NVIDIA
NVIDIA
This is the Official NVIDIA Page
  • 204 pessoas curtiram isso
  • 515 Publicações
  • 2 fotos
  • 0 Vídeos
  • 0 Anterior
  • company
Pesquisar
Atualizações Recentes
  • GeForce NOW’s 20 July Games Bring the Heat to the Cloud

    The forecast this month is showing a 100% chance of epic gaming. Catch the scorching lineup of 20 titles coming to the cloud, which gamers can play whether indoors or on the go.
    Six new games are landing on GeForce NOW this week, including launch day titles Figment and Little Nightmares II.
    And to make the summer even hotter, the GeForce NOW Summer Sale is in full swing. It’s the last chance to upgrade to a six-month Performance membership for just and stream top titles like the recently released classic Borderlands series, DOOM: The Dark Ages, FBC: Firebreak, and more with GeForce RTX power.
    Jump Into July
    Face your nightmares.
    In Figment, a whimsical action-adventure game set in the human mind, players guide Dusty — the grumpy, retired voice of courage — and his upbeat companion Piper on a surreal journey to restore lost bravery after a traumatic event. Blending hand-drawn visuals, clever puzzles and musical boss battles, Figment explores themes of fear, grief and emotional healing in a colorful, dreamlike world filled with humor and song.
    In addition, members can look for the following games to stream this week:

    Little Nightmares IIFigmentPath of Exile 2Clicker HeroesFabledomRogue: GenesiaSchedule IHere’s what’s coming in the rest of July:

    The AscentEvery Day We FightMycopunkBrickadiaHUNTER×HUNTER NEN×IMPACTStronghold Crusader: Definitive EditionDREADZONEThe DrifterHe Is ComingKilling Floor 3RoboCop: Rogue City – Unfinished BusinessWildgateWuchang: Fallen FeathersBattle BrothersJune-tastic Games 
    In addition to the 25 games announced last month, 11 more joined the GeForce NOW library:

    Frosthaven DemoKingdom Two CrownsFirefighting Simulator – The SquadJDM: Japanese Drift MasterHellslaveDate Everything!METAL EDEN DemoTorque Drift 2Broken AgeSandwich SimulatorWe Happy FewWhat are you planning to play this weekend? Let us know on X or in the comments below.

    New month, new energy.
    What are your cloud gaming goals for July?
    — NVIDIA GeForce NOWJuly 2, 2025
    #geforce #nows #july #games #bring
    GeForce NOW’s 20 July Games Bring the Heat to the Cloud
    The forecast this month is showing a 100% chance of epic gaming. Catch the scorching lineup of 20 titles coming to the cloud, which gamers can play whether indoors or on the go. Six new games are landing on GeForce NOW this week, including launch day titles Figment and Little Nightmares II. And to make the summer even hotter, the GeForce NOW Summer Sale is in full swing. It’s the last chance to upgrade to a six-month Performance membership for just and stream top titles like the recently released classic Borderlands series, DOOM: The Dark Ages, FBC: Firebreak, and more with GeForce RTX power. Jump Into July Face your nightmares. In Figment, a whimsical action-adventure game set in the human mind, players guide Dusty — the grumpy, retired voice of courage — and his upbeat companion Piper on a surreal journey to restore lost bravery after a traumatic event. Blending hand-drawn visuals, clever puzzles and musical boss battles, Figment explores themes of fear, grief and emotional healing in a colorful, dreamlike world filled with humor and song. In addition, members can look for the following games to stream this week: Little Nightmares IIFigmentPath of Exile 2Clicker HeroesFabledomRogue: GenesiaSchedule IHere’s what’s coming in the rest of July: The AscentEvery Day We FightMycopunkBrickadiaHUNTER×HUNTER NEN×IMPACTStronghold Crusader: Definitive EditionDREADZONEThe DrifterHe Is ComingKilling Floor 3RoboCop: Rogue City – Unfinished BusinessWildgateWuchang: Fallen FeathersBattle BrothersJune-tastic Games  In addition to the 25 games announced last month, 11 more joined the GeForce NOW library: Frosthaven DemoKingdom Two CrownsFirefighting Simulator – The SquadJDM: Japanese Drift MasterHellslaveDate Everything!METAL EDEN DemoTorque Drift 2Broken AgeSandwich SimulatorWe Happy FewWhat are you planning to play this weekend? Let us know on X or in the comments below. New month, new energy. What are your cloud gaming goals for July? — NVIDIA GeForce NOWJuly 2, 2025 #geforce #nows #july #games #bring
    BLOGS.NVIDIA.COM
    GeForce NOW’s 20 July Games Bring the Heat to the Cloud
    The forecast this month is showing a 100% chance of epic gaming. Catch the scorching lineup of 20 titles coming to the cloud, which gamers can play whether indoors or on the go. Six new games are landing on GeForce NOW this week, including launch day titles Figment and Little Nightmares II. And to make the summer even hotter, the GeForce NOW Summer Sale is in full swing. It’s the last chance to upgrade to a six-month Performance membership for just $29.99 and stream top titles like the recently released classic Borderlands series, DOOM: The Dark Ages, FBC: Firebreak, and more with GeForce RTX power. Jump Into July Face your nightmares. In Figment, a whimsical action-adventure game set in the human mind, players guide Dusty — the grumpy, retired voice of courage — and his upbeat companion Piper on a surreal journey to restore lost bravery after a traumatic event. Blending hand-drawn visuals, clever puzzles and musical boss battles, Figment explores themes of fear, grief and emotional healing in a colorful, dreamlike world filled with humor and song. In addition, members can look for the following games to stream this week: Little Nightmares II (New release on Xbox, available on PC Game Pass, July 1) Figment (New release on Epic Games Store, free, July 3) Path of Exile 2 (Kakao Games) Clicker Heroes (Steam) Fabledom (Steam) Rogue: Genesia (Steam) Schedule I (Steam) Here’s what’s coming in the rest of July: The Ascent (New release on Xbox, PC Game Pass, July 8) Every Day We Fight (New release on Steam, July 10) Mycopunk (New release on Steam, July 10) Brickadia (New release on Steam, July 11) HUNTER×HUNTER NEN×IMPACT (New release on Steam, July 15) Stronghold Crusader: Definitive Edition (New release on Steam, July 15) DREADZONE (New release on Steam, July 17) The Drifter (New release on Steam, July 17) He Is Coming (New release on Steam, July 17) Killing Floor 3 (New release on Steam, July 24) RoboCop: Rogue City – Unfinished Business (New release on Steam, July 17) Wildgate (New release on Steam, July 22) Wuchang: Fallen Feathers (New release on Steam and Epic Games Store, July 23) Battle Brothers (Steam) June-tastic Games  In addition to the 25 games announced last month, 11 more joined the GeForce NOW library: Frosthaven Demo (New release on Steam, June 9) Kingdom Two Crowns (New release on Xbox, available on PC Game Pass, June 11) Firefighting Simulator – The Squad (Xbox, available on PC Game Pass) JDM: Japanese Drift Master (Steam) Hellslave (Steam) Date Everything! (New release on Steam, June 17) METAL EDEN Demo (Steam) Torque Drift 2 (Epic Games Store) Broken Age (Steam) Sandwich Simulator (Steam) We Happy Few (Steam) What are you planning to play this weekend? Let us know on X or in the comments below. New month, new energy. What are your cloud gaming goals for July? — NVIDIA GeForce NOW (@NVIDIAGFN) July 2, 2025
    Like
    Love
    Sad
    Angry
    8
    0 Comentários 0 Compartilhamentos
  • NVIDIA RTX AI Accelerates FLUX.1 Kontext — Now Available for Download

    Black Forest Labs, one of the world’s leading AI research labs, just changed the game for image generation.
    The lab’s FLUX.1 image models have earned global attention for delivering high-quality visuals with exceptional prompt adherence. Now, with its new FLUX.1 Kontext model, the lab is fundamentally changing how users can guide and refine the image generation process.
    To get their desired results, AI artists today often use a combination of models and ControlNets — AI models that help guide the outputs of an image generator. This commonly involves combining multiple ControlNets or using advanced techniques like the one used in the NVIDIA AI Blueprint for 3D-guided image generation, where a draft 3D scene is used to determine the composition of an image.
    The new FLUX.1 Kontext model simplifies this by providing a single model that can perform both image generation and editing, using natural language.
    NVIDIA has collaborated with Black Forest Labs to optimize FLUX.1 Kontextfor NVIDIA RTX GPUs using the NVIDIA TensorRT software development kit and quantization to deliver faster inference with lower VRAM requirements.
    For creators and developers alike, TensorRT optimizations mean faster edits, smoother iteration and more control — right from their RTX-powered machines.
    The FLUX.1 KontextFlex: In-Context Image Generation
    Black Forest Labs in May introduced the FLUX.1 Kontext family of image models which accept both text and image prompts.
    These models allow users to start from a reference image and guide edits with simple language, without the need for fine-tuning or complex workflows with multiple ControlNets.
    FLUX.1 Kontext is an open-weight generative model built for image editing using a guided, step-by-step generation process that makes it easier to control how an image evolves, whether refining small details or transforming an entire scene. Because the model accepts both text and image inputs, users can easily reference a visual concept and guide how it evolves in a natural and intuitive way. This enables coherent, high-quality image edits that stay true to the original concept.
    FLUX.1 Kontext’s key capabilities include:

    Character Consistency: Preserve unique traits across multiple scenes and angles.
    Localized Editing: Modify specific elements without altering the rest of the image.
    Style Transfer: Apply the look and feel of a reference image to new scenes.
    Real-Time Performance: Low-latency generation supports fast iteration and feedback.

    Black Forest Labs last week released FLUX.1 Kontext weights for download in Hugging Face, as well as the corresponding TensorRT-accelerated variants.
    Three side-by-side images of the same graphic of coffee and snacks on a table with flowers, showing an example of multi-turn editing possible with the FLUX.1 Kontextmodel. The original image; the first edit transforms it into a Bauhaus style imageand the second edit changes the color style of the image with a pastel palette.Traditionally, advanced image editing required complex instructions and hard-to-create masks, depth maps or edge maps. FLUX.1 Kontextintroduces a much more intuitive and flexible interface, blending step-by-step edits with cutting-edge optimization for diffusion model inference.
    Themodel emphasizes flexibility and control. It supports capabilities like character consistency, style preservation and localized image adjustments, with integrated ControlNet functionality for structured visual prompting.
    FLUX.1 Kontextis already available in ComfyUI and the Black Forest Labs Playground, with an NVIDIA NIM microservice version expected to release in August.
    Optimized for RTX With TensorRT Acceleration
    FLUX.1 Kontextaccelerates creativity by simplifying complex workflows. To further streamline the work and broaden accessibility, NVIDIA and Black Forest Labs collaborated to quantize the model — reducing the VRAM requirements so more people can run it locally — and optimized it with TensorRT to double its performance.
    The quantization step enables the model size to be reduced from 24GB to 12GB for FP8and 7GB for FP4. The FP8 checkpoint is optimized for GeForce RTX 40 Series GPUs, which have FP8 accelerators in their Tensor Cores. The FP4 checkpoint is optimized for GeForce RTX 50 Series GPUs for the same reason and uses a new method called SVDQuant, which preserves high image quality while reducing model size.
    TensorRT — a framework to access the Tensor Cores in NVIDIA RTX GPUs for maximum performance — provides over 2x acceleration compared with running the original BF16 model with PyTorch.
    Speedup compared with BF16 GPUand memory usage required to run FLUX.1 Kontextin different precisions.Learn more about NVIDIA optimizations and how to get started with FLUX.1 Kontexton the NVIDIA Technical Blog.
    Get Started With FLUX.1 Kontext
    FLUX.1 Kontextis available on Hugging Face.
    AI enthusiasts interested in testing these models can download the Torch variants and use them in ComfyUI. Black Forest Labs has also made available an online playground for testing the model.
    For advanced users and developers, NVIDIA is working on sample code for easy integration of TensorRT pipelines into workflows. Check out the DemoDiffusion repository to come later this month.
    But Wait, There’s More
    Google last week announced the release of Gemma 3n, a new multimodal small language model ideal for running on NVIDIA GeForce RTX GPUs and the NVIDIA Jetson platform for edge AI and robotics.
    AI enthusiasts can use Gemma 3n models with RTX accelerations in Ollama and Llama.cpp with their favorite apps, such as AnythingLLM and LM Studio.
    Performance tested in June 2025 with Gemma 3n in Ollama, with 4 billion active parameters, 100 ISL, 200 OSL.
    Plus, developers can easily deploy Gemma 3n models using Ollama and benefit from RTX accelerations. Learn more about how to run Gemma 3n on Jetson and RTX.
    In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session.
    Join NVIDIA’s Discord server to connect with community developers and AI enthusiasts for discussions on what’s possible with RTX AI.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #nvidia #rtx #accelerates #flux1 #kontext
    NVIDIA RTX AI Accelerates FLUX.1 Kontext — Now Available for Download
    Black Forest Labs, one of the world’s leading AI research labs, just changed the game for image generation. The lab’s FLUX.1 image models have earned global attention for delivering high-quality visuals with exceptional prompt adherence. Now, with its new FLUX.1 Kontext model, the lab is fundamentally changing how users can guide and refine the image generation process. To get their desired results, AI artists today often use a combination of models and ControlNets — AI models that help guide the outputs of an image generator. This commonly involves combining multiple ControlNets or using advanced techniques like the one used in the NVIDIA AI Blueprint for 3D-guided image generation, where a draft 3D scene is used to determine the composition of an image. The new FLUX.1 Kontext model simplifies this by providing a single model that can perform both image generation and editing, using natural language. NVIDIA has collaborated with Black Forest Labs to optimize FLUX.1 Kontextfor NVIDIA RTX GPUs using the NVIDIA TensorRT software development kit and quantization to deliver faster inference with lower VRAM requirements. For creators and developers alike, TensorRT optimizations mean faster edits, smoother iteration and more control — right from their RTX-powered machines. The FLUX.1 KontextFlex: In-Context Image Generation Black Forest Labs in May introduced the FLUX.1 Kontext family of image models which accept both text and image prompts. These models allow users to start from a reference image and guide edits with simple language, without the need for fine-tuning or complex workflows with multiple ControlNets. FLUX.1 Kontext is an open-weight generative model built for image editing using a guided, step-by-step generation process that makes it easier to control how an image evolves, whether refining small details or transforming an entire scene. Because the model accepts both text and image inputs, users can easily reference a visual concept and guide how it evolves in a natural and intuitive way. This enables coherent, high-quality image edits that stay true to the original concept. FLUX.1 Kontext’s key capabilities include: Character Consistency: Preserve unique traits across multiple scenes and angles. Localized Editing: Modify specific elements without altering the rest of the image. Style Transfer: Apply the look and feel of a reference image to new scenes. Real-Time Performance: Low-latency generation supports fast iteration and feedback. Black Forest Labs last week released FLUX.1 Kontext weights for download in Hugging Face, as well as the corresponding TensorRT-accelerated variants. Three side-by-side images of the same graphic of coffee and snacks on a table with flowers, showing an example of multi-turn editing possible with the FLUX.1 Kontextmodel. The original image; the first edit transforms it into a Bauhaus style imageand the second edit changes the color style of the image with a pastel palette.Traditionally, advanced image editing required complex instructions and hard-to-create masks, depth maps or edge maps. FLUX.1 Kontextintroduces a much more intuitive and flexible interface, blending step-by-step edits with cutting-edge optimization for diffusion model inference. Themodel emphasizes flexibility and control. It supports capabilities like character consistency, style preservation and localized image adjustments, with integrated ControlNet functionality for structured visual prompting. FLUX.1 Kontextis already available in ComfyUI and the Black Forest Labs Playground, with an NVIDIA NIM microservice version expected to release in August. Optimized for RTX With TensorRT Acceleration FLUX.1 Kontextaccelerates creativity by simplifying complex workflows. To further streamline the work and broaden accessibility, NVIDIA and Black Forest Labs collaborated to quantize the model — reducing the VRAM requirements so more people can run it locally — and optimized it with TensorRT to double its performance. The quantization step enables the model size to be reduced from 24GB to 12GB for FP8and 7GB for FP4. The FP8 checkpoint is optimized for GeForce RTX 40 Series GPUs, which have FP8 accelerators in their Tensor Cores. The FP4 checkpoint is optimized for GeForce RTX 50 Series GPUs for the same reason and uses a new method called SVDQuant, which preserves high image quality while reducing model size. TensorRT — a framework to access the Tensor Cores in NVIDIA RTX GPUs for maximum performance — provides over 2x acceleration compared with running the original BF16 model with PyTorch. Speedup compared with BF16 GPUand memory usage required to run FLUX.1 Kontextin different precisions.Learn more about NVIDIA optimizations and how to get started with FLUX.1 Kontexton the NVIDIA Technical Blog. Get Started With FLUX.1 Kontext FLUX.1 Kontextis available on Hugging Face. AI enthusiasts interested in testing these models can download the Torch variants and use them in ComfyUI. Black Forest Labs has also made available an online playground for testing the model. For advanced users and developers, NVIDIA is working on sample code for easy integration of TensorRT pipelines into workflows. Check out the DemoDiffusion repository to come later this month. But Wait, There’s More Google last week announced the release of Gemma 3n, a new multimodal small language model ideal for running on NVIDIA GeForce RTX GPUs and the NVIDIA Jetson platform for edge AI and robotics. AI enthusiasts can use Gemma 3n models with RTX accelerations in Ollama and Llama.cpp with their favorite apps, such as AnythingLLM and LM Studio. Performance tested in June 2025 with Gemma 3n in Ollama, with 4 billion active parameters, 100 ISL, 200 OSL. Plus, developers can easily deploy Gemma 3n models using Ollama and benefit from RTX accelerations. Learn more about how to run Gemma 3n on Jetson and RTX. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. Join NVIDIA’s Discord server to connect with community developers and AI enthusiasts for discussions on what’s possible with RTX AI. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #nvidia #rtx #accelerates #flux1 #kontext
    BLOGS.NVIDIA.COM
    NVIDIA RTX AI Accelerates FLUX.1 Kontext — Now Available for Download
    Black Forest Labs, one of the world’s leading AI research labs, just changed the game for image generation. The lab’s FLUX.1 image models have earned global attention for delivering high-quality visuals with exceptional prompt adherence. Now, with its new FLUX.1 Kontext model, the lab is fundamentally changing how users can guide and refine the image generation process. To get their desired results, AI artists today often use a combination of models and ControlNets — AI models that help guide the outputs of an image generator. This commonly involves combining multiple ControlNets or using advanced techniques like the one used in the NVIDIA AI Blueprint for 3D-guided image generation, where a draft 3D scene is used to determine the composition of an image. The new FLUX.1 Kontext model simplifies this by providing a single model that can perform both image generation and editing, using natural language. NVIDIA has collaborated with Black Forest Labs to optimize FLUX.1 Kontext [dev] for NVIDIA RTX GPUs using the NVIDIA TensorRT software development kit and quantization to deliver faster inference with lower VRAM requirements. For creators and developers alike, TensorRT optimizations mean faster edits, smoother iteration and more control — right from their RTX-powered machines. The FLUX.1 Kontext [dev] Flex: In-Context Image Generation Black Forest Labs in May introduced the FLUX.1 Kontext family of image models which accept both text and image prompts. These models allow users to start from a reference image and guide edits with simple language, without the need for fine-tuning or complex workflows with multiple ControlNets. FLUX.1 Kontext is an open-weight generative model built for image editing using a guided, step-by-step generation process that makes it easier to control how an image evolves, whether refining small details or transforming an entire scene. Because the model accepts both text and image inputs, users can easily reference a visual concept and guide how it evolves in a natural and intuitive way. This enables coherent, high-quality image edits that stay true to the original concept. FLUX.1 Kontext’s key capabilities include: Character Consistency: Preserve unique traits across multiple scenes and angles. Localized Editing: Modify specific elements without altering the rest of the image. Style Transfer: Apply the look and feel of a reference image to new scenes. Real-Time Performance: Low-latency generation supports fast iteration and feedback. Black Forest Labs last week released FLUX.1 Kontext weights for download in Hugging Face, as well as the corresponding TensorRT-accelerated variants. Three side-by-side images of the same graphic of coffee and snacks on a table with flowers, showing an example of multi-turn editing possible with the FLUX.1 Kontext [dev] model. The original image (left); the first edit transforms it into a Bauhaus style image (middle) and the second edit changes the color style of the image with a pastel palette (right).Traditionally, advanced image editing required complex instructions and hard-to-create masks, depth maps or edge maps. FLUX.1 Kontext [dev] introduces a much more intuitive and flexible interface, blending step-by-step edits with cutting-edge optimization for diffusion model inference. The [dev] model emphasizes flexibility and control. It supports capabilities like character consistency, style preservation and localized image adjustments, with integrated ControlNet functionality for structured visual prompting. FLUX.1 Kontext [dev] is already available in ComfyUI and the Black Forest Labs Playground, with an NVIDIA NIM microservice version expected to release in August. Optimized for RTX With TensorRT Acceleration FLUX.1 Kontext [dev] accelerates creativity by simplifying complex workflows. To further streamline the work and broaden accessibility, NVIDIA and Black Forest Labs collaborated to quantize the model — reducing the VRAM requirements so more people can run it locally — and optimized it with TensorRT to double its performance. The quantization step enables the model size to be reduced from 24GB to 12GB for FP8 (Ada) and 7GB for FP4 (Blackwell). The FP8 checkpoint is optimized for GeForce RTX 40 Series GPUs, which have FP8 accelerators in their Tensor Cores. The FP4 checkpoint is optimized for GeForce RTX 50 Series GPUs for the same reason and uses a new method called SVDQuant, which preserves high image quality while reducing model size. TensorRT — a framework to access the Tensor Cores in NVIDIA RTX GPUs for maximum performance — provides over 2x acceleration compared with running the original BF16 model with PyTorch. Speedup compared with BF16 GPU (left, higher is better) and memory usage required to run FLUX.1 Kontext [dev] in different precisions (right, lower is better).Learn more about NVIDIA optimizations and how to get started with FLUX.1 Kontext [dev] on the NVIDIA Technical Blog. Get Started With FLUX.1 Kontext FLUX.1 Kontext [dev] is available on Hugging Face (Torch and TensorRT). AI enthusiasts interested in testing these models can download the Torch variants and use them in ComfyUI. Black Forest Labs has also made available an online playground for testing the model. For advanced users and developers, NVIDIA is working on sample code for easy integration of TensorRT pipelines into workflows. Check out the DemoDiffusion repository to come later this month. But Wait, There’s More Google last week announced the release of Gemma 3n, a new multimodal small language model ideal for running on NVIDIA GeForce RTX GPUs and the NVIDIA Jetson platform for edge AI and robotics. AI enthusiasts can use Gemma 3n models with RTX accelerations in Ollama and Llama.cpp with their favorite apps, such as AnythingLLM and LM Studio. Performance tested in June 2025 with Gemma 3n in Ollama, with 4 billion active parameters, 100 ISL, 200 OSL. Plus, developers can easily deploy Gemma 3n models using Ollama and benefit from RTX accelerations. Learn more about how to run Gemma 3n on Jetson and RTX. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. Save the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. Join NVIDIA’s Discord server to connect with community developers and AI enthusiasts for discussions on what’s possible with RTX AI. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    Like
    Love
    Wow
    Sad
    53
    0 Comentários 0 Compartilhamentos
  • How AI Factories Can Help Relieve Grid Stress

    In many parts of the world, including major technology hubs in the U.S., there’s a yearslong wait for AI factories to come online, pending the buildout of new energy infrastructure to power them.
    Emerald AI, a startup based in Washington, D.C., is developing an AI solution that could enable the next generation of data centers to come online sooner by tapping existing energy resources in a more flexible and strategic way.
    “Traditionally, the power grid has treated data centers as inflexible — energy system operators assume that a 500-megawatt AI factory will always require access to that full amount of power,” said Varun Sivaram, founder and CEO of Emerald AI. “But in moments of need, when demands on the grid peak and supply is short, the workloads that drive AI factory energy use can now be flexible.”
    That flexibility is enabled by the startup’s Emerald Conductor platform, an AI-powered system that acts as a smart mediator between the grid and a data center. In a recent field test in Phoenix, Arizona, the company and its partners demonstrated that its software can reduce the power consumption of AI workloads running on a cluster of 256 NVIDIA GPUs by 25% over three hours during a grid stress event while preserving compute service quality.
    Emerald AI achieved this by orchestrating the host of different workloads that AI factories run. Some jobs can be paused or slowed, like the training or fine-tuning of a large language model for academic research. Others, like inference queries for an AI service used by thousands or even millions of people, can’t be rescheduled, but could be redirected to another data center where the local power grid is less stressed.
    Emerald Conductor coordinates these AI workloads across a network of data centers to meet power grid demands, ensuring full performance of time-sensitive workloads while dynamically reducing the throughput of flexible workloads within acceptable limits.
    Beyond helping AI factories come online using existing power systems, this ability to modulate power usage could help cities avoid rolling blackouts, protect communities from rising utility rates and make it easier for the grid to integrate clean energy.
    “Renewable energy, which is intermittent and variable, is easier to add to a grid if that grid has lots of shock absorbers that can shift with changes in power supply,” said Ayse Coskun, Emerald AI’s chief scientist and a professor at Boston University. “Data centers can become some of those shock absorbers.”
    A member of the NVIDIA Inception program for startups and an NVentures portfolio company, Emerald AI today announced more than million in seed funding. Its Phoenix demonstration, part of EPRI’s DCFlex data center flexibility initiative, was executed in collaboration with NVIDIA, Oracle Cloud Infrastructureand the regional power utility Salt River Project.
    “The Phoenix technology trial validates the vast potential of an essential element in data center flexibility,” said Anuja Ratnayake, who leads EPRI’s DCFlex Consortium.
    EPRI is also leading the Open Power AI Consortium, a group of energy companies, researchers and technology companies — including NVIDIA — working on AI applications for the energy sector.
    Using the Grid to Its Full Potential
    Electric grid capacity is typically underused except during peak events like hot summer days or cold winter storms, when there’s a high power demand for cooling and heating. That means, in many cases, there’s room on the existing grid for new data centers, as long as they can temporarily dial down energy usage during periods of peak demand.
    A recent Duke University study estimates that if new AI data centers could flex their electricity consumption by just 25% for two hours at a time, less than 200 hours a year, they could unlock 100 gigawatts of new capacity to connect data centers — equivalent to over trillion in data center investment.

    Putting AI Factory Flexibility to the Test
    Emerald AI’s recent trial was conducted in the Oracle Cloud Phoenix Region on NVIDIA GPUs spread across a multi-rack cluster managed through Databricks MosaicML.
    “Rapid delivery of high-performance compute to AI customers is critical but is constrained by grid power availability,” said Pradeep Vincent, chief technical architect and senior vice president of Oracle Cloud Infrastructure, which supplied cluster power telemetry for the trial. “Compute infrastructure that is responsive to real-time grid conditions while meeting the performance demands unlocks a new model for scaling AI — faster, greener and more grid-aware.”
    Jonathan Frankle, chief AI scientist at Databricks, guided the trial’s selection of AI workloads and their flexibility thresholds.
    “There’s a certain level of latent flexibility in how AI workloads are typically run,” Frankle said. “Often, a small percentage of jobs are truly non-preemptible, whereas many jobs such as training, batch inference or fine-tuning have different priority levels depending on the user.”
    Because Arizona is among the top states for data center growth, SRP set challenging flexibility targets for the AI compute cluster — a 25% power consumption reduction compared with baseline load — in an effort to demonstrate how new data centers can provide meaningful relief to Phoenix’s power grid constraints.
    “This test was an opportunity to completely reimagine AI data centers as helpful resources to help us operate the power grid more effectively and reliably,” said David Rousseau, president of SRP.
    On May 3, a hot day in Phoenix with high air-conditioning demand, SRP’s system experienced peak demand at 6 p.m. During the test, the data center cluster reduced consumption gradually with a 15-minute ramp down, maintained the 25% power reduction over three hours, then ramped back up without exceeding its original baseline consumption.
    AI factory users can label their workloads to guide Emerald’s software on which jobs can be slowed, paused or rescheduled — or, Emerald’s AI agents can make these predictions automatically.: AI GPU cluster power consumption during SRP grid peak demand on May 3, 2025;: Performance of AI jobs by flexibility tier. Flex 1 allows up to 10% average throughput reduction, Flex 2 up to 25% and Flex 3 up to 50% over a six-hour period. Figure courtesy of Emerald AI.
    Orchestration decisions were guided by the Emerald Simulator, which accurately models system behavior to optimize trade-offs between energy usage and AI performance. Historical grid demand from data provider Amperon confirmed that the AI cluster performed correctly during the grid’s peak period.
    Comparison of Emerald Simulator prediction of AI GPU cluster power with real-world measured power consumption. Figure courtesy of Emerald AI.
    Forging an Energy-Resilient Future
    The International Energy Agency projects that electricity demand from data centers globally could more than double by 2030. In light of the anticipated demand on the grid, the state of Texas passed a law that requires data centers to ramp down consumption or disconnect from the grid at utilities’ requests during load shed events.
    “In such situations, if data centers are able to dynamically reduce their energy consumption, they might be able to avoid getting kicked off the power supply entirely,” Sivaram said.
    Looking ahead, Emerald AI is expanding its technology trials in Arizona and beyond — and it plans to continue working with NVIDIA to test its technology on AI factories.
    “We can make data centers controllable while assuring acceptable AI performance,” Sivaram said. “AI factories can flex when the grid is tight — and sprint when users need them to.”
    Learn more about NVIDIA Inception and explore AI platforms designed for power and utilities.
    #how #factories #can #help #relieve
    How AI Factories Can Help Relieve Grid Stress
    In many parts of the world, including major technology hubs in the U.S., there’s a yearslong wait for AI factories to come online, pending the buildout of new energy infrastructure to power them. Emerald AI, a startup based in Washington, D.C., is developing an AI solution that could enable the next generation of data centers to come online sooner by tapping existing energy resources in a more flexible and strategic way. “Traditionally, the power grid has treated data centers as inflexible — energy system operators assume that a 500-megawatt AI factory will always require access to that full amount of power,” said Varun Sivaram, founder and CEO of Emerald AI. “But in moments of need, when demands on the grid peak and supply is short, the workloads that drive AI factory energy use can now be flexible.” That flexibility is enabled by the startup’s Emerald Conductor platform, an AI-powered system that acts as a smart mediator between the grid and a data center. In a recent field test in Phoenix, Arizona, the company and its partners demonstrated that its software can reduce the power consumption of AI workloads running on a cluster of 256 NVIDIA GPUs by 25% over three hours during a grid stress event while preserving compute service quality. Emerald AI achieved this by orchestrating the host of different workloads that AI factories run. Some jobs can be paused or slowed, like the training or fine-tuning of a large language model for academic research. Others, like inference queries for an AI service used by thousands or even millions of people, can’t be rescheduled, but could be redirected to another data center where the local power grid is less stressed. Emerald Conductor coordinates these AI workloads across a network of data centers to meet power grid demands, ensuring full performance of time-sensitive workloads while dynamically reducing the throughput of flexible workloads within acceptable limits. Beyond helping AI factories come online using existing power systems, this ability to modulate power usage could help cities avoid rolling blackouts, protect communities from rising utility rates and make it easier for the grid to integrate clean energy. “Renewable energy, which is intermittent and variable, is easier to add to a grid if that grid has lots of shock absorbers that can shift with changes in power supply,” said Ayse Coskun, Emerald AI’s chief scientist and a professor at Boston University. “Data centers can become some of those shock absorbers.” A member of the NVIDIA Inception program for startups and an NVentures portfolio company, Emerald AI today announced more than million in seed funding. Its Phoenix demonstration, part of EPRI’s DCFlex data center flexibility initiative, was executed in collaboration with NVIDIA, Oracle Cloud Infrastructureand the regional power utility Salt River Project. “The Phoenix technology trial validates the vast potential of an essential element in data center flexibility,” said Anuja Ratnayake, who leads EPRI’s DCFlex Consortium. EPRI is also leading the Open Power AI Consortium, a group of energy companies, researchers and technology companies — including NVIDIA — working on AI applications for the energy sector. Using the Grid to Its Full Potential Electric grid capacity is typically underused except during peak events like hot summer days or cold winter storms, when there’s a high power demand for cooling and heating. That means, in many cases, there’s room on the existing grid for new data centers, as long as they can temporarily dial down energy usage during periods of peak demand. A recent Duke University study estimates that if new AI data centers could flex their electricity consumption by just 25% for two hours at a time, less than 200 hours a year, they could unlock 100 gigawatts of new capacity to connect data centers — equivalent to over trillion in data center investment. Putting AI Factory Flexibility to the Test Emerald AI’s recent trial was conducted in the Oracle Cloud Phoenix Region on NVIDIA GPUs spread across a multi-rack cluster managed through Databricks MosaicML. “Rapid delivery of high-performance compute to AI customers is critical but is constrained by grid power availability,” said Pradeep Vincent, chief technical architect and senior vice president of Oracle Cloud Infrastructure, which supplied cluster power telemetry for the trial. “Compute infrastructure that is responsive to real-time grid conditions while meeting the performance demands unlocks a new model for scaling AI — faster, greener and more grid-aware.” Jonathan Frankle, chief AI scientist at Databricks, guided the trial’s selection of AI workloads and their flexibility thresholds. “There’s a certain level of latent flexibility in how AI workloads are typically run,” Frankle said. “Often, a small percentage of jobs are truly non-preemptible, whereas many jobs such as training, batch inference or fine-tuning have different priority levels depending on the user.” Because Arizona is among the top states for data center growth, SRP set challenging flexibility targets for the AI compute cluster — a 25% power consumption reduction compared with baseline load — in an effort to demonstrate how new data centers can provide meaningful relief to Phoenix’s power grid constraints. “This test was an opportunity to completely reimagine AI data centers as helpful resources to help us operate the power grid more effectively and reliably,” said David Rousseau, president of SRP. On May 3, a hot day in Phoenix with high air-conditioning demand, SRP’s system experienced peak demand at 6 p.m. During the test, the data center cluster reduced consumption gradually with a 15-minute ramp down, maintained the 25% power reduction over three hours, then ramped back up without exceeding its original baseline consumption. AI factory users can label their workloads to guide Emerald’s software on which jobs can be slowed, paused or rescheduled — or, Emerald’s AI agents can make these predictions automatically.: AI GPU cluster power consumption during SRP grid peak demand on May 3, 2025;: Performance of AI jobs by flexibility tier. Flex 1 allows up to 10% average throughput reduction, Flex 2 up to 25% and Flex 3 up to 50% over a six-hour period. Figure courtesy of Emerald AI. Orchestration decisions were guided by the Emerald Simulator, which accurately models system behavior to optimize trade-offs between energy usage and AI performance. Historical grid demand from data provider Amperon confirmed that the AI cluster performed correctly during the grid’s peak period. Comparison of Emerald Simulator prediction of AI GPU cluster power with real-world measured power consumption. Figure courtesy of Emerald AI. Forging an Energy-Resilient Future The International Energy Agency projects that electricity demand from data centers globally could more than double by 2030. In light of the anticipated demand on the grid, the state of Texas passed a law that requires data centers to ramp down consumption or disconnect from the grid at utilities’ requests during load shed events. “In such situations, if data centers are able to dynamically reduce their energy consumption, they might be able to avoid getting kicked off the power supply entirely,” Sivaram said. Looking ahead, Emerald AI is expanding its technology trials in Arizona and beyond — and it plans to continue working with NVIDIA to test its technology on AI factories. “We can make data centers controllable while assuring acceptable AI performance,” Sivaram said. “AI factories can flex when the grid is tight — and sprint when users need them to.” Learn more about NVIDIA Inception and explore AI platforms designed for power and utilities. #how #factories #can #help #relieve
    BLOGS.NVIDIA.COM
    How AI Factories Can Help Relieve Grid Stress
    In many parts of the world, including major technology hubs in the U.S., there’s a yearslong wait for AI factories to come online, pending the buildout of new energy infrastructure to power them. Emerald AI, a startup based in Washington, D.C., is developing an AI solution that could enable the next generation of data centers to come online sooner by tapping existing energy resources in a more flexible and strategic way. “Traditionally, the power grid has treated data centers as inflexible — energy system operators assume that a 500-megawatt AI factory will always require access to that full amount of power,” said Varun Sivaram, founder and CEO of Emerald AI. “But in moments of need, when demands on the grid peak and supply is short, the workloads that drive AI factory energy use can now be flexible.” That flexibility is enabled by the startup’s Emerald Conductor platform, an AI-powered system that acts as a smart mediator between the grid and a data center. In a recent field test in Phoenix, Arizona, the company and its partners demonstrated that its software can reduce the power consumption of AI workloads running on a cluster of 256 NVIDIA GPUs by 25% over three hours during a grid stress event while preserving compute service quality. Emerald AI achieved this by orchestrating the host of different workloads that AI factories run. Some jobs can be paused or slowed, like the training or fine-tuning of a large language model for academic research. Others, like inference queries for an AI service used by thousands or even millions of people, can’t be rescheduled, but could be redirected to another data center where the local power grid is less stressed. Emerald Conductor coordinates these AI workloads across a network of data centers to meet power grid demands, ensuring full performance of time-sensitive workloads while dynamically reducing the throughput of flexible workloads within acceptable limits. Beyond helping AI factories come online using existing power systems, this ability to modulate power usage could help cities avoid rolling blackouts, protect communities from rising utility rates and make it easier for the grid to integrate clean energy. “Renewable energy, which is intermittent and variable, is easier to add to a grid if that grid has lots of shock absorbers that can shift with changes in power supply,” said Ayse Coskun, Emerald AI’s chief scientist and a professor at Boston University. “Data centers can become some of those shock absorbers.” A member of the NVIDIA Inception program for startups and an NVentures portfolio company, Emerald AI today announced more than $24 million in seed funding. Its Phoenix demonstration, part of EPRI’s DCFlex data center flexibility initiative, was executed in collaboration with NVIDIA, Oracle Cloud Infrastructure (OCI) and the regional power utility Salt River Project (SRP). “The Phoenix technology trial validates the vast potential of an essential element in data center flexibility,” said Anuja Ratnayake, who leads EPRI’s DCFlex Consortium. EPRI is also leading the Open Power AI Consortium, a group of energy companies, researchers and technology companies — including NVIDIA — working on AI applications for the energy sector. Using the Grid to Its Full Potential Electric grid capacity is typically underused except during peak events like hot summer days or cold winter storms, when there’s a high power demand for cooling and heating. That means, in many cases, there’s room on the existing grid for new data centers, as long as they can temporarily dial down energy usage during periods of peak demand. A recent Duke University study estimates that if new AI data centers could flex their electricity consumption by just 25% for two hours at a time, less than 200 hours a year, they could unlock 100 gigawatts of new capacity to connect data centers — equivalent to over $2 trillion in data center investment. Putting AI Factory Flexibility to the Test Emerald AI’s recent trial was conducted in the Oracle Cloud Phoenix Region on NVIDIA GPUs spread across a multi-rack cluster managed through Databricks MosaicML. “Rapid delivery of high-performance compute to AI customers is critical but is constrained by grid power availability,” said Pradeep Vincent, chief technical architect and senior vice president of Oracle Cloud Infrastructure, which supplied cluster power telemetry for the trial. “Compute infrastructure that is responsive to real-time grid conditions while meeting the performance demands unlocks a new model for scaling AI — faster, greener and more grid-aware.” Jonathan Frankle, chief AI scientist at Databricks, guided the trial’s selection of AI workloads and their flexibility thresholds. “There’s a certain level of latent flexibility in how AI workloads are typically run,” Frankle said. “Often, a small percentage of jobs are truly non-preemptible, whereas many jobs such as training, batch inference or fine-tuning have different priority levels depending on the user.” Because Arizona is among the top states for data center growth, SRP set challenging flexibility targets for the AI compute cluster — a 25% power consumption reduction compared with baseline load — in an effort to demonstrate how new data centers can provide meaningful relief to Phoenix’s power grid constraints. “This test was an opportunity to completely reimagine AI data centers as helpful resources to help us operate the power grid more effectively and reliably,” said David Rousseau, president of SRP. On May 3, a hot day in Phoenix with high air-conditioning demand, SRP’s system experienced peak demand at 6 p.m. During the test, the data center cluster reduced consumption gradually with a 15-minute ramp down, maintained the 25% power reduction over three hours, then ramped back up without exceeding its original baseline consumption. AI factory users can label their workloads to guide Emerald’s software on which jobs can be slowed, paused or rescheduled — or, Emerald’s AI agents can make these predictions automatically. (Left panel): AI GPU cluster power consumption during SRP grid peak demand on May 3, 2025; (Right panel): Performance of AI jobs by flexibility tier. Flex 1 allows up to 10% average throughput reduction, Flex 2 up to 25% and Flex 3 up to 50% over a six-hour period. Figure courtesy of Emerald AI. Orchestration decisions were guided by the Emerald Simulator, which accurately models system behavior to optimize trade-offs between energy usage and AI performance. Historical grid demand from data provider Amperon confirmed that the AI cluster performed correctly during the grid’s peak period. Comparison of Emerald Simulator prediction of AI GPU cluster power with real-world measured power consumption. Figure courtesy of Emerald AI. Forging an Energy-Resilient Future The International Energy Agency projects that electricity demand from data centers globally could more than double by 2030. In light of the anticipated demand on the grid, the state of Texas passed a law that requires data centers to ramp down consumption or disconnect from the grid at utilities’ requests during load shed events. “In such situations, if data centers are able to dynamically reduce their energy consumption, they might be able to avoid getting kicked off the power supply entirely,” Sivaram said. Looking ahead, Emerald AI is expanding its technology trials in Arizona and beyond — and it plans to continue working with NVIDIA to test its technology on AI factories. “We can make data centers controllable while assuring acceptable AI performance,” Sivaram said. “AI factories can flex when the grid is tight — and sprint when users need them to.” Learn more about NVIDIA Inception and explore AI platforms designed for power and utilities.
    Like
    Love
    Angry
    26
    0 Comentários 0 Compartilhamentos
  • NVIDIA Scores Consecutive Win for End-to-End Autonomous Driving Grand Challenge at CVPR

    NVIDIA was today named an Autonomous Grand Challenge winner at the Computer Vision and Pattern Recognitionconference, held this week in Nashville, Tennessee. The announcement was made at the Embodied Intelligence for Autonomous Systems on the Horizon Workshop.
    This marks the second consecutive year that NVIDIA’s topped the leaderboard in the End-to-End Driving at Scale category and the third year in a row winning an Autonomous Grand Challenge award at CVPR.
    The theme of this year’s challenge was “Towards Generalizable Embodied Systems” — based on NAVSIM v2, a data-driven, nonreactive autonomous vehiclesimulation framework.
    The challenge offered researchers the opportunity to explore ways to handle unexpected situations, beyond using only real-world human driving data, to accelerate the development of smarter, safer AVs.
    Generating Safe and Adaptive Driving Trajectories
    Participants of the challenge were tasked with generating driving trajectories from multi-sensor data in a semi-reactive simulation, where the ego vehicle’s plan is fixed at the start, but background traffic changes dynamically.
    Submissions were evaluated using the Extended Predictive Driver Model Score, which measures safety, comfort, compliance and generalization across real-world and synthetic scenarios — pushing the boundaries of robust and generalizable autonomous driving research.
    The NVIDIA AV Applied Research Team’s key innovation was the Generalized Trajectory Scoringmethod, which generates a variety of trajectories and progressively filters out the best one.
    GTRS model architecture showing a unified system for generating and scoring diverse driving trajectories using diffusion- and vocabulary-based trajectories.
    GTRS introduces a combination of coarse sets of trajectories covering a wide range of situations and fine-grained trajectories for safety-critical situations, created using a diffusion policy conditioned on the environment. GTRS then uses a transformer decoder distilled from perception-dependent metrics, focusing on safety, comfort and traffic rule compliance. This decoder progressively filters out the most promising trajectory candidates by capturing subtle but critical differences between similar trajectories.
    This system has proved to generalize well to a wide range of scenarios, achieving state-of-the-art results on challenging benchmarks and enabling robust, adaptive trajectory selection in diverse and challenging driving conditions.

    NVIDIA Automotive Research at CVPR 
    More than 60 NVIDIA papers were accepted for CVPR 2025, spanning automotive, healthcare, robotics and more.
    In automotive, NVIDIA researchers are advancing physical AI with innovation in perception, planning and data generation. This year, three NVIDIA papers were nominated for the Best Paper Award: FoundationStereo, Zero-Shot Monocular Scene Flow and Difix3D+.
    The NVIDIA papers listed below showcase breakthroughs in stereo depth estimation, monocular motion understanding, 3D reconstruction, closed-loop planning, vision-language modeling and generative simulation — all critical to building safer, more generalizable AVs:

    Diffusion Renderer: Neural Inverse and Forward Rendering With Video Diffusion ModelsFoundationStereo: Zero-Shot Stereo MatchingZero-Shot Monocular Scene Flow Estimation in the WildDifix3D+: Improving 3D Reconstructions With Single-Step Diffusion Models3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting
    Closed-Loop Supervised Fine-Tuning of Tokenized Traffic Models
    Zero-Shot 4D Lidar Panoptic Segmentation
    NVILA: Efficient Frontier Visual Language Models
    RADIO Amplified: Improved Baselines for Agglomerative Vision Foundation Models
    OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving With Counterfactual Reasoning

    Explore automotive workshops and tutorials at CVPR, including:

    Workshop on Data-Driven Autonomous Driving Simulation, featuring Marco Pavone, senior director of AV research at NVIDIA, and Sanja Fidler, vice president of AI research at NVIDIA
    Workshop on Autonomous Driving, featuring Laura Leal-Taixe, senior research manager at NVIDIA
    Workshop on Open-World 3D Scene Understanding with Foundation Models, featuring Leal-Taixe
    Safe Artificial Intelligence for All Domains, featuring Jose Alvarez, director of AV applied research at NVIDIA
    Workshop on Foundation Models for V2X-Based Cooperative Autonomous Driving, featuring Pavone and Leal-Taixe
    Workshop on Multi-Agent Embodied Intelligent Systems Meet Generative AI Era, featuring Pavone
    LatinX in CV Workshop, featuring Leal-Taixe
    Workshop on Exploring the Next Generation of Data, featuring Alvarez
    Full-Stack, GPU-Based Acceleration of Deep Learning and Foundation Models, led by NVIDIA
    Continuous Data Cycle via Foundation Models, led by NVIDIA
    Distillation of Foundation Models for Autonomous Driving, led by NVIDIA

    Explore the NVIDIA research papers to be presented at CVPR and watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang.
    Learn more about NVIDIA Research, a global team of hundreds of scientists and engineers focused on topics including AI, computer graphics, computer vision, self-driving cars and robotics.
    The featured image above shows how an autonomous vehicle adapts its trajectory to navigate an urban environment with dynamic traffic using the GTRS model.
    #nvidia #scores #consecutive #win #endtoend
    NVIDIA Scores Consecutive Win for End-to-End Autonomous Driving Grand Challenge at CVPR
    NVIDIA was today named an Autonomous Grand Challenge winner at the Computer Vision and Pattern Recognitionconference, held this week in Nashville, Tennessee. The announcement was made at the Embodied Intelligence for Autonomous Systems on the Horizon Workshop. This marks the second consecutive year that NVIDIA’s topped the leaderboard in the End-to-End Driving at Scale category and the third year in a row winning an Autonomous Grand Challenge award at CVPR. The theme of this year’s challenge was “Towards Generalizable Embodied Systems” — based on NAVSIM v2, a data-driven, nonreactive autonomous vehiclesimulation framework. The challenge offered researchers the opportunity to explore ways to handle unexpected situations, beyond using only real-world human driving data, to accelerate the development of smarter, safer AVs. Generating Safe and Adaptive Driving Trajectories Participants of the challenge were tasked with generating driving trajectories from multi-sensor data in a semi-reactive simulation, where the ego vehicle’s plan is fixed at the start, but background traffic changes dynamically. Submissions were evaluated using the Extended Predictive Driver Model Score, which measures safety, comfort, compliance and generalization across real-world and synthetic scenarios — pushing the boundaries of robust and generalizable autonomous driving research. The NVIDIA AV Applied Research Team’s key innovation was the Generalized Trajectory Scoringmethod, which generates a variety of trajectories and progressively filters out the best one. GTRS model architecture showing a unified system for generating and scoring diverse driving trajectories using diffusion- and vocabulary-based trajectories. GTRS introduces a combination of coarse sets of trajectories covering a wide range of situations and fine-grained trajectories for safety-critical situations, created using a diffusion policy conditioned on the environment. GTRS then uses a transformer decoder distilled from perception-dependent metrics, focusing on safety, comfort and traffic rule compliance. This decoder progressively filters out the most promising trajectory candidates by capturing subtle but critical differences between similar trajectories. This system has proved to generalize well to a wide range of scenarios, achieving state-of-the-art results on challenging benchmarks and enabling robust, adaptive trajectory selection in diverse and challenging driving conditions. NVIDIA Automotive Research at CVPR  More than 60 NVIDIA papers were accepted for CVPR 2025, spanning automotive, healthcare, robotics and more. In automotive, NVIDIA researchers are advancing physical AI with innovation in perception, planning and data generation. This year, three NVIDIA papers were nominated for the Best Paper Award: FoundationStereo, Zero-Shot Monocular Scene Flow and Difix3D+. The NVIDIA papers listed below showcase breakthroughs in stereo depth estimation, monocular motion understanding, 3D reconstruction, closed-loop planning, vision-language modeling and generative simulation — all critical to building safer, more generalizable AVs: Diffusion Renderer: Neural Inverse and Forward Rendering With Video Diffusion ModelsFoundationStereo: Zero-Shot Stereo MatchingZero-Shot Monocular Scene Flow Estimation in the WildDifix3D+: Improving 3D Reconstructions With Single-Step Diffusion Models3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting Closed-Loop Supervised Fine-Tuning of Tokenized Traffic Models Zero-Shot 4D Lidar Panoptic Segmentation NVILA: Efficient Frontier Visual Language Models RADIO Amplified: Improved Baselines for Agglomerative Vision Foundation Models OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving With Counterfactual Reasoning Explore automotive workshops and tutorials at CVPR, including: Workshop on Data-Driven Autonomous Driving Simulation, featuring Marco Pavone, senior director of AV research at NVIDIA, and Sanja Fidler, vice president of AI research at NVIDIA Workshop on Autonomous Driving, featuring Laura Leal-Taixe, senior research manager at NVIDIA Workshop on Open-World 3D Scene Understanding with Foundation Models, featuring Leal-Taixe Safe Artificial Intelligence for All Domains, featuring Jose Alvarez, director of AV applied research at NVIDIA Workshop on Foundation Models for V2X-Based Cooperative Autonomous Driving, featuring Pavone and Leal-Taixe Workshop on Multi-Agent Embodied Intelligent Systems Meet Generative AI Era, featuring Pavone LatinX in CV Workshop, featuring Leal-Taixe Workshop on Exploring the Next Generation of Data, featuring Alvarez Full-Stack, GPU-Based Acceleration of Deep Learning and Foundation Models, led by NVIDIA Continuous Data Cycle via Foundation Models, led by NVIDIA Distillation of Foundation Models for Autonomous Driving, led by NVIDIA Explore the NVIDIA research papers to be presented at CVPR and watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang. Learn more about NVIDIA Research, a global team of hundreds of scientists and engineers focused on topics including AI, computer graphics, computer vision, self-driving cars and robotics. The featured image above shows how an autonomous vehicle adapts its trajectory to navigate an urban environment with dynamic traffic using the GTRS model. #nvidia #scores #consecutive #win #endtoend
    BLOGS.NVIDIA.COM
    NVIDIA Scores Consecutive Win for End-to-End Autonomous Driving Grand Challenge at CVPR
    NVIDIA was today named an Autonomous Grand Challenge winner at the Computer Vision and Pattern Recognition (CVPR) conference, held this week in Nashville, Tennessee. The announcement was made at the Embodied Intelligence for Autonomous Systems on the Horizon Workshop. This marks the second consecutive year that NVIDIA’s topped the leaderboard in the End-to-End Driving at Scale category and the third year in a row winning an Autonomous Grand Challenge award at CVPR. The theme of this year’s challenge was “Towards Generalizable Embodied Systems” — based on NAVSIM v2, a data-driven, nonreactive autonomous vehicle (AV) simulation framework. The challenge offered researchers the opportunity to explore ways to handle unexpected situations, beyond using only real-world human driving data, to accelerate the development of smarter, safer AVs. Generating Safe and Adaptive Driving Trajectories Participants of the challenge were tasked with generating driving trajectories from multi-sensor data in a semi-reactive simulation, where the ego vehicle’s plan is fixed at the start, but background traffic changes dynamically. Submissions were evaluated using the Extended Predictive Driver Model Score, which measures safety, comfort, compliance and generalization across real-world and synthetic scenarios — pushing the boundaries of robust and generalizable autonomous driving research. The NVIDIA AV Applied Research Team’s key innovation was the Generalized Trajectory Scoring (GTRS) method, which generates a variety of trajectories and progressively filters out the best one. GTRS model architecture showing a unified system for generating and scoring diverse driving trajectories using diffusion- and vocabulary-based trajectories. GTRS introduces a combination of coarse sets of trajectories covering a wide range of situations and fine-grained trajectories for safety-critical situations, created using a diffusion policy conditioned on the environment. GTRS then uses a transformer decoder distilled from perception-dependent metrics, focusing on safety, comfort and traffic rule compliance. This decoder progressively filters out the most promising trajectory candidates by capturing subtle but critical differences between similar trajectories. This system has proved to generalize well to a wide range of scenarios, achieving state-of-the-art results on challenging benchmarks and enabling robust, adaptive trajectory selection in diverse and challenging driving conditions. NVIDIA Automotive Research at CVPR  More than 60 NVIDIA papers were accepted for CVPR 2025, spanning automotive, healthcare, robotics and more. In automotive, NVIDIA researchers are advancing physical AI with innovation in perception, planning and data generation. This year, three NVIDIA papers were nominated for the Best Paper Award: FoundationStereo, Zero-Shot Monocular Scene Flow and Difix3D+. The NVIDIA papers listed below showcase breakthroughs in stereo depth estimation, monocular motion understanding, 3D reconstruction, closed-loop planning, vision-language modeling and generative simulation — all critical to building safer, more generalizable AVs: Diffusion Renderer: Neural Inverse and Forward Rendering With Video Diffusion Models (Read more in this blog.) FoundationStereo: Zero-Shot Stereo Matching (Best Paper nominee) Zero-Shot Monocular Scene Flow Estimation in the Wild (Best Paper nominee) Difix3D+: Improving 3D Reconstructions With Single-Step Diffusion Models (Best Paper nominee) 3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting Closed-Loop Supervised Fine-Tuning of Tokenized Traffic Models Zero-Shot 4D Lidar Panoptic Segmentation NVILA: Efficient Frontier Visual Language Models RADIO Amplified: Improved Baselines for Agglomerative Vision Foundation Models OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving With Counterfactual Reasoning Explore automotive workshops and tutorials at CVPR, including: Workshop on Data-Driven Autonomous Driving Simulation, featuring Marco Pavone, senior director of AV research at NVIDIA, and Sanja Fidler, vice president of AI research at NVIDIA Workshop on Autonomous Driving, featuring Laura Leal-Taixe, senior research manager at NVIDIA Workshop on Open-World 3D Scene Understanding with Foundation Models, featuring Leal-Taixe Safe Artificial Intelligence for All Domains, featuring Jose Alvarez, director of AV applied research at NVIDIA Workshop on Foundation Models for V2X-Based Cooperative Autonomous Driving, featuring Pavone and Leal-Taixe Workshop on Multi-Agent Embodied Intelligent Systems Meet Generative AI Era, featuring Pavone LatinX in CV Workshop, featuring Leal-Taixe Workshop on Exploring the Next Generation of Data, featuring Alvarez Full-Stack, GPU-Based Acceleration of Deep Learning and Foundation Models, led by NVIDIA Continuous Data Cycle via Foundation Models, led by NVIDIA Distillation of Foundation Models for Autonomous Driving, led by NVIDIA Explore the NVIDIA research papers to be presented at CVPR and watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang. Learn more about NVIDIA Research, a global team of hundreds of scientists and engineers focused on topics including AI, computer graphics, computer vision, self-driving cars and robotics. The featured image above shows how an autonomous vehicle adapts its trajectory to navigate an urban environment with dynamic traffic using the GTRS model.
    Like
    Love
    Wow
    Angry
    27
    0 Comentários 0 Compartilhamentos
  • European Robot Makers Adopt NVIDIA Isaac, Omniverse and Halos to Develop Safe, Physical AI-Driven Robot Fleets

    In the face of growing labor shortages and need for sustainability, European manufacturers are racing to reinvent their processes to become software-defined and AI-driven.
    To achieve this, robot developers and industrial digitalization solution providers are working with NVIDIA to build safe, AI-driven robots and industrial technologies to drive modern, sustainable manufacturing.
    At NVIDIA GTC Paris at VivaTech, Europe’s leading robotics companies including Agile Robots, Extend Robotics, Humanoid, idealworks, Neura Robotics, SICK, Universal Robots, Vorwerk and Wandelbots are showcasing their latest AI-driven robots and automation breakthroughs, all accelerated by NVIDIA technologies. In addition, NVIDIA is releasing new models and tools to support the entire robotics ecosystem.
    NVIDIA Releases Tools for Accelerating Robot Development and Safety
    NVIDIA Isaac GR00T N1.5, an open foundation model for humanoid robot reasoning and skills, is now available for download on Hugging Face. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. The NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 open-source robotics simulation and learning frameworks, optimized for NVIDIA RTX PRO 6000 workstations, are available on GitHub for developer preview.
    In addition, NVIDIA announced that NVIDIA Halos — a full-stack, comprehensive safety system that unifies hardware architecture, AI models, software, tools and services — now expands to robotics, promoting safety across the entire development lifecycle of AI-driven robots.
    The NVIDIA Halos AI Systems Inspection Lab has earned accreditation from the ANSI National Accreditation Boardto perform inspections across functional safety for robotics, in addition to automotive vehicles.
    “NVIDIA’s latest evaluation with ANAB verifies the demonstration of competence and compliance with internationally recognized standards, helping ensure that developers of autonomous machines — from automotive to robotics — can meet the highest benchmarks for functional safety,” said R. Douglas Leonard Jr., executive director of ANAB.
    Arcbest, Advantech, Bluewhite, Boston Dynamics, FORT, Inxpect, KION, NexCobot — a NEXCOM company, and Synapticon are among the first robotics companies to join the Halos Inspection Lab, ensuring their products meet NVIDIA safety and cybersecurity requirements.
    To support robotics leaders in strengthening safety across the entire development lifecycle of AI-driven robots, Halos will now provide:

    Safety extension packages for the NVIDIA IGX platform, enabling manufacturers to easily program safety functions into their robots, supported by TÜV Rheinland’s inspection of NVIDIA IGX.
    A robotic safety platform, which includes IGX and NVIDIA Holoscan Sensor Bridge for a unified approach to designing sensor-to-compute architecture with built-in AI safety.
    An outside-in safety AI inspector — an AI-powered agent for monitoring robot operations, helping improve worker safety.

    Europe’s Robotics Ecosystem Builds on NVIDIA’s Three Computers
    Europe’s leading robotics developers and solution providers are integrating the NVIDIA Isaac robotics platform to train, simulate and deploy robots across different embodiments.
    Agile Robots is post-training the GR00T N1 model in Isaac Lab to train its dual-arm manipulator robots, which run on NVIDIA Jetson hardware, to execute a variety of tasks in industrial environments.
    Meanwhile, idealworks has adopted the Mega NVIDIA Omniverse Blueprint for robotic fleet simulation to extend the blueprint’s capabilities to humanoids. Building on the VDA 5050 framework, idealworks contributes to the development of guidance that supports tasks uniquely enabled by humanoid robots, such as picking, moving and placing objects.
    Neura Robotics is integrating NVIDIA Isaac to further enhance its robot development workflows. The company is using GR00T-Mimic to post-train the Isaac GR00T N1 robot foundation model for its service robot MiPA. Neura is also collaborating with SAP and NVIDIA to integrate SAP’s Joule agents with its robots, using the Mega NVIDIA Omniverse Blueprint to simulate and refine robot behavior in complex, realistic operational scenarios before deployment.
    Vorwerk is using NVIDIA technologies to power its AI-driven collaborative robots. The company is post-training GR00T N1 models in Isaac Lab with its custom synthetic data pipeline, which is built on Isaac GR00T-Mimic and powered by the NVIDIA Omniverse platform. The enhanced models are then deployed on NVIDIA Jetson AGX, Jetson Orin or Jetson Thor modules for advanced, real-time home robotics.
    Humanoid is using NVIDIA’s full robotics stack, including Isaac Sim and Isaac Lab, to cut its prototyping time down by six weeks. The company is training its vision language action models on NVIDIA DGX B200 systems to boost the cognitive abilities of its robots, allowing them to operate autonomously in complex environments using Jetson Thor onboard computing.
    Universal Robots is introducing UR15, its fastest collaborative robot yet, to the European market. Using UR’s AI Accelerator — developed on NVIDIA Isaac’s CUDA-accelerated libraries and AI models, as well as NVIDIA Jetson AGX Orin — manufacturers can build AI applications to embed intelligence into the company’s new cobots.
    Wandelbots is showcasing its NOVA Operating System, now integrated with Omniverse, to simulate, validate and optimize robotic behaviors virtually before deploying them to physical robots. Wandelbots also announced a collaboration with EY and EDAG to offer manufacturers a scalable automation platform on Omniverse that speeds up the transition from proof of concept to full-scale deployment.
    Extend Robotics is using the Isaac GR00T platform to enable customers to control and train robots for industrial tasks like visual inspection and handling radioactive materials. The company’s Advanced Mechanics Assistance System lets users collect demonstration data and generate diverse synthetic datasets with NVIDIA GR00T-Mimic and GR00T-Gen to train the GR00T N1 foundation model.
    SICK is enhancing its autonomous perception solutions by integrating new certified sensor models — as well as 2D and 3D lidars, safety scanners and cameras — into NVIDIA Isaac Sim. This enables engineers to virtually design, test and validate machines using SICK’s sensing models within Omniverse, supporting processes spanning product development to large-scale robotic fleet management.
    Toyota Material Handling Europe is working with SoftServe to simulate its autonomous mobile robots working alongside human workers, using the Mega NVIDIA Omniverse Blueprint. Toyota Material Handling Europe is testing and simulating a multitude of traffic scenarios — allowing the company to refine its AI algorithms before real-world deployment.
    NVIDIA’s partner ecosystem is enabling European industries to tap into intelligent, AI-powered robotics. By harnessing advanced simulation, digital twins and generative AI, manufacturers are rapidly developing and deploying safe, adaptable robot fleets that address labor shortages, boost sustainability and drive operational efficiency.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    See notice regarding software product information.
    #european #robot #makers #adopt #nvidia
    European Robot Makers Adopt NVIDIA Isaac, Omniverse and Halos to Develop Safe, Physical AI-Driven Robot Fleets
    In the face of growing labor shortages and need for sustainability, European manufacturers are racing to reinvent their processes to become software-defined and AI-driven. To achieve this, robot developers and industrial digitalization solution providers are working with NVIDIA to build safe, AI-driven robots and industrial technologies to drive modern, sustainable manufacturing. At NVIDIA GTC Paris at VivaTech, Europe’s leading robotics companies including Agile Robots, Extend Robotics, Humanoid, idealworks, Neura Robotics, SICK, Universal Robots, Vorwerk and Wandelbots are showcasing their latest AI-driven robots and automation breakthroughs, all accelerated by NVIDIA technologies. In addition, NVIDIA is releasing new models and tools to support the entire robotics ecosystem. NVIDIA Releases Tools for Accelerating Robot Development and Safety NVIDIA Isaac GR00T N1.5, an open foundation model for humanoid robot reasoning and skills, is now available for download on Hugging Face. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. The NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 open-source robotics simulation and learning frameworks, optimized for NVIDIA RTX PRO 6000 workstations, are available on GitHub for developer preview. In addition, NVIDIA announced that NVIDIA Halos — a full-stack, comprehensive safety system that unifies hardware architecture, AI models, software, tools and services — now expands to robotics, promoting safety across the entire development lifecycle of AI-driven robots. The NVIDIA Halos AI Systems Inspection Lab has earned accreditation from the ANSI National Accreditation Boardto perform inspections across functional safety for robotics, in addition to automotive vehicles. “NVIDIA’s latest evaluation with ANAB verifies the demonstration of competence and compliance with internationally recognized standards, helping ensure that developers of autonomous machines — from automotive to robotics — can meet the highest benchmarks for functional safety,” said R. Douglas Leonard Jr., executive director of ANAB. Arcbest, Advantech, Bluewhite, Boston Dynamics, FORT, Inxpect, KION, NexCobot — a NEXCOM company, and Synapticon are among the first robotics companies to join the Halos Inspection Lab, ensuring their products meet NVIDIA safety and cybersecurity requirements. To support robotics leaders in strengthening safety across the entire development lifecycle of AI-driven robots, Halos will now provide: Safety extension packages for the NVIDIA IGX platform, enabling manufacturers to easily program safety functions into their robots, supported by TÜV Rheinland’s inspection of NVIDIA IGX. A robotic safety platform, which includes IGX and NVIDIA Holoscan Sensor Bridge for a unified approach to designing sensor-to-compute architecture with built-in AI safety. An outside-in safety AI inspector — an AI-powered agent for monitoring robot operations, helping improve worker safety. Europe’s Robotics Ecosystem Builds on NVIDIA’s Three Computers Europe’s leading robotics developers and solution providers are integrating the NVIDIA Isaac robotics platform to train, simulate and deploy robots across different embodiments. Agile Robots is post-training the GR00T N1 model in Isaac Lab to train its dual-arm manipulator robots, which run on NVIDIA Jetson hardware, to execute a variety of tasks in industrial environments. Meanwhile, idealworks has adopted the Mega NVIDIA Omniverse Blueprint for robotic fleet simulation to extend the blueprint’s capabilities to humanoids. Building on the VDA 5050 framework, idealworks contributes to the development of guidance that supports tasks uniquely enabled by humanoid robots, such as picking, moving and placing objects. Neura Robotics is integrating NVIDIA Isaac to further enhance its robot development workflows. The company is using GR00T-Mimic to post-train the Isaac GR00T N1 robot foundation model for its service robot MiPA. Neura is also collaborating with SAP and NVIDIA to integrate SAP’s Joule agents with its robots, using the Mega NVIDIA Omniverse Blueprint to simulate and refine robot behavior in complex, realistic operational scenarios before deployment. Vorwerk is using NVIDIA technologies to power its AI-driven collaborative robots. The company is post-training GR00T N1 models in Isaac Lab with its custom synthetic data pipeline, which is built on Isaac GR00T-Mimic and powered by the NVIDIA Omniverse platform. The enhanced models are then deployed on NVIDIA Jetson AGX, Jetson Orin or Jetson Thor modules for advanced, real-time home robotics. Humanoid is using NVIDIA’s full robotics stack, including Isaac Sim and Isaac Lab, to cut its prototyping time down by six weeks. The company is training its vision language action models on NVIDIA DGX B200 systems to boost the cognitive abilities of its robots, allowing them to operate autonomously in complex environments using Jetson Thor onboard computing. Universal Robots is introducing UR15, its fastest collaborative robot yet, to the European market. Using UR’s AI Accelerator — developed on NVIDIA Isaac’s CUDA-accelerated libraries and AI models, as well as NVIDIA Jetson AGX Orin — manufacturers can build AI applications to embed intelligence into the company’s new cobots. Wandelbots is showcasing its NOVA Operating System, now integrated with Omniverse, to simulate, validate and optimize robotic behaviors virtually before deploying them to physical robots. Wandelbots also announced a collaboration with EY and EDAG to offer manufacturers a scalable automation platform on Omniverse that speeds up the transition from proof of concept to full-scale deployment. Extend Robotics is using the Isaac GR00T platform to enable customers to control and train robots for industrial tasks like visual inspection and handling radioactive materials. The company’s Advanced Mechanics Assistance System lets users collect demonstration data and generate diverse synthetic datasets with NVIDIA GR00T-Mimic and GR00T-Gen to train the GR00T N1 foundation model. SICK is enhancing its autonomous perception solutions by integrating new certified sensor models — as well as 2D and 3D lidars, safety scanners and cameras — into NVIDIA Isaac Sim. This enables engineers to virtually design, test and validate machines using SICK’s sensing models within Omniverse, supporting processes spanning product development to large-scale robotic fleet management. Toyota Material Handling Europe is working with SoftServe to simulate its autonomous mobile robots working alongside human workers, using the Mega NVIDIA Omniverse Blueprint. Toyota Material Handling Europe is testing and simulating a multitude of traffic scenarios — allowing the company to refine its AI algorithms before real-world deployment. NVIDIA’s partner ecosystem is enabling European industries to tap into intelligent, AI-powered robotics. By harnessing advanced simulation, digital twins and generative AI, manufacturers are rapidly developing and deploying safe, adaptable robot fleets that address labor shortages, boost sustainability and drive operational efficiency. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. See notice regarding software product information. #european #robot #makers #adopt #nvidia
    BLOGS.NVIDIA.COM
    European Robot Makers Adopt NVIDIA Isaac, Omniverse and Halos to Develop Safe, Physical AI-Driven Robot Fleets
    In the face of growing labor shortages and need for sustainability, European manufacturers are racing to reinvent their processes to become software-defined and AI-driven. To achieve this, robot developers and industrial digitalization solution providers are working with NVIDIA to build safe, AI-driven robots and industrial technologies to drive modern, sustainable manufacturing. At NVIDIA GTC Paris at VivaTech, Europe’s leading robotics companies including Agile Robots, Extend Robotics, Humanoid, idealworks, Neura Robotics, SICK, Universal Robots, Vorwerk and Wandelbots are showcasing their latest AI-driven robots and automation breakthroughs, all accelerated by NVIDIA technologies. In addition, NVIDIA is releasing new models and tools to support the entire robotics ecosystem. NVIDIA Releases Tools for Accelerating Robot Development and Safety NVIDIA Isaac GR00T N1.5, an open foundation model for humanoid robot reasoning and skills, is now available for download on Hugging Face. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. The NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 open-source robotics simulation and learning frameworks, optimized for NVIDIA RTX PRO 6000 workstations, are available on GitHub for developer preview. In addition, NVIDIA announced that NVIDIA Halos — a full-stack, comprehensive safety system that unifies hardware architecture, AI models, software, tools and services — now expands to robotics, promoting safety across the entire development lifecycle of AI-driven robots. The NVIDIA Halos AI Systems Inspection Lab has earned accreditation from the ANSI National Accreditation Board (ANAB) to perform inspections across functional safety for robotics, in addition to automotive vehicles. “NVIDIA’s latest evaluation with ANAB verifies the demonstration of competence and compliance with internationally recognized standards, helping ensure that developers of autonomous machines — from automotive to robotics — can meet the highest benchmarks for functional safety,” said R. Douglas Leonard Jr., executive director of ANAB. Arcbest, Advantech, Bluewhite, Boston Dynamics, FORT, Inxpect, KION, NexCobot — a NEXCOM company, and Synapticon are among the first robotics companies to join the Halos Inspection Lab, ensuring their products meet NVIDIA safety and cybersecurity requirements. To support robotics leaders in strengthening safety across the entire development lifecycle of AI-driven robots, Halos will now provide: Safety extension packages for the NVIDIA IGX platform, enabling manufacturers to easily program safety functions into their robots, supported by TÜV Rheinland’s inspection of NVIDIA IGX. A robotic safety platform, which includes IGX and NVIDIA Holoscan Sensor Bridge for a unified approach to designing sensor-to-compute architecture with built-in AI safety. An outside-in safety AI inspector — an AI-powered agent for monitoring robot operations, helping improve worker safety. Europe’s Robotics Ecosystem Builds on NVIDIA’s Three Computers Europe’s leading robotics developers and solution providers are integrating the NVIDIA Isaac robotics platform to train, simulate and deploy robots across different embodiments. Agile Robots is post-training the GR00T N1 model in Isaac Lab to train its dual-arm manipulator robots, which run on NVIDIA Jetson hardware, to execute a variety of tasks in industrial environments. Meanwhile, idealworks has adopted the Mega NVIDIA Omniverse Blueprint for robotic fleet simulation to extend the blueprint’s capabilities to humanoids. Building on the VDA 5050 framework, idealworks contributes to the development of guidance that supports tasks uniquely enabled by humanoid robots, such as picking, moving and placing objects. Neura Robotics is integrating NVIDIA Isaac to further enhance its robot development workflows. The company is using GR00T-Mimic to post-train the Isaac GR00T N1 robot foundation model for its service robot MiPA. Neura is also collaborating with SAP and NVIDIA to integrate SAP’s Joule agents with its robots, using the Mega NVIDIA Omniverse Blueprint to simulate and refine robot behavior in complex, realistic operational scenarios before deployment. Vorwerk is using NVIDIA technologies to power its AI-driven collaborative robots. The company is post-training GR00T N1 models in Isaac Lab with its custom synthetic data pipeline, which is built on Isaac GR00T-Mimic and powered by the NVIDIA Omniverse platform. The enhanced models are then deployed on NVIDIA Jetson AGX, Jetson Orin or Jetson Thor modules for advanced, real-time home robotics. Humanoid is using NVIDIA’s full robotics stack, including Isaac Sim and Isaac Lab, to cut its prototyping time down by six weeks. The company is training its vision language action models on NVIDIA DGX B200 systems to boost the cognitive abilities of its robots, allowing them to operate autonomously in complex environments using Jetson Thor onboard computing. Universal Robots is introducing UR15, its fastest collaborative robot yet, to the European market. Using UR’s AI Accelerator — developed on NVIDIA Isaac’s CUDA-accelerated libraries and AI models, as well as NVIDIA Jetson AGX Orin — manufacturers can build AI applications to embed intelligence into the company’s new cobots. Wandelbots is showcasing its NOVA Operating System, now integrated with Omniverse, to simulate, validate and optimize robotic behaviors virtually before deploying them to physical robots. Wandelbots also announced a collaboration with EY and EDAG to offer manufacturers a scalable automation platform on Omniverse that speeds up the transition from proof of concept to full-scale deployment. Extend Robotics is using the Isaac GR00T platform to enable customers to control and train robots for industrial tasks like visual inspection and handling radioactive materials. The company’s Advanced Mechanics Assistance System lets users collect demonstration data and generate diverse synthetic datasets with NVIDIA GR00T-Mimic and GR00T-Gen to train the GR00T N1 foundation model. SICK is enhancing its autonomous perception solutions by integrating new certified sensor models — as well as 2D and 3D lidars, safety scanners and cameras — into NVIDIA Isaac Sim. This enables engineers to virtually design, test and validate machines using SICK’s sensing models within Omniverse, supporting processes spanning product development to large-scale robotic fleet management. Toyota Material Handling Europe is working with SoftServe to simulate its autonomous mobile robots working alongside human workers, using the Mega NVIDIA Omniverse Blueprint. Toyota Material Handling Europe is testing and simulating a multitude of traffic scenarios — allowing the company to refine its AI algorithms before real-world deployment. NVIDIA’s partner ecosystem is enabling European industries to tap into intelligent, AI-powered robotics. By harnessing advanced simulation, digital twins and generative AI, manufacturers are rapidly developing and deploying safe, adaptable robot fleets that address labor shortages, boost sustainability and drive operational efficiency. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. See notice regarding software product information.
    Like
    Love
    Wow
    Angry
    15
    0 Comentários 0 Compartilhamentos
  • Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA

    AI is packing and shipping efficiency for the retail and consumer packaged goodsindustries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs.
    Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online.
    At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees.
    3D Digital Twins and AI Transform Marketing, Advertising and Product Design
    The meeting of generative AI and 3D product digital twins results in unlimited creative potential.
    Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels.
    The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch.
    Image courtesy of Nestlé
    The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure.
    Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands.
    LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy.
    The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale.
    The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation.
    Image courtesy of Grip
    L’Oréal Gives Marketing and Online Shopping an AI Makeover
    Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI.
    L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines.
    “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.”
    CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences.
    The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates.

    Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products.
    Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare.
    “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.” 

    The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure.
    Rapid Innovation With the NVIDIA Partner Ecosystem
    NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI.
    Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference.
    AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need.
    The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale.
    Physical AI Brings Acceleration to Supply Chain and Logistics
    AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%.
    Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments.
    Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers.
    From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations.
    Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    #retail #reboot #major #global #brands
    Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA
    AI is packing and shipping efficiency for the retail and consumer packaged goodsindustries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs. Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online. At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees. 3D Digital Twins and AI Transform Marketing, Advertising and Product Design The meeting of generative AI and 3D product digital twins results in unlimited creative potential. Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels. The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch. Image courtesy of Nestlé The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure. Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands. LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy. The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale. The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation. Image courtesy of Grip L’Oréal Gives Marketing and Online Shopping an AI Makeover Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI. L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines. “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.” CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences. The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates. Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products. Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare. “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.”  The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure. Rapid Innovation With the NVIDIA Partner Ecosystem NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI. Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference. AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need. The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale. Physical AI Brings Acceleration to Supply Chain and Logistics AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%. Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments. Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers. From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations. Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. #retail #reboot #major #global #brands
    BLOGS.NVIDIA.COM
    Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA
    AI is packing and shipping efficiency for the retail and consumer packaged goods (CPG) industries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs. Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online. At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees. 3D Digital Twins and AI Transform Marketing, Advertising and Product Design The meeting of generative AI and 3D product digital twins results in unlimited creative potential. Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels. The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch. Image courtesy of Nestlé The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure. Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands. LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy. The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale. The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation. Image courtesy of Grip L’Oréal Gives Marketing and Online Shopping an AI Makeover Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI. L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines. “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.” CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences. The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates. Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products. Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare. “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.”  https://blogs.nvidia.com/wp-content/uploads/2025/06/Noli_Demo.mp4 The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure. Rapid Innovation With the NVIDIA Partner Ecosystem NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI. Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference. AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need. The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale. Physical AI Brings Acceleration to Supply Chain and Logistics AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%. Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments. Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers. From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations. Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    Like
    Love
    Sad
    Wow
    Angry
    23
    0 Comentários 0 Compartilhamentos
  • NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI

    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions.
    Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges.
    To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure.
    Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations.
    Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint.

    NVIDIA Omniverse Blueprint for Smart City AI 
    The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes:

    NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale.
    NVIDIA Cosmos to generate synthetic data at scale for post-training AI models.
    NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language modelsand large language models.
    NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization, helping process vast amounts of video data and provide critical insights to optimize business processes.

    The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint.
    NVIDIA Partner Ecosystem Powers Smart Cities Worldwide
    The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own.
    SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning.
    This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management.
    Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption.

    The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second.
    Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events.
    To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second.

    Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance.
    Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases.
    The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems.

    Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins.
    Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%.

    Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance.
    Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities.
    Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents.
    Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    #nvidia #brings #physical #european #cities
    NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI
    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions. Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges. To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure. Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations. Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint. NVIDIA Omniverse Blueprint for Smart City AI  The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes: NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale. NVIDIA Cosmos to generate synthetic data at scale for post-training AI models. NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language modelsand large language models. NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization, helping process vast amounts of video data and provide critical insights to optimize business processes. The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint. NVIDIA Partner Ecosystem Powers Smart Cities Worldwide The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own. SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning. This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management. Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption. The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second. Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events. To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second. Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance. Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases. The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems. Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins. Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%. Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance. Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities. Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents. Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. #nvidia #brings #physical #european #cities
    BLOGS.NVIDIA.COM
    NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI
    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions. Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges. To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure. Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations. Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint. NVIDIA Omniverse Blueprint for Smart City AI  The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes: NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale. NVIDIA Cosmos to generate synthetic data at scale for post-training AI models. NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language models (VLMs) and large language models. NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization (VSS), helping process vast amounts of video data and provide critical insights to optimize business processes. The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint. NVIDIA Partner Ecosystem Powers Smart Cities Worldwide The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own. SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning. This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management. Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption. https://blogs.nvidia.com/wp-content/uploads/2025/06/01-Monaco-Akila.mp4 The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second. Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events. To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second. https://blogs.nvidia.com/wp-content/uploads/2025/06/02-K2K-Polermo-1600x900-1.mp4 Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance. Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases. The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems. https://blogs.nvidia.com/wp-content/uploads/2025/06/03-Milestone.mp4 Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins. Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%. https://blogs.nvidia.com/wp-content/uploads/2025/06/02-Linker-Vision-1280x680-1.mp4 Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance. Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities. Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents. Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    Like
    Love
    Wow
    34
    0 Comentários 0 Compartilhamentos
  • Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration

    Telecom companies last year spent nearly billion in capital expenditures and over trillion in operating expenditures.
    These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations.
    For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type.
    These factors directly affect network performance, user experience and energy consumption.
    To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration.
    At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos.
    Automate Network Configuration With the AI Blueprint
    NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices.
    The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI.
    This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures.
    Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies.
    The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input.
    Powered and Deployed by Industry Leaders
    Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience.
    With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes.
    Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond.
    “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.”
    Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies
    The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality.
    Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences.
    NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing.
    Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference.
    For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos.
    Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems.
    Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing.
    The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making.
    Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance, designed to accelerate telecom operators’ journeys toward fully autonomous network operations.
    ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy.
    Get started with the new blueprint today.
    Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA.
    #calling #llms #new #nvidia #blueprint
    Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration
    Telecom companies last year spent nearly billion in capital expenditures and over trillion in operating expenditures. These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations. For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type. These factors directly affect network performance, user experience and energy consumption. To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration. At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos. Automate Network Configuration With the AI Blueprint NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices. The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI. This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures. Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies. The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input. Powered and Deployed by Industry Leaders Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience. With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes. Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond. “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.” Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality. Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences. NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing. Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference. For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos. Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems. Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing. The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making. Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance, designed to accelerate telecom operators’ journeys toward fully autonomous network operations. ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy. Get started with the new blueprint today. Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA. #calling #llms #new #nvidia #blueprint
    BLOGS.NVIDIA.COM
    Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration
    Telecom companies last year spent nearly $295 billion in capital expenditures and over $1 trillion in operating expenditures. These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations. For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type. These factors directly affect network performance, user experience and energy consumption. To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration. At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos. Automate Network Configuration With the AI Blueprint NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices. The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI. This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures. Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies. The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input. Powered and Deployed by Industry Leaders Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience. With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes. Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond. “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.” Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality. Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences. NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing. Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference. For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos. Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems. Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing. The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making. Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance (ISNA), designed to accelerate telecom operators’ journeys toward fully autonomous network operations. ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy. Get started with the new blueprint today. Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA.
    Like
    Love
    Wow
    Sad
    Angry
    80
    0 Comentários 0 Compartilhamentos
  • European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters

    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Unionare working together to give the media industry access to high-quality and trusted cloud and AI technologies.
    Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape.
    The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values.
    Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs.
    “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.”

    Empowering Media Innovation in Europe
    To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations.
    Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facilityand Media eXchange Layerarchitecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem.
    The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies.
    As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI.
    In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development.
    Partnering With Public Service Media for Sovereign Cloud and AI
    Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI.
    By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI.
    This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations.
    “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.”
    Learn more about the EBU.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. 
    #european #broadcasting #union #nvidia #partner
    European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters
    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Unionare working together to give the media industry access to high-quality and trusted cloud and AI technologies. Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape. The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values. Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs. “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.” Empowering Media Innovation in Europe To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations. Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facilityand Media eXchange Layerarchitecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem. The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies. As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI. In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development. Partnering With Public Service Media for Sovereign Cloud and AI Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI. By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI. This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations. “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.” Learn more about the EBU. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.  #european #broadcasting #union #nvidia #partner
    BLOGS.NVIDIA.COM
    European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters
    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Union (EBU) are working together to give the media industry access to high-quality and trusted cloud and AI technologies. Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape. The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values. Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs. “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.” Empowering Media Innovation in Europe To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations. Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facility (DMF) and Media eXchange Layer (MXL) architecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem. The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies. As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI. In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development. Partnering With Public Service Media for Sovereign Cloud and AI Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI. By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI. This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations. “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.” Learn more about the EBU. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. 
    Like
    Love
    Wow
    Sad
    Angry
    35
    0 Comentários 0 Compartilhamentos
  • NVIDIA CEO Drops the Blueprint for Europe’s AI Boom

    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it.
    “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris.
    From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future.

    A New Industrial Revolution
    At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing.
    “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance.
    At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware.
    There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers.
    Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue.
    NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth.
    Quantum Meets Classical
    Europe’s quantum ambitions just got a boost.
    The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems.
    Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction.
    “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.”
    Sovereign Models, Smarter Agents
    European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs.
    “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said.
    These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe.
    “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said.
    Huang explained how NVIDIA is helping countries across Europe build AI infrastructure.
    Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments.
    The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents.
    To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity.
    “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute.
    The Industrial Cloud Goes Live
    AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution.
    “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent.
    Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.”
    To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale.
    “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.”
    NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation.
    And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics.
    The Next Wave
    The next wave of AI has begun — and it’s exponential, Huang explained.
    “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.”
    This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said.
    To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.”
    Huang and Grek, as he explained how AI is driving advancements in robotics.
    These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence.
    “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.”
    With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe.
    Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions.
    #nvidia #ceo #drops #blueprint #europes
    NVIDIA CEO Drops the Blueprint for Europe’s AI Boom
    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it. “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris. From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future. A New Industrial Revolution At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing. “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance. At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware. There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers. Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue. NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth. Quantum Meets Classical Europe’s quantum ambitions just got a boost. The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems. Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction. “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.” Sovereign Models, Smarter Agents European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs. “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said. These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe. “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said. Huang explained how NVIDIA is helping countries across Europe build AI infrastructure. Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments. The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents. To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity. “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute. The Industrial Cloud Goes Live AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution. “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent. Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.” To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale. “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.” NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation. And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics. The Next Wave The next wave of AI has begun — and it’s exponential, Huang explained. “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.” This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said. To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.” Huang and Grek, as he explained how AI is driving advancements in robotics. These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence. “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.” With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe. Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions. #nvidia #ceo #drops #blueprint #europes
    BLOGS.NVIDIA.COM
    NVIDIA CEO Drops the Blueprint for Europe’s AI Boom
    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it. “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris. From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future. A New Industrial Revolution At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing. “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance. At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware. There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers. Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue. NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth. Quantum Meets Classical Europe’s quantum ambitions just got a boost. The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems. Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction. “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.” Sovereign Models, Smarter Agents European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs. “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said. These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe. “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said. Huang explained how NVIDIA is helping countries across Europe build AI infrastructure. Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments. The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents. To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity. “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute. The Industrial Cloud Goes Live AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution. “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent. Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.” To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale. “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.” NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation. And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics. The Next Wave The next wave of AI has begun — and it’s exponential, Huang explained. “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.” This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said. To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.” Huang and Grek, as he explained how AI is driving advancements in robotics. These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence. “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.” With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe. Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions.
    Like
    Love
    Sad
    23
    0 Comentários 0 Compartilhamentos
  • Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid

    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand.
    Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation.
    At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics.
    Future use cases for AEON include:

    Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio.
    Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings.
    Part inspection, which includes checking parts for defects or ensuring adherence to specifications.
    Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners.

    “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.”

    Using NVIDIA’s Three Computers to Develop AEON 
    To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models.
    Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations.
    AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning.


    This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment.
    In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation.
    “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.”
    Data Comes to Life Through Reality Capture and Omniverse Integration 
    AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas.

    Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure.
    “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.”
    AEON’s Next Steps
    By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON.
    This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data.
    Watch the Hexagon LIVE keynote, explore presentations and read more about AEON.
    All imagery courtesy of Hexagon.
    #hexagon #taps #nvidia #robotics #software
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio. Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon. #hexagon #taps #nvidia #robotics #software
    BLOGS.NVIDIA.COM
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Reality (HxDR) platform powering Hexagon Reality Cloud Studio (RCS). Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. https://blogs.nvidia.com/wp-content/uploads/2025/06/Copy-of-robotics-hxgn-live-blog-1920x1080-1.mp4 This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon.
    Like
    Love
    Wow
    Sad
    Angry
    38
    0 Comentários 0 Compartilhamentos
  • Plug and Play: Build a G-Assist Plug-In Today

    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems.
    NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels.

    G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow.
    Below, find popular G-Assist plug-ins, hackathon details and tips to get started.
    Plug-In and Win
    Join the hackathon by registering and checking out the curated technical resources.
    G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation.
    For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins.
    To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code.
    Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action.
    Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16.
    Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in.
    Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit.
    Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver.
    Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows.

    Popular plug-ins include:

    Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay.
    Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay.
    IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device.
    Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists.
    Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more.

    Get G-Assist 
    Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff.
    the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session.
    Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities.
    Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process.
    NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #plug #play #build #gassist #plugin
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #plug #play #build #gassist #plugin
    BLOGS.NVIDIA.COM
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file (plugin.py), requirements.txt, manifest.json, config.json (if applicable), a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU (Intel Pentium G Series, Core i3, i5, i7 or higher; AMD FX, Ryzen 3, 5, 7, 9, Threadripper or higher), specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-In(spiration) Explore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist(ance)  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. Save the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    Like
    Wow
    Love
    Sad
    25
    0 Comentários 0 Compartilhamentos
  • Step Inside the Vault: The ‘Borderland’ Series Arrives on GeForce NOW

    GeForce NOW is throwing open the vault doors to welcome the legendary Borderland series to the cloud.
    Whether a seasoned Vault Hunter or new to the mayhem of Pandora, prepare to experience the high-octane action and humor that define the series that includes Borderlands Game of the Year Enhanced, Borderlands 2, Borderlands 3 and Borderlands: The Pre-Sequel.
    Members can explore it all before the highly anticipated Borderlands 4 arrives in the cloud at launch.
    In addition, leap into the flames and save the day in the pulse-pounding FBC: Firebreak from Remedy Entertainment on GeForce NOW.
    It’s all part of the 13 new games in the cloud this week, including the latest Genshin Impact update and advanced access for REMATCH.
    Plus, GeForce NOW’s Summer Sale is still in full swing. For a limited time, get 40% off a six-month GeForce NOW Performance membership — perfect for diving into role-playing game favorites like the Borderlands series or any of the 2,200 titles in the platform’s cloud gaming library.
    Vault Hunters Assemble
    Gear up for a world where loot is king and chaos is always just a trigger pull away. The Borderlands series is known for its wild humor, outrageous characters and nonstop action — and now, its chaotic adventures can be streamed on GeForce NOW.
    Welcome to Pandora.
    Members revisiting the classics or jumping in for the first time can start with Borderlands Game of the Year Enhanced, the original mayhem-fueled classic now polished and packed with downloadable content. The title brings Pandora to life with a fresh coat of paint, crazy loot and the same iconic humor that started it all.
    New worlds, same chaos.
    In Borderlands 2, Handsome Jack steals the show with his mix of charm and villainy. This sequel cranks up the fun and insanity with unforgettable characters and a zany storyline. For more laughs and even wilder chaos, Borderlands 3 delivers the biggest loot explosion yet, with new worlds to explore. Face off against the Calypso twins and enjoy nonstop action.
    The rise of Handsome Jack.
    The adventure blasts off with Borderlands: The Pre-Sequel, revealing how Handsome Jack became so handsome. The game throws in zero gravity, moon boots and enough sarcasm to fuel a spaceship.
    Jump in with GeForce NOW and get ready to laugh, loot and blast through Pandora, all from the cloud. With instant access and seamless streaming at up to 4K resolution with an Ultimate membership, enter the chaos of Borderlands anytime, anywhere. No downloads, no waiting.
    Suit Up, Clean Up
    The Oldest House needs you.
    Step into the shoes of the Federal Bureau of Control’s elite first responders in the highly anticipated three-player co-op first-person shooter FBC: Firebreak. Taking place six years after Control, the game is set in the Oldest House — under siege by reality-warping threats. It’s up to players to restore order before chaos wins.
    Equip unique Crisis Kits packed with weapons, specialized tools and paranatural augments, like a garden gnome that summons a thunderstorm or a piggy bank that spews coins. As each mission, or “Job,” drops players into unpredictable environments with shifting objectives, bizarre crises and wacky enemies, teamwork and quick thinking are key.
    Jump into the fray with friends and stream it on GeForce NOW instantly across devices. Experience the mind-bending action and stunning visuals powered by cloud streaming. Contain the chaos, save the Oldest House and enjoy a new kind of co-op adventure, all from the cloud.
    No Rules Included
    Score big laughs in the cloud.
    REMATCH gives soccer a bold twist, transforming the classic sport into a fast-paced, third-person action experience where every player controls a single athlete on the field.
    With no fouls, offsides or breaks, matches are nonstop and skills-based, demanding quick reflexes and seamless teamwork. Dynamic role-switching lets players jump between attack, defense and goalkeeping, while seasonal updates and various multiplayer modes keep the competition fresh and the action intense.
    Where arcade flair meets tactical depth, REMATCH is football, unleashed. Get instant access to the soccer pitch by streaming the title on GeForce NOW and jump into the action wherever the match calls.
    Time To Game
    Skirk has arrived.
    Genshin Impact’s next major update launches this week, and members can stream the latest adventures from Teyvat at GeForce quality on any device. Version 5.7 includes the new playable characters Skirk and Dahlia — as well as fresh story quests and the launch of a Stygian Onslaught combat mode.
    Look for the following games available to stream in the cloud this week:

    REMATCHBroken ArrowCrime SimulatorDate Everything!FBC: FirebreakLost in Random: The Eternal DieArchitect Life: A House Design SimulatorBorderlands Game of the Year EnhancedBorderlands 2Borderlands 3Borderlands: The Pre-SequelMETAL EDEN DemoTorque Drift 2What are you planning to play this weekend? Let us know on X or in the comments below.

    What's a gaming achievement you'll never forget?
    — NVIDIA GeForce NOWJune 18, 2025
    #step #inside #vault #borderland #series
    Step Inside the Vault: The ‘Borderland’ Series Arrives on GeForce NOW
    GeForce NOW is throwing open the vault doors to welcome the legendary Borderland series to the cloud. Whether a seasoned Vault Hunter or new to the mayhem of Pandora, prepare to experience the high-octane action and humor that define the series that includes Borderlands Game of the Year Enhanced, Borderlands 2, Borderlands 3 and Borderlands: The Pre-Sequel. Members can explore it all before the highly anticipated Borderlands 4 arrives in the cloud at launch. In addition, leap into the flames and save the day in the pulse-pounding FBC: Firebreak from Remedy Entertainment on GeForce NOW. It’s all part of the 13 new games in the cloud this week, including the latest Genshin Impact update and advanced access for REMATCH. Plus, GeForce NOW’s Summer Sale is still in full swing. For a limited time, get 40% off a six-month GeForce NOW Performance membership — perfect for diving into role-playing game favorites like the Borderlands series or any of the 2,200 titles in the platform’s cloud gaming library. Vault Hunters Assemble Gear up for a world where loot is king and chaos is always just a trigger pull away. The Borderlands series is known for its wild humor, outrageous characters and nonstop action — and now, its chaotic adventures can be streamed on GeForce NOW. Welcome to Pandora. Members revisiting the classics or jumping in for the first time can start with Borderlands Game of the Year Enhanced, the original mayhem-fueled classic now polished and packed with downloadable content. The title brings Pandora to life with a fresh coat of paint, crazy loot and the same iconic humor that started it all. New worlds, same chaos. In Borderlands 2, Handsome Jack steals the show with his mix of charm and villainy. This sequel cranks up the fun and insanity with unforgettable characters and a zany storyline. For more laughs and even wilder chaos, Borderlands 3 delivers the biggest loot explosion yet, with new worlds to explore. Face off against the Calypso twins and enjoy nonstop action. The rise of Handsome Jack. The adventure blasts off with Borderlands: The Pre-Sequel, revealing how Handsome Jack became so handsome. The game throws in zero gravity, moon boots and enough sarcasm to fuel a spaceship. Jump in with GeForce NOW and get ready to laugh, loot and blast through Pandora, all from the cloud. With instant access and seamless streaming at up to 4K resolution with an Ultimate membership, enter the chaos of Borderlands anytime, anywhere. No downloads, no waiting. Suit Up, Clean Up The Oldest House needs you. Step into the shoes of the Federal Bureau of Control’s elite first responders in the highly anticipated three-player co-op first-person shooter FBC: Firebreak. Taking place six years after Control, the game is set in the Oldest House — under siege by reality-warping threats. It’s up to players to restore order before chaos wins. Equip unique Crisis Kits packed with weapons, specialized tools and paranatural augments, like a garden gnome that summons a thunderstorm or a piggy bank that spews coins. As each mission, or “Job,” drops players into unpredictable environments with shifting objectives, bizarre crises and wacky enemies, teamwork and quick thinking are key. Jump into the fray with friends and stream it on GeForce NOW instantly across devices. Experience the mind-bending action and stunning visuals powered by cloud streaming. Contain the chaos, save the Oldest House and enjoy a new kind of co-op adventure, all from the cloud. No Rules Included Score big laughs in the cloud. REMATCH gives soccer a bold twist, transforming the classic sport into a fast-paced, third-person action experience where every player controls a single athlete on the field. With no fouls, offsides or breaks, matches are nonstop and skills-based, demanding quick reflexes and seamless teamwork. Dynamic role-switching lets players jump between attack, defense and goalkeeping, while seasonal updates and various multiplayer modes keep the competition fresh and the action intense. Where arcade flair meets tactical depth, REMATCH is football, unleashed. Get instant access to the soccer pitch by streaming the title on GeForce NOW and jump into the action wherever the match calls. Time To Game Skirk has arrived. Genshin Impact’s next major update launches this week, and members can stream the latest adventures from Teyvat at GeForce quality on any device. Version 5.7 includes the new playable characters Skirk and Dahlia — as well as fresh story quests and the launch of a Stygian Onslaught combat mode. Look for the following games available to stream in the cloud this week: REMATCHBroken ArrowCrime SimulatorDate Everything!FBC: FirebreakLost in Random: The Eternal DieArchitect Life: A House Design SimulatorBorderlands Game of the Year EnhancedBorderlands 2Borderlands 3Borderlands: The Pre-SequelMETAL EDEN DemoTorque Drift 2What are you planning to play this weekend? Let us know on X or in the comments below. What's a gaming achievement you'll never forget? — NVIDIA GeForce NOWJune 18, 2025 #step #inside #vault #borderland #series
    BLOGS.NVIDIA.COM
    Step Inside the Vault: The ‘Borderland’ Series Arrives on GeForce NOW
    GeForce NOW is throwing open the vault doors to welcome the legendary Borderland series to the cloud. Whether a seasoned Vault Hunter or new to the mayhem of Pandora, prepare to experience the high-octane action and humor that define the series that includes Borderlands Game of the Year Enhanced, Borderlands 2, Borderlands 3 and Borderlands: The Pre-Sequel. Members can explore it all before the highly anticipated Borderlands 4 arrives in the cloud at launch. In addition, leap into the flames and save the day in the pulse-pounding FBC: Firebreak from Remedy Entertainment on GeForce NOW. It’s all part of the 13 new games in the cloud this week, including the latest Genshin Impact update and advanced access for REMATCH. Plus, GeForce NOW’s Summer Sale is still in full swing. For a limited time, get 40% off a six-month GeForce NOW Performance membership — perfect for diving into role-playing game favorites like the Borderlands series or any of the 2,200 titles in the platform’s cloud gaming library. Vault Hunters Assemble Gear up for a world where loot is king and chaos is always just a trigger pull away. The Borderlands series is known for its wild humor, outrageous characters and nonstop action — and now, its chaotic adventures can be streamed on GeForce NOW. Welcome to Pandora. Members revisiting the classics or jumping in for the first time can start with Borderlands Game of the Year Enhanced, the original mayhem-fueled classic now polished and packed with downloadable content. The title brings Pandora to life with a fresh coat of paint, crazy loot and the same iconic humor that started it all. New worlds, same chaos. In Borderlands 2, Handsome Jack steals the show with his mix of charm and villainy. This sequel cranks up the fun and insanity with unforgettable characters and a zany storyline. For more laughs and even wilder chaos, Borderlands 3 delivers the biggest loot explosion yet, with new worlds to explore. Face off against the Calypso twins and enjoy nonstop action. The rise of Handsome Jack. The adventure blasts off with Borderlands: The Pre-Sequel, revealing how Handsome Jack became so handsome. The game throws in zero gravity, moon boots and enough sarcasm to fuel a spaceship. Jump in with GeForce NOW and get ready to laugh, loot and blast through Pandora, all from the cloud. With instant access and seamless streaming at up to 4K resolution with an Ultimate membership, enter the chaos of Borderlands anytime, anywhere. No downloads, no waiting. Suit Up, Clean Up The Oldest House needs you. Step into the shoes of the Federal Bureau of Control’s elite first responders in the highly anticipated three-player co-op first-person shooter FBC: Firebreak. Taking place six years after Control, the game is set in the Oldest House — under siege by reality-warping threats. It’s up to players to restore order before chaos wins. Equip unique Crisis Kits packed with weapons, specialized tools and paranatural augments, like a garden gnome that summons a thunderstorm or a piggy bank that spews coins. As each mission, or “Job,” drops players into unpredictable environments with shifting objectives, bizarre crises and wacky enemies, teamwork and quick thinking are key. Jump into the fray with friends and stream it on GeForce NOW instantly across devices. Experience the mind-bending action and stunning visuals powered by cloud streaming. Contain the chaos, save the Oldest House and enjoy a new kind of co-op adventure, all from the cloud. No Rules Included Score big laughs in the cloud. REMATCH gives soccer a bold twist, transforming the classic sport into a fast-paced, third-person action experience where every player controls a single athlete on the field. With no fouls, offsides or breaks, matches are nonstop and skills-based, demanding quick reflexes and seamless teamwork. Dynamic role-switching lets players jump between attack, defense and goalkeeping, while seasonal updates and various multiplayer modes keep the competition fresh and the action intense. Where arcade flair meets tactical depth, REMATCH is football, unleashed. Get instant access to the soccer pitch by streaming the title on GeForce NOW and jump into the action wherever the match calls. Time To Game Skirk has arrived. Genshin Impact’s next major update launches this week, and members can stream the latest adventures from Teyvat at GeForce quality on any device. Version 5.7 includes the new playable characters Skirk and Dahlia — as well as fresh story quests and the launch of a Stygian Onslaught combat mode. Look for the following games available to stream in the cloud this week: REMATCH (New release on Steam, Xbox, available on PC Game Pass, June 16) Broken Arrow (New release on Steam, June 19) Crime Simulator (New release on Steam, June 17) Date Everything! (New release on Steam, June 17) FBC: Firebreak (New release on Steam, Xbox, available on PC Game Pass, June 17) Lost in Random: The Eternal Die (New release on Steam, Xbox, available on PC Game Pass, June 17) Architect Life: A House Design Simulator (New release on Steam, June 19) Borderlands Game of the Year Enhanced (Steam) Borderlands 2 (Steam, Epic Games Store) Borderlands 3 (Steam, Epic Games Store) Borderlands: The Pre-Sequel (Steam, Epic Games Store) METAL EDEN Demo (Steam) Torque Drift 2 (Epic Games Store) What are you planning to play this weekend? Let us know on X or in the comments below. What's a gaming achievement you'll never forget? — NVIDIA GeForce NOW (@NVIDIAGFN) June 18, 2025
    Like
    Love
    Wow
    Sad
    Angry
    32
    0 Comentários 0 Compartilhamentos
  • NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica

    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth.
    Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI.
    This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany.
    NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics.
    NVIDIA Technologies Boost Robotics Development 
    Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics.
    To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks.
    To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data.
    In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub.
    Image courtesy of Wandelbots.
    Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More 
    Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots.
    NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment.
    NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies.
    Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows.
    Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact.
    Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations.
    Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries.
    Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic.
    Image courtesy of Franka Robotics.
    Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support.
    Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies.
    SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario.
    Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation.

    Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications.
    Image courtesy of Vention.
    Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27. 
    #nvidia #partners #highlight #nextgeneration #robotics
    NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica
    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth. Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI. This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany. NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics. NVIDIA Technologies Boost Robotics Development  Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics. To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data. In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub. Image courtesy of Wandelbots. Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More  Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots. NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment. NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies. Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows. Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact. Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations. Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries. Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic. Image courtesy of Franka Robotics. Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies. SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario. Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation. Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications. Image courtesy of Vention. Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27.  #nvidia #partners #highlight #nextgeneration #robotics
    BLOGS.NVIDIA.COM
    NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica
    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth. Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a $200 billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI. This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany. NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics. NVIDIA Technologies Boost Robotics Development  Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics. To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data. In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub. Image courtesy of Wandelbots. Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More  Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots. NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment. NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies. Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows. Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact. Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations. Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries. Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3 (FR3) robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic. Image courtesy of Franka Robotics. Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies. SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario. Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation. Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications. Image courtesy of Vention. Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27. 
    Like
    Love
    Wow
    Sad
    Angry
    19
    0 Comentários 0 Compartilhamentos
  • HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift

    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas.
    The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers, to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI.
    The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market.
    The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster.
    This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs.
    These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows.
    HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October.
    In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption.
    The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center.
    To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis.
    HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity.
    Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments.

    Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay.
    Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page.
    #hpe #nvidia #debut #factory #stack
    HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift
    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas. The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers, to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI. The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market. The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster. This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs. These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows. HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October. In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption. The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center. To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis. HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity. Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments. Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay. Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page. #hpe #nvidia #debut #factory #stack
    BLOGS.NVIDIA.COM
    HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift
    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas. The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers (HPE ProLiant Compute DL380a Gen12), to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI. The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market. The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster. This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs. These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows. HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October. In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption. The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center. To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis. HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity. Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments. Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay. Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page.
    0 Comentários 0 Compartilhamentos
  • Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety

    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse.
    Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehiclesacross countless real-world and edge-case scenarios without the risks and costs of physical testing.
    These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models— neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation.
    To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools.
    Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale.
    Universal Scene Description, a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale.
    NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale.
    Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models.

    Foundations for Scalable, Realistic Simulation
    Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots.

    In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools.
    Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos.
    Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing.
    The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases.
    Driving the Future of AV Safety
    To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety.
    The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems.
    These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks.

    At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance.
    Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay:

    Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks.
    Get Plugged Into the World of OpenUSD
    Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote.
    Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14.
    Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute.
    Explore the Alliance for OpenUSD forum and the AOUSD website.
    Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X.
    #into #omniverse #world #foundation #models
    Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety
    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse. Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehiclesacross countless real-world and edge-case scenarios without the risks and costs of physical testing. These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models— neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation. To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools. Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale. Universal Scene Description, a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale. NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale. Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models. Foundations for Scalable, Realistic Simulation Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots. In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools. Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos. Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing. The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases. Driving the Future of AV Safety To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety. The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems. These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks. At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance. Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay: Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks. Get Plugged Into the World of OpenUSD Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote. Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14. Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute. Explore the Alliance for OpenUSD forum and the AOUSD website. Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X. #into #omniverse #world #foundation #models
    BLOGS.NVIDIA.COM
    Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety
    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse. Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehicles (AVs) across countless real-world and edge-case scenarios without the risks and costs of physical testing. These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models (WFMs) — neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation. To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools. Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale. Universal Scene Description (OpenUSD), a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale. NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale. Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models. Foundations for Scalable, Realistic Simulation Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots. In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools. Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos. Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing. The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases. Driving the Future of AV Safety To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety. The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems. These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks. At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance. Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay: Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks. Get Plugged Into the World of OpenUSD Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote. Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14. Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute. Explore the Alliance for OpenUSD forum and the AOUSD website. Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X.
    0 Comentários 0 Compartilhamentos
  • Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler

    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production.
    Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below.
    Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder.
    In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session.
    From Concept to Completion
    To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms.
    For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI.
    ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated.
    Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY.
    NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU.
    ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images.
    Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost.
    LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY.
    “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY 

    Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models.
    Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch.
    To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x.
    Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started.
    Photorealistic renders. Image courtesy of FITY.
    Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time.
    Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY.
    “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY

    Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #startup #uses #nvidia #rtxpowered #generative
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #startup #uses #nvidia #rtxpowered #generative
    BLOGS.NVIDIA.COM
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. Read more about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from $999. GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. Save the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptation (LoRA) models — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    0 Comentários 0 Compartilhamentos
  • Game On With GeForce NOW, the Membership That Keeps on Delivering

    This GFN Thursday rolls out a new reward and games for GeForce NOW members. Whether hunting for hot new releases or rediscovering timeless classics, members can always find more ways to play, games to stream and perks to enjoy.
    Gamers can score major discounts on the titles they’ve been eyeing — perfect for streaming in the cloud — during the Steam Summer Sale, running until Thursday, July 10, at 10 a.m. PT.
    This week also brings unforgettable adventures to the cloud: We Happy Few and Broken Age are part of the five additions to the GeForce NOW library this week.
    The fun doesn’t stop there. A new in-game reward for Elder Scrolls Online is now available for members to claim.
    And SteelSeries has launched a new mobile controller that transforms phones into cloud gaming devices with GeForce NOW. Add it to the roster of on-the-go gaming devices — including the recently launched GeForce NOW app on Steam Deck for seamless 4K streaming.
    Scroll Into Power
    GeForce NOW Premium members receive exclusive 24-hour early access to a new mythical reward in The Elder Scrolls Online — Bethesda’s award-winning role-playing game — before it opens to all members. Sharpen the sword, ready the staff and chase glory across the vast, immersive world of Tamriel.
    Fortune favors the bold.
    Claim the mythical Grand Gold Coast Experience Scrolls reward, a rare item that grants a bonus of 150% Experience Points from all sources for one hour. The scroll’s effect pauses while players are offline and resumes upon return, ensuring every minute counts. Whether tackling dungeon runs, completing epic quests or leveling a new character, the scrolls provide a powerful edge. Claim the reward, harness its power and scroll into the next adventure.
    Members who’ve opted into the GeForce NOW Rewards program can check their emails for redemption instructions. The offer runs through Saturday, July 26, while supplies last. Don’t miss this opportunity to become a legend in Tamriel.
    Steam Up Summer
    The Steam Summer Sale is in full swing. Snag games at discounted prices and stream them instantly from the cloud — no downloads, no waiting, just pure gaming bliss.
    Treat yourself.
    Check out the “Steam Summer Sale” row in the GeForce NOW app to find deals on the next adventure. With GeForce NOW, gaming favorites are always just a click away.
    While picking up discounted games, don’t miss the chance to get a GeForce NOW six-month Performance membership at 40% off. This is also the last opportunity to take advantage of the Performance Day Pass sale, ending Friday, June 27 — which lets gamers access cloud gaming for 24 hours — before diving into the 6-month Performance membership.
    Find Adventure
    Two distinct worlds — where secrets simmer and imagination runs wild — are streaming onto the cloud this week.
    Keep calm and blend in.
    Step into the surreal, retro-futuristic streets of We Happy Few, where a society obsessed with happiness hides its secrets behind a mask of forced cheer and a haze of “Joy.” This darkly whimsical adventure invites players to blend in, break out and uncover the truth lurking beneath the surface of Wellington Wells.
    Two worlds, one wild destiny.
    Broken Age spins a charming, hand-painted tale of two teenagers leading parallel lives in worlds at once strange and familiar. One of the teens yearns to escape a stifling spaceship, and the other is destined to challenge ancient traditions. With witty dialogue and heartfelt moments, Broken Age is a storybook come to life, brimming with quirky characters and clever puzzles.
    Each of these unforgettable adventures brings its own flavor — be it dark satire, whimsical wonder or pulse-pounding suspense — offering a taste of gaming at its imaginative peaks. Stream these captivating worlds straight from the cloud and enjoy seamless gameplay, no downloads or high-end hardware required.
    An Ultimate Controller
    Elevated gaming.
    Get ready for the SteelSeries Nimbus Cloud, a new dual-mode cloud controller. When paired with GeForce NOW, this new controller reaches new heights.
    Designed for versatility and comfort, and crafted specifically for cloud gaming, the SteelSeries Nimbus Cloud effortlessly shifts from a mobile device controller to a full-sized wireless controller, delivering top-notch performance and broad compatibility across devices.
    The Nimbus Cloud enables gamers to play wherever they are, as it easily adapts to fit iPhones and Android phones. Or collapse and connect the controller via Bluetooth to a gaming rig or smart TV. Transform any space into a personal gaming station with GeForce NOW and the Nimbus Cloud, part of the list of recommended products for an elevated cloud gaming experience.
    Gaming Never Sleeps
    “System Shock 2” — now with 100% more existential dread.
    System Shock 2: 25th Anniversary Remaster is an overhaul of the acclaimed sci-fi horror classic, rebuilt by Nightdive Studios with enhanced visuals, refined gameplay and features such as cross-play co-op multiplayer. Face the sinister AI SHODAN and her mutant army aboard the starship Von Braun as a cybernetically enhanced soldier with upgradable skills, powerful weapons and psionic abilities. Stream the title from the cloud with GeForce NOW for ultimate flexibility and performance.
    Look for the following games available to stream in the cloud this week:

    System Shock 2: 25th Anniversary RemasterBroken AgeEasy Red 2Sandwich SimulatorWe Happy FewWhat are you planning to play this weekend? Let us know on X or in the comments below.

    The official GFN summer bucket list
    Play anywhere Stream on every screen you own Finally crush that backlog Skip every single download bar
    Drop the emoji for the one you’re tackling right now
    — NVIDIA GeForce NOWJune 25, 2025
    #game #with #geforce #now #membership
    Game On With GeForce NOW, the Membership That Keeps on Delivering
    This GFN Thursday rolls out a new reward and games for GeForce NOW members. Whether hunting for hot new releases or rediscovering timeless classics, members can always find more ways to play, games to stream and perks to enjoy. Gamers can score major discounts on the titles they’ve been eyeing — perfect for streaming in the cloud — during the Steam Summer Sale, running until Thursday, July 10, at 10 a.m. PT. This week also brings unforgettable adventures to the cloud: We Happy Few and Broken Age are part of the five additions to the GeForce NOW library this week. The fun doesn’t stop there. A new in-game reward for Elder Scrolls Online is now available for members to claim. And SteelSeries has launched a new mobile controller that transforms phones into cloud gaming devices with GeForce NOW. Add it to the roster of on-the-go gaming devices — including the recently launched GeForce NOW app on Steam Deck for seamless 4K streaming. Scroll Into Power GeForce NOW Premium members receive exclusive 24-hour early access to a new mythical reward in The Elder Scrolls Online — Bethesda’s award-winning role-playing game — before it opens to all members. Sharpen the sword, ready the staff and chase glory across the vast, immersive world of Tamriel. Fortune favors the bold. Claim the mythical Grand Gold Coast Experience Scrolls reward, a rare item that grants a bonus of 150% Experience Points from all sources for one hour. The scroll’s effect pauses while players are offline and resumes upon return, ensuring every minute counts. Whether tackling dungeon runs, completing epic quests or leveling a new character, the scrolls provide a powerful edge. Claim the reward, harness its power and scroll into the next adventure. Members who’ve opted into the GeForce NOW Rewards program can check their emails for redemption instructions. The offer runs through Saturday, July 26, while supplies last. Don’t miss this opportunity to become a legend in Tamriel. Steam Up Summer The Steam Summer Sale is in full swing. Snag games at discounted prices and stream them instantly from the cloud — no downloads, no waiting, just pure gaming bliss. Treat yourself. Check out the “Steam Summer Sale” row in the GeForce NOW app to find deals on the next adventure. With GeForce NOW, gaming favorites are always just a click away. While picking up discounted games, don’t miss the chance to get a GeForce NOW six-month Performance membership at 40% off. This is also the last opportunity to take advantage of the Performance Day Pass sale, ending Friday, June 27 — which lets gamers access cloud gaming for 24 hours — before diving into the 6-month Performance membership. Find Adventure Two distinct worlds — where secrets simmer and imagination runs wild — are streaming onto the cloud this week. Keep calm and blend in. Step into the surreal, retro-futuristic streets of We Happy Few, where a society obsessed with happiness hides its secrets behind a mask of forced cheer and a haze of “Joy.” This darkly whimsical adventure invites players to blend in, break out and uncover the truth lurking beneath the surface of Wellington Wells. Two worlds, one wild destiny. Broken Age spins a charming, hand-painted tale of two teenagers leading parallel lives in worlds at once strange and familiar. One of the teens yearns to escape a stifling spaceship, and the other is destined to challenge ancient traditions. With witty dialogue and heartfelt moments, Broken Age is a storybook come to life, brimming with quirky characters and clever puzzles. Each of these unforgettable adventures brings its own flavor — be it dark satire, whimsical wonder or pulse-pounding suspense — offering a taste of gaming at its imaginative peaks. Stream these captivating worlds straight from the cloud and enjoy seamless gameplay, no downloads or high-end hardware required. An Ultimate Controller Elevated gaming. Get ready for the SteelSeries Nimbus Cloud, a new dual-mode cloud controller. When paired with GeForce NOW, this new controller reaches new heights. Designed for versatility and comfort, and crafted specifically for cloud gaming, the SteelSeries Nimbus Cloud effortlessly shifts from a mobile device controller to a full-sized wireless controller, delivering top-notch performance and broad compatibility across devices. The Nimbus Cloud enables gamers to play wherever they are, as it easily adapts to fit iPhones and Android phones. Or collapse and connect the controller via Bluetooth to a gaming rig or smart TV. Transform any space into a personal gaming station with GeForce NOW and the Nimbus Cloud, part of the list of recommended products for an elevated cloud gaming experience. Gaming Never Sleeps “System Shock 2” — now with 100% more existential dread. System Shock 2: 25th Anniversary Remaster is an overhaul of the acclaimed sci-fi horror classic, rebuilt by Nightdive Studios with enhanced visuals, refined gameplay and features such as cross-play co-op multiplayer. Face the sinister AI SHODAN and her mutant army aboard the starship Von Braun as a cybernetically enhanced soldier with upgradable skills, powerful weapons and psionic abilities. Stream the title from the cloud with GeForce NOW for ultimate flexibility and performance. Look for the following games available to stream in the cloud this week: System Shock 2: 25th Anniversary RemasterBroken AgeEasy Red 2Sandwich SimulatorWe Happy FewWhat are you planning to play this weekend? Let us know on X or in the comments below. The official GFN summer bucket list Play anywhere Stream on every screen you own Finally crush that backlog Skip every single download bar Drop the emoji for the one you’re tackling right now — NVIDIA GeForce NOWJune 25, 2025 #game #with #geforce #now #membership
    BLOGS.NVIDIA.COM
    Game On With GeForce NOW, the Membership That Keeps on Delivering
    This GFN Thursday rolls out a new reward and games for GeForce NOW members. Whether hunting for hot new releases or rediscovering timeless classics, members can always find more ways to play, games to stream and perks to enjoy. Gamers can score major discounts on the titles they’ve been eyeing — perfect for streaming in the cloud — during the Steam Summer Sale, running until Thursday, July 10, at 10 a.m. PT. This week also brings unforgettable adventures to the cloud: We Happy Few and Broken Age are part of the five additions to the GeForce NOW library this week. The fun doesn’t stop there. A new in-game reward for Elder Scrolls Online is now available for members to claim. And SteelSeries has launched a new mobile controller that transforms phones into cloud gaming devices with GeForce NOW. Add it to the roster of on-the-go gaming devices — including the recently launched GeForce NOW app on Steam Deck for seamless 4K streaming. Scroll Into Power GeForce NOW Premium members receive exclusive 24-hour early access to a new mythical reward in The Elder Scrolls Online — Bethesda’s award-winning role-playing game — before it opens to all members. Sharpen the sword, ready the staff and chase glory across the vast, immersive world of Tamriel. Fortune favors the bold. Claim the mythical Grand Gold Coast Experience Scrolls reward, a rare item that grants a bonus of 150% Experience Points from all sources for one hour. The scroll’s effect pauses while players are offline and resumes upon return, ensuring every minute counts. Whether tackling dungeon runs, completing epic quests or leveling a new character, the scrolls provide a powerful edge. Claim the reward, harness its power and scroll into the next adventure. Members who’ve opted into the GeForce NOW Rewards program can check their emails for redemption instructions. The offer runs through Saturday, July 26, while supplies last. Don’t miss this opportunity to become a legend in Tamriel. Steam Up Summer The Steam Summer Sale is in full swing. Snag games at discounted prices and stream them instantly from the cloud — no downloads, no waiting, just pure gaming bliss. Treat yourself. Check out the “Steam Summer Sale” row in the GeForce NOW app to find deals on the next adventure. With GeForce NOW, gaming favorites are always just a click away. While picking up discounted games, don’t miss the chance to get a GeForce NOW six-month Performance membership at 40% off. This is also the last opportunity to take advantage of the Performance Day Pass sale, ending Friday, June 27 — which lets gamers access cloud gaming for 24 hours — before diving into the 6-month Performance membership. Find Adventure Two distinct worlds — where secrets simmer and imagination runs wild — are streaming onto the cloud this week. Keep calm and blend in (or else). Step into the surreal, retro-futuristic streets of We Happy Few, where a society obsessed with happiness hides its secrets behind a mask of forced cheer and a haze of “Joy.” This darkly whimsical adventure invites players to blend in, break out and uncover the truth lurking beneath the surface of Wellington Wells. Two worlds, one wild destiny. Broken Age spins a charming, hand-painted tale of two teenagers leading parallel lives in worlds at once strange and familiar. One of the teens yearns to escape a stifling spaceship, and the other is destined to challenge ancient traditions. With witty dialogue and heartfelt moments, Broken Age is a storybook come to life, brimming with quirky characters and clever puzzles. Each of these unforgettable adventures brings its own flavor — be it dark satire, whimsical wonder or pulse-pounding suspense — offering a taste of gaming at its imaginative peaks. Stream these captivating worlds straight from the cloud and enjoy seamless gameplay, no downloads or high-end hardware required. An Ultimate Controller Elevated gaming. Get ready for the SteelSeries Nimbus Cloud, a new dual-mode cloud controller. When paired with GeForce NOW, this new controller reaches new heights. Designed for versatility and comfort, and crafted specifically for cloud gaming, the SteelSeries Nimbus Cloud effortlessly shifts from a mobile device controller to a full-sized wireless controller, delivering top-notch performance and broad compatibility across devices. The Nimbus Cloud enables gamers to play wherever they are, as it easily adapts to fit iPhones and Android phones. Or collapse and connect the controller via Bluetooth to a gaming rig or smart TV. Transform any space into a personal gaming station with GeForce NOW and the Nimbus Cloud, part of the list of recommended products for an elevated cloud gaming experience. Gaming Never Sleeps “System Shock 2” — now with 100% more existential dread. System Shock 2: 25th Anniversary Remaster is an overhaul of the acclaimed sci-fi horror classic, rebuilt by Nightdive Studios with enhanced visuals, refined gameplay and features such as cross-play co-op multiplayer. Face the sinister AI SHODAN and her mutant army aboard the starship Von Braun as a cybernetically enhanced soldier with upgradable skills, powerful weapons and psionic abilities. Stream the title from the cloud with GeForce NOW for ultimate flexibility and performance. Look for the following games available to stream in the cloud this week: System Shock 2: 25th Anniversary Remaster (New release on Steam, June 26) Broken Age (Steam) Easy Red 2 (Steam) Sandwich Simulator (Steam) We Happy Few (Steam) What are you planning to play this weekend? Let us know on X or in the comments below. The official GFN summer bucket list Play anywhere Stream on every screen you own Finally crush that backlog Skip every single download bar Drop the emoji for the one you’re tackling right now — NVIDIA GeForce NOW (@NVIDIAGFN) June 25, 2025
    0 Comentários 0 Compartilhamentos
  • NVIDIA TensorRT Boosts Stable Diffusion 3.5 Performance on NVIDIA GeForce RTX and RTX PRO GPUs

    Generative AI has reshaped how people create, imagine and interact with digital content.
    As AI models continue to grow in capability and complexity, they require more VRAM, or video random access memory. The base Stable Diffusion 3.5 Large model, for example, uses over 18GB of VRAM — limiting the number of systems that can run it well.
    By applying quantization to the model, noncritical layers can be removed or run with lower precision. NVIDIA GeForce RTX 40 Series and the Ada Lovelace generation of NVIDIA RTX PRO GPUs support FP8 quantization to help run these quantized models, and the latest-generation NVIDIA Blackwell GPUs also add support for FP4.
    NVIDIA collaborated with Stability AI to quantize its latest model, Stable Diffusion3.5 Large, to FP8 — reducing VRAM consumption by 40%. Further optimizations to SD3.5 Large and Medium with the NVIDIA TensorRT software development kitdouble performance.
    In addition, TensorRT has been reimagined for RTX AI PCs, combining its industry-leading performance with just-in-time, on-device engine building and an 8x smaller package size for seamless AI deployment to more than 100 million RTX AI PCs. TensorRT for RTX is now available as a standalone SDK for developers.
    RTX-Accelerated AI
    NVIDIA and Stability AI are boosting the performance and reducing the VRAM requirements of Stable Diffusion 3.5, one of the world’s most popular AI image models. With NVIDIA TensorRT acceleration and quantization, users can now generate and edit images faster and more efficiently on NVIDIA RTX GPUs.
    Stable Diffusion 3.5 quantized FP8generates images in half the time with similar quality as FP16. Prompt: A serene mountain lake at sunrise, crystal clear water reflecting snow-capped peaks, lush pine trees along the shore, soft morning mist, photorealistic, vibrant colors, high resolution.
    To address the VRAM limitations of SD3.5 Large, the model was quantized with TensorRT to FP8, reducing the VRAM requirement by 40% to 11GB. This means five GeForce RTX 50 Series GPUs can run the model from memory instead of just one.
    SD3.5 Large and Medium models were also optimized with TensorRT, an AI backend for taking full advantage of Tensor Cores. TensorRT optimizes a model’s weights and graph — the instructions on how to run a model — specifically for RTX GPUs.
    FP8 TensorRT boosts SD3.5 Large performance by 2.3x vs. BF16 PyTorch, with 40% less memory use. For SD3.5 Medium, BF16 TensorRT delivers a 1.7x speedup.
    Combined, FP8 TensorRT delivers a 2.3x performance boost on SD3.5 Large compared with running the original models in BF16 PyTorch, while using 40% less memory. And in SD3.5 Medium, BF16 TensorRT provides a 1.7x performance increase compared with BF16 PyTorch.
    The optimized models are now available on Stability AI’s Hugging Face page.
    NVIDIA and Stability AI are also collaborating to release SD3.5 as an NVIDIA NIM microservice, making it easier for creators and developers to access and deploy the model for a wide range of applications. The NIM microservice is expected to be released in July.
    TensorRT for RTX SDK Released
    Announced at Microsoft Build — and already available as part of the new Windows ML framework in preview — TensorRT for RTX is now available as a standalone SDK for developers.
    Previously, developers needed to pre-generate and package TensorRT engines for each class of GPU — a process that would yield GPU-specific optimizations but required significant time.
    With the new version of TensorRT, developers can create a generic TensorRT engine that’s optimized on device in seconds. This JIT compilation approach can be done in the background during installation or when they first use the feature.
    The easy-to-integrate SDK is now 8x smaller and can be invoked through Windows ML — Microsoft’s new AI inference backend in Windows. Developers can download the new standalone SDK from the NVIDIA Developer page or test it in the Windows ML preview.
    For more details, read this NVIDIA technical blog and this Microsoft Build recap.
    Join NVIDIA at GTC Paris
    At NVIDIA GTC Paris at VivaTech — Europe’s biggest startup and tech event — NVIDIA founder and CEO Jensen Huang yesterday delivered a keynote address on the latest breakthroughs in cloud AI infrastructure, agentic AI and physical AI. Watch a replay.
    GTC Paris runs through Thursday, June 12, with hands-on demos and sessions led by industry leaders. Whether attending in person or joining online, there’s still plenty to explore at the event.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #nvidia #tensorrt #boosts #stable #diffusion
    NVIDIA TensorRT Boosts Stable Diffusion 3.5 Performance on NVIDIA GeForce RTX and RTX PRO GPUs
    Generative AI has reshaped how people create, imagine and interact with digital content. As AI models continue to grow in capability and complexity, they require more VRAM, or video random access memory. The base Stable Diffusion 3.5 Large model, for example, uses over 18GB of VRAM — limiting the number of systems that can run it well. By applying quantization to the model, noncritical layers can be removed or run with lower precision. NVIDIA GeForce RTX 40 Series and the Ada Lovelace generation of NVIDIA RTX PRO GPUs support FP8 quantization to help run these quantized models, and the latest-generation NVIDIA Blackwell GPUs also add support for FP4. NVIDIA collaborated with Stability AI to quantize its latest model, Stable Diffusion3.5 Large, to FP8 — reducing VRAM consumption by 40%. Further optimizations to SD3.5 Large and Medium with the NVIDIA TensorRT software development kitdouble performance. In addition, TensorRT has been reimagined for RTX AI PCs, combining its industry-leading performance with just-in-time, on-device engine building and an 8x smaller package size for seamless AI deployment to more than 100 million RTX AI PCs. TensorRT for RTX is now available as a standalone SDK for developers. RTX-Accelerated AI NVIDIA and Stability AI are boosting the performance and reducing the VRAM requirements of Stable Diffusion 3.5, one of the world’s most popular AI image models. With NVIDIA TensorRT acceleration and quantization, users can now generate and edit images faster and more efficiently on NVIDIA RTX GPUs. Stable Diffusion 3.5 quantized FP8generates images in half the time with similar quality as FP16. Prompt: A serene mountain lake at sunrise, crystal clear water reflecting snow-capped peaks, lush pine trees along the shore, soft morning mist, photorealistic, vibrant colors, high resolution. To address the VRAM limitations of SD3.5 Large, the model was quantized with TensorRT to FP8, reducing the VRAM requirement by 40% to 11GB. This means five GeForce RTX 50 Series GPUs can run the model from memory instead of just one. SD3.5 Large and Medium models were also optimized with TensorRT, an AI backend for taking full advantage of Tensor Cores. TensorRT optimizes a model’s weights and graph — the instructions on how to run a model — specifically for RTX GPUs. FP8 TensorRT boosts SD3.5 Large performance by 2.3x vs. BF16 PyTorch, with 40% less memory use. For SD3.5 Medium, BF16 TensorRT delivers a 1.7x speedup. Combined, FP8 TensorRT delivers a 2.3x performance boost on SD3.5 Large compared with running the original models in BF16 PyTorch, while using 40% less memory. And in SD3.5 Medium, BF16 TensorRT provides a 1.7x performance increase compared with BF16 PyTorch. The optimized models are now available on Stability AI’s Hugging Face page. NVIDIA and Stability AI are also collaborating to release SD3.5 as an NVIDIA NIM microservice, making it easier for creators and developers to access and deploy the model for a wide range of applications. The NIM microservice is expected to be released in July. TensorRT for RTX SDK Released Announced at Microsoft Build — and already available as part of the new Windows ML framework in preview — TensorRT for RTX is now available as a standalone SDK for developers. Previously, developers needed to pre-generate and package TensorRT engines for each class of GPU — a process that would yield GPU-specific optimizations but required significant time. With the new version of TensorRT, developers can create a generic TensorRT engine that’s optimized on device in seconds. This JIT compilation approach can be done in the background during installation or when they first use the feature. The easy-to-integrate SDK is now 8x smaller and can be invoked through Windows ML — Microsoft’s new AI inference backend in Windows. Developers can download the new standalone SDK from the NVIDIA Developer page or test it in the Windows ML preview. For more details, read this NVIDIA technical blog and this Microsoft Build recap. Join NVIDIA at GTC Paris At NVIDIA GTC Paris at VivaTech — Europe’s biggest startup and tech event — NVIDIA founder and CEO Jensen Huang yesterday delivered a keynote address on the latest breakthroughs in cloud AI infrastructure, agentic AI and physical AI. Watch a replay. GTC Paris runs through Thursday, June 12, with hands-on demos and sessions led by industry leaders. Whether attending in person or joining online, there’s still plenty to explore at the event. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #nvidia #tensorrt #boosts #stable #diffusion
    BLOGS.NVIDIA.COM
    NVIDIA TensorRT Boosts Stable Diffusion 3.5 Performance on NVIDIA GeForce RTX and RTX PRO GPUs
    Generative AI has reshaped how people create, imagine and interact with digital content. As AI models continue to grow in capability and complexity, they require more VRAM, or video random access memory. The base Stable Diffusion 3.5 Large model, for example, uses over 18GB of VRAM — limiting the number of systems that can run it well. By applying quantization to the model, noncritical layers can be removed or run with lower precision. NVIDIA GeForce RTX 40 Series and the Ada Lovelace generation of NVIDIA RTX PRO GPUs support FP8 quantization to help run these quantized models, and the latest-generation NVIDIA Blackwell GPUs also add support for FP4. NVIDIA collaborated with Stability AI to quantize its latest model, Stable Diffusion (SD) 3.5 Large, to FP8 — reducing VRAM consumption by 40%. Further optimizations to SD3.5 Large and Medium with the NVIDIA TensorRT software development kit (SDK) double performance. In addition, TensorRT has been reimagined for RTX AI PCs, combining its industry-leading performance with just-in-time (JIT), on-device engine building and an 8x smaller package size for seamless AI deployment to more than 100 million RTX AI PCs. TensorRT for RTX is now available as a standalone SDK for developers. RTX-Accelerated AI NVIDIA and Stability AI are boosting the performance and reducing the VRAM requirements of Stable Diffusion 3.5, one of the world’s most popular AI image models. With NVIDIA TensorRT acceleration and quantization, users can now generate and edit images faster and more efficiently on NVIDIA RTX GPUs. Stable Diffusion 3.5 quantized FP8 (right) generates images in half the time with similar quality as FP16 (left). Prompt: A serene mountain lake at sunrise, crystal clear water reflecting snow-capped peaks, lush pine trees along the shore, soft morning mist, photorealistic, vibrant colors, high resolution. To address the VRAM limitations of SD3.5 Large, the model was quantized with TensorRT to FP8, reducing the VRAM requirement by 40% to 11GB. This means five GeForce RTX 50 Series GPUs can run the model from memory instead of just one. SD3.5 Large and Medium models were also optimized with TensorRT, an AI backend for taking full advantage of Tensor Cores. TensorRT optimizes a model’s weights and graph — the instructions on how to run a model — specifically for RTX GPUs. FP8 TensorRT boosts SD3.5 Large performance by 2.3x vs. BF16 PyTorch, with 40% less memory use. For SD3.5 Medium, BF16 TensorRT delivers a 1.7x speedup. Combined, FP8 TensorRT delivers a 2.3x performance boost on SD3.5 Large compared with running the original models in BF16 PyTorch, while using 40% less memory. And in SD3.5 Medium, BF16 TensorRT provides a 1.7x performance increase compared with BF16 PyTorch. The optimized models are now available on Stability AI’s Hugging Face page. NVIDIA and Stability AI are also collaborating to release SD3.5 as an NVIDIA NIM microservice, making it easier for creators and developers to access and deploy the model for a wide range of applications. The NIM microservice is expected to be released in July. TensorRT for RTX SDK Released Announced at Microsoft Build — and already available as part of the new Windows ML framework in preview — TensorRT for RTX is now available as a standalone SDK for developers. Previously, developers needed to pre-generate and package TensorRT engines for each class of GPU — a process that would yield GPU-specific optimizations but required significant time. With the new version of TensorRT, developers can create a generic TensorRT engine that’s optimized on device in seconds. This JIT compilation approach can be done in the background during installation or when they first use the feature. The easy-to-integrate SDK is now 8x smaller and can be invoked through Windows ML — Microsoft’s new AI inference backend in Windows. Developers can download the new standalone SDK from the NVIDIA Developer page or test it in the Windows ML preview. For more details, read this NVIDIA technical blog and this Microsoft Build recap. Join NVIDIA at GTC Paris At NVIDIA GTC Paris at VivaTech — Europe’s biggest startup and tech event — NVIDIA founder and CEO Jensen Huang yesterday delivered a keynote address on the latest breakthroughs in cloud AI infrastructure, agentic AI and physical AI. Watch a replay. GTC Paris runs through Thursday, June 12, with hands-on demos and sessions led by industry leaders. Whether attending in person or joining online, there’s still plenty to explore at the event. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    Like
    Love
    Wow
    Sad
    Angry
    482
    0 Comentários 0 Compartilhamentos
  • Turn RTX ON With 40% Off Performance Day Passes

    Level up GeForce NOW experiences this summer with 40% off Performance Day Passes. Enjoy 24 hours of premium cloud gaming with RTX ON, delivering low latency and shorter wait times.
    The hot deal comes just in time for the cloud’s highly anticipated launch of Dune: Awakening — a multiplayer survival game on a massive scale set on the unforgiving sands of Arrakis.
    It’s perfect to pair with the nine games available this week, including the Frosthaven demo announced at Steam Next Fest.
    Try Before You Buy
    One day, all in.
    Level up to the cloud, no commitment required. For a limited time, grab a Performance Day Pass at a price that’s less than an ice cream sundae and experience premium GeForce NOW gaming for 24 hours.
    With RTX ON, enjoy shorter wait times and lower latency for supported games, all powered by the cloud. Dive into popular games with upgraded visuals and smoother gameplay over free users, whether exploring vast open worlds or battling in fast-paced arenas.
    Take the experience even further by applying the value of the Day Pass toward a six-month Performance membership during the limited-time summer sale. It’s the perfect way to try out premium cloud gaming before jumping into a longer-term membership.
    Survive and Thrive
    Join the fight for Arrakis.
    Dune: Awakening, a multiplayer survival game on a massive scale from Funcom, is set on an ever-changing desert planet called Arrakis. Whether braving colossal sandworms, battling for spice or forging alliances, gamers can experience the spectacle of Arrakis with all the benefits of GeForce NOW.
    Manage hydration, temperature and exposure while contending with deadly sandworms, sandstorms and rival factions. Blend skills-based third-person action combat — featuring ranged and melee weapons, gadgets and abilities — with deep crafting, base building and resource management. Explore and engage in large-scale player vs. player and player vs. environment battles while vying for control over territory and the precious spice.
    The spice is flowing — and so is the power of the cloud. Stream it on GeForce NOW without waiting for lengthy downloads or worrying about hardware requirements. Dune: Awakening is available for members to stream from anywhere with the power of NVIDIA RTX for ultra-smooth gameplay and stunning visuals, even on low-powered devices.
    Chill Out
    Time to bundle up.
    Experience the highly anticipated Frosthaven demo in the cloud during Steam Next Fest with GeForce NOW. For a limited time, dive into a preview of the game directly from the cloud — no high-end PC required.
    Frosthaven — a dark fantasy tactical role-playing game from Snapshot Games and X-COM creator Julian Gollop — brings to life the board game of the same name. It features deep, turn-based combat, unique character classes, and single-player and online co-op modes.
    Play the Frosthaven demo on virtually any device with GeForce NOW and experience the magic of gathering around a board game — now in the cloud. Enter the frozen north of Frosthaven, strategize with friends and dive into epic battles without the hassle of setup or cleanup. With GeForce NOW, game night is just a click away, wherever members are playing from.
    Seize New Games
    A new era of “Rainbow Six Siege” has begun.
    Rainbow Six Siege X, the biggest evolution in the game’s history, is now available with free access for new players. It introduces a new 6v6 “Dual Front” game mode, where teams attack and defend simultaneously with respawns and new strategic objectives. R6 Siege X also brings new and improved gameplay features — such as modernized maps with enhanced visuals and lighting, new destructible environmental elements, advanced rappel, smoother movement, an audio overhaul and a communication wheel for precise strategic plays, as well as weapon inspections to showcase gamers’ favorite cosmetics.
    Look for the following games available to stream in the cloud this week:

    Frosthaven DemoDune: AwakeningMindsEyeKingdom Two CrownsThe AltersLost in Random: The Eternal DieFirefighting Simulator – The SquadJDM: Japanese Drift MasterHellslaveWhat are you planning to play this weekend? Let us know on X or in the comments below.
    #turn #rtx #with #off #performance
    Turn RTX ON With 40% Off Performance Day Passes
    Level up GeForce NOW experiences this summer with 40% off Performance Day Passes. Enjoy 24 hours of premium cloud gaming with RTX ON, delivering low latency and shorter wait times. The hot deal comes just in time for the cloud’s highly anticipated launch of Dune: Awakening — a multiplayer survival game on a massive scale set on the unforgiving sands of Arrakis. It’s perfect to pair with the nine games available this week, including the Frosthaven demo announced at Steam Next Fest. Try Before You Buy One day, all in. Level up to the cloud, no commitment required. For a limited time, grab a Performance Day Pass at a price that’s less than an ice cream sundae and experience premium GeForce NOW gaming for 24 hours. With RTX ON, enjoy shorter wait times and lower latency for supported games, all powered by the cloud. Dive into popular games with upgraded visuals and smoother gameplay over free users, whether exploring vast open worlds or battling in fast-paced arenas. Take the experience even further by applying the value of the Day Pass toward a six-month Performance membership during the limited-time summer sale. It’s the perfect way to try out premium cloud gaming before jumping into a longer-term membership. Survive and Thrive Join the fight for Arrakis. Dune: Awakening, a multiplayer survival game on a massive scale from Funcom, is set on an ever-changing desert planet called Arrakis. Whether braving colossal sandworms, battling for spice or forging alliances, gamers can experience the spectacle of Arrakis with all the benefits of GeForce NOW. Manage hydration, temperature and exposure while contending with deadly sandworms, sandstorms and rival factions. Blend skills-based third-person action combat — featuring ranged and melee weapons, gadgets and abilities — with deep crafting, base building and resource management. Explore and engage in large-scale player vs. player and player vs. environment battles while vying for control over territory and the precious spice. The spice is flowing — and so is the power of the cloud. Stream it on GeForce NOW without waiting for lengthy downloads or worrying about hardware requirements. Dune: Awakening is available for members to stream from anywhere with the power of NVIDIA RTX for ultra-smooth gameplay and stunning visuals, even on low-powered devices. Chill Out Time to bundle up. Experience the highly anticipated Frosthaven demo in the cloud during Steam Next Fest with GeForce NOW. For a limited time, dive into a preview of the game directly from the cloud — no high-end PC required. Frosthaven — a dark fantasy tactical role-playing game from Snapshot Games and X-COM creator Julian Gollop — brings to life the board game of the same name. It features deep, turn-based combat, unique character classes, and single-player and online co-op modes. Play the Frosthaven demo on virtually any device with GeForce NOW and experience the magic of gathering around a board game — now in the cloud. Enter the frozen north of Frosthaven, strategize with friends and dive into epic battles without the hassle of setup or cleanup. With GeForce NOW, game night is just a click away, wherever members are playing from. Seize New Games A new era of “Rainbow Six Siege” has begun. Rainbow Six Siege X, the biggest evolution in the game’s history, is now available with free access for new players. It introduces a new 6v6 “Dual Front” game mode, where teams attack and defend simultaneously with respawns and new strategic objectives. R6 Siege X also brings new and improved gameplay features — such as modernized maps with enhanced visuals and lighting, new destructible environmental elements, advanced rappel, smoother movement, an audio overhaul and a communication wheel for precise strategic plays, as well as weapon inspections to showcase gamers’ favorite cosmetics. Look for the following games available to stream in the cloud this week: Frosthaven DemoDune: AwakeningMindsEyeKingdom Two CrownsThe AltersLost in Random: The Eternal DieFirefighting Simulator – The SquadJDM: Japanese Drift MasterHellslaveWhat are you planning to play this weekend? Let us know on X or in the comments below. #turn #rtx #with #off #performance
    BLOGS.NVIDIA.COM
    Turn RTX ON With 40% Off Performance Day Passes
    Level up GeForce NOW experiences this summer with 40% off Performance Day Passes. Enjoy 24 hours of premium cloud gaming with RTX ON, delivering low latency and shorter wait times. The hot deal comes just in time for the cloud’s highly anticipated launch of Dune: Awakening — a multiplayer survival game on a massive scale set on the unforgiving sands of Arrakis. It’s perfect to pair with the nine games available this week, including the Frosthaven demo announced at Steam Next Fest. Try Before You Buy One day, all in. Level up to the cloud, no commitment required. For a limited time, grab a Performance Day Pass at a price that’s less than an ice cream sundae and experience premium GeForce NOW gaming for 24 hours. With RTX ON, enjoy shorter wait times and lower latency for supported games, all powered by the cloud. Dive into popular games with upgraded visuals and smoother gameplay over free users, whether exploring vast open worlds or battling in fast-paced arenas. Take the experience even further by applying the value of the Day Pass toward a six-month Performance membership during the limited-time summer sale. It’s the perfect way to try out premium cloud gaming before jumping into a longer-term membership. Survive and Thrive Join the fight for Arrakis. Dune: Awakening, a multiplayer survival game on a massive scale from Funcom, is set on an ever-changing desert planet called Arrakis. Whether braving colossal sandworms, battling for spice or forging alliances, gamers can experience the spectacle of Arrakis with all the benefits of GeForce NOW. Manage hydration, temperature and exposure while contending with deadly sandworms, sandstorms and rival factions. Blend skills-based third-person action combat — featuring ranged and melee weapons, gadgets and abilities — with deep crafting, base building and resource management. Explore and engage in large-scale player vs. player and player vs. environment battles while vying for control over territory and the precious spice. The spice is flowing — and so is the power of the cloud. Stream it on GeForce NOW without waiting for lengthy downloads or worrying about hardware requirements. Dune: Awakening is available for members to stream from anywhere with the power of NVIDIA RTX for ultra-smooth gameplay and stunning visuals, even on low-powered devices. Chill Out Time to bundle up. Experience the highly anticipated Frosthaven demo in the cloud during Steam Next Fest with GeForce NOW. For a limited time, dive into a preview of the game directly from the cloud — no high-end PC required. Frosthaven — a dark fantasy tactical role-playing game from Snapshot Games and X-COM creator Julian Gollop — brings to life the board game of the same name. It features deep, turn-based combat, unique character classes, and single-player and online co-op modes. Play the Frosthaven demo on virtually any device with GeForce NOW and experience the magic of gathering around a board game — now in the cloud. Enter the frozen north of Frosthaven, strategize with friends and dive into epic battles without the hassle of setup or cleanup. With GeForce NOW, game night is just a click away, wherever members are playing from. Seize New Games A new era of “Rainbow Six Siege” has begun. Rainbow Six Siege X, the biggest evolution in the game’s history, is now available with free access for new players. It introduces a new 6v6 “Dual Front” game mode, where teams attack and defend simultaneously with respawns and new strategic objectives. R6 Siege X also brings new and improved gameplay features — such as modernized maps with enhanced visuals and lighting, new destructible environmental elements, advanced rappel, smoother movement, an audio overhaul and a communication wheel for precise strategic plays, as well as weapon inspections to showcase gamers’ favorite cosmetics. Look for the following games available to stream in the cloud this week: Frosthaven Demo (New release on Steam, June 9) Dune: Awakening (New release on Steam, June 10) MindsEye (New release on Steam, June 10) Kingdom Two Crowns (New release on Xbox, available on PC Game Pass, June 11) The Alters (New release on Steam and Xbox, available on PC Game Pass, June 13) Lost in Random: The Eternal Die (New release on Steam and Xbox, June 13, available on PC Game Pass, June 17) Firefighting Simulator – The Squad (Xbox, available on PC Game Pass) JDM: Japanese Drift Master (Steam) Hellslave (Steam) What are you planning to play this weekend? Let us know on X or in the comments below.
    0 Comentários 0 Compartilhamentos
Mais Stories