURA Robotics, a Germany-based global pioneer in physical AI and cognitive robotics, will use the computing resources to power its state-of-the-art training centers for cognitive robots — a tangible example of how physical AI can evolve through powerful, connected infrastructure. At this work’s core is the Neuraverse, a seamlessly networked robot ecosystem that allows robots to learn from each other across a wide range of industrial and domestic applications. This platform creates an app-store-like hub for robotic intelligence — for tasks like welding and ironing — enabling continuous development and deployment of robotic skills in real-world environments. “Physical AI is the electricity of the future — it will power every machine on the planet,” said David Reger, founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.” Critical to Germany’s competitiveness is AI technology development, including the expansion of data center capacity, according to a Deloitte study. This is strategically important because demand for data center capacity is expected to triple over the next five years to 5 gigawatts. Driving Germany’s Industrial Ecosystem Deutsche Telekom will operate the AI factory and provide AI cloud computing resources to Europe’s industrial ecosystem. Customers will be able to run NVIDIA CUDA-X libraries, as well as NVIDIA RTX- and Omniverse-accelerated workloads from leading software providers such as Siemens, Ansys, Cadence and Rescale. Many more stand to benefit. From the country’s robust small- and medium-sized businesses, known as the Mittelstand, to academia, research and major enterprises — the AI factory offers strategic technology leaps. A Speedboat Toward AI Gigafactories The industrial AI cloud will accelerate AI development and adoption from European manufacturers, driving simulation-first, AI-driven manufacturing practices and helping prepare for the country’s transition to AI gigafactories, the next step in Germany’s sovereign AI infrastructure journey. The AI gigafactory initiative is a 100,000 GPU-powered program backed by the European Union, Germany and partners. Poised to go online in 2027, it’ll provide state-of-the-art AI infrastructure that gives enterprises, startups, researchers and universities access to accelerated computing through the establishment and expansion of high-performance computing centers. As of March, there are about 900 Germany-based members of the NVIDIA Inception program for cutting-edge startups, all of which will be eligible to access the AI resources. NVIDIA offers learning courses through its Deep Learning Institute to promote education and certification in AI across the globe, and those resources are broadly available across Germany’s computing ecosystem to offer upskilling opportunities. Additional European telcos are building AI infrastructure for regional enterprises to build and deploy agentic AI applications. Learn more about the latest AI advancements by watching Huang’s GTC Paris keynote in replay.
    0 Yorumlar 0 hisse senetleri 0 önizleme
CGShares https://cgshares.com