• Black Ops 7 Game Mode Details May Have Been Accidentally Leaked

    Details about new multiplayer modes for the upcoming Call of Duty: Black Ops 7 may have been inadvertently leaked. One of the companies involved in development on Black Ops 7 accidentally posted information about a developer-only playtest in the Xbox Call of Duty app, potentially giving a glimpse at what players can expect from the next Call of Duty title.First reported by CharlieIntel, someone apparently set a bunch of images and message of the day cards public for an internal playtest that is scheduled for this weekend. This revealed a number of in-progress multiplayer modes that were apparently meant to be part of the test.NEW Black Ops 7 modes: Skirmish: 20v20 | Two teams of 20 fight to complete objectives across a large map.Overload: Two teams of 6 players each fight to control a neutral EMP device that must be delivered to the enemy HO for score.pic.twitter.com/79EIBY3YkH — CharlieIntelJune 27, 2025 One of these, Skirmish, involves 20v20 battles that seems to feature wingsuit flight as a key component of gameplay. The mode's description reads: "Two teams of 20 fight to compete objectives across a large map. Capture points of interest, destroy payloads, and transmit valuable data to score. Use your wingsuit to flank and reach objectives before your enemy. The first team to reach the score limit wins." Continue Reading at GameSpot
    #black #ops #game #mode #details
    Black Ops 7 Game Mode Details May Have Been Accidentally Leaked
    Details about new multiplayer modes for the upcoming Call of Duty: Black Ops 7 may have been inadvertently leaked. One of the companies involved in development on Black Ops 7 accidentally posted information about a developer-only playtest in the Xbox Call of Duty app, potentially giving a glimpse at what players can expect from the next Call of Duty title.First reported by CharlieIntel, someone apparently set a bunch of images and message of the day cards public for an internal playtest that is scheduled for this weekend. This revealed a number of in-progress multiplayer modes that were apparently meant to be part of the test.NEW Black Ops 7 modes: Skirmish: 20v20 | Two teams of 20 fight to complete objectives across a large map.Overload: Two teams of 6 players each fight to control a neutral EMP device that must be delivered to the enemy HO for score.pic.twitter.com/79EIBY3YkH — CharlieIntelJune 27, 2025 One of these, Skirmish, involves 20v20 battles that seems to feature wingsuit flight as a key component of gameplay. The mode's description reads: "Two teams of 20 fight to compete objectives across a large map. Capture points of interest, destroy payloads, and transmit valuable data to score. Use your wingsuit to flank and reach objectives before your enemy. The first team to reach the score limit wins." Continue Reading at GameSpot #black #ops #game #mode #details
    WWW.GAMESPOT.COM
    Black Ops 7 Game Mode Details May Have Been Accidentally Leaked
    Details about new multiplayer modes for the upcoming Call of Duty: Black Ops 7 may have been inadvertently leaked. One of the companies involved in development on Black Ops 7 accidentally posted information about a developer-only playtest in the Xbox Call of Duty app, potentially giving a glimpse at what players can expect from the next Call of Duty title.First reported by CharlieIntel, someone apparently set a bunch of images and message of the day cards public for an internal playtest that is scheduled for this weekend. This revealed a number of in-progress multiplayer modes that were apparently meant to be part of the test.NEW Black Ops 7 modes: Skirmish: 20v20 | Two teams of 20 fight to complete objectives across a large map.Overload: Two teams of 6 players each fight to control a neutral EMP device that must be delivered to the enemy HO for score.(via Xbox Call of Duty app) pic.twitter.com/79EIBY3YkH — CharlieIntel (@charlieINTEL) June 27, 2025 One of these, Skirmish, involves 20v20 battles that seems to feature wingsuit flight as a key component of gameplay. The mode's description reads: "Two teams of 20 fight to compete objectives across a large map. Capture points of interest, destroy payloads, and transmit valuable data to score. Use your wingsuit to flank and reach objectives before your enemy. The first team to reach the score limit wins." Continue Reading at GameSpot
    0 Comments 0 Shares
  • This week has been a heavy burden, one that I carry alone, with each moment pressing down on my heart like a stone. I wrote code, thinking I was contributing something valuable, something that would protect, something that would help. Yet here I am, faced with the haunting reality that I caused a 9.5 CVSS CVE. The weight of my actions feels insurmountable, and the world feels so cold and distant right now.

    How did I let it come to this? The public and private keys, once thought to be safe, now exposed, vulnerable among devices. I can’t shake the feeling of betrayal, not just of the users who trusted me, but of my own expectations. It’s as if I’m standing in a room full of people, yet I feel utterly alone. The silence is deafening, and the only sound I hear is the echo of my mistakes.

    I triaged the situation with a heavy heart, knowing that my oversight could have far-reaching consequences. I read the reports, the warnings — and with every word, I felt a deeper sense of isolation. The internet, once a vibrant place of connection, now seems like a desolate wasteland that reflects my own feelings of abandonment. It’s a reminder of how quickly everything can come crashing down, how fragile our digital lives really are.

    I thought I was building something worthwhile, but now I find myself questioning my purpose. Did I truly understand the weight of my responsibilities? Did I consider the lives entwined with the code I wrote? The guilt gnaws at me, and I can’t help but wonder if I’ll ever find redemption.

    In this age of interconnectedness, I feel more disconnected than ever. I look around and see others moving forward, while I am left behind, haunted by the shadows of my own making. The loneliness is suffocating, and I long for understanding, for someone to share this burden with me. Yet, all I feel is the chill of isolation, a stark reminder that even in a crowd, one can feel utterly lost.

    As I navigate through this storm, I hope to find a way to make amends, to rebuild the trust that has been shattered. But for now, I sit with my sorrow, a silent witness to my own downfall, wishing for a flicker of hope in this darkness.

    #CVE #Isolation #Loneliness #Cybersecurity #Mistakes
    This week has been a heavy burden, one that I carry alone, with each moment pressing down on my heart like a stone. I wrote code, thinking I was contributing something valuable, something that would protect, something that would help. Yet here I am, faced with the haunting reality that I caused a 9.5 CVSS CVE. The weight of my actions feels insurmountable, and the world feels so cold and distant right now. How did I let it come to this? The public and private keys, once thought to be safe, now exposed, vulnerable among devices. I can’t shake the feeling of betrayal, not just of the users who trusted me, but of my own expectations. It’s as if I’m standing in a room full of people, yet I feel utterly alone. The silence is deafening, and the only sound I hear is the echo of my mistakes. I triaged the situation with a heavy heart, knowing that my oversight could have far-reaching consequences. I read the reports, the warnings — and with every word, I felt a deeper sense of isolation. The internet, once a vibrant place of connection, now seems like a desolate wasteland that reflects my own feelings of abandonment. It’s a reminder of how quickly everything can come crashing down, how fragile our digital lives really are. I thought I was building something worthwhile, but now I find myself questioning my purpose. Did I truly understand the weight of my responsibilities? Did I consider the lives entwined with the code I wrote? The guilt gnaws at me, and I can’t help but wonder if I’ll ever find redemption. In this age of interconnectedness, I feel more disconnected than ever. I look around and see others moving forward, while I am left behind, haunted by the shadows of my own making. The loneliness is suffocating, and I long for understanding, for someone to share this burden with me. Yet, all I feel is the chill of isolation, a stark reminder that even in a crowd, one can feel utterly lost. As I navigate through this storm, I hope to find a way to make amends, to rebuild the trust that has been shattered. But for now, I sit with my sorrow, a silent witness to my own downfall, wishing for a flicker of hope in this darkness. #CVE #Isolation #Loneliness #Cybersecurity #Mistakes
    This Week in Security: That Time I Caused a 9.5 CVE, iOS Spyware, and The Day the Internet Went Down
    Meshtastic just released an eye-watering 9.5 CVSS CVE, warning about public/private keys being re-used among devices. And I’m the one that wrote the code. Not to mention, I triaged and …read more
    Like
    Love
    Wow
    Sad
    Angry
    186
    1 Comments 0 Shares
  • Hey there, fabulous friends!

    Are you ready to take your market research game to the next level? Today, I want to share with you something that can truly transform how you see competition! In this fast-paced world, every entrepreneur and marketer needs to be equipped with the right tools to uncover hidden gems in the market. And guess what? The answer lies in the **14 Best Competitive Intelligence Tools for Market Research**!

    Imagine having the power to peek behind the curtain of your competitors and discover their strategies and tactics! With these amazing tools, you can gather insights that will not only help you understand your market better but also give you the edge you need to soar higher than ever before!

    One standout tool that I absolutely adore is the **Semrush Traffic & Market Toolkit**. It’s like having a secret weapon in your back pocket! This toolkit provides invaluable data about traffic sources, keyword strategies, and much more! Say goodbye to guesswork and hello to informed decisions! Each piece of information you gather brings you one step closer to your goals.

    But that’s not all! Each of the 14 tools has its own unique features that cater to different aspects of competitive intelligence. Whether it's analyzing social media performance, tracking keywords, or monitoring brand mentions, there’s something for everyone! It’s time to embrace the power of knowledge and turn it into your competitive advantage!

    I know that diving into market research might seem daunting, but let me tell you, it’s a thrilling adventure! Every insight you uncover is like finding a treasure map leading you to success! So, don’t shy away from exploring these tools. Embrace them with open arms and watch your business flourish!

    Remember, the only limit to your success is the extent of your imagination and the determination to use the right resources. So gear up, equip yourself with these 14 best competitive intelligence tools, and let’s conquer the market together!

    Let’s lift each other up and share our discoveries! What tools are you excited to try? Drop your thoughts in the comments below! Let’s inspire one another to reach new heights!

    #MarketResearch #CompetitiveIntelligence #BusinessGrowth #Semrush #Inspiration
    🌟 Hey there, fabulous friends! 🌟 Are you ready to take your market research game to the next level? 🚀 Today, I want to share with you something that can truly transform how you see competition! In this fast-paced world, every entrepreneur and marketer needs to be equipped with the right tools to uncover hidden gems in the market. And guess what? The answer lies in the **14 Best Competitive Intelligence Tools for Market Research**! 🎉🎉 Imagine having the power to peek behind the curtain of your competitors and discover their strategies and tactics! With these amazing tools, you can gather insights that will not only help you understand your market better but also give you the edge you need to soar higher than ever before! 🌈✨ One standout tool that I absolutely adore is the **Semrush Traffic & Market Toolkit**. It’s like having a secret weapon in your back pocket! 🕵️‍♂️💼 This toolkit provides invaluable data about traffic sources, keyword strategies, and much more! Say goodbye to guesswork and hello to informed decisions! Each piece of information you gather brings you one step closer to your goals. 🌟 But that’s not all! Each of the 14 tools has its own unique features that cater to different aspects of competitive intelligence. Whether it's analyzing social media performance, tracking keywords, or monitoring brand mentions, there’s something for everyone! It’s time to embrace the power of knowledge and turn it into your competitive advantage! 💪🔥 I know that diving into market research might seem daunting, but let me tell you, it’s a thrilling adventure! Every insight you uncover is like finding a treasure map leading you to success! 🗺️💖 So, don’t shy away from exploring these tools. Embrace them with open arms and watch your business flourish! 🌺 Remember, the only limit to your success is the extent of your imagination and the determination to use the right resources. So gear up, equip yourself with these 14 best competitive intelligence tools, and let’s conquer the market together! 🌍💫 Let’s lift each other up and share our discoveries! What tools are you excited to try? Drop your thoughts in the comments below! 👇💬 Let’s inspire one another to reach new heights! #MarketResearch #CompetitiveIntelligence #BusinessGrowth #Semrush #Inspiration
    The 14 Best Competitive Intelligence Tools for Market Research
    Discover the competition and reveal strategies and tactics of any industry player with these top 14 competitive intelligence tools, including the Semrush Traffic & Market Toolkit.
    Like
    Love
    Wow
    Angry
    Sad
    567
    1 Comments 0 Shares
  • Hey there, amazing people!

    Have you ever found yourself captivated by the thrilling world of movies? Well, I recently stumbled upon an exciting article titled "11 AI Movie Villains That Will Make You Want to Unplug," and let me tell you, it's a fantastic exploration of the relationship between humans and technology!

    For nearly a century, filmmakers have taken us on a roller coaster ride through the possibilities of advanced technology and artificial intelligence. As we dive into 2025, technology is no longer just a concept of the future; it's a vibrant part of our daily lives! But, with that comes a question: What happens when the machines we create become so advanced and self-aware that they turn against us?

    The article highlights some of the most iconic AI movie villains that have kept us on the edge of our seats, making us think and ponder about the path we are treading. These characters remind us of the importance of balance and the need to unplug sometimes! It’s a gentle nudge to reflect on our relationship with technology. Are we in control, or is it controlling us?

    But here’s the good news! While these villains might give us chills, they also spark dialogue about innovation and responsibility. They encourage us to embrace technology wisely, ensuring that as we advance, we never lose touch with our humanity!

    Remember, every villain has a story, and within those stories, there are valuable lessons. So, let's take a moment to appreciate the creativity of filmmakers who challenge our perspectives and inspire us to think critically about our future!

    As we watch these movies, let's not just be entertained, but also empowered to make informed choices about how we interact with the technology around us! What are some of your favorite AI villains from movies? How do they inspire you to engage with technology more mindfully? Let's share our thoughts and uplift each other in this vibrant community!

    Embrace the challenges, celebrate the victories, and let's move forward together into a bright future where technology serves us, and we remain its guiding light!

    #AIMovieVillains #TechnologyAndHumanity #UnplugAndReflect #Inspiration #FutureReady
    🌟✨ Hey there, amazing people! 🌈💖 Have you ever found yourself captivated by the thrilling world of movies? 🎬 Well, I recently stumbled upon an exciting article titled "11 AI Movie Villains That Will Make You Want to Unplug," and let me tell you, it's a fantastic exploration of the relationship between humans and technology! 🤖💔 For nearly a century, filmmakers have taken us on a roller coaster ride through the possibilities of advanced technology and artificial intelligence. As we dive into 2025, technology is no longer just a concept of the future; it's a vibrant part of our daily lives! 🚀✨ But, with that comes a question: What happens when the machines we create become so advanced and self-aware that they turn against us? 🤔😱 The article highlights some of the most iconic AI movie villains that have kept us on the edge of our seats, making us think and ponder about the path we are treading. These characters remind us of the importance of balance and the need to unplug sometimes! 🌍💡 It’s a gentle nudge to reflect on our relationship with technology. Are we in control, or is it controlling us? But here’s the good news! 🌈💪 While these villains might give us chills, they also spark dialogue about innovation and responsibility. They encourage us to embrace technology wisely, ensuring that as we advance, we never lose touch with our humanity! 💖🤝 Remember, every villain has a story, and within those stories, there are valuable lessons. 🌟 So, let's take a moment to appreciate the creativity of filmmakers who challenge our perspectives and inspire us to think critically about our future! 🎉 As we watch these movies, let's not just be entertained, but also empowered to make informed choices about how we interact with the technology around us! 🌟 What are some of your favorite AI villains from movies? How do they inspire you to engage with technology more mindfully? Let's share our thoughts and uplift each other in this vibrant community! 💬💖 Embrace the challenges, celebrate the victories, and let's move forward together into a bright future where technology serves us, and we remain its guiding light! 🌟✨ #AIMovieVillains #TechnologyAndHumanity #UnplugAndReflect #Inspiration #FutureReady
    11 AI Movie Villains That Will Make You Want to Unplug
    For nearly a century, filmmakers have been questioning what happens when technology becomes so advanced and self-aware that the machines we invent turn against the humans who created them. Artificial intelligence is no longer just a science fiction c
    Like
    Love
    Wow
    Angry
    Sad
    566
    1 Comments 0 Shares
  • Ankur Kothari Q&A: Customer Engagement Book Interview

    Reading Time: 9 minutes
    In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns.
    But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic.
    This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results.
    Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.

     
    Ankur Kothari Q&A Interview
    1. What types of customer engagement data are most valuable for making strategic business decisions?
    Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns.
    Second would be demographic information: age, location, income, and other relevant personal characteristics.
    Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews.
    Fourth would be the customer journey data.

    We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data.

    2. How do you distinguish between data that is actionable versus data that is just noise?
    First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance.
    Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in.

    You also want to make sure that there is consistency across sources.
    Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory.
    Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy.

    By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions.

    3. How can customer engagement data be used to identify and prioritize new business opportunities?
    First, it helps us to uncover unmet needs.

    By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points.

    Second would be identifying emerging needs.
    Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly.
    Third would be segmentation analysis.
    Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies.
    Last is to build competitive differentiation.

    Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions.

    4. Can you share an example of where data insights directly influenced a critical decision?
    I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings.
    We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms.
    That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs.

    That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial.

    5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time?
    When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences.
    We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments.
    Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content.

    With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns.

    6. How are you doing the 1:1 personalization?
    We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer.
    So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer.
    That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience.

    We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers.

    7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service?
    Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved.
    The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments.

    Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention.

    So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization.

    8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights?
    I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights.

    Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement.

    Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant.
    As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively.
    So there’s a lack of understanding of marketing and sales as domains.
    It’s a huge effort and can take a lot of investment.

    Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing.

    9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data?
    If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge.
    Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side.

    Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important.

    10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before?
    First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do.
    And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations.
    The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it.

    Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one.

    11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations?
    We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI.
    We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals.

    We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization.

    12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data?
    I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points.
    Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us.
    We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels.
    Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms.

    Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps.

    13. How do you ensure data quality and consistency across multiple channels to make these informed decisions?
    We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies.
    While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing.
    We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats.

    On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically.

    14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years?
    The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices.
    Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities.
    We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases.
    As the world is collecting more data, privacy concerns and regulations come into play.
    I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies.
    And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture.

    So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.

     
    This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die.
    Download the PDF or request a physical copy of the book here.
    The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    #ankur #kothari #qampampa #customer #engagement
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage. #ankur #kothari #qampampa #customer #engagement
    WWW.MOENGAGE.COM
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question (and many others), we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    Like
    Love
    Wow
    Angry
    Sad
    478
    0 Comments 0 Shares
  • Fusion and AI: How private sector tech is powering progress at ITER

    In April 2025, at the ITER Private Sector Fusion Workshop in Cadarache, something remarkable unfolded. In a room filled with scientists, engineers and software visionaries, the line between big science and commercial innovation began to blur.  
    Three organisations – Microsoft Research, Arena and Brigantium Engineering – shared how artificial intelligence, already transforming everything from language models to logistics, is now stepping into a new role: helping humanity to unlock the power of nuclear fusion. 
    Each presenter addressed a different part of the puzzle, but the message was the same: AI isn’t just a buzzword anymore. It’s becoming a real tool – practical, powerful and indispensable – for big science and engineering projects, including fusion. 
    “If we think of the agricultural revolution and the industrial revolution, the AI revolution is next – and it’s coming at a pace which is unprecedented,” said Kenji Takeda, director of research incubations at Microsoft Research. 
    Microsoft’s collaboration with ITER is already in motion. Just a month before the workshop, the two teams signed a Memorandum of Understandingto explore how AI can accelerate research and development. This follows ITER’s initial use of Microsoft technology to empower their teams.
    A chatbot in Azure OpenAI service was developed to help staff navigate technical knowledge, on more than a million ITER documents, using natural conversation. GitHub Copilot assists with coding, while AI helps to resolve IT support tickets – those everyday but essential tasks that keep the lights on. 
    But Microsoft’s vision goes deeper. Fusion demands materials that can survive extreme conditions – heat, radiation, pressure – and that’s where AI shows a different kind of potential. MatterGen, a Microsoft Research generative AI model for materials, designs entirely new materials based on specific properties.
    “It’s like ChatGPT,” said Takeda, “but instead of ‘Write me a poem’, we ask it to design a material that can survive as the first wall of a fusion reactor.” 
    The next step? MatterSim – a simulation tool that predicts how these imagined materials will behave in the real world. By combining generation and simulation, Microsoft hopes to uncover materials that don’t yet exist in any catalogue. 
    While Microsoft tackles the atomic scale, Arena is focused on a different challenge: speeding up hardware development. As general manager Michael Frei put it: “Software innovation happens in seconds. In hardware, that loop can take months – or years.” 
    Arena’s answer is Atlas, a multimodal AI platform that acts as an extra set of hands – and eyes – for engineers. It can read data sheets, interpret lab results, analyse circuit diagrams and even interact with lab equipment through software interfaces. “Instead of adjusting an oscilloscope manually,” said Frei, “you can just say, ‘Verify the I2Cprotocol’, and Atlas gets it done.” 
    It doesn’t stop there. Atlas can write and adapt firmware on the fly, responding to real-time conditions. That means tighter feedback loops, faster prototyping and fewer late nights in the lab. Arena aims to make building hardware feel a little more like writing software – fluid, fast and assisted by smart tools. 

    Fusion, of course, isn’t just about atoms and code – it’s also about construction. Gigantic, one-of-a-kind machines don’t build themselves. That’s where Brigantium Engineering comes in.
    Founder Lynton Sutton explained how his team uses “4D planning” – a marriage of 3D CAD models and detailed construction schedules – to visualise how everything comes together over time. “Gantt charts are hard to interpret. 3D models are static. Our job is to bring those together,” he said. 
    The result is a time-lapse-style animation that shows the construction process step by step. It’s proven invaluable for safety reviews and stakeholder meetings. Rather than poring over spreadsheets, teams can simply watch the plan come to life. 
    And there’s more. Brigantium is bringing these models into virtual reality using Unreal Engine – the same one behind many video games. One recent model recreated ITER’s tokamak pit using drone footage and photogrammetry. The experience is fully interactive and can even run in a web browser.
    “We’ve really improved the quality of the visualisation,” said Sutton. “It’s a lot smoother; the textures look a lot better. Eventually, we’ll have this running through a web browser, so anybody on the team can just click on a web link to navigate this 4D model.” 
    Looking forward, Sutton believes AI could help automate the painstaking work of syncing schedules with 3D models. One day, these simulations could reach all the way down to individual bolts and fasteners – not just with impressive visuals, but with critical tools for preventing delays. 
    Despite the different approaches, one theme ran through all three presentations: AI isn’t just a tool for office productivity. It’s becoming a partner in creativity, problem-solving and even scientific discovery. 
    Takeda mentioned that Microsoft is experimenting with “world models” inspired by how video games simulate physics. These models learn about the physical world by watching pixels in the form of videos of real phenomena such as plasma behaviour. “Our thesis is that if you showed this AI videos of plasma, it might learn the physics of plasmas,” he said. 
    It sounds futuristic, but the logic holds. The more AI can learn from the world, the more it can help us understand it – and perhaps even master it. At its heart, the message from the workshop was simple: AI isn’t here to replace the scientist, the engineer or the planner; it’s here to help, and to make their work faster, more flexible and maybe a little more fun.
    As Takeda put it: “Those are just a few examples of how AI is starting to be used at ITER. And it’s just the start of that journey.” 
    If these early steps are any indication, that journey won’t just be faster – it might also be more inspired. 
    #fusion #how #private #sector #tech
    Fusion and AI: How private sector tech is powering progress at ITER
    In April 2025, at the ITER Private Sector Fusion Workshop in Cadarache, something remarkable unfolded. In a room filled with scientists, engineers and software visionaries, the line between big science and commercial innovation began to blur.   Three organisations – Microsoft Research, Arena and Brigantium Engineering – shared how artificial intelligence, already transforming everything from language models to logistics, is now stepping into a new role: helping humanity to unlock the power of nuclear fusion.  Each presenter addressed a different part of the puzzle, but the message was the same: AI isn’t just a buzzword anymore. It’s becoming a real tool – practical, powerful and indispensable – for big science and engineering projects, including fusion.  “If we think of the agricultural revolution and the industrial revolution, the AI revolution is next – and it’s coming at a pace which is unprecedented,” said Kenji Takeda, director of research incubations at Microsoft Research.  Microsoft’s collaboration with ITER is already in motion. Just a month before the workshop, the two teams signed a Memorandum of Understandingto explore how AI can accelerate research and development. This follows ITER’s initial use of Microsoft technology to empower their teams. A chatbot in Azure OpenAI service was developed to help staff navigate technical knowledge, on more than a million ITER documents, using natural conversation. GitHub Copilot assists with coding, while AI helps to resolve IT support tickets – those everyday but essential tasks that keep the lights on.  But Microsoft’s vision goes deeper. Fusion demands materials that can survive extreme conditions – heat, radiation, pressure – and that’s where AI shows a different kind of potential. MatterGen, a Microsoft Research generative AI model for materials, designs entirely new materials based on specific properties. “It’s like ChatGPT,” said Takeda, “but instead of ‘Write me a poem’, we ask it to design a material that can survive as the first wall of a fusion reactor.”  The next step? MatterSim – a simulation tool that predicts how these imagined materials will behave in the real world. By combining generation and simulation, Microsoft hopes to uncover materials that don’t yet exist in any catalogue.  While Microsoft tackles the atomic scale, Arena is focused on a different challenge: speeding up hardware development. As general manager Michael Frei put it: “Software innovation happens in seconds. In hardware, that loop can take months – or years.”  Arena’s answer is Atlas, a multimodal AI platform that acts as an extra set of hands – and eyes – for engineers. It can read data sheets, interpret lab results, analyse circuit diagrams and even interact with lab equipment through software interfaces. “Instead of adjusting an oscilloscope manually,” said Frei, “you can just say, ‘Verify the I2Cprotocol’, and Atlas gets it done.”  It doesn’t stop there. Atlas can write and adapt firmware on the fly, responding to real-time conditions. That means tighter feedback loops, faster prototyping and fewer late nights in the lab. Arena aims to make building hardware feel a little more like writing software – fluid, fast and assisted by smart tools.  Fusion, of course, isn’t just about atoms and code – it’s also about construction. Gigantic, one-of-a-kind machines don’t build themselves. That’s where Brigantium Engineering comes in. Founder Lynton Sutton explained how his team uses “4D planning” – a marriage of 3D CAD models and detailed construction schedules – to visualise how everything comes together over time. “Gantt charts are hard to interpret. 3D models are static. Our job is to bring those together,” he said.  The result is a time-lapse-style animation that shows the construction process step by step. It’s proven invaluable for safety reviews and stakeholder meetings. Rather than poring over spreadsheets, teams can simply watch the plan come to life.  And there’s more. Brigantium is bringing these models into virtual reality using Unreal Engine – the same one behind many video games. One recent model recreated ITER’s tokamak pit using drone footage and photogrammetry. The experience is fully interactive and can even run in a web browser. “We’ve really improved the quality of the visualisation,” said Sutton. “It’s a lot smoother; the textures look a lot better. Eventually, we’ll have this running through a web browser, so anybody on the team can just click on a web link to navigate this 4D model.”  Looking forward, Sutton believes AI could help automate the painstaking work of syncing schedules with 3D models. One day, these simulations could reach all the way down to individual bolts and fasteners – not just with impressive visuals, but with critical tools for preventing delays.  Despite the different approaches, one theme ran through all three presentations: AI isn’t just a tool for office productivity. It’s becoming a partner in creativity, problem-solving and even scientific discovery.  Takeda mentioned that Microsoft is experimenting with “world models” inspired by how video games simulate physics. These models learn about the physical world by watching pixels in the form of videos of real phenomena such as plasma behaviour. “Our thesis is that if you showed this AI videos of plasma, it might learn the physics of plasmas,” he said.  It sounds futuristic, but the logic holds. The more AI can learn from the world, the more it can help us understand it – and perhaps even master it. At its heart, the message from the workshop was simple: AI isn’t here to replace the scientist, the engineer or the planner; it’s here to help, and to make their work faster, more flexible and maybe a little more fun. As Takeda put it: “Those are just a few examples of how AI is starting to be used at ITER. And it’s just the start of that journey.”  If these early steps are any indication, that journey won’t just be faster – it might also be more inspired.  #fusion #how #private #sector #tech
    WWW.COMPUTERWEEKLY.COM
    Fusion and AI: How private sector tech is powering progress at ITER
    In April 2025, at the ITER Private Sector Fusion Workshop in Cadarache, something remarkable unfolded. In a room filled with scientists, engineers and software visionaries, the line between big science and commercial innovation began to blur.   Three organisations – Microsoft Research, Arena and Brigantium Engineering – shared how artificial intelligence (AI), already transforming everything from language models to logistics, is now stepping into a new role: helping humanity to unlock the power of nuclear fusion.  Each presenter addressed a different part of the puzzle, but the message was the same: AI isn’t just a buzzword anymore. It’s becoming a real tool – practical, powerful and indispensable – for big science and engineering projects, including fusion.  “If we think of the agricultural revolution and the industrial revolution, the AI revolution is next – and it’s coming at a pace which is unprecedented,” said Kenji Takeda, director of research incubations at Microsoft Research.  Microsoft’s collaboration with ITER is already in motion. Just a month before the workshop, the two teams signed a Memorandum of Understanding (MoU) to explore how AI can accelerate research and development. This follows ITER’s initial use of Microsoft technology to empower their teams. A chatbot in Azure OpenAI service was developed to help staff navigate technical knowledge, on more than a million ITER documents, using natural conversation. GitHub Copilot assists with coding, while AI helps to resolve IT support tickets – those everyday but essential tasks that keep the lights on.  But Microsoft’s vision goes deeper. Fusion demands materials that can survive extreme conditions – heat, radiation, pressure – and that’s where AI shows a different kind of potential. MatterGen, a Microsoft Research generative AI model for materials, designs entirely new materials based on specific properties. “It’s like ChatGPT,” said Takeda, “but instead of ‘Write me a poem’, we ask it to design a material that can survive as the first wall of a fusion reactor.”  The next step? MatterSim – a simulation tool that predicts how these imagined materials will behave in the real world. By combining generation and simulation, Microsoft hopes to uncover materials that don’t yet exist in any catalogue.  While Microsoft tackles the atomic scale, Arena is focused on a different challenge: speeding up hardware development. As general manager Michael Frei put it: “Software innovation happens in seconds. In hardware, that loop can take months – or years.”  Arena’s answer is Atlas, a multimodal AI platform that acts as an extra set of hands – and eyes – for engineers. It can read data sheets, interpret lab results, analyse circuit diagrams and even interact with lab equipment through software interfaces. “Instead of adjusting an oscilloscope manually,” said Frei, “you can just say, ‘Verify the I2C [inter integrated circuit] protocol’, and Atlas gets it done.”  It doesn’t stop there. Atlas can write and adapt firmware on the fly, responding to real-time conditions. That means tighter feedback loops, faster prototyping and fewer late nights in the lab. Arena aims to make building hardware feel a little more like writing software – fluid, fast and assisted by smart tools.  Fusion, of course, isn’t just about atoms and code – it’s also about construction. Gigantic, one-of-a-kind machines don’t build themselves. That’s where Brigantium Engineering comes in. Founder Lynton Sutton explained how his team uses “4D planning” – a marriage of 3D CAD models and detailed construction schedules – to visualise how everything comes together over time. “Gantt charts are hard to interpret. 3D models are static. Our job is to bring those together,” he said.  The result is a time-lapse-style animation that shows the construction process step by step. It’s proven invaluable for safety reviews and stakeholder meetings. Rather than poring over spreadsheets, teams can simply watch the plan come to life.  And there’s more. Brigantium is bringing these models into virtual reality using Unreal Engine – the same one behind many video games. One recent model recreated ITER’s tokamak pit using drone footage and photogrammetry. The experience is fully interactive and can even run in a web browser. “We’ve really improved the quality of the visualisation,” said Sutton. “It’s a lot smoother; the textures look a lot better. Eventually, we’ll have this running through a web browser, so anybody on the team can just click on a web link to navigate this 4D model.”  Looking forward, Sutton believes AI could help automate the painstaking work of syncing schedules with 3D models. One day, these simulations could reach all the way down to individual bolts and fasteners – not just with impressive visuals, but with critical tools for preventing delays.  Despite the different approaches, one theme ran through all three presentations: AI isn’t just a tool for office productivity. It’s becoming a partner in creativity, problem-solving and even scientific discovery.  Takeda mentioned that Microsoft is experimenting with “world models” inspired by how video games simulate physics. These models learn about the physical world by watching pixels in the form of videos of real phenomena such as plasma behaviour. “Our thesis is that if you showed this AI videos of plasma, it might learn the physics of plasmas,” he said.  It sounds futuristic, but the logic holds. The more AI can learn from the world, the more it can help us understand it – and perhaps even master it. At its heart, the message from the workshop was simple: AI isn’t here to replace the scientist, the engineer or the planner; it’s here to help, and to make their work faster, more flexible and maybe a little more fun. As Takeda put it: “Those are just a few examples of how AI is starting to be used at ITER. And it’s just the start of that journey.”  If these early steps are any indication, that journey won’t just be faster – it might also be more inspired. 
    Like
    Love
    Wow
    Sad
    Angry
    490
    2 Comments 0 Shares
  • EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments

    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausannein Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025
    Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerialimage. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset.
    Key Takeaways:

    Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task.
    Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map.
    Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models.
    Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal.

    Challenge: Seeing the World from Two Different Angles
    The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-Viewbut are often limited to the ground plane, ignoring crucial vertical structures like buildings.

    FG2: Matching Fine-Grained Features
    The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map.

    Here’s a breakdown of their innovative pipeline:

    Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment.
    Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the verticaldimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view.
    Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoFpose.

    Unprecedented Performance and Interpretability
    The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research.

    Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems.
    “A Clearer Path” for Autonomous Navigation
    The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.
    Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models
    #epfl #researchers #unveil #fg2 #cvpr
    EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments
    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausannein Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025 Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerialimage. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset. Key Takeaways: Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task. Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map. Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models. Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal. Challenge: Seeing the World from Two Different Angles The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-Viewbut are often limited to the ground plane, ignoring crucial vertical structures like buildings. FG2: Matching Fine-Grained Features The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map. Here’s a breakdown of their innovative pipeline: Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment. Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the verticaldimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view. Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoFpose. Unprecedented Performance and Interpretability The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research. Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems. “A Clearer Path” for Autonomous Navigation The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them. Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models #epfl #researchers #unveil #fg2 #cvpr
    WWW.MARKTECHPOST.COM
    EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments
    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025 Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerial (or satellite) image. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset. Key Takeaways: Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task. Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map. Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models. Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal. Challenge: Seeing the World from Two Different Angles The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-View (BEV) but are often limited to the ground plane, ignoring crucial vertical structures like buildings. FG2: Matching Fine-Grained Features The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map. Here’s a breakdown of their innovative pipeline: Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment. Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the vertical (height) dimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view. Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoF (x, y, and yaw) pose. Unprecedented Performance and Interpretability The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research. Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems. “A Clearer Path” for Autonomous Navigation The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them. Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models
    Like
    Love
    Wow
    Angry
    Sad
    601
    0 Comments 0 Shares
  • Why Designers Get Stuck In The Details And How To Stop

    You’ve drawn fifty versions of the same screen — and you still hate every one of them. Begrudgingly, you pick three, show them to your product manager, and hear: “Looks cool, but the idea doesn’t work.” Sound familiar?
    In this article, I’ll unpack why designers fall into detail work at the wrong moment, examining both process pitfalls and the underlying psychological reasons, as understanding these traps is the first step to overcoming them. I’ll also share tactics I use to climb out of that trap.
    Reason #1 You’re Afraid To Show Rough Work
    We designers worship detail. We’re taught that true craft equals razor‑sharp typography, perfect grids, and pixel precision. So the minute a task arrives, we pop open Figma and start polishing long before polish is needed.
    I’ve skipped the sketch phase more times than I care to admit. I told myself it would be faster, yet I always ended up spending hours producing a tidy mock‑up when a scribbled thumbnail would have sparked a five‑minute chat with my product manager. Rough sketches felt “unprofessional,” so I hid them.
    The cost? Lost time, wasted energy — and, by the third redo, teammates were quietly wondering if I even understood the brief.
    The real problem here is the habit: we open Figma and start perfecting the UI before we’ve even solved the problem.
    So why do we hide these rough sketches? It’s not just a bad habit or plain silly. There are solid psychological reasons behind it. We often just call it perfectionism, but it’s deeper than wanting things neat. Digging into the psychologyshows there are a couple of flavors driving this:

    Socially prescribed perfectionismIt’s that nagging feeling that everyone else expects perfect work from you, which makes showing anything rough feel like walking into the lion’s den.
    Self-oriented perfectionismWhere you’re the one setting impossibly high standards for yourself, leading to brutal self-criticism if anything looks slightly off.

    Either way, the result’s the same: showing unfinished work feels wrong, and you miss out on that vital early feedback.
    Back to the design side, remember that clients rarely see architects’ first pencil sketches, but these sketches still exist; they guide structural choices before the 3D render. Treat your thumbnails the same way — artifacts meant to collapse uncertainty, not portfolio pieces. Once stakeholders see the upside, roughness becomes a badge of speed, not sloppiness. So, the key is to consciously make that shift:
    Treat early sketches as disposable tools for thinking and actively share them to get feedback faster.

    Reason #2: You Fix The Symptom, Not The Cause
    Before tackling any task, we need to understand what business outcome we’re aiming for. Product managers might come to us asking to enlarge the payment button in the shopping cart because users aren’t noticing it. The suggested solution itself isn’t necessarily bad, but before redesigning the button, we should ask, “What data suggests they aren’t noticing it?” Don’t get me wrong, I’m not saying you shouldn’t trust your product manager. On the contrary, these questions help ensure you’re on the same page and working with the same data.
    From my experience, here are several reasons why users might not be clicking that coveted button:

    Users don’t understand that this step is for payment.
    They understand it’s about payment but expect order confirmation first.
    Due to incorrect translation, users don’t understand what the button means.
    Lack of trust signals.
    Unexpected additional coststhat appear at this stage.
    Technical issues.

    Now, imagine you simply did what the manager suggested. Would you have solved the problem? Hardly.
    Moreover, the responsibility for the unresolved issue would fall on you, as the interface solution lies within the design domain. The product manager actually did their job correctly by identifying a problem: suspiciously, few users are clicking the button.
    Psychologically, taking on this bigger role isn’t easy. It means overcoming the fear of making mistakes and the discomfort of exploring unclear problems rather than just doing tasks. This shift means seeing ourselves as partners who create value — even if it means fighting a hesitation to question product managers— and understanding that using our product logic expertise proactively is crucial for modern designers.
    There’s another critical reason why we, designers, need to be a bit like product managers: the rise of AI. I deliberately used a simple example about enlarging a button, but I’m confident that in the near future, AI will easily handle routine design tasks. This worries me, but at the same time, I’m already gladly stepping into the product manager’s territory: understanding product and business metrics, formulating hypotheses, conducting research, and so on. It might sound like I’m taking work away from PMs, but believe me, they undoubtedly have enough on their plates and are usually more than happy to delegate some responsibilities to designers.
    Reason #3: You’re Solving The Wrong Problem
    Before solving anything, ask whether the problem even deserves your attention.
    During a major home‑screen redesign, our goal was to drive more users into paid services. The initial hypothesis — making service buttons bigger and brighter might help returning users — seemed reasonable enough to test. However, even when A/B testsshowed minimal impact, we continued to tweak those buttons.
    Only later did it click: the home screen isn’t the place to sell; visitors open the app to start, not to buy. We removed that promo block, and nothing broke. Contextual entry points deeper into the journey performed brilliantly. Lesson learned:
    Without the right context, any visual tweak is lipstick on a pig.

    Why did we get stuck polishing buttons instead of stopping sooner? It’s easy to get tunnel vision. Psychologically, it’s likely the good old sunk cost fallacy kicking in: we’d already invested time in the buttons, so stopping felt like wasting that effort, even though the data wasn’t promising.
    It’s just easier to keep fiddling with something familiar than to admit we need a new plan. Perhaps the simple question I should have asked myself when results stalled was: “Are we optimizing the right thing or just polishing something that fundamentally doesn’t fit the user’s primary goal here?” That alone might have saved hours.
    Reason #4: You’re Drowning In Unactionable Feedback
    We all discuss our work with colleagues. But here’s a crucial point: what kind of question do you pose to kick off that discussion? If your go-to is “What do you think?” well, that question might lead you down a rabbit hole of personal opinions rather than actionable insights. While experienced colleagues will cut through the noise, others, unsure what to evaluate, might comment on anything and everything — fonts, button colors, even when you desperately need to discuss a user flow.
    What matters here are two things:

    The question you ask,
    The context you give.

    That means clearly stating the problem, what you’ve learned, and how your idea aims to fix it.
    For instance:
    “The problem is our payment conversion rate has dropped by X%. I’ve interviewed users and found they abandon payment because they don’t understand how the total amount is calculated. My solution is to show a detailed cost breakdown. Do you think this actually solves the problem for them?”

    Here, you’ve stated the problem, shared your insight, explained your solution, and asked a direct question. It’s even better if you prepare a list of specific sub-questions. For instance: “Are all items in the cost breakdown clear?” or “Does the placement of this breakdown feel intuitive within the payment flow?”
    Another good habit is to keep your rough sketches and previous iterations handy. Some of your colleagues’ suggestions might be things you’ve already tried. It’s great if you can discuss them immediately to either revisit those ideas or definitively set them aside.
    I’m not a psychologist, but experience tells me that, psychologically, the reluctance to be this specific often stems from a fear of our solution being rejected. We tend to internalize feedback: a seemingly innocent comment like, “Have you considered other ways to organize this section?” or “Perhaps explore a different structure for this part?” can instantly morph in our minds into “You completely messed up the structure. You’re a bad designer.” Imposter syndrome, in all its glory.
    So, to wrap up this point, here are two recommendations:

    Prepare for every design discussion.A couple of focused questions will yield far more valuable input than a vague “So, what do you think?”.
    Actively work on separating feedback on your design from your self-worth.If a mistake is pointed out, acknowledge it, learn from it, and you’ll be less likely to repeat it. This is often easier said than done. For me, it took years of working with a psychotherapist. If you struggle with this, I sincerely wish you strength in overcoming it.

    Reason #5 You’re Just Tired
    Sometimes, the issue isn’t strategic at all — it’s fatigue. Fussing over icon corners can feel like a cozy bunker when your brain is fried. There’s a name for this: decision fatigue. Basically, your brain’s battery for hard thinking is low, so it hides out in the easy, comfy zone of pixel-pushing.
    A striking example comes from a New York Times article titled “Do You Suffer From Decision Fatigue?.” It described how judges deciding on release requests were far more likely to grant release early in the daycompared to late in the daysimply because their decision-making energy was depleted. Luckily, designers rarely hold someone’s freedom in their hands, but the example dramatically shows how fatigue can impact our judgment and productivity.
    What helps here:

    Swap tasks.Trade tickets with another designer; novelty resets your focus.
    Talk to another designer.If NDA permits, ask peers outside the team for a sanity check.
    Step away.Even a ten‑minute walk can do more than a double‑shot espresso.

    By the way, I came up with these ideas while walking around my office. I was lucky to work near a river, and those short walks quickly turned into a helpful habit.

    And one more trick that helps me snap out of detail mode early: if I catch myself making around 20 little tweaks — changing font weight, color, border radius — I just stop. Over time, it turned into a habit. I have a similar one with Instagram: by the third reel, my brain quietly asks, “Wait, weren’t we working?” Funny how that kind of nudge saves a ton of time.
    Four Steps I Use to Avoid Drowning In Detail
    Knowing these potential traps, here’s the practical process I use to stay on track:
    1. Define the Core Problem & Business Goal
    Before anything, dig deep: what’s the actual problem we’re solving, not just the requested task or a surface-level symptom? Ask ‘why’ repeatedly. What user pain or business need are we addressing? Then, state the clear business goal: “What metric am I moving, and do we have data to prove this is the right lever?” If retention is the goal, decide whether push reminders, gamification, or personalised content is the best route. The wrong lever, or tackling a symptom instead of the cause, dooms everything downstream.
    2. Choose the MechanicOnce the core problem and goal are clear, lock the solution principle or ‘mechanic’ first. Going with a game layer? Decide if it’s leaderboards, streaks, or badges. Write it down. Then move on. No UI yet. This keeps the focus high-level before diving into pixels.
    3. Wireframe the Flow & Get Focused Feedback
    Now open Figma. Map screens, layout, and transitions. Boxes and arrows are enough. Keep the fidelity low so the discussion stays on the flow, not colour. Crucially, when you share these early wires, ask specific questions and provide clear contextto get actionable feedback, not just vague opinions.
    4. Polish the VisualsI only let myself tweak grids, type scales, and shadows after the flow is validated. If progress stalls, or before a major polish effort, I surface the work in a design critique — again using targeted questions and clear context — instead of hiding in version 47. This ensures detailing serves the now-validated solution.
    Even for something as small as a single button, running these four checkpoints takes about ten minutes and saves hours of decorative dithering.
    Wrapping Up
    Next time you feel the pull to vanish into mock‑ups before the problem is nailed down, pause and ask what you might be avoiding. Yes, that can expose an uncomfortable truth. But pausing to ask what you might be avoiding — maybe the fuzzy core problem, or just asking for tough feedback — gives you the power to face the real issue head-on. It keeps the project focused on solving the right problem, not just perfecting a flawed solution.
    Attention to detail is a superpower when used at the right moment. Obsessing over pixels too soon, though, is a bad habit and a warning light telling us the process needs a rethink.
    #why #designers #get #stuck #details
    Why Designers Get Stuck In The Details And How To Stop
    You’ve drawn fifty versions of the same screen — and you still hate every one of them. Begrudgingly, you pick three, show them to your product manager, and hear: “Looks cool, but the idea doesn’t work.” Sound familiar? In this article, I’ll unpack why designers fall into detail work at the wrong moment, examining both process pitfalls and the underlying psychological reasons, as understanding these traps is the first step to overcoming them. I’ll also share tactics I use to climb out of that trap. Reason #1 You’re Afraid To Show Rough Work We designers worship detail. We’re taught that true craft equals razor‑sharp typography, perfect grids, and pixel precision. So the minute a task arrives, we pop open Figma and start polishing long before polish is needed. I’ve skipped the sketch phase more times than I care to admit. I told myself it would be faster, yet I always ended up spending hours producing a tidy mock‑up when a scribbled thumbnail would have sparked a five‑minute chat with my product manager. Rough sketches felt “unprofessional,” so I hid them. The cost? Lost time, wasted energy — and, by the third redo, teammates were quietly wondering if I even understood the brief. The real problem here is the habit: we open Figma and start perfecting the UI before we’ve even solved the problem. So why do we hide these rough sketches? It’s not just a bad habit or plain silly. There are solid psychological reasons behind it. We often just call it perfectionism, but it’s deeper than wanting things neat. Digging into the psychologyshows there are a couple of flavors driving this: Socially prescribed perfectionismIt’s that nagging feeling that everyone else expects perfect work from you, which makes showing anything rough feel like walking into the lion’s den. Self-oriented perfectionismWhere you’re the one setting impossibly high standards for yourself, leading to brutal self-criticism if anything looks slightly off. Either way, the result’s the same: showing unfinished work feels wrong, and you miss out on that vital early feedback. Back to the design side, remember that clients rarely see architects’ first pencil sketches, but these sketches still exist; they guide structural choices before the 3D render. Treat your thumbnails the same way — artifacts meant to collapse uncertainty, not portfolio pieces. Once stakeholders see the upside, roughness becomes a badge of speed, not sloppiness. So, the key is to consciously make that shift: Treat early sketches as disposable tools for thinking and actively share them to get feedback faster. Reason #2: You Fix The Symptom, Not The Cause Before tackling any task, we need to understand what business outcome we’re aiming for. Product managers might come to us asking to enlarge the payment button in the shopping cart because users aren’t noticing it. The suggested solution itself isn’t necessarily bad, but before redesigning the button, we should ask, “What data suggests they aren’t noticing it?” Don’t get me wrong, I’m not saying you shouldn’t trust your product manager. On the contrary, these questions help ensure you’re on the same page and working with the same data. From my experience, here are several reasons why users might not be clicking that coveted button: Users don’t understand that this step is for payment. They understand it’s about payment but expect order confirmation first. Due to incorrect translation, users don’t understand what the button means. Lack of trust signals. Unexpected additional coststhat appear at this stage. Technical issues. Now, imagine you simply did what the manager suggested. Would you have solved the problem? Hardly. Moreover, the responsibility for the unresolved issue would fall on you, as the interface solution lies within the design domain. The product manager actually did their job correctly by identifying a problem: suspiciously, few users are clicking the button. Psychologically, taking on this bigger role isn’t easy. It means overcoming the fear of making mistakes and the discomfort of exploring unclear problems rather than just doing tasks. This shift means seeing ourselves as partners who create value — even if it means fighting a hesitation to question product managers— and understanding that using our product logic expertise proactively is crucial for modern designers. There’s another critical reason why we, designers, need to be a bit like product managers: the rise of AI. I deliberately used a simple example about enlarging a button, but I’m confident that in the near future, AI will easily handle routine design tasks. This worries me, but at the same time, I’m already gladly stepping into the product manager’s territory: understanding product and business metrics, formulating hypotheses, conducting research, and so on. It might sound like I’m taking work away from PMs, but believe me, they undoubtedly have enough on their plates and are usually more than happy to delegate some responsibilities to designers. Reason #3: You’re Solving The Wrong Problem Before solving anything, ask whether the problem even deserves your attention. During a major home‑screen redesign, our goal was to drive more users into paid services. The initial hypothesis — making service buttons bigger and brighter might help returning users — seemed reasonable enough to test. However, even when A/B testsshowed minimal impact, we continued to tweak those buttons. Only later did it click: the home screen isn’t the place to sell; visitors open the app to start, not to buy. We removed that promo block, and nothing broke. Contextual entry points deeper into the journey performed brilliantly. Lesson learned: Without the right context, any visual tweak is lipstick on a pig. Why did we get stuck polishing buttons instead of stopping sooner? It’s easy to get tunnel vision. Psychologically, it’s likely the good old sunk cost fallacy kicking in: we’d already invested time in the buttons, so stopping felt like wasting that effort, even though the data wasn’t promising. It’s just easier to keep fiddling with something familiar than to admit we need a new plan. Perhaps the simple question I should have asked myself when results stalled was: “Are we optimizing the right thing or just polishing something that fundamentally doesn’t fit the user’s primary goal here?” That alone might have saved hours. Reason #4: You’re Drowning In Unactionable Feedback We all discuss our work with colleagues. But here’s a crucial point: what kind of question do you pose to kick off that discussion? If your go-to is “What do you think?” well, that question might lead you down a rabbit hole of personal opinions rather than actionable insights. While experienced colleagues will cut through the noise, others, unsure what to evaluate, might comment on anything and everything — fonts, button colors, even when you desperately need to discuss a user flow. What matters here are two things: The question you ask, The context you give. That means clearly stating the problem, what you’ve learned, and how your idea aims to fix it. For instance: “The problem is our payment conversion rate has dropped by X%. I’ve interviewed users and found they abandon payment because they don’t understand how the total amount is calculated. My solution is to show a detailed cost breakdown. Do you think this actually solves the problem for them?” Here, you’ve stated the problem, shared your insight, explained your solution, and asked a direct question. It’s even better if you prepare a list of specific sub-questions. For instance: “Are all items in the cost breakdown clear?” or “Does the placement of this breakdown feel intuitive within the payment flow?” Another good habit is to keep your rough sketches and previous iterations handy. Some of your colleagues’ suggestions might be things you’ve already tried. It’s great if you can discuss them immediately to either revisit those ideas or definitively set them aside. I’m not a psychologist, but experience tells me that, psychologically, the reluctance to be this specific often stems from a fear of our solution being rejected. We tend to internalize feedback: a seemingly innocent comment like, “Have you considered other ways to organize this section?” or “Perhaps explore a different structure for this part?” can instantly morph in our minds into “You completely messed up the structure. You’re a bad designer.” Imposter syndrome, in all its glory. So, to wrap up this point, here are two recommendations: Prepare for every design discussion.A couple of focused questions will yield far more valuable input than a vague “So, what do you think?”. Actively work on separating feedback on your design from your self-worth.If a mistake is pointed out, acknowledge it, learn from it, and you’ll be less likely to repeat it. This is often easier said than done. For me, it took years of working with a psychotherapist. If you struggle with this, I sincerely wish you strength in overcoming it. Reason #5 You’re Just Tired Sometimes, the issue isn’t strategic at all — it’s fatigue. Fussing over icon corners can feel like a cozy bunker when your brain is fried. There’s a name for this: decision fatigue. Basically, your brain’s battery for hard thinking is low, so it hides out in the easy, comfy zone of pixel-pushing. A striking example comes from a New York Times article titled “Do You Suffer From Decision Fatigue?.” It described how judges deciding on release requests were far more likely to grant release early in the daycompared to late in the daysimply because their decision-making energy was depleted. Luckily, designers rarely hold someone’s freedom in their hands, but the example dramatically shows how fatigue can impact our judgment and productivity. What helps here: Swap tasks.Trade tickets with another designer; novelty resets your focus. Talk to another designer.If NDA permits, ask peers outside the team for a sanity check. Step away.Even a ten‑minute walk can do more than a double‑shot espresso. By the way, I came up with these ideas while walking around my office. I was lucky to work near a river, and those short walks quickly turned into a helpful habit. And one more trick that helps me snap out of detail mode early: if I catch myself making around 20 little tweaks — changing font weight, color, border radius — I just stop. Over time, it turned into a habit. I have a similar one with Instagram: by the third reel, my brain quietly asks, “Wait, weren’t we working?” Funny how that kind of nudge saves a ton of time. Four Steps I Use to Avoid Drowning In Detail Knowing these potential traps, here’s the practical process I use to stay on track: 1. Define the Core Problem & Business Goal Before anything, dig deep: what’s the actual problem we’re solving, not just the requested task or a surface-level symptom? Ask ‘why’ repeatedly. What user pain or business need are we addressing? Then, state the clear business goal: “What metric am I moving, and do we have data to prove this is the right lever?” If retention is the goal, decide whether push reminders, gamification, or personalised content is the best route. The wrong lever, or tackling a symptom instead of the cause, dooms everything downstream. 2. Choose the MechanicOnce the core problem and goal are clear, lock the solution principle or ‘mechanic’ first. Going with a game layer? Decide if it’s leaderboards, streaks, or badges. Write it down. Then move on. No UI yet. This keeps the focus high-level before diving into pixels. 3. Wireframe the Flow & Get Focused Feedback Now open Figma. Map screens, layout, and transitions. Boxes and arrows are enough. Keep the fidelity low so the discussion stays on the flow, not colour. Crucially, when you share these early wires, ask specific questions and provide clear contextto get actionable feedback, not just vague opinions. 4. Polish the VisualsI only let myself tweak grids, type scales, and shadows after the flow is validated. If progress stalls, or before a major polish effort, I surface the work in a design critique — again using targeted questions and clear context — instead of hiding in version 47. This ensures detailing serves the now-validated solution. Even for something as small as a single button, running these four checkpoints takes about ten minutes and saves hours of decorative dithering. Wrapping Up Next time you feel the pull to vanish into mock‑ups before the problem is nailed down, pause and ask what you might be avoiding. Yes, that can expose an uncomfortable truth. But pausing to ask what you might be avoiding — maybe the fuzzy core problem, or just asking for tough feedback — gives you the power to face the real issue head-on. It keeps the project focused on solving the right problem, not just perfecting a flawed solution. Attention to detail is a superpower when used at the right moment. Obsessing over pixels too soon, though, is a bad habit and a warning light telling us the process needs a rethink. #why #designers #get #stuck #details
    SMASHINGMAGAZINE.COM
    Why Designers Get Stuck In The Details And How To Stop
    You’ve drawn fifty versions of the same screen — and you still hate every one of them. Begrudgingly, you pick three, show them to your product manager, and hear: “Looks cool, but the idea doesn’t work.” Sound familiar? In this article, I’ll unpack why designers fall into detail work at the wrong moment, examining both process pitfalls and the underlying psychological reasons, as understanding these traps is the first step to overcoming them. I’ll also share tactics I use to climb out of that trap. Reason #1 You’re Afraid To Show Rough Work We designers worship detail. We’re taught that true craft equals razor‑sharp typography, perfect grids, and pixel precision. So the minute a task arrives, we pop open Figma and start polishing long before polish is needed. I’ve skipped the sketch phase more times than I care to admit. I told myself it would be faster, yet I always ended up spending hours producing a tidy mock‑up when a scribbled thumbnail would have sparked a five‑minute chat with my product manager. Rough sketches felt “unprofessional,” so I hid them. The cost? Lost time, wasted energy — and, by the third redo, teammates were quietly wondering if I even understood the brief. The real problem here is the habit: we open Figma and start perfecting the UI before we’ve even solved the problem. So why do we hide these rough sketches? It’s not just a bad habit or plain silly. There are solid psychological reasons behind it. We often just call it perfectionism, but it’s deeper than wanting things neat. Digging into the psychology (like the research by Hewitt and Flett) shows there are a couple of flavors driving this: Socially prescribed perfectionismIt’s that nagging feeling that everyone else expects perfect work from you, which makes showing anything rough feel like walking into the lion’s den. Self-oriented perfectionismWhere you’re the one setting impossibly high standards for yourself, leading to brutal self-criticism if anything looks slightly off. Either way, the result’s the same: showing unfinished work feels wrong, and you miss out on that vital early feedback. Back to the design side, remember that clients rarely see architects’ first pencil sketches, but these sketches still exist; they guide structural choices before the 3D render. Treat your thumbnails the same way — artifacts meant to collapse uncertainty, not portfolio pieces. Once stakeholders see the upside, roughness becomes a badge of speed, not sloppiness. So, the key is to consciously make that shift: Treat early sketches as disposable tools for thinking and actively share them to get feedback faster. Reason #2: You Fix The Symptom, Not The Cause Before tackling any task, we need to understand what business outcome we’re aiming for. Product managers might come to us asking to enlarge the payment button in the shopping cart because users aren’t noticing it. The suggested solution itself isn’t necessarily bad, but before redesigning the button, we should ask, “What data suggests they aren’t noticing it?” Don’t get me wrong, I’m not saying you shouldn’t trust your product manager. On the contrary, these questions help ensure you’re on the same page and working with the same data. From my experience, here are several reasons why users might not be clicking that coveted button: Users don’t understand that this step is for payment. They understand it’s about payment but expect order confirmation first. Due to incorrect translation, users don’t understand what the button means. Lack of trust signals (no security icons, unclear seller information). Unexpected additional costs (hidden fees, shipping) that appear at this stage. Technical issues (inactive button, page freezing). Now, imagine you simply did what the manager suggested. Would you have solved the problem? Hardly. Moreover, the responsibility for the unresolved issue would fall on you, as the interface solution lies within the design domain. The product manager actually did their job correctly by identifying a problem: suspiciously, few users are clicking the button. Psychologically, taking on this bigger role isn’t easy. It means overcoming the fear of making mistakes and the discomfort of exploring unclear problems rather than just doing tasks. This shift means seeing ourselves as partners who create value — even if it means fighting a hesitation to question product managers (which might come from a fear of speaking up or a desire to avoid challenging authority) — and understanding that using our product logic expertise proactively is crucial for modern designers. There’s another critical reason why we, designers, need to be a bit like product managers: the rise of AI. I deliberately used a simple example about enlarging a button, but I’m confident that in the near future, AI will easily handle routine design tasks. This worries me, but at the same time, I’m already gladly stepping into the product manager’s territory: understanding product and business metrics, formulating hypotheses, conducting research, and so on. It might sound like I’m taking work away from PMs, but believe me, they undoubtedly have enough on their plates and are usually more than happy to delegate some responsibilities to designers. Reason #3: You’re Solving The Wrong Problem Before solving anything, ask whether the problem even deserves your attention. During a major home‑screen redesign, our goal was to drive more users into paid services. The initial hypothesis — making service buttons bigger and brighter might help returning users — seemed reasonable enough to test. However, even when A/B tests (a method of comparing two versions of a design to determine which performs better) showed minimal impact, we continued to tweak those buttons. Only later did it click: the home screen isn’t the place to sell; visitors open the app to start, not to buy. We removed that promo block, and nothing broke. Contextual entry points deeper into the journey performed brilliantly. Lesson learned: Without the right context, any visual tweak is lipstick on a pig. Why did we get stuck polishing buttons instead of stopping sooner? It’s easy to get tunnel vision. Psychologically, it’s likely the good old sunk cost fallacy kicking in: we’d already invested time in the buttons, so stopping felt like wasting that effort, even though the data wasn’t promising. It’s just easier to keep fiddling with something familiar than to admit we need a new plan. Perhaps the simple question I should have asked myself when results stalled was: “Are we optimizing the right thing or just polishing something that fundamentally doesn’t fit the user’s primary goal here?” That alone might have saved hours. Reason #4: You’re Drowning In Unactionable Feedback We all discuss our work with colleagues. But here’s a crucial point: what kind of question do you pose to kick off that discussion? If your go-to is “What do you think?” well, that question might lead you down a rabbit hole of personal opinions rather than actionable insights. While experienced colleagues will cut through the noise, others, unsure what to evaluate, might comment on anything and everything — fonts, button colors, even when you desperately need to discuss a user flow. What matters here are two things: The question you ask, The context you give. That means clearly stating the problem, what you’ve learned, and how your idea aims to fix it. For instance: “The problem is our payment conversion rate has dropped by X%. I’ve interviewed users and found they abandon payment because they don’t understand how the total amount is calculated. My solution is to show a detailed cost breakdown. Do you think this actually solves the problem for them?” Here, you’ve stated the problem (conversion drop), shared your insight (user confusion), explained your solution (cost breakdown), and asked a direct question. It’s even better if you prepare a list of specific sub-questions. For instance: “Are all items in the cost breakdown clear?” or “Does the placement of this breakdown feel intuitive within the payment flow?” Another good habit is to keep your rough sketches and previous iterations handy. Some of your colleagues’ suggestions might be things you’ve already tried. It’s great if you can discuss them immediately to either revisit those ideas or definitively set them aside. I’m not a psychologist, but experience tells me that, psychologically, the reluctance to be this specific often stems from a fear of our solution being rejected. We tend to internalize feedback: a seemingly innocent comment like, “Have you considered other ways to organize this section?” or “Perhaps explore a different structure for this part?” can instantly morph in our minds into “You completely messed up the structure. You’re a bad designer.” Imposter syndrome, in all its glory. So, to wrap up this point, here are two recommendations: Prepare for every design discussion.A couple of focused questions will yield far more valuable input than a vague “So, what do you think?”. Actively work on separating feedback on your design from your self-worth.If a mistake is pointed out, acknowledge it, learn from it, and you’ll be less likely to repeat it. This is often easier said than done. For me, it took years of working with a psychotherapist. If you struggle with this, I sincerely wish you strength in overcoming it. Reason #5 You’re Just Tired Sometimes, the issue isn’t strategic at all — it’s fatigue. Fussing over icon corners can feel like a cozy bunker when your brain is fried. There’s a name for this: decision fatigue. Basically, your brain’s battery for hard thinking is low, so it hides out in the easy, comfy zone of pixel-pushing. A striking example comes from a New York Times article titled “Do You Suffer From Decision Fatigue?.” It described how judges deciding on release requests were far more likely to grant release early in the day (about 70% of cases) compared to late in the day (less than 10%) simply because their decision-making energy was depleted. Luckily, designers rarely hold someone’s freedom in their hands, but the example dramatically shows how fatigue can impact our judgment and productivity. What helps here: Swap tasks.Trade tickets with another designer; novelty resets your focus. Talk to another designer.If NDA permits, ask peers outside the team for a sanity check. Step away.Even a ten‑minute walk can do more than a double‑shot espresso. By the way, I came up with these ideas while walking around my office. I was lucky to work near a river, and those short walks quickly turned into a helpful habit. And one more trick that helps me snap out of detail mode early: if I catch myself making around 20 little tweaks — changing font weight, color, border radius — I just stop. Over time, it turned into a habit. I have a similar one with Instagram: by the third reel, my brain quietly asks, “Wait, weren’t we working?” Funny how that kind of nudge saves a ton of time. Four Steps I Use to Avoid Drowning In Detail Knowing these potential traps, here’s the practical process I use to stay on track: 1. Define the Core Problem & Business Goal Before anything, dig deep: what’s the actual problem we’re solving, not just the requested task or a surface-level symptom? Ask ‘why’ repeatedly. What user pain or business need are we addressing? Then, state the clear business goal: “What metric am I moving, and do we have data to prove this is the right lever?” If retention is the goal, decide whether push reminders, gamification, or personalised content is the best route. The wrong lever, or tackling a symptom instead of the cause, dooms everything downstream. 2. Choose the Mechanic (Solution Principle) Once the core problem and goal are clear, lock the solution principle or ‘mechanic’ first. Going with a game layer? Decide if it’s leaderboards, streaks, or badges. Write it down. Then move on. No UI yet. This keeps the focus high-level before diving into pixels. 3. Wireframe the Flow & Get Focused Feedback Now open Figma. Map screens, layout, and transitions. Boxes and arrows are enough. Keep the fidelity low so the discussion stays on the flow, not colour. Crucially, when you share these early wires, ask specific questions and provide clear context (as discussed in ‘Reason #4’) to get actionable feedback, not just vague opinions. 4. Polish the Visuals (Mindfully) I only let myself tweak grids, type scales, and shadows after the flow is validated. If progress stalls, or before a major polish effort, I surface the work in a design critique — again using targeted questions and clear context — instead of hiding in version 47. This ensures detailing serves the now-validated solution. Even for something as small as a single button, running these four checkpoints takes about ten minutes and saves hours of decorative dithering. Wrapping Up Next time you feel the pull to vanish into mock‑ups before the problem is nailed down, pause and ask what you might be avoiding. Yes, that can expose an uncomfortable truth. But pausing to ask what you might be avoiding — maybe the fuzzy core problem, or just asking for tough feedback — gives you the power to face the real issue head-on. It keeps the project focused on solving the right problem, not just perfecting a flawed solution. Attention to detail is a superpower when used at the right moment. Obsessing over pixels too soon, though, is a bad habit and a warning light telling us the process needs a rethink.
    Like
    Love
    Wow
    Angry
    Sad
    596
    0 Comments 0 Shares
  • Alec Haase Q&A: Customer Engagement Book Interview

    Reading Time: 6 minutes
    What is marketing without data? Assumptions. Guesses. Fluff.
    For Chapter 6 of our book, “The Customer Engagement Book: Adapt or Die,” we spoke with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, to explore how engagement data can truly inform critical business decisions. 
    Alec discusses the different types of customer behaviors that matter most, how to separate meaningful information from the rest, and the role of systems that learn over time to create tailored customer experiences.
    This interview provides insights into using data for real-time actions and shaping the future of marketing. Prepare to learn about AI decision-making and how a focus on data is changing how we engage with customers.

     
    Alec Haase Q&A Interview
    1. What types of customer engagement data are most valuable for making strategic business decisions?
    It’s a culmination of everything.
    Behavioral signals — the actual conversions and micro-conversions that users take within your product or website.
    Obviously, that’s things like purchases. But there are also other behavioral signals marketers should be using and thinking about. Things like micro-conversions — maybe that’s shopping for a product, clicking to learn more about a product, or visiting a certain page on your website.
    Behind that, you also need to have all your user data to tie that to.

    So I know someone took said action; I can follow up with them in email or out on paid social. I need the user identifiers to do that.

    2. How do you distinguish between data that is actionable versus data that is just noise?
    Data that’s actionable includes the conversions and micro-conversions — very clear instances of “someone did this.” I can react to or measure those.
    What’s becoming a bit of a challenge for marketers is understanding that there’s other data that is valuable for machine learning or reinforcement learning models, things like tags on the types of products customers are interacting with.
    Maybe there’s category information about that product, or color information. That would otherwise look like noise to the average marketer. But behind the scenes, it can be used for reinforcement learning.

    There is definitely the “clear-cut” actionable data, but marketers shouldn’t be quick to classify things as noise because the rise in machine learning and reinforcement learning will make that data more valuable.

    3. How can customer engagement data be used to identify and prioritize new business opportunities?
    At Hightouch, we don’t necessarily think about retroactive analysis. We have a system where we have customer engagement data firing in that we then have real-time scores reacting to.
    An interesting example is when you have machine learning and reinforcement learning models running. In the pet retailer example I gave you, the system is able to figure out what to prioritize.
    The concept of reinforcement learning is not a marketer making rules to say, “I know this type of thing works well on this type of audience.”

    It’s the machine itself using the data to determine what attribute responds well to which offer, recommendation, or marketing campaign.

    4. How can marketers ensure their use of customer engagement data aligns with the broader business objectives?
    It starts with the objectives. It’s starting with the desired outcome and working your way back. That whole flip of the paradigm is starting with outcomes and letting the system optimize. What are you trying to drive, and then back into the types of experiences that can make that happen?
    There’s personalization.
    When we talk about data-driven experiences and personalization, Spotify Wrapped is the North Star. For Spotify Wrapped, you want to drive customer stickiness and create a brand. To make that happen, you want to send a personalized email. What components do you want in that email?

    Maybe it’s top five songs, top five artists, and then you can back into the actual event data you need to make that happen.

    5. What role does engagement data play in influencing cross-functional decisions such as those in product development, sales, or customer service?
    For product development, it’s product analytics — knowing what features users are using, or seeing in heat maps where users are clicking.
    Sales is similar. We’re using behavioral signals like what types of content they’re reading on the site to help inform what they would be interested in — the types of products or the types of use cases.

    For customer service, you can look at errors they’ve run into in the past or specific purchases they’ve made, so that when you’re helping them the next time they engage with you, you know exactly what their past behaviors were and what products they could be calling about.

    6. What are some challenges marketers face when trying to translate customer engagement data into actionable insights?
    Access to data is one challenge. You might not know what data you have because marketers historically may not have been used to the systems where data is stored.
    Historically, that’s been pretty siloed away from them. Rich behavioral data and other data across the business was stored somewhere else.
    Now, as more companies embrace the data warehouse at the center of their business, it gives everyone a true single place where data can be stored.

    Marketers are working more with data teams, understanding more about the data they have, and using that data to power downstream use cases, personalization, reinforcement learning, or general business insights.

    7. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations?
    As a marketer, I think proof is key. The best thing is if you’ve actually run a test. “I think we should do this. I ran a small test, and it’s showing that this is actually proving out.” Being able to clearly explain and justify your reasoning with data is super important.

    8. What technology or tools have you found most effective for gathering and analyzing customer engagement data?
    Any type of behavioral event collection, specifically ones that write to the cloud data warehouse, is the critical component. Your data team is operating off the data warehouse.
    Having an event collection product that stores data in that central spot is really important if you want to use the other data when making recommendations.
    You want to get everything into the data warehouse where it can be used both for insights and for putting into action.

    For Spotify Wrapped, you want to collect behavioral event signals like songs listened to or concerts attended, writing to the warehouse so that you can get insights back — how many songs were played this year, projections for next month — but then you can also use those behavioral events in downstream platforms to fire off personalized emails with product recommendations or Spotify Wrapped-style experiences.

    9. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years?

    What we’re excited about is the concept of AI Decisioning — having AI agents actually using customer data to train their own models and decision-making to create personalized experiences.
    We’re sitting on top of all this behavioral data, engagement data, and user attributes, and our system is learning from all of that to make the best decisions across downstream systems.
    Whether that’s as simple as driving a loyalty program and figuring out what emails to send or what on-site experiences to show, or exposing insights that might lead you to completely change your business strategy, we see engagement data as the fuel to the engine of reinforcement learning, machine learning, AI agents, this whole next wave of Martech that’s just now coming.
    But it all starts with having the data to train those systems.

    I think that behavioral data is the fuel of modern Martech, and that only holds more true as Martech platforms adopt these decisioning and AI capabilities, because they’re only as good as the data that’s training the models.

     

     
    This interview Q&A was hosted with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, for Chapter 6 of The Customer Engagement Book: Adapt or Die.
    Download the PDF or request a physical copy of the book here.
    The post Alec Haase Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    #alec #haase #qampampa #customer #engagement
    Alec Haase Q&A: Customer Engagement Book Interview
    Reading Time: 6 minutes What is marketing without data? Assumptions. Guesses. Fluff. For Chapter 6 of our book, “The Customer Engagement Book: Adapt or Die,” we spoke with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, to explore how engagement data can truly inform critical business decisions.  Alec discusses the different types of customer behaviors that matter most, how to separate meaningful information from the rest, and the role of systems that learn over time to create tailored customer experiences. This interview provides insights into using data for real-time actions and shaping the future of marketing. Prepare to learn about AI decision-making and how a focus on data is changing how we engage with customers.   Alec Haase Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? It’s a culmination of everything. Behavioral signals — the actual conversions and micro-conversions that users take within your product or website. Obviously, that’s things like purchases. But there are also other behavioral signals marketers should be using and thinking about. Things like micro-conversions — maybe that’s shopping for a product, clicking to learn more about a product, or visiting a certain page on your website. Behind that, you also need to have all your user data to tie that to. So I know someone took said action; I can follow up with them in email or out on paid social. I need the user identifiers to do that. 2. How do you distinguish between data that is actionable versus data that is just noise? Data that’s actionable includes the conversions and micro-conversions — very clear instances of “someone did this.” I can react to or measure those. What’s becoming a bit of a challenge for marketers is understanding that there’s other data that is valuable for machine learning or reinforcement learning models, things like tags on the types of products customers are interacting with. Maybe there’s category information about that product, or color information. That would otherwise look like noise to the average marketer. But behind the scenes, it can be used for reinforcement learning. There is definitely the “clear-cut” actionable data, but marketers shouldn’t be quick to classify things as noise because the rise in machine learning and reinforcement learning will make that data more valuable. 3. How can customer engagement data be used to identify and prioritize new business opportunities? At Hightouch, we don’t necessarily think about retroactive analysis. We have a system where we have customer engagement data firing in that we then have real-time scores reacting to. An interesting example is when you have machine learning and reinforcement learning models running. In the pet retailer example I gave you, the system is able to figure out what to prioritize. The concept of reinforcement learning is not a marketer making rules to say, “I know this type of thing works well on this type of audience.” It’s the machine itself using the data to determine what attribute responds well to which offer, recommendation, or marketing campaign. 4. How can marketers ensure their use of customer engagement data aligns with the broader business objectives? It starts with the objectives. It’s starting with the desired outcome and working your way back. That whole flip of the paradigm is starting with outcomes and letting the system optimize. What are you trying to drive, and then back into the types of experiences that can make that happen? There’s personalization. When we talk about data-driven experiences and personalization, Spotify Wrapped is the North Star. For Spotify Wrapped, you want to drive customer stickiness and create a brand. To make that happen, you want to send a personalized email. What components do you want in that email? Maybe it’s top five songs, top five artists, and then you can back into the actual event data you need to make that happen. 5. What role does engagement data play in influencing cross-functional decisions such as those in product development, sales, or customer service? For product development, it’s product analytics — knowing what features users are using, or seeing in heat maps where users are clicking. Sales is similar. We’re using behavioral signals like what types of content they’re reading on the site to help inform what they would be interested in — the types of products or the types of use cases. For customer service, you can look at errors they’ve run into in the past or specific purchases they’ve made, so that when you’re helping them the next time they engage with you, you know exactly what their past behaviors were and what products they could be calling about. 6. What are some challenges marketers face when trying to translate customer engagement data into actionable insights? Access to data is one challenge. You might not know what data you have because marketers historically may not have been used to the systems where data is stored. Historically, that’s been pretty siloed away from them. Rich behavioral data and other data across the business was stored somewhere else. Now, as more companies embrace the data warehouse at the center of their business, it gives everyone a true single place where data can be stored. Marketers are working more with data teams, understanding more about the data they have, and using that data to power downstream use cases, personalization, reinforcement learning, or general business insights. 7. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? As a marketer, I think proof is key. The best thing is if you’ve actually run a test. “I think we should do this. I ran a small test, and it’s showing that this is actually proving out.” Being able to clearly explain and justify your reasoning with data is super important. 8. What technology or tools have you found most effective for gathering and analyzing customer engagement data? Any type of behavioral event collection, specifically ones that write to the cloud data warehouse, is the critical component. Your data team is operating off the data warehouse. Having an event collection product that stores data in that central spot is really important if you want to use the other data when making recommendations. You want to get everything into the data warehouse where it can be used both for insights and for putting into action. For Spotify Wrapped, you want to collect behavioral event signals like songs listened to or concerts attended, writing to the warehouse so that you can get insights back — how many songs were played this year, projections for next month — but then you can also use those behavioral events in downstream platforms to fire off personalized emails with product recommendations or Spotify Wrapped-style experiences. 9. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? What we’re excited about is the concept of AI Decisioning — having AI agents actually using customer data to train their own models and decision-making to create personalized experiences. We’re sitting on top of all this behavioral data, engagement data, and user attributes, and our system is learning from all of that to make the best decisions across downstream systems. Whether that’s as simple as driving a loyalty program and figuring out what emails to send or what on-site experiences to show, or exposing insights that might lead you to completely change your business strategy, we see engagement data as the fuel to the engine of reinforcement learning, machine learning, AI agents, this whole next wave of Martech that’s just now coming. But it all starts with having the data to train those systems. I think that behavioral data is the fuel of modern Martech, and that only holds more true as Martech platforms adopt these decisioning and AI capabilities, because they’re only as good as the data that’s training the models.     This interview Q&A was hosted with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Alec Haase Q&A: Customer Engagement Book Interview appeared first on MoEngage. #alec #haase #qampampa #customer #engagement
    WWW.MOENGAGE.COM
    Alec Haase Q&A: Customer Engagement Book Interview
    Reading Time: 6 minutes What is marketing without data? Assumptions. Guesses. Fluff. For Chapter 6 of our book, “The Customer Engagement Book: Adapt or Die,” we spoke with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, to explore how engagement data can truly inform critical business decisions.  Alec discusses the different types of customer behaviors that matter most, how to separate meaningful information from the rest, and the role of systems that learn over time to create tailored customer experiences. This interview provides insights into using data for real-time actions and shaping the future of marketing. Prepare to learn about AI decision-making and how a focus on data is changing how we engage with customers.   Alec Haase Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? It’s a culmination of everything. Behavioral signals — the actual conversions and micro-conversions that users take within your product or website. Obviously, that’s things like purchases. But there are also other behavioral signals marketers should be using and thinking about. Things like micro-conversions — maybe that’s shopping for a product, clicking to learn more about a product, or visiting a certain page on your website. Behind that, you also need to have all your user data to tie that to. So I know someone took said action; I can follow up with them in email or out on paid social. I need the user identifiers to do that. 2. How do you distinguish between data that is actionable versus data that is just noise? Data that’s actionable includes the conversions and micro-conversions — very clear instances of “someone did this.” I can react to or measure those. What’s becoming a bit of a challenge for marketers is understanding that there’s other data that is valuable for machine learning or reinforcement learning models, things like tags on the types of products customers are interacting with. Maybe there’s category information about that product, or color information. That would otherwise look like noise to the average marketer. But behind the scenes, it can be used for reinforcement learning. There is definitely the “clear-cut” actionable data, but marketers shouldn’t be quick to classify things as noise because the rise in machine learning and reinforcement learning will make that data more valuable. 3. How can customer engagement data be used to identify and prioritize new business opportunities? At Hightouch, we don’t necessarily think about retroactive analysis. We have a system where we have customer engagement data firing in that we then have real-time scores reacting to. An interesting example is when you have machine learning and reinforcement learning models running. In the pet retailer example I gave you, the system is able to figure out what to prioritize. The concept of reinforcement learning is not a marketer making rules to say, “I know this type of thing works well on this type of audience.” It’s the machine itself using the data to determine what attribute responds well to which offer, recommendation, or marketing campaign. 4. How can marketers ensure their use of customer engagement data aligns with the broader business objectives? It starts with the objectives. It’s starting with the desired outcome and working your way back. That whole flip of the paradigm is starting with outcomes and letting the system optimize. What are you trying to drive, and then back into the types of experiences that can make that happen? There’s personalization. When we talk about data-driven experiences and personalization, Spotify Wrapped is the North Star. For Spotify Wrapped, you want to drive customer stickiness and create a brand. To make that happen, you want to send a personalized email. What components do you want in that email? Maybe it’s top five songs, top five artists, and then you can back into the actual event data you need to make that happen. 5. What role does engagement data play in influencing cross-functional decisions such as those in product development, sales, or customer service? For product development, it’s product analytics — knowing what features users are using, or seeing in heat maps where users are clicking. Sales is similar. We’re using behavioral signals like what types of content they’re reading on the site to help inform what they would be interested in — the types of products or the types of use cases. For customer service, you can look at errors they’ve run into in the past or specific purchases they’ve made, so that when you’re helping them the next time they engage with you, you know exactly what their past behaviors were and what products they could be calling about. 6. What are some challenges marketers face when trying to translate customer engagement data into actionable insights? Access to data is one challenge. You might not know what data you have because marketers historically may not have been used to the systems where data is stored. Historically, that’s been pretty siloed away from them. Rich behavioral data and other data across the business was stored somewhere else. Now, as more companies embrace the data warehouse at the center of their business, it gives everyone a true single place where data can be stored. Marketers are working more with data teams, understanding more about the data they have, and using that data to power downstream use cases, personalization, reinforcement learning, or general business insights. 7. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? As a marketer, I think proof is key. The best thing is if you’ve actually run a test. “I think we should do this. I ran a small test, and it’s showing that this is actually proving out.” Being able to clearly explain and justify your reasoning with data is super important. 8. What technology or tools have you found most effective for gathering and analyzing customer engagement data? Any type of behavioral event collection, specifically ones that write to the cloud data warehouse, is the critical component. Your data team is operating off the data warehouse. Having an event collection product that stores data in that central spot is really important if you want to use the other data when making recommendations. You want to get everything into the data warehouse where it can be used both for insights and for putting into action. For Spotify Wrapped, you want to collect behavioral event signals like songs listened to or concerts attended, writing to the warehouse so that you can get insights back — how many songs were played this year, projections for next month — but then you can also use those behavioral events in downstream platforms to fire off personalized emails with product recommendations or Spotify Wrapped-style experiences. 9. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? What we’re excited about is the concept of AI Decisioning — having AI agents actually using customer data to train their own models and decision-making to create personalized experiences. We’re sitting on top of all this behavioral data, engagement data, and user attributes, and our system is learning from all of that to make the best decisions across downstream systems. Whether that’s as simple as driving a loyalty program and figuring out what emails to send or what on-site experiences to show, or exposing insights that might lead you to completely change your business strategy, we see engagement data as the fuel to the engine of reinforcement learning, machine learning, AI agents, this whole next wave of Martech that’s just now coming. But it all starts with having the data to train those systems. I think that behavioral data is the fuel of modern Martech, and that only holds more true as Martech platforms adopt these decisioning and AI capabilities, because they’re only as good as the data that’s training the models.     This interview Q&A was hosted with Alec Haase, Product GTM Lead, Commerce and AI at Hightouch, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Alec Haase Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    0 Comments 0 Shares
  • Game Dev Digest Issue #286 - Design Tricks, Deep Dives, and more

    This article was originally published on GameDevDigest.comEnjoy!What was Radiant AI, anyway? - A ridiculously deep dive into Oblivion's controversial AI system and its legacyblog.paavo.meConsider The Horse Game - No I don’t think every dev should make a horse game. But I do think every developer should at least look at them, maybe even play one because, it is very important that you understand the importance of genre, fandom, and how visibility works. Even if you are not making a horse game, the lessons you can learn by looking at this sub genre are very similar to other genres, just not as blatantly clear as they are with horse games.howtomarketagame.comMaking a killing: The playful 2D terror of Psycasso® - I sat down with lead developer Benjamin Lavender and Omni, designer and producer, to talk about this playfully gory game that gives a classic retro style and a freshtwist.UnityIntroduction to Asset Manager transfer methods in Unity - Unity's Asset Manager is a user-friendly digital asset management platform supporting over 70 file formats to help teams centralize, organize, discover, and use assets seamlessly across projects. It reduces redundant work by design, making cross-team collaboration smoother and accelerating production workflows.UnityVideosRules of the Game: Five Tricks of Highly Effective Designers - Every working designer has them: unique techniques or "tricks" that they use when crafting gameplay. Sure, there's the general game design wisdom that everyone agrees on and can be found in many a game design book, but experienced game designers often have very specific rules that are personal to them, techniques that not everyone knows about or even agrees with. In this GDC 2015 session, five experienced game designers join the stage for 10 minutes each to share one game design "trick" that they use.Game Developers ConferenceBinding of Isaac Style Room Generator in Unity- Our third part in the series - making the rooms!Game Dev GarnetIntroduction to Unity Behavior | Unity Tutorial - In this video you'll become familiar with the core concepts of Unity Behavior, including a live example.LlamAcademyHow I got my demo ready for Steam Next Fest - It's Steam Next Fest, and I've got a game in the showcase. So here are 7 tips for making the most of this demo sharing festival.Game Maker's ToolkitOptimizing lighting in Projekt Z: Beyond Order - 314 Arts studio lead and founder Justin Miersch discuss how the team used the Screen Space Global Illumination feature in Unity’s High Definition Render Pipeline, along with the Unity Profiler and Timeline to overcome the lighting challenges they faced in building Projekt Z: Beyond Order.UnityMemory Arenas in Unity: Heap Allocation Without the GC - In this video, we explore how to build a custom memory arena in Unity using unsafe code and manual heap allocation. You’ll learn how to allocate raw memory for temporary graph-like structures—such as crafting trees or decision planners—without triggering the garbage collector. We’ll walk through the concept of stack frames, translate that to heap-based arena allocation, and implement a fast, disposable system that gives you full control over memory layout and lifetime. Perfect for performance-critical systems where GC spikes aren’t acceptable.git-amendCloth Animation Using The Compute Shader - In this video, we dive into cloth simulation using OpenGL compute shaders. By applying simple mathematical equations, we’ll achieve smooth, dynamic movement. We'll explore particle-based simulation, tackle synchronization challenges with double buffering, and optimize rendering using triangle strips for efficient memory usage. Whether you're familiar with compute shaders or just getting started, this is the perfect way to step up your real-time graphics skills!OGLDEVHow we're designing games for a broader audience - Our games are too hardBiteMe GamesAssetsLearn Game Dev - Unity, Godot, Unreal, Gamemaker, Blender & C# - Make games like a pro.Passionate about video games? Then start making your own! Our latest bundle will help you learn vital game development skills. Master the most popular creation platforms like Unity, Godot, Unreal, GameMaker, Blender, and C#—now that’s a sharp-lookin’ bundle! Build a 2.5D farming RPG with Unreal Engine, create a micro turn-based RPG in Godot, explore game optimization, and so much more.__Big Bang Unreal & Unity Asset Packs Bundle - 5000+ unrivaled assets in one bundle. Calling all game devs—build your worlds with this gigantic bundle of over 5000 assets, including realistic and stylized environments, SFX packs, and powerful tools. Perfect for hobbyists, beginners, and professional developers alike, you'll gain access to essential resources, tutorials, and beta-testing–ready content to start building immediately. The experts at Leartes Studios have curated an amazing library packed with value, featuring environments, VFX packs, and tutorial courses on Unreal Engine, Blender, Substance Painter, and ZBrush. Get the assets you need to bring your game to life—and help support One Tree Planted with your purchase! This bundle provides Unity Asset Store keys directly with your purchase, and FAB keys via redemption through Cosmos, if the product is available on those platforms.Humble Bundle AffiliateGameplay Tools 50% Off - Core systems, half the price. Get pro-grade tools to power your gameplay—combat, cutscenes, UI, and more. Including: HTrace: World Space Global Illumination, VFX Graph - Ultra Mega Pack - Vol.1, Magic Animation Blend, Utility Intelligence: Utility AI Framework for Unity 6, Build for iOS/macOS on Windows>?Unity AffiliateHi guys, I created a website about 6 years in which I host all my field recordings and foley sounds. All free to download and use CC0. There is currently 50+ packs with 1000's of sounds and hours of field recordings all perfect for game SFX and UI. - I think game designers can benefit from a wide range of sounds on the site, especially those that enhance immersion and atmosphere.signaturesounds.orgSmartAddresser - Automate Addressing, Labeling, and Version Control for Unity's Addressable Asset System.CyberAgentGameEntertainment Open SourceEasyCS - EasyCS is an easy-to-use and flexible framework for Unity, adopting a Data-Driven Entity & Actor-Component approach. It bridges Unity's classic OOP with powerful data-oriented patterns, without forcing a complete ECS paradigm shift or a mindset change. Build smarter, not harder.Watcher3056 Open SourceBinding-Of-Isaac_Map-Generator - Binding of Isaac map generator for Unity2DGarnetKane99 Open SourceHelion - A modern fast paced Doom FPS engineHelion-Engine Open SourcePixelationFx - Pixelation post effect for Unity UrpNullTale Open SourceExtreme Add-Ons Bundle For Blender & ZBrush - Extraordinary quality—Extreme add-ons Get quality add-ons for Blender and ZBrush with our latest bundle! We’ve teamed up with the pros at FlippedNormals to deliver a gigantic library of powerful tools for your next game development project. Add new life to your creative work with standout assets like Real-time Hair ZBrush Plugin, Physical Starlight and Atmosphere, Easy Mesh ZBrush Plugin, and more. Get the add-ons you need to bring color and individuality to your next project—and help support Extra Life with your purchase!Humble Bundle AffiliateShop up to 50% off Gabriel Aguiar Prod - Publisher Sale - Gabriel Aguiar Prod. is best known for his extensive VFX assets that help many developers prototype and ship games with special effects. His support and educational material are also invaluable resources for the game dev community. PLUS get VFX Graph - Stylized Fire - Vol. 1 for FREE with code GAP2025Unity AffiliateSpotlightDream Garden - Dream Garden is a simulation game about building tiny cute garden dioramas. A large selection of tools, plants, decorations and customization awaits you. Try all of them and create your dream garden.Campfire StudioMy game, Call Of Dookie. Demo available on SteamYou can subscribe to the free weekly newsletter on GameDevDigest.comThis post includes affiliate links; I may receive compensation if you purchase products or services from the different links provided in this article.
    #game #dev #digest #issue #design
    Game Dev Digest Issue #286 - Design Tricks, Deep Dives, and more
    This article was originally published on GameDevDigest.comEnjoy!What was Radiant AI, anyway? - A ridiculously deep dive into Oblivion's controversial AI system and its legacyblog.paavo.meConsider The Horse Game - No I don’t think every dev should make a horse game. But I do think every developer should at least look at them, maybe even play one because, it is very important that you understand the importance of genre, fandom, and how visibility works. Even if you are not making a horse game, the lessons you can learn by looking at this sub genre are very similar to other genres, just not as blatantly clear as they are with horse games.howtomarketagame.comMaking a killing: The playful 2D terror of Psycasso® - I sat down with lead developer Benjamin Lavender and Omni, designer and producer, to talk about this playfully gory game that gives a classic retro style and a freshtwist.UnityIntroduction to Asset Manager transfer methods in Unity - Unity's Asset Manager is a user-friendly digital asset management platform supporting over 70 file formats to help teams centralize, organize, discover, and use assets seamlessly across projects. It reduces redundant work by design, making cross-team collaboration smoother and accelerating production workflows.UnityVideosRules of the Game: Five Tricks of Highly Effective Designers - Every working designer has them: unique techniques or "tricks" that they use when crafting gameplay. Sure, there's the general game design wisdom that everyone agrees on and can be found in many a game design book, but experienced game designers often have very specific rules that are personal to them, techniques that not everyone knows about or even agrees with. In this GDC 2015 session, five experienced game designers join the stage for 10 minutes each to share one game design "trick" that they use.Game Developers ConferenceBinding of Isaac Style Room Generator in Unity- Our third part in the series - making the rooms!Game Dev GarnetIntroduction to Unity Behavior | Unity Tutorial - In this video you'll become familiar with the core concepts of Unity Behavior, including a live example.LlamAcademyHow I got my demo ready for Steam Next Fest - It's Steam Next Fest, and I've got a game in the showcase. So here are 7 tips for making the most of this demo sharing festival.Game Maker's ToolkitOptimizing lighting in Projekt Z: Beyond Order - 314 Arts studio lead and founder Justin Miersch discuss how the team used the Screen Space Global Illumination feature in Unity’s High Definition Render Pipeline, along with the Unity Profiler and Timeline to overcome the lighting challenges they faced in building Projekt Z: Beyond Order.UnityMemory Arenas in Unity: Heap Allocation Without the GC - In this video, we explore how to build a custom memory arena in Unity using unsafe code and manual heap allocation. You’ll learn how to allocate raw memory for temporary graph-like structures—such as crafting trees or decision planners—without triggering the garbage collector. We’ll walk through the concept of stack frames, translate that to heap-based arena allocation, and implement a fast, disposable system that gives you full control over memory layout and lifetime. Perfect for performance-critical systems where GC spikes aren’t acceptable.git-amendCloth Animation Using The Compute Shader - In this video, we dive into cloth simulation using OpenGL compute shaders. By applying simple mathematical equations, we’ll achieve smooth, dynamic movement. We'll explore particle-based simulation, tackle synchronization challenges with double buffering, and optimize rendering using triangle strips for efficient memory usage. Whether you're familiar with compute shaders or just getting started, this is the perfect way to step up your real-time graphics skills!OGLDEVHow we're designing games for a broader audience - Our games are too hardBiteMe GamesAssetsLearn Game Dev - Unity, Godot, Unreal, Gamemaker, Blender & C# - Make games like a pro.Passionate about video games? Then start making your own! Our latest bundle will help you learn vital game development skills. Master the most popular creation platforms like Unity, Godot, Unreal, GameMaker, Blender, and C#—now that’s a sharp-lookin’ bundle! Build a 2.5D farming RPG with Unreal Engine, create a micro turn-based RPG in Godot, explore game optimization, and so much more.__Big Bang Unreal & Unity Asset Packs Bundle - 5000+ unrivaled assets in one bundle. Calling all game devs—build your worlds with this gigantic bundle of over 5000 assets, including realistic and stylized environments, SFX packs, and powerful tools. Perfect for hobbyists, beginners, and professional developers alike, you'll gain access to essential resources, tutorials, and beta-testing–ready content to start building immediately. The experts at Leartes Studios have curated an amazing library packed with value, featuring environments, VFX packs, and tutorial courses on Unreal Engine, Blender, Substance Painter, and ZBrush. Get the assets you need to bring your game to life—and help support One Tree Planted with your purchase! This bundle provides Unity Asset Store keys directly with your purchase, and FAB keys via redemption through Cosmos, if the product is available on those platforms.Humble Bundle AffiliateGameplay Tools 50% Off - Core systems, half the price. Get pro-grade tools to power your gameplay—combat, cutscenes, UI, and more. Including: HTrace: World Space Global Illumination, VFX Graph - Ultra Mega Pack - Vol.1, Magic Animation Blend, Utility Intelligence: Utility AI Framework for Unity 6, Build for iOS/macOS on Windows>?Unity AffiliateHi guys, I created a website about 6 years in which I host all my field recordings and foley sounds. All free to download and use CC0. There is currently 50+ packs with 1000's of sounds and hours of field recordings all perfect for game SFX and UI. - I think game designers can benefit from a wide range of sounds on the site, especially those that enhance immersion and atmosphere.signaturesounds.orgSmartAddresser - Automate Addressing, Labeling, and Version Control for Unity's Addressable Asset System.CyberAgentGameEntertainment Open SourceEasyCS - EasyCS is an easy-to-use and flexible framework for Unity, adopting a Data-Driven Entity & Actor-Component approach. It bridges Unity's classic OOP with powerful data-oriented patterns, without forcing a complete ECS paradigm shift or a mindset change. Build smarter, not harder.Watcher3056 Open SourceBinding-Of-Isaac_Map-Generator - Binding of Isaac map generator for Unity2DGarnetKane99 Open SourceHelion - A modern fast paced Doom FPS engineHelion-Engine Open SourcePixelationFx - Pixelation post effect for Unity UrpNullTale Open SourceExtreme Add-Ons Bundle For Blender & ZBrush - Extraordinary quality—Extreme add-ons Get quality add-ons for Blender and ZBrush with our latest bundle! We’ve teamed up with the pros at FlippedNormals to deliver a gigantic library of powerful tools for your next game development project. Add new life to your creative work with standout assets like Real-time Hair ZBrush Plugin, Physical Starlight and Atmosphere, Easy Mesh ZBrush Plugin, and more. Get the add-ons you need to bring color and individuality to your next project—and help support Extra Life with your purchase!Humble Bundle AffiliateShop up to 50% off Gabriel Aguiar Prod - Publisher Sale - Gabriel Aguiar Prod. is best known for his extensive VFX assets that help many developers prototype and ship games with special effects. His support and educational material are also invaluable resources for the game dev community. PLUS get VFX Graph - Stylized Fire - Vol. 1 for FREE with code GAP2025Unity AffiliateSpotlightDream Garden - Dream Garden is a simulation game about building tiny cute garden dioramas. A large selection of tools, plants, decorations and customization awaits you. Try all of them and create your dream garden.Campfire StudioMy game, Call Of Dookie. Demo available on SteamYou can subscribe to the free weekly newsletter on GameDevDigest.comThis post includes affiliate links; I may receive compensation if you purchase products or services from the different links provided in this article. #game #dev #digest #issue #design
    GAMEDEV.NET
    Game Dev Digest Issue #286 - Design Tricks, Deep Dives, and more
    This article was originally published on GameDevDigest.comEnjoy!What was Radiant AI, anyway? - A ridiculously deep dive into Oblivion's controversial AI system and its legacyblog.paavo.meConsider The Horse Game - No I don’t think every dev should make a horse game (unlike horror, which I still think everyone should at least one). But I do think every developer should at least look at them, maybe even play one because, it is very important that you understand the importance of genre, fandom, and how visibility works. Even if you are not making a horse game, the lessons you can learn by looking at this sub genre are very similar to other genres, just not as blatantly clear as they are with horse games.howtomarketagame.comMaking a killing: The playful 2D terror of Psycasso® - I sat down with lead developer Benjamin Lavender and Omni, designer and producer, to talk about this playfully gory game that gives a classic retro style and a fresh (if gruesome) twist.UnityIntroduction to Asset Manager transfer methods in Unity - Unity's Asset Manager is a user-friendly digital asset management platform supporting over 70 file formats to help teams centralize, organize, discover, and use assets seamlessly across projects. It reduces redundant work by design, making cross-team collaboration smoother and accelerating production workflows.UnityVideosRules of the Game: Five Tricks of Highly Effective Designers - Every working designer has them: unique techniques or "tricks" that they use when crafting gameplay. Sure, there's the general game design wisdom that everyone agrees on and can be found in many a game design book, but experienced game designers often have very specific rules that are personal to them, techniques that not everyone knows about or even agrees with. In this GDC 2015 session, five experienced game designers join the stage for 10 minutes each to share one game design "trick" that they use.Game Developers ConferenceBinding of Isaac Style Room Generator in Unity [Full Tutorial] - Our third part in the series - making the rooms!Game Dev GarnetIntroduction to Unity Behavior | Unity Tutorial - In this video you'll become familiar with the core concepts of Unity Behavior, including a live example.LlamAcademyHow I got my demo ready for Steam Next Fest - It's Steam Next Fest, and I've got a game in the showcase. So here are 7 tips for making the most of this demo sharing festival.Game Maker's ToolkitOptimizing lighting in Projekt Z: Beyond Order - 314 Arts studio lead and founder Justin Miersch discuss how the team used the Screen Space Global Illumination feature in Unity’s High Definition Render Pipeline (HDRP), along with the Unity Profiler and Timeline to overcome the lighting challenges they faced in building Projekt Z: Beyond Order.UnityMemory Arenas in Unity: Heap Allocation Without the GC - In this video, we explore how to build a custom memory arena in Unity using unsafe code and manual heap allocation. You’ll learn how to allocate raw memory for temporary graph-like structures—such as crafting trees or decision planners—without triggering the garbage collector. We’ll walk through the concept of stack frames, translate that to heap-based arena allocation, and implement a fast, disposable system that gives you full control over memory layout and lifetime. Perfect for performance-critical systems where GC spikes aren’t acceptable.git-amendCloth Animation Using The Compute Shader - In this video, we dive into cloth simulation using OpenGL compute shaders. By applying simple mathematical equations, we’ll achieve smooth, dynamic movement. We'll explore particle-based simulation, tackle synchronization challenges with double buffering, and optimize rendering using triangle strips for efficient memory usage. Whether you're familiar with compute shaders or just getting started, this is the perfect way to step up your real-time graphics skills!OGLDEVHow we're designing games for a broader audience - Our games are too hardBiteMe GamesAssetsLearn Game Dev - Unity, Godot, Unreal, Gamemaker, Blender & C# - Make games like a pro.Passionate about video games? Then start making your own! Our latest bundle will help you learn vital game development skills. Master the most popular creation platforms like Unity, Godot, Unreal, GameMaker, Blender, and C#—now that’s a sharp-lookin’ bundle! Build a 2.5D farming RPG with Unreal Engine, create a micro turn-based RPG in Godot, explore game optimization, and so much more.__Big Bang Unreal & Unity Asset Packs Bundle - 5000+ unrivaled assets in one bundle. Calling all game devs—build your worlds with this gigantic bundle of over 5000 assets, including realistic and stylized environments, SFX packs, and powerful tools. Perfect for hobbyists, beginners, and professional developers alike, you'll gain access to essential resources, tutorials, and beta-testing–ready content to start building immediately. The experts at Leartes Studios have curated an amazing library packed with value, featuring environments, VFX packs, and tutorial courses on Unreal Engine, Blender, Substance Painter, and ZBrush. Get the assets you need to bring your game to life—and help support One Tree Planted with your purchase! This bundle provides Unity Asset Store keys directly with your purchase, and FAB keys via redemption through Cosmos, if the product is available on those platforms.Humble Bundle AffiliateGameplay Tools 50% Off - Core systems, half the price. Get pro-grade tools to power your gameplay—combat, cutscenes, UI, and more. Including: HTrace: World Space Global Illumination, VFX Graph - Ultra Mega Pack - Vol.1, Magic Animation Blend, Utility Intelligence (v2): Utility AI Framework for Unity 6, Build for iOS/macOS on Windows>?Unity AffiliateHi guys, I created a website about 6 years in which I host all my field recordings and foley sounds. All free to download and use CC0. There is currently 50+ packs with 1000's of sounds and hours of field recordings all perfect for game SFX and UI. - I think game designers can benefit from a wide range of sounds on the site, especially those that enhance immersion and atmosphere.signaturesounds.orgSmartAddresser - Automate Addressing, Labeling, and Version Control for Unity's Addressable Asset System.CyberAgentGameEntertainment Open SourceEasyCS - EasyCS is an easy-to-use and flexible framework for Unity, adopting a Data-Driven Entity & Actor-Component approach. It bridges Unity's classic OOP with powerful data-oriented patterns, without forcing a complete ECS paradigm shift or a mindset change. Build smarter, not harder.Watcher3056 Open SourceBinding-Of-Isaac_Map-Generator - Binding of Isaac map generator for Unity2DGarnetKane99 Open SourceHelion - A modern fast paced Doom FPS engineHelion-Engine Open SourcePixelationFx - Pixelation post effect for Unity UrpNullTale Open SourceExtreme Add-Ons Bundle For Blender & ZBrush - Extraordinary quality—Extreme add-ons Get quality add-ons for Blender and ZBrush with our latest bundle! We’ve teamed up with the pros at FlippedNormals to deliver a gigantic library of powerful tools for your next game development project. Add new life to your creative work with standout assets like Real-time Hair ZBrush Plugin, Physical Starlight and Atmosphere, Easy Mesh ZBrush Plugin, and more. Get the add-ons you need to bring color and individuality to your next project—and help support Extra Life with your purchase!Humble Bundle AffiliateShop up to 50% off Gabriel Aguiar Prod - Publisher Sale - Gabriel Aguiar Prod. is best known for his extensive VFX assets that help many developers prototype and ship games with special effects. His support and educational material are also invaluable resources for the game dev community. PLUS get VFX Graph - Stylized Fire - Vol. 1 for FREE with code GAP2025Unity AffiliateSpotlightDream Garden - Dream Garden is a simulation game about building tiny cute garden dioramas. A large selection of tools, plants, decorations and customization awaits you. Try all of them and create your dream garden.[You can find it on Steam]Campfire StudioMy game, Call Of Dookie. Demo available on SteamYou can subscribe to the free weekly newsletter on GameDevDigest.comThis post includes affiliate links; I may receive compensation if you purchase products or services from the different links provided in this article.
    0 Comments 0 Shares
More Results