• Minecraft Players Are Amazed by One Small Recent Change

    Some Minecraft players are amazed by how realistic deep water looks in the popular sandbox game after the recent Vibrant Visuals update. Minecraft always had a charming aesthetic, but this recent update really improved the game’s visuals, surprising long-time fans.
    #minecraft #players #are #amazed #one
    Minecraft Players Are Amazed by One Small Recent Change
    Some Minecraft players are amazed by how realistic deep water looks in the popular sandbox game after the recent Vibrant Visuals update. Minecraft always had a charming aesthetic, but this recent update really improved the game’s visuals, surprising long-time fans. #minecraft #players #are #amazed #one
    GAMERANT.COM
    Minecraft Players Are Amazed by One Small Recent Change
    Some Minecraft players are amazed by how realistic deep water looks in the popular sandbox game after the recent Vibrant Visuals update. Minecraft always had a charming aesthetic, but this recent update really improved the game’s visuals, surprising long-time fans.
    0 Commenti 0 condivisioni
  • BOUNCING FROM RUBBER DUCKIES AND FLYING SHEEP TO CLONES FOR THE BOYS SEASON 4

    By TREVOR HOGG
    Images courtesy of Prime Video.

    For those seeking an alternative to the MCU, Prime Video has two offerings of the live-action and animated variety that take the superhero genre into R-rated territory where the hands of the god-like figures get dirty, bloodied and severed. “The Boys is about the intersection of celebrity and politics using superheroes,” states Stephan Fleet, VFX Supervisor on The Boys. “Sometimes I see the news and I don’t even know we can write to catch up to it! But we try. Invincible is an intense look at an alternate DC Universe that has more grit to the superhero side of it all. On one hand, I was jealous watching Season 1 of Invincible because in animation you can do things that you can’t do in real life on a budget.” Season 4 does not tone down the blood, gore and body count. Fleet notes, “The writers almost have this dialogue with us. Sometimes, they’ll write in the script, ‘And Fleet will come up with a cool visual effect for how to kill this person.’ Or, ‘Chhiu, our fight coordinator, will make an awesome fight.’ It is a frequent topic of conversation. We’re constantly trying to be inventive and create new ways to kill people!”

    When Splintersplits in two, the cloning effect was inspired by cellular mitosis.

    “The writers almost have this dialogue with us. Sometimes, they’ll write in the script, ‘And Fleet will come up with a cool visual effect for how to kill this person.’ Or, ‘Chhiu, our fight coordinator, will make an awesome fight.’ It is a frequent topic of conversation. We’re constantly trying to be inventive and create new ways to kill people!”
    —Stephan Fleet, VFX Supervisor

    A total of 1,600 visual effects shots were created for the eight episodes by ILM, Pixomondo, MPC Toronto, Spin VFX, DNEG, Untold Studios, Luma Pictures and Rocket Science VFX. Previs was a critical part of the process. “We have John Griffith, who owns a small company called CNCPT out of Texas, and he does wonderful Unreal Engine level previs,” Fleet remarks. “On set, we have a cartoon of what is going to be done, and you’ll be amazed, specifically for action and heavy visual effects stuff, how close those shots are to the previs when we finish.” Founding Director of Federal Bureau of Superhuman Affairs, Victoria Neuman, literally gets ripped in half by two tendrils coming out of Compound V-enhanced Billy Butcher, the leader of superhero resistance group The Boys. “The word that we like to use on this show is ‘grounded,’ and I like to say ‘grounded’ with an asterisk in this day and age because we’re grounded until we get to killing people in the craziest ways. In this case, having someone floating in the air and being ripped in half by two tendrils was all CG.”

    Multiple plates were shot to enable Simon Pegg to phase through the actor laying in a hospital bed.

    Testing can get rather elaborate. “For that end scene with Butcher’s tendrils, the room was two stories, and we were able to put the camera up high along with a bunch of blood cannons,” Fleet recalls. “When the body rips in half and explodes, there is a practical component. We rained down a bunch of real blood and guts right in front of Huey. It’s a known joke that we like to douse Jack Quaid with blood as much as possible! In this case, the special effects team led by Hudson Kenny needed to test it the day before, and I said, “I’ll be the guinea pig for the test.’ They covered the whole place with plastic like it was a Dexter kill room because you don’t want to destroy the set. I’m standing there in a white hazmat suit with goggles on, covered from head to toe in plastic and waiting as they’re tweaking all of these things. It sounds like World War II going on. They’re on walkie talkies to each other, and then all of a sudden, it’s ‘Five, four, three, two, one…’  And I get exploded with blood. I wanted to see what it was like, and it’s intense.”

    “On set, we have a cartoon of what is going to be done, and you’ll be amazed, specifically for action and heavy visual effects stuff, how close those shots are to the previs when we finish.”
    —Stephan Fleet, VFX Supervisor

    The Deep has a love affair with an octopus called Ambrosius, voiced by Tilda Swinton. “It’s implied bestiality!” Fleet laughs. “I would call it more of a romance. What was fun from my perspective is that I knew what the look was going to be, so then it’s about putting in the details and the animation. One of the instincts that you always have when you’re making a sea creature that talks to a humanyou tend to want to give it human gestures and eyebrows. Erik Kripkesaid, ‘No. We have to find things that an octopus could do that conveys the same emotion.’ That’s when ideas came in, such as putting a little The Deep toy inside the water tank. When Ambrosius is trying to have an intimate moment or connect with him, she can wrap a tentacle around that. My favorite experience doing Ambrosius was when The Deep is reading poetry to her on a bed. CG creatures touching humans is one of the more complicated things to do and make look real. Ambrosius’ tentacles reach for his arm, and it becomes an intimate moment. More than touching the skin, displacing the bedsheet as Ambrosius moved ended up becoming a lot of CG, and we had to go back and forth a few times to get that looking right; that turned out to be tricky.”

    A building is replaced by a massive crowd attending a rally being held by Homelander.

    In a twisted form of sexual foreplay, Sister Sage has The Deep perform a transorbital lobotomy on her. “Thank you, Amazon for selling lobotomy tools as novelty items!” Fleet chuckles. “We filmed it with a lobotomy tool on set. There is a lot of safety involved in doing something like that. Obviously, you don’t want to put any performer in any situation where they come close to putting anything real near their eye. We created this half lobotomy tool and did this complicated split screen with the lobotomy tool on a teeter totter. The Deep wasin one shot and Sister Sage reacted in the other shot. To marry the two ended up being a lot of CG work. Then there are these close-ups which are full CG. I always keep a dummy head that is painted gray that I use all of the time for reference. In macrophotography I filmed this lobotomy tool going right into the eye area. I did that because the tool is chrome, so it’s reflective and has ridges. It has an interesting reflective property. I was able to see how and what part of the human eye reflects onto the tool. A lot of that shot became about realistic reflections and lighting on the tool. Then heavy CG for displacing the eye and pushing the lobotomy tool into it. That was one of the more complicated sequences that we had to achieve.”

    In order to create an intimate moment between Ambrosius and The Deep, a toy version of the superhero was placed inside of the water tank that she could wrap a tentacle around.

    “The word that we like to use on this show is ‘grounded,’ and I like to say ‘grounded’ with an asterisk in this day and age because we’re grounded until we get to killing people in the craziest ways. In this case, having someone floating in the air and being ripped in half by two tendrils was all CG.”
    —Stephan Fleet, VFX Supervisor

    Sheep and chickens embark on a violent rampage courtesy of Compound V with the latter piercing the chest of a bodyguard belonging to Victoria Neuman. “Weirdly, that was one of our more traditional shots,’ Fleet states. “What is fun about that one is I asked for real chickens as reference. The chicken flying through his chest is real. It’s our chicken wrangler in green suit gently tossing a chicken. We blended two real plates together with some CG in the middle.” A connection was made with a sci-fi classic. “The sheep kill this bull, and we shot it is in this narrow corridor of fencing. When they run, I always equated it as the Trench Run in Star Wars and looked at the sheep as TIE fighters or X-wings coming at them.” The scene was one of the scarier moments for the visual effects team. Fleet explains, “When I read the script, I thought this could be the moment where we jump the shark. For the shots where the sheep are still and scream to the camera, Untold Studios did a bunch of R&D and came up with baboon teeth. I tried to keep anything real as much as possible, but, obviously, when sheep are flying, they have to be CG. I call it the Battlestar Galactica theory, where I like to shake the camera, overshoot shots and make it sloppy when they’re in the air so you can add motion blur. Comedy also helps sell visual effects.”

    The sheep injected with Compound V develop the ability to fly and were shot in an imperfect manner to help ground the scenes.

    Once injected with Compound V, Hugh Campbell Sr.develops the ability to phase through objects, including human beings. “We called it the Bro-nut because his name in the script is Wall Street Bro,” Fleet notes. “That was a complicated motion control shot, repeating the move over and over again. We had to shoot multiple plates of Simon Pegg and the guy in the bed. Special effects and prosthetics created a dummy guy with a hole in his chest with practical blood dripping down. It was meshing it together and getting the timing right in post. On top of that, there was the CG blood immediately around Simon Pegg.” The phasing effect had to avoid appearing as a dissolve. “I had this idea of doing high-frequency vibration on the X axis loosely based on how The Flash vibrates through walls. You want everything to have a loose motivation that then helps trigger the visuals. We tried not to overcomplicate that because, ultimately, you want something like that to be quick. If you spend too much time on phasing, it can look cheesy. In our case, it was a lot of false walls. Simon Pegg is running into a greenscreen hole which we plug in with a wall or coming out of one. I went off the actor’s action, and we added a light opacity mix with some X-axis shake.”

    Providing a different twist to the fights was the replacement of spurting blood with photoreal rubber duckies during a drug-induced hallucination.

    Homelanderbreaks a mirror which emphasizes his multiple personality disorder. “The original plan was that special effects was going to pre-break a mirror, and we were going to shoot Anthony Starr moving his head doing all of the performances in the different parts of the mirror,” Fleet reveals. “This was all based on a photo that my ex-brother-in-law sent me. He was walking down a street in Glendale, California, came across a broken mirror that someone had thrown out, and took a photo of himself where he had five heads in the mirror. We get there on the day, and I’m realizing that this is really complicated. Anthony has to do these five different performances, and we have to deal with infinite mirrors. At the last minute, I said, ‘We have to do this on a clean mirror.’ We did it on a clear mirror and gave Anthony different eyelines. The mirror break was all done in post, and we were able to cheat his head slightly and art-direct where the break crosses his chin. Editorial was able to do split screens for the timing of the dialogue.”

    “For the shots where the sheep are still and scream to the camera, Untold Studios did a bunch of R&D and came up with baboon teeth. I tried to keep anything real as much as possible, but, obviously, when sheep are flying, they have to be CG. I call it the Battlestar Galactica theory, where I like to shake the camera, overshoot shots and make it sloppy when they’re in the air so you can add motion blur. Comedy also helps sell visual effects.”
    —Stephan Fleet, VFX Supervisor

    Initially, the plan was to use a practical mirror, but creating a digital version proved to be the more effective solution.

    A different spin on the bloodbath occurs during a fight when a drugged Frenchiehallucinates as Kimiko Miyashirogoes on a killing spree. “We went back and forth with a lot of different concepts for what this hallucination would be,” Fleet remarks. “When we filmed it, we landed on Frenchie having a synesthesia moment where he’s seeing a lot of abstract colors flying in the air. We started getting into that in post and it wasn’t working. We went back to the rubber duckies, which goes back to the story of him in the bathtub. What’s in the bathtub? Rubber duckies, bubbles and water. There was a lot of physics and logic required to figure out how these rubber duckies could float out of someone’s neck. We decided on bubbles when Kimiko hits people’s heads. At one point, we had water when she got shot, but it wasn’t working, so we killed it. We probably did about 100 different versions. We got really detailed with our rubber duckie modeling because we didn’t want it to look cartoony. That took a long time.”

    Ambrosius, voiced by Tilda Swinton, gets a lot more screentime in Season 4.

    When Splintersplits in two was achieved heavily in CG. “Erik threw out the words ‘cellular mitosis’ early on as something he wanted to use,” Fleet states. “We shot Rob Benedict on a greenscreen doing all of the different performances for the clones that pop out. It was a crazy amount of CG work with Houdini and particle and skin effects. We previs’d the sequence so we had specific actions. One clone comes out to the right and the other pulls backwards.” What tends to go unnoticed by many is Splinter’s clones setting up for a press conference being held by Firecracker. “It’s funny how no one brings up the 22-hour motion control shot that we had to do with Splinter on the stage, which was the most complicated shot!” Fleet observes. “We have this sweeping long shot that brings you into the room and follows Splinter as he carries a container to the stage and hands it off to a clone, and then you reveal five more of them interweaving each other and interacting with all of these objects. It’s like a minute-long dance. First off, you have to choreograph it. We previs’d it, but then you need to get people to do it. We hired dancers and put different colored armbands on them. The camera is like another performer, and a metronome is going, which enables you to find a pace. That took about eight hours of rehearsal. Then Rob has to watch each one of their performances and mimic it to the beat. When he is handing off a box of cables, it’s to a double who is going to have to be erased and be him on the other side. They have to be almost perfect in their timing and lineup in order to take it over in visual effects and make it work.”
    #bouncing #rubber #duckies #flying #sheep
    BOUNCING FROM RUBBER DUCKIES AND FLYING SHEEP TO CLONES FOR THE BOYS SEASON 4
    By TREVOR HOGG Images courtesy of Prime Video. For those seeking an alternative to the MCU, Prime Video has two offerings of the live-action and animated variety that take the superhero genre into R-rated territory where the hands of the god-like figures get dirty, bloodied and severed. “The Boys is about the intersection of celebrity and politics using superheroes,” states Stephan Fleet, VFX Supervisor on The Boys. “Sometimes I see the news and I don’t even know we can write to catch up to it! But we try. Invincible is an intense look at an alternate DC Universe that has more grit to the superhero side of it all. On one hand, I was jealous watching Season 1 of Invincible because in animation you can do things that you can’t do in real life on a budget.” Season 4 does not tone down the blood, gore and body count. Fleet notes, “The writers almost have this dialogue with us. Sometimes, they’ll write in the script, ‘And Fleet will come up with a cool visual effect for how to kill this person.’ Or, ‘Chhiu, our fight coordinator, will make an awesome fight.’ It is a frequent topic of conversation. We’re constantly trying to be inventive and create new ways to kill people!” When Splintersplits in two, the cloning effect was inspired by cellular mitosis. “The writers almost have this dialogue with us. Sometimes, they’ll write in the script, ‘And Fleet will come up with a cool visual effect for how to kill this person.’ Or, ‘Chhiu, our fight coordinator, will make an awesome fight.’ It is a frequent topic of conversation. We’re constantly trying to be inventive and create new ways to kill people!” —Stephan Fleet, VFX Supervisor A total of 1,600 visual effects shots were created for the eight episodes by ILM, Pixomondo, MPC Toronto, Spin VFX, DNEG, Untold Studios, Luma Pictures and Rocket Science VFX. Previs was a critical part of the process. “We have John Griffith, who owns a small company called CNCPT out of Texas, and he does wonderful Unreal Engine level previs,” Fleet remarks. “On set, we have a cartoon of what is going to be done, and you’ll be amazed, specifically for action and heavy visual effects stuff, how close those shots are to the previs when we finish.” Founding Director of Federal Bureau of Superhuman Affairs, Victoria Neuman, literally gets ripped in half by two tendrils coming out of Compound V-enhanced Billy Butcher, the leader of superhero resistance group The Boys. “The word that we like to use on this show is ‘grounded,’ and I like to say ‘grounded’ with an asterisk in this day and age because we’re grounded until we get to killing people in the craziest ways. In this case, having someone floating in the air and being ripped in half by two tendrils was all CG.” Multiple plates were shot to enable Simon Pegg to phase through the actor laying in a hospital bed. Testing can get rather elaborate. “For that end scene with Butcher’s tendrils, the room was two stories, and we were able to put the camera up high along with a bunch of blood cannons,” Fleet recalls. “When the body rips in half and explodes, there is a practical component. We rained down a bunch of real blood and guts right in front of Huey. It’s a known joke that we like to douse Jack Quaid with blood as much as possible! In this case, the special effects team led by Hudson Kenny needed to test it the day before, and I said, “I’ll be the guinea pig for the test.’ They covered the whole place with plastic like it was a Dexter kill room because you don’t want to destroy the set. I’m standing there in a white hazmat suit with goggles on, covered from head to toe in plastic and waiting as they’re tweaking all of these things. It sounds like World War II going on. They’re on walkie talkies to each other, and then all of a sudden, it’s ‘Five, four, three, two, one…’  And I get exploded with blood. I wanted to see what it was like, and it’s intense.” “On set, we have a cartoon of what is going to be done, and you’ll be amazed, specifically for action and heavy visual effects stuff, how close those shots are to the previs when we finish.” —Stephan Fleet, VFX Supervisor The Deep has a love affair with an octopus called Ambrosius, voiced by Tilda Swinton. “It’s implied bestiality!” Fleet laughs. “I would call it more of a romance. What was fun from my perspective is that I knew what the look was going to be, so then it’s about putting in the details and the animation. One of the instincts that you always have when you’re making a sea creature that talks to a humanyou tend to want to give it human gestures and eyebrows. Erik Kripkesaid, ‘No. We have to find things that an octopus could do that conveys the same emotion.’ That’s when ideas came in, such as putting a little The Deep toy inside the water tank. When Ambrosius is trying to have an intimate moment or connect with him, she can wrap a tentacle around that. My favorite experience doing Ambrosius was when The Deep is reading poetry to her on a bed. CG creatures touching humans is one of the more complicated things to do and make look real. Ambrosius’ tentacles reach for his arm, and it becomes an intimate moment. More than touching the skin, displacing the bedsheet as Ambrosius moved ended up becoming a lot of CG, and we had to go back and forth a few times to get that looking right; that turned out to be tricky.” A building is replaced by a massive crowd attending a rally being held by Homelander. In a twisted form of sexual foreplay, Sister Sage has The Deep perform a transorbital lobotomy on her. “Thank you, Amazon for selling lobotomy tools as novelty items!” Fleet chuckles. “We filmed it with a lobotomy tool on set. There is a lot of safety involved in doing something like that. Obviously, you don’t want to put any performer in any situation where they come close to putting anything real near their eye. We created this half lobotomy tool and did this complicated split screen with the lobotomy tool on a teeter totter. The Deep wasin one shot and Sister Sage reacted in the other shot. To marry the two ended up being a lot of CG work. Then there are these close-ups which are full CG. I always keep a dummy head that is painted gray that I use all of the time for reference. In macrophotography I filmed this lobotomy tool going right into the eye area. I did that because the tool is chrome, so it’s reflective and has ridges. It has an interesting reflective property. I was able to see how and what part of the human eye reflects onto the tool. A lot of that shot became about realistic reflections and lighting on the tool. Then heavy CG for displacing the eye and pushing the lobotomy tool into it. That was one of the more complicated sequences that we had to achieve.” In order to create an intimate moment between Ambrosius and The Deep, a toy version of the superhero was placed inside of the water tank that she could wrap a tentacle around. “The word that we like to use on this show is ‘grounded,’ and I like to say ‘grounded’ with an asterisk in this day and age because we’re grounded until we get to killing people in the craziest ways. In this case, having someone floating in the air and being ripped in half by two tendrils was all CG.” —Stephan Fleet, VFX Supervisor Sheep and chickens embark on a violent rampage courtesy of Compound V with the latter piercing the chest of a bodyguard belonging to Victoria Neuman. “Weirdly, that was one of our more traditional shots,’ Fleet states. “What is fun about that one is I asked for real chickens as reference. The chicken flying through his chest is real. It’s our chicken wrangler in green suit gently tossing a chicken. We blended two real plates together with some CG in the middle.” A connection was made with a sci-fi classic. “The sheep kill this bull, and we shot it is in this narrow corridor of fencing. When they run, I always equated it as the Trench Run in Star Wars and looked at the sheep as TIE fighters or X-wings coming at them.” The scene was one of the scarier moments for the visual effects team. Fleet explains, “When I read the script, I thought this could be the moment where we jump the shark. For the shots where the sheep are still and scream to the camera, Untold Studios did a bunch of R&D and came up with baboon teeth. I tried to keep anything real as much as possible, but, obviously, when sheep are flying, they have to be CG. I call it the Battlestar Galactica theory, where I like to shake the camera, overshoot shots and make it sloppy when they’re in the air so you can add motion blur. Comedy also helps sell visual effects.” The sheep injected with Compound V develop the ability to fly and were shot in an imperfect manner to help ground the scenes. Once injected with Compound V, Hugh Campbell Sr.develops the ability to phase through objects, including human beings. “We called it the Bro-nut because his name in the script is Wall Street Bro,” Fleet notes. “That was a complicated motion control shot, repeating the move over and over again. We had to shoot multiple plates of Simon Pegg and the guy in the bed. Special effects and prosthetics created a dummy guy with a hole in his chest with practical blood dripping down. It was meshing it together and getting the timing right in post. On top of that, there was the CG blood immediately around Simon Pegg.” The phasing effect had to avoid appearing as a dissolve. “I had this idea of doing high-frequency vibration on the X axis loosely based on how The Flash vibrates through walls. You want everything to have a loose motivation that then helps trigger the visuals. We tried not to overcomplicate that because, ultimately, you want something like that to be quick. If you spend too much time on phasing, it can look cheesy. In our case, it was a lot of false walls. Simon Pegg is running into a greenscreen hole which we plug in with a wall or coming out of one. I went off the actor’s action, and we added a light opacity mix with some X-axis shake.” Providing a different twist to the fights was the replacement of spurting blood with photoreal rubber duckies during a drug-induced hallucination. Homelanderbreaks a mirror which emphasizes his multiple personality disorder. “The original plan was that special effects was going to pre-break a mirror, and we were going to shoot Anthony Starr moving his head doing all of the performances in the different parts of the mirror,” Fleet reveals. “This was all based on a photo that my ex-brother-in-law sent me. He was walking down a street in Glendale, California, came across a broken mirror that someone had thrown out, and took a photo of himself where he had five heads in the mirror. We get there on the day, and I’m realizing that this is really complicated. Anthony has to do these five different performances, and we have to deal with infinite mirrors. At the last minute, I said, ‘We have to do this on a clean mirror.’ We did it on a clear mirror and gave Anthony different eyelines. The mirror break was all done in post, and we were able to cheat his head slightly and art-direct where the break crosses his chin. Editorial was able to do split screens for the timing of the dialogue.” “For the shots where the sheep are still and scream to the camera, Untold Studios did a bunch of R&D and came up with baboon teeth. I tried to keep anything real as much as possible, but, obviously, when sheep are flying, they have to be CG. I call it the Battlestar Galactica theory, where I like to shake the camera, overshoot shots and make it sloppy when they’re in the air so you can add motion blur. Comedy also helps sell visual effects.” —Stephan Fleet, VFX Supervisor Initially, the plan was to use a practical mirror, but creating a digital version proved to be the more effective solution. A different spin on the bloodbath occurs during a fight when a drugged Frenchiehallucinates as Kimiko Miyashirogoes on a killing spree. “We went back and forth with a lot of different concepts for what this hallucination would be,” Fleet remarks. “When we filmed it, we landed on Frenchie having a synesthesia moment where he’s seeing a lot of abstract colors flying in the air. We started getting into that in post and it wasn’t working. We went back to the rubber duckies, which goes back to the story of him in the bathtub. What’s in the bathtub? Rubber duckies, bubbles and water. There was a lot of physics and logic required to figure out how these rubber duckies could float out of someone’s neck. We decided on bubbles when Kimiko hits people’s heads. At one point, we had water when she got shot, but it wasn’t working, so we killed it. We probably did about 100 different versions. We got really detailed with our rubber duckie modeling because we didn’t want it to look cartoony. That took a long time.” Ambrosius, voiced by Tilda Swinton, gets a lot more screentime in Season 4. When Splintersplits in two was achieved heavily in CG. “Erik threw out the words ‘cellular mitosis’ early on as something he wanted to use,” Fleet states. “We shot Rob Benedict on a greenscreen doing all of the different performances for the clones that pop out. It was a crazy amount of CG work with Houdini and particle and skin effects. We previs’d the sequence so we had specific actions. One clone comes out to the right and the other pulls backwards.” What tends to go unnoticed by many is Splinter’s clones setting up for a press conference being held by Firecracker. “It’s funny how no one brings up the 22-hour motion control shot that we had to do with Splinter on the stage, which was the most complicated shot!” Fleet observes. “We have this sweeping long shot that brings you into the room and follows Splinter as he carries a container to the stage and hands it off to a clone, and then you reveal five more of them interweaving each other and interacting with all of these objects. It’s like a minute-long dance. First off, you have to choreograph it. We previs’d it, but then you need to get people to do it. We hired dancers and put different colored armbands on them. The camera is like another performer, and a metronome is going, which enables you to find a pace. That took about eight hours of rehearsal. Then Rob has to watch each one of their performances and mimic it to the beat. When he is handing off a box of cables, it’s to a double who is going to have to be erased and be him on the other side. They have to be almost perfect in their timing and lineup in order to take it over in visual effects and make it work.” #bouncing #rubber #duckies #flying #sheep
    WWW.VFXVOICE.COM
    BOUNCING FROM RUBBER DUCKIES AND FLYING SHEEP TO CLONES FOR THE BOYS SEASON 4
    By TREVOR HOGG Images courtesy of Prime Video. For those seeking an alternative to the MCU, Prime Video has two offerings of the live-action and animated variety that take the superhero genre into R-rated territory where the hands of the god-like figures get dirty, bloodied and severed. “The Boys is about the intersection of celebrity and politics using superheroes,” states Stephan Fleet, VFX Supervisor on The Boys. “Sometimes I see the news and I don’t even know we can write to catch up to it! But we try. Invincible is an intense look at an alternate DC Universe that has more grit to the superhero side of it all. On one hand, I was jealous watching Season 1 of Invincible because in animation you can do things that you can’t do in real life on a budget.” Season 4 does not tone down the blood, gore and body count. Fleet notes, “The writers almost have this dialogue with us. Sometimes, they’ll write in the script, ‘And Fleet will come up with a cool visual effect for how to kill this person.’ Or, ‘Chhiu, our fight coordinator, will make an awesome fight.’ It is a frequent topic of conversation. We’re constantly trying to be inventive and create new ways to kill people!” When Splinter (Rob Benedict) splits in two, the cloning effect was inspired by cellular mitosis. “The writers almost have this dialogue with us. Sometimes, they’ll write in the script, ‘And Fleet will come up with a cool visual effect for how to kill this person.’ Or, ‘Chhiu, our fight coordinator, will make an awesome fight.’ It is a frequent topic of conversation. We’re constantly trying to be inventive and create new ways to kill people!” —Stephan Fleet, VFX Supervisor A total of 1,600 visual effects shots were created for the eight episodes by ILM, Pixomondo, MPC Toronto, Spin VFX, DNEG, Untold Studios, Luma Pictures and Rocket Science VFX. Previs was a critical part of the process. “We have John Griffith [Previs Director], who owns a small company called CNCPT out of Texas, and he does wonderful Unreal Engine level previs,” Fleet remarks. “On set, we have a cartoon of what is going to be done, and you’ll be amazed, specifically for action and heavy visual effects stuff, how close those shots are to the previs when we finish.” Founding Director of Federal Bureau of Superhuman Affairs, Victoria Neuman, literally gets ripped in half by two tendrils coming out of Compound V-enhanced Billy Butcher, the leader of superhero resistance group The Boys. “The word that we like to use on this show is ‘grounded,’ and I like to say ‘grounded’ with an asterisk in this day and age because we’re grounded until we get to killing people in the craziest ways. In this case, having someone floating in the air and being ripped in half by two tendrils was all CG.” Multiple plates were shot to enable Simon Pegg to phase through the actor laying in a hospital bed. Testing can get rather elaborate. “For that end scene with Butcher’s tendrils, the room was two stories, and we were able to put the camera up high along with a bunch of blood cannons,” Fleet recalls. “When the body rips in half and explodes, there is a practical component. We rained down a bunch of real blood and guts right in front of Huey. It’s a known joke that we like to douse Jack Quaid with blood as much as possible! In this case, the special effects team led by Hudson Kenny needed to test it the day before, and I said, “I’ll be the guinea pig for the test.’ They covered the whole place with plastic like it was a Dexter kill room because you don’t want to destroy the set. I’m standing there in a white hazmat suit with goggles on, covered from head to toe in plastic and waiting as they’re tweaking all of these things. It sounds like World War II going on. They’re on walkie talkies to each other, and then all of a sudden, it’s ‘Five, four, three, two, one…’  And I get exploded with blood. I wanted to see what it was like, and it’s intense.” “On set, we have a cartoon of what is going to be done, and you’ll be amazed, specifically for action and heavy visual effects stuff, how close those shots are to the previs when we finish.” —Stephan Fleet, VFX Supervisor The Deep has a love affair with an octopus called Ambrosius, voiced by Tilda Swinton. “It’s implied bestiality!” Fleet laughs. “I would call it more of a romance. What was fun from my perspective is that I knew what the look was going to be [from Season 3], so then it’s about putting in the details and the animation. One of the instincts that you always have when you’re making a sea creature that talks to a human [is] you tend to want to give it human gestures and eyebrows. Erik Kripke [Creator, Executive Producer, Showrunner, Director, Writer] said, ‘No. We have to find things that an octopus could do that conveys the same emotion.’ That’s when ideas came in, such as putting a little The Deep toy inside the water tank. When Ambrosius is trying to have an intimate moment or connect with him, she can wrap a tentacle around that. My favorite experience doing Ambrosius was when The Deep is reading poetry to her on a bed. CG creatures touching humans is one of the more complicated things to do and make look real. Ambrosius’ tentacles reach for his arm, and it becomes an intimate moment. More than touching the skin, displacing the bedsheet as Ambrosius moved ended up becoming a lot of CG, and we had to go back and forth a few times to get that looking right; that turned out to be tricky.” A building is replaced by a massive crowd attending a rally being held by Homelander. In a twisted form of sexual foreplay, Sister Sage has The Deep perform a transorbital lobotomy on her. “Thank you, Amazon for selling lobotomy tools as novelty items!” Fleet chuckles. “We filmed it with a lobotomy tool on set. There is a lot of safety involved in doing something like that. Obviously, you don’t want to put any performer in any situation where they come close to putting anything real near their eye. We created this half lobotomy tool and did this complicated split screen with the lobotomy tool on a teeter totter. The Deep was [acting in a certain way] in one shot and Sister Sage reacted in the other shot. To marry the two ended up being a lot of CG work. Then there are these close-ups which are full CG. I always keep a dummy head that is painted gray that I use all of the time for reference. In macrophotography I filmed this lobotomy tool going right into the eye area. I did that because the tool is chrome, so it’s reflective and has ridges. It has an interesting reflective property. I was able to see how and what part of the human eye reflects onto the tool. A lot of that shot became about realistic reflections and lighting on the tool. Then heavy CG for displacing the eye and pushing the lobotomy tool into it. That was one of the more complicated sequences that we had to achieve.” In order to create an intimate moment between Ambrosius and The Deep, a toy version of the superhero was placed inside of the water tank that she could wrap a tentacle around. “The word that we like to use on this show is ‘grounded,’ and I like to say ‘grounded’ with an asterisk in this day and age because we’re grounded until we get to killing people in the craziest ways. In this case, having someone floating in the air and being ripped in half by two tendrils was all CG.” —Stephan Fleet, VFX Supervisor Sheep and chickens embark on a violent rampage courtesy of Compound V with the latter piercing the chest of a bodyguard belonging to Victoria Neuman. “Weirdly, that was one of our more traditional shots,’ Fleet states. “What is fun about that one is I asked for real chickens as reference. The chicken flying through his chest is real. It’s our chicken wrangler in green suit gently tossing a chicken. We blended two real plates together with some CG in the middle.” A connection was made with a sci-fi classic. “The sheep kill this bull, and we shot it is in this narrow corridor of fencing. When they run, I always equated it as the Trench Run in Star Wars and looked at the sheep as TIE fighters or X-wings coming at them.” The scene was one of the scarier moments for the visual effects team. Fleet explains, “When I read the script, I thought this could be the moment where we jump the shark. For the shots where the sheep are still and scream to the camera, Untold Studios did a bunch of R&D and came up with baboon teeth. I tried to keep anything real as much as possible, but, obviously, when sheep are flying, they have to be CG. I call it the Battlestar Galactica theory, where I like to shake the camera, overshoot shots and make it sloppy when they’re in the air so you can add motion blur. Comedy also helps sell visual effects.” The sheep injected with Compound V develop the ability to fly and were shot in an imperfect manner to help ground the scenes. Once injected with Compound V, Hugh Campbell Sr. (Simon Pegg) develops the ability to phase through objects, including human beings. “We called it the Bro-nut because his name in the script is Wall Street Bro,” Fleet notes. “That was a complicated motion control shot, repeating the move over and over again. We had to shoot multiple plates of Simon Pegg and the guy in the bed. Special effects and prosthetics created a dummy guy with a hole in his chest with practical blood dripping down. It was meshing it together and getting the timing right in post. On top of that, there was the CG blood immediately around Simon Pegg.” The phasing effect had to avoid appearing as a dissolve. “I had this idea of doing high-frequency vibration on the X axis loosely based on how The Flash vibrates through walls. You want everything to have a loose motivation that then helps trigger the visuals. We tried not to overcomplicate that because, ultimately, you want something like that to be quick. If you spend too much time on phasing, it can look cheesy. In our case, it was a lot of false walls. Simon Pegg is running into a greenscreen hole which we plug in with a wall or coming out of one. I went off the actor’s action, and we added a light opacity mix with some X-axis shake.” Providing a different twist to the fights was the replacement of spurting blood with photoreal rubber duckies during a drug-induced hallucination. Homelander (Anthony Starr) breaks a mirror which emphasizes his multiple personality disorder. “The original plan was that special effects was going to pre-break a mirror, and we were going to shoot Anthony Starr moving his head doing all of the performances in the different parts of the mirror,” Fleet reveals. “This was all based on a photo that my ex-brother-in-law sent me. He was walking down a street in Glendale, California, came across a broken mirror that someone had thrown out, and took a photo of himself where he had five heads in the mirror. We get there on the day, and I’m realizing that this is really complicated. Anthony has to do these five different performances, and we have to deal with infinite mirrors. At the last minute, I said, ‘We have to do this on a clean mirror.’ We did it on a clear mirror and gave Anthony different eyelines. The mirror break was all done in post, and we were able to cheat his head slightly and art-direct where the break crosses his chin. Editorial was able to do split screens for the timing of the dialogue.” “For the shots where the sheep are still and scream to the camera, Untold Studios did a bunch of R&D and came up with baboon teeth. I tried to keep anything real as much as possible, but, obviously, when sheep are flying, they have to be CG. I call it the Battlestar Galactica theory, where I like to shake the camera, overshoot shots and make it sloppy when they’re in the air so you can add motion blur. Comedy also helps sell visual effects.” —Stephan Fleet, VFX Supervisor Initially, the plan was to use a practical mirror, but creating a digital version proved to be the more effective solution. A different spin on the bloodbath occurs during a fight when a drugged Frenchie (Tomer Capone) hallucinates as Kimiko Miyashiro (Karen Fukuhara) goes on a killing spree. “We went back and forth with a lot of different concepts for what this hallucination would be,” Fleet remarks. “When we filmed it, we landed on Frenchie having a synesthesia moment where he’s seeing a lot of abstract colors flying in the air. We started getting into that in post and it wasn’t working. We went back to the rubber duckies, which goes back to the story of him in the bathtub. What’s in the bathtub? Rubber duckies, bubbles and water. There was a lot of physics and logic required to figure out how these rubber duckies could float out of someone’s neck. We decided on bubbles when Kimiko hits people’s heads. At one point, we had water when she got shot, but it wasn’t working, so we killed it. We probably did about 100 different versions. We got really detailed with our rubber duckie modeling because we didn’t want it to look cartoony. That took a long time.” Ambrosius, voiced by Tilda Swinton, gets a lot more screentime in Season 4. When Splinter (Rob Benedict) splits in two was achieved heavily in CG. “Erik threw out the words ‘cellular mitosis’ early on as something he wanted to use,” Fleet states. “We shot Rob Benedict on a greenscreen doing all of the different performances for the clones that pop out. It was a crazy amount of CG work with Houdini and particle and skin effects. We previs’d the sequence so we had specific actions. One clone comes out to the right and the other pulls backwards.” What tends to go unnoticed by many is Splinter’s clones setting up for a press conference being held by Firecracker (Valorie Curry). “It’s funny how no one brings up the 22-hour motion control shot that we had to do with Splinter on the stage, which was the most complicated shot!” Fleet observes. “We have this sweeping long shot that brings you into the room and follows Splinter as he carries a container to the stage and hands it off to a clone, and then you reveal five more of them interweaving each other and interacting with all of these objects. It’s like a minute-long dance. First off, you have to choreograph it. We previs’d it, but then you need to get people to do it. We hired dancers and put different colored armbands on them. The camera is like another performer, and a metronome is going, which enables you to find a pace. That took about eight hours of rehearsal. Then Rob has to watch each one of their performances and mimic it to the beat. When he is handing off a box of cables, it’s to a double who is going to have to be erased and be him on the other side. They have to be almost perfect in their timing and lineup in order to take it over in visual effects and make it work.”
    0 Commenti 0 condivisioni
  • Turning Points: Accept & Proceed

    12 June, 2025

    In our turning points series, design studios share some of the key moments that shaped their business. This week, we meet Accept & Proceed.

    Accept & Proceed is a London based brand and design studio that works with clients like NASA, Nike and LEGO.
    Founder David Johnston talks us through some of the decisions that defined his business.
    In 2006, Johnston took the leap to start his own business, armed with a good name and a willingness to bend the truth about his team…
    I’d gone through my career learning from big organisations, and one small organisation, and I felt like I wasn’t happy where I was. It was my dad who encouraged me to take a leap of faith and try and go it alone. With nothing more than a month’s wages in the bank and a lot of energy, I decided to go and set up an agency.
    That really just means giving yourself a name and starting to promote yourself in the world.
    Accept & Proceed founder David Johnston
    I think the name itself is a very important thing. I wanted something that was memorable but also layered in meaning. A name that starts with an “a” is very beneficial when you’re being listed in the index of books and things like that.
    But it became a bit of a compass for the way that we wanted to create work, around accepting the status quo for what it is, but with a continual commitment to proceed nonetheless.
    Because I didn’t have anyone to work with, in those early months I just made up email addresses of people that didn’t exist. That allowed me to cost projects up for multiple people. That’s obviously a degree of hustle I wouldn’t encourage in everyone, but it meant I was able to charge multiple day rates for projects where I was playing the role of four or five people.
    Self-initiated projects have long been part of the studio’s DNA and played a key role in building key client relationships.
    A&P by… was a brief to explore these letterforms without any commercial intent apart from the joy of creative expression. I started reaching out to illustrators and artists and photographers and designers that I really rated, and the things that started coming back were incredible.
    I was overwhelmed by the amount of energy and passion that people like Mr Bingo and Jason Evans were bringing to this.
    I think in so many ways, the answer to everything is community. I’ve gone on to work with a lot of the people that created these, and they also became friends. It was an early example of dissolving these illusionary boundaries around what an agency might be, but also expanding and amplifying your potential.
    The first of Accept & Proceed’s Light Calendars
    Then in 2006, I was trying to establish our portfolio and I wanted something to send out into the world that would also be an example of how Accept & Proceed thinks about design. I landed on these data visualisations that show the amount of light and darkness that would happen in London in the year ahead.
    I worked with a freelance designer called Stephen Heath on the first one – he is now our creative director.
    This kickstarted a 10-year exploration, and they became a rite of passage for new designers that came into the studio, to take that very similar data and express it in completely new ways. It culminated in an exhibition in London in 2016, showing ten years’ of prints.
    They were a labour of love, but they also meant that every single year we had a number of prints that we could send out to new potential contacts. Still when I go to the global headquarters of Nike in Beaverton in Portland, I’m amazed at how many of these sit in leaders’ offices there.
    When we first got a finance director, they couldn’t believe how much we’d invested as a business in things like this – we even had our own gallery for a while. It doesn’t make sense from a purely numbers mindset, but if you put things out there for authentic reasons, there are ripple effects over time.
    In 2017, the studio became a B-corp, the fourth creative agency in the UK to get this accreditation.
    Around 2016, I couldn’t help but look around – as we probably all have at varying points over the last 10 years – and wondered, what the fuck is going on?
    All these systems are not fit for purpose for the future – financial systems, food systems, relationship systems, energy systems. They’re not working. And I was like shit, are we part of the problem?
    Accept & Proceed’s work for the NASA Jet Propulsion Laboratory
    I’ve always thought of brand as a piece of technology that can fundamentally change our actions and the world around us. That comes with a huge responsibility.
    We probably paid four months’ wages of two people full-time just to get accredited, so it’s quite a high bar. But I like that the programme shackles you to this idea of improvement. You can’t rest on your laurels if you want to be re-accredited. It’s like the way design works as an iterative process – you have to keep getting better.
    In 2019, Johnston and his team started thinking seriously about the studio’s own brand, and created a punchy, nuanced new positioning.
    We got to a point where we’d proven we could help brands achieve their commercial aims. But we wanted to hold a position ourselves, not just be a conduit between a brand and its audience.
    It still amazes me that so few agencies actually stand for anything. We realised that all the things – vision, mission, principles – that we’ve been creating for brands for years, we hadn’t done for ourselves.
    It’s a bit like when you see a hairdresser with a really dodgy haircut. But it’s hard to cut your own hair.
    So we went through that process, which was really difficult, and we landed on “Design for the future” as our promise to the world.
    And if you’re going to have that as a promise, you better be able to describe the world you’re creating through your work, which we call “the together world.”
    Accept & Proceed’s work for Second Sea
    We stand at this most incredible moment in history where the latest technology and science is catching up with ancient wisdom, to know that we must become more entangled, more together, more whole.
    And we’ve assessed five global shifts that are happening in order to be able to take us towards a more together world through our work – interbeing, reciprocity, healing, resilience and liberation.
    The year before last, we lost three global rebrand projects based on our positioning. Every one of them said to me, “You’re right but we’re not ready.”
    But this year, I think the product market fit of what we’ve been saying for the last five years is really starting to mesh. We’re working with Arc’teryx on their 2030 landscape, evolving Nike’s move to zero, and working with LEGO on what their next 100 years might look like, which is mind-boggling work.
    I don’t think we could have won any of those opportunities had we not been talking for quite a long time about design for the future.
    In 2023, Johnston started a sunrise gathering on Hackney Marshes, which became a very significant part of his life.
    I had the flu and I had a vision in my dreamy fluey state of a particular spot on Hackney Marshes where people were gathering and watching the sunrise. I happened to tell my friend, the poet Thomas Sharp this, and he said, “That’s a premonition. You have to make it happen.”
    The first year there were five of us – this year there were 300 people for the spring equinox in March.
    I don’t fully know what these gatherings will lead to. Will Accept & Proceed start to introduce the seasons to the way we operate as a business? It’s a thought I’ve had percolating, but I don’t know. Will it be something else?
    One of the 2024 sunrise gatherings organised by Accept & Proceed founder David Johnston
    I do know that there’s major learnings around authentic community building for brands. We should do away with these buckets we put people into, of age group and location. They aren’t very true. It’s fascinating to see the breadth of people who come to these gatherings.
    Me and Laura were thinking at some point of moving out of London, but I think these sunrise gatherings are now my reason to stay. It’s the thing I didn’t know I needed until I had it. They have made London complete for me.
    There’s something so ancient about watching our star rise, and the reminder that we are actually just animals crawling upon the surface of a planet of mud. That’s what’s real. But it can be hard to remember that when you’re sitting at your computer in the studio.
    These gatherings help me better understand creativity’s true potential, for brands, for the world, and for us.

    Design disciplines in this article

    Brands in this article

    What to read next

    Features

    Turning Points: Cultural branding agency EDIT

    Brand Identity
    20 Nov, 2024
    #turning #points #accept #ampamp #proceed
    Turning Points: Accept & Proceed
    12 June, 2025 In our turning points series, design studios share some of the key moments that shaped their business. This week, we meet Accept & Proceed. Accept & Proceed is a London based brand and design studio that works with clients like NASA, Nike and LEGO. Founder David Johnston talks us through some of the decisions that defined his business. In 2006, Johnston took the leap to start his own business, armed with a good name and a willingness to bend the truth about his team… I’d gone through my career learning from big organisations, and one small organisation, and I felt like I wasn’t happy where I was. It was my dad who encouraged me to take a leap of faith and try and go it alone. With nothing more than a month’s wages in the bank and a lot of energy, I decided to go and set up an agency. That really just means giving yourself a name and starting to promote yourself in the world. Accept & Proceed founder David Johnston I think the name itself is a very important thing. I wanted something that was memorable but also layered in meaning. A name that starts with an “a” is very beneficial when you’re being listed in the index of books and things like that. But it became a bit of a compass for the way that we wanted to create work, around accepting the status quo for what it is, but with a continual commitment to proceed nonetheless. Because I didn’t have anyone to work with, in those early months I just made up email addresses of people that didn’t exist. That allowed me to cost projects up for multiple people. That’s obviously a degree of hustle I wouldn’t encourage in everyone, but it meant I was able to charge multiple day rates for projects where I was playing the role of four or five people. Self-initiated projects have long been part of the studio’s DNA and played a key role in building key client relationships. A&P by… was a brief to explore these letterforms without any commercial intent apart from the joy of creative expression. I started reaching out to illustrators and artists and photographers and designers that I really rated, and the things that started coming back were incredible. I was overwhelmed by the amount of energy and passion that people like Mr Bingo and Jason Evans were bringing to this. I think in so many ways, the answer to everything is community. I’ve gone on to work with a lot of the people that created these, and they also became friends. It was an early example of dissolving these illusionary boundaries around what an agency might be, but also expanding and amplifying your potential. The first of Accept & Proceed’s Light Calendars Then in 2006, I was trying to establish our portfolio and I wanted something to send out into the world that would also be an example of how Accept & Proceed thinks about design. I landed on these data visualisations that show the amount of light and darkness that would happen in London in the year ahead. I worked with a freelance designer called Stephen Heath on the first one – he is now our creative director. This kickstarted a 10-year exploration, and they became a rite of passage for new designers that came into the studio, to take that very similar data and express it in completely new ways. It culminated in an exhibition in London in 2016, showing ten years’ of prints. They were a labour of love, but they also meant that every single year we had a number of prints that we could send out to new potential contacts. Still when I go to the global headquarters of Nike in Beaverton in Portland, I’m amazed at how many of these sit in leaders’ offices there. When we first got a finance director, they couldn’t believe how much we’d invested as a business in things like this – we even had our own gallery for a while. It doesn’t make sense from a purely numbers mindset, but if you put things out there for authentic reasons, there are ripple effects over time. In 2017, the studio became a B-corp, the fourth creative agency in the UK to get this accreditation. Around 2016, I couldn’t help but look around – as we probably all have at varying points over the last 10 years – and wondered, what the fuck is going on? All these systems are not fit for purpose for the future – financial systems, food systems, relationship systems, energy systems. They’re not working. And I was like shit, are we part of the problem? Accept & Proceed’s work for the NASA Jet Propulsion Laboratory I’ve always thought of brand as a piece of technology that can fundamentally change our actions and the world around us. That comes with a huge responsibility. We probably paid four months’ wages of two people full-time just to get accredited, so it’s quite a high bar. But I like that the programme shackles you to this idea of improvement. You can’t rest on your laurels if you want to be re-accredited. It’s like the way design works as an iterative process – you have to keep getting better. In 2019, Johnston and his team started thinking seriously about the studio’s own brand, and created a punchy, nuanced new positioning. We got to a point where we’d proven we could help brands achieve their commercial aims. But we wanted to hold a position ourselves, not just be a conduit between a brand and its audience. It still amazes me that so few agencies actually stand for anything. We realised that all the things – vision, mission, principles – that we’ve been creating for brands for years, we hadn’t done for ourselves. It’s a bit like when you see a hairdresser with a really dodgy haircut. But it’s hard to cut your own hair. So we went through that process, which was really difficult, and we landed on “Design for the future” as our promise to the world. And if you’re going to have that as a promise, you better be able to describe the world you’re creating through your work, which we call “the together world.” Accept & Proceed’s work for Second Sea We stand at this most incredible moment in history where the latest technology and science is catching up with ancient wisdom, to know that we must become more entangled, more together, more whole. And we’ve assessed five global shifts that are happening in order to be able to take us towards a more together world through our work – interbeing, reciprocity, healing, resilience and liberation. The year before last, we lost three global rebrand projects based on our positioning. Every one of them said to me, “You’re right but we’re not ready.” But this year, I think the product market fit of what we’ve been saying for the last five years is really starting to mesh. We’re working with Arc’teryx on their 2030 landscape, evolving Nike’s move to zero, and working with LEGO on what their next 100 years might look like, which is mind-boggling work. I don’t think we could have won any of those opportunities had we not been talking for quite a long time about design for the future. In 2023, Johnston started a sunrise gathering on Hackney Marshes, which became a very significant part of his life. I had the flu and I had a vision in my dreamy fluey state of a particular spot on Hackney Marshes where people were gathering and watching the sunrise. I happened to tell my friend, the poet Thomas Sharp this, and he said, “That’s a premonition. You have to make it happen.” The first year there were five of us – this year there were 300 people for the spring equinox in March. I don’t fully know what these gatherings will lead to. Will Accept & Proceed start to introduce the seasons to the way we operate as a business? It’s a thought I’ve had percolating, but I don’t know. Will it be something else? One of the 2024 sunrise gatherings organised by Accept & Proceed founder David Johnston I do know that there’s major learnings around authentic community building for brands. We should do away with these buckets we put people into, of age group and location. They aren’t very true. It’s fascinating to see the breadth of people who come to these gatherings. Me and Laura were thinking at some point of moving out of London, but I think these sunrise gatherings are now my reason to stay. It’s the thing I didn’t know I needed until I had it. They have made London complete for me. There’s something so ancient about watching our star rise, and the reminder that we are actually just animals crawling upon the surface of a planet of mud. That’s what’s real. But it can be hard to remember that when you’re sitting at your computer in the studio. These gatherings help me better understand creativity’s true potential, for brands, for the world, and for us. Design disciplines in this article Brands in this article What to read next Features Turning Points: Cultural branding agency EDIT Brand Identity 20 Nov, 2024 #turning #points #accept #ampamp #proceed
    WWW.DESIGNWEEK.CO.UK
    Turning Points: Accept & Proceed
    12 June, 2025 In our turning points series, design studios share some of the key moments that shaped their business. This week, we meet Accept & Proceed. Accept & Proceed is a London based brand and design studio that works with clients like NASA, Nike and LEGO. Founder David Johnston talks us through some of the decisions that defined his business. In 2006, Johnston took the leap to start his own business, armed with a good name and a willingness to bend the truth about his team… I’d gone through my career learning from big organisations, and one small organisation, and I felt like I wasn’t happy where I was. It was my dad who encouraged me to take a leap of faith and try and go it alone. With nothing more than a month’s wages in the bank and a lot of energy, I decided to go and set up an agency. That really just means giving yourself a name and starting to promote yourself in the world. Accept & Proceed founder David Johnston I think the name itself is a very important thing. I wanted something that was memorable but also layered in meaning. A name that starts with an “a” is very beneficial when you’re being listed in the index of books and things like that. But it became a bit of a compass for the way that we wanted to create work, around accepting the status quo for what it is, but with a continual commitment to proceed nonetheless. Because I didn’t have anyone to work with, in those early months I just made up email addresses of people that didn’t exist. That allowed me to cost projects up for multiple people. That’s obviously a degree of hustle I wouldn’t encourage in everyone, but it meant I was able to charge multiple day rates for projects where I was playing the role of four or five people. Self-initiated projects have long been part of the studio’s DNA and played a key role in building key client relationships. A&P by… was a brief to explore these letterforms without any commercial intent apart from the joy of creative expression. I started reaching out to illustrators and artists and photographers and designers that I really rated, and the things that started coming back were incredible. I was overwhelmed by the amount of energy and passion that people like Mr Bingo and Jason Evans were bringing to this. I think in so many ways, the answer to everything is community. I’ve gone on to work with a lot of the people that created these, and they also became friends. It was an early example of dissolving these illusionary boundaries around what an agency might be, but also expanding and amplifying your potential. The first of Accept & Proceed’s Light Calendars Then in 2006, I was trying to establish our portfolio and I wanted something to send out into the world that would also be an example of how Accept & Proceed thinks about design. I landed on these data visualisations that show the amount of light and darkness that would happen in London in the year ahead. I worked with a freelance designer called Stephen Heath on the first one – he is now our creative director. This kickstarted a 10-year exploration, and they became a rite of passage for new designers that came into the studio, to take that very similar data and express it in completely new ways. It culminated in an exhibition in London in 2016, showing ten years’ of prints. They were a labour of love, but they also meant that every single year we had a number of prints that we could send out to new potential contacts. Still when I go to the global headquarters of Nike in Beaverton in Portland, I’m amazed at how many of these sit in leaders’ offices there. When we first got a finance director, they couldn’t believe how much we’d invested as a business in things like this – we even had our own gallery for a while. It doesn’t make sense from a purely numbers mindset, but if you put things out there for authentic reasons, there are ripple effects over time. In 2017, the studio became a B-corp, the fourth creative agency in the UK to get this accreditation. Around 2016, I couldn’t help but look around – as we probably all have at varying points over the last 10 years – and wondered, what the fuck is going on? All these systems are not fit for purpose for the future – financial systems, food systems, relationship systems, energy systems. They’re not working. And I was like shit, are we part of the problem? Accept & Proceed’s work for the NASA Jet Propulsion Laboratory I’ve always thought of brand as a piece of technology that can fundamentally change our actions and the world around us. That comes with a huge responsibility. We probably paid four months’ wages of two people full-time just to get accredited, so it’s quite a high bar. But I like that the programme shackles you to this idea of improvement. You can’t rest on your laurels if you want to be re-accredited. It’s like the way design works as an iterative process – you have to keep getting better. In 2019, Johnston and his team started thinking seriously about the studio’s own brand, and created a punchy, nuanced new positioning. We got to a point where we’d proven we could help brands achieve their commercial aims. But we wanted to hold a position ourselves, not just be a conduit between a brand and its audience. It still amazes me that so few agencies actually stand for anything. We realised that all the things – vision, mission, principles – that we’ve been creating for brands for years, we hadn’t done for ourselves. It’s a bit like when you see a hairdresser with a really dodgy haircut. But it’s hard to cut your own hair. So we went through that process, which was really difficult, and we landed on “Design for the future” as our promise to the world. And if you’re going to have that as a promise, you better be able to describe the world you’re creating through your work, which we call “the together world.” Accept & Proceed’s work for Second Sea We stand at this most incredible moment in history where the latest technology and science is catching up with ancient wisdom, to know that we must become more entangled, more together, more whole. And we’ve assessed five global shifts that are happening in order to be able to take us towards a more together world through our work – interbeing, reciprocity, healing, resilience and liberation. The year before last, we lost three global rebrand projects based on our positioning. Every one of them said to me, “You’re right but we’re not ready.” But this year, I think the product market fit of what we’ve been saying for the last five years is really starting to mesh. We’re working with Arc’teryx on their 2030 landscape, evolving Nike’s move to zero, and working with LEGO on what their next 100 years might look like, which is mind-boggling work. I don’t think we could have won any of those opportunities had we not been talking for quite a long time about design for the future. In 2023, Johnston started a sunrise gathering on Hackney Marshes, which became a very significant part of his life. I had the flu and I had a vision in my dreamy fluey state of a particular spot on Hackney Marshes where people were gathering and watching the sunrise. I happened to tell my friend, the poet Thomas Sharp this, and he said, “That’s a premonition. You have to make it happen.” The first year there were five of us – this year there were 300 people for the spring equinox in March. I don’t fully know what these gatherings will lead to. Will Accept & Proceed start to introduce the seasons to the way we operate as a business? It’s a thought I’ve had percolating, but I don’t know. Will it be something else? One of the 2024 sunrise gatherings organised by Accept & Proceed founder David Johnston I do know that there’s major learnings around authentic community building for brands. We should do away with these buckets we put people into, of age group and location. They aren’t very true. It’s fascinating to see the breadth of people who come to these gatherings. Me and Laura were thinking at some point of moving out of London, but I think these sunrise gatherings are now my reason to stay. It’s the thing I didn’t know I needed until I had it. They have made London complete for me. There’s something so ancient about watching our star rise, and the reminder that we are actually just animals crawling upon the surface of a planet of mud. That’s what’s real. But it can be hard to remember that when you’re sitting at your computer in the studio. These gatherings help me better understand creativity’s true potential, for brands, for the world, and for us. Design disciplines in this article Brands in this article What to read next Features Turning Points: Cultural branding agency EDIT Brand Identity 20 Nov, 2024
    0 Commenti 0 condivisioni
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Commenti 0 condivisioni
  • Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals

    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals
    She spent nearly 40 years taking theater and dance pictures, providing glimpses behind the scenes and creating images that the public couldn’t otherwise access

    Stephanie Rudig

    - Freelance Writer

    June 11, 2025

    Photographer Martha Swope sitting on a floor covered with prints of her photos in 1987
    Andrea Legge / © NYPL

    Martha Swope wanted to be a dancer. She moved from her home state of Texas to New York to attend the School of American Ballet, hoping to start a career in dance. Swope also happened to be an amateur photographer. So, in 1957, a fellow classmate invited her to bring her camera and document rehearsals for a little theater show he was working on. The classmate was director and choreographer Jerome Robbins, and the show was West Side Story.
    One of those rehearsal shots ended up in Life magazine, and Swope quickly started getting professional bookings. It’s notoriously tough to make it on Broadway, but through photography, Swope carved out a career capturing theater and dance. Over the course of nearly four decades, she photographed hundreds more rehearsals, productions and promotional studio shots.

    Unidentified male chorus members dancing during rehearsals for musical West Side Story in 1957

    Martha Swope / © NYPL

    At a time when live performances were not often or easily captured, Swope’s photographs caught the animated moments and distilled the essence of a show into a single image: André De Shields clad in a jumpsuit as the title character in The Wiz, Patti LuPone with her arms raised overhead in Evita, the cast of Cats leaping in feline formations, a close-up of a forlorn Sheryl Lee Ralph in Dreamgirls and the row of dancers obscuring their faces with their headshots in A Chorus Line were all captured by Swope’s camera. She was also the house photographer for the New York City Ballet and the Martha Graham Dance Company and photographed other major dance companies such as the Ailey School.
    Her vision of the stage became fairly ubiquitous, with Playbill reporting that in the late 1970s, two-thirds of Broadway productions were photographed by Swope, meaning her work dominated theater and dance coverage. Carol Rosegg was early in her photography career when she heard that Swope was looking for an assistant. “I didn't frankly even know who she was,” Rosegg says. “Then the press agent who told me said, ‘Pick up any New York Times and you’ll find out.’”
    Swope’s background as a dancer likely equipped her to press the shutter at the exact right moment to capture movement, and to know when everyone on stage was precisely posed. She taught herself photography and early on used a Brownie camera, a simple box model made by Kodak. “She was what she described as ‘a dancer with a Brownie,’” says Barbara Stratyner, a historian of the performing arts who curated exhibitions of Swope’s work at the New York Public Library.

    An ensemble of dancers in rehearsal for the stage production Cats in 1982

    Martha Swope / © NYPL

    “Dance was her first love,” Rosegg says. “She knew everything about dance. She would never use a photo of a dancer whose foot was wrong; the feet had to be perfect.”
    According to Rosegg, once the photo subjects knew she was shooting, “the anxiety level came down a little bit.” They knew that they’d look good in the resulting photos, and they likely trusted her intuition as a fellow dancer. Swope moved with the bearing of a dancer and often stood with her feet in ballet’s fourth position while she shot. She continued to take dance classes throughout her life, including at the prestigious Martha Graham School. Stratyner says, “As Graham got older,was, I think, the only person who was allowed to photograph rehearsals, because Graham didn’t want rehearsals shown.”
    Photographic technology and the theater and dance landscapes evolved greatly over the course of Swope’s career. Rosegg points out that at the start of her own career, cameras didn’t even automatically advance the film after each shot. She explains the delicate nature of working with film, saying, “When you were shooting film, you actually had to compose, because you had 35 shots and then you had to change your film.” Swope also worked during a period of changing over from all black-and-white photos to a mixture of black-and-white and color photography. Rosegg notes that simultaneously, Swope would shoot black-and-white, and she herself would shoot color. Looking at Swope’s portfolio is also an examination of increasingly crisp photo production. Advances in photography made shooting in the dark or capturing subjects under blinding stage lights easier, and they allowed for better zooming in from afar.

    Martha Graham rehearses dancer Takako Asakawa and others in Heretic, a dance work choreographed by Graham, in 1986

    Martha Swope / © NYPL

    It’s much more common nowadays to get a look behind the curtain of theater productions via social media. “The theater photographers of today need to supply so much content,” Rosegg says. “We didn’t have any of that, and getting to go backstage was kind of a big deal.”
    Photographers coming to document a rehearsal once might have been seen as an intrusion, but now, as Rosegg puts it, “everybody is desperate for you to come, and if you’re not there, they’re shooting it on their iPhone.”
    Even with exclusive behind-the-scenes access to the hottest tickets in town and the biggest stars of the day, Swope remained unpretentious. She lived and worked in a brownstone with her apartment above her studio, where the film was developed in a closet and the bathroom served as a darkroom. Rosegg recalls that a phone sat in the darkroom so they could be reached while printing, and she would be amazed at the big-name producers and theater glitterati who rang in while she was making prints in an unventilated space.

    From left to right: Paul Winfield, Ruby Dee, Marsha Jackson and Denzel Washington in the stage production Checkmates in 1988

    Martha Swope / © NYPL

    Swope’s approachability extended to how she chose to preserve her work. She originally sold her body of work to Time Life, and, according to Stratyner, she was unhappy with the way the photos became relatively inaccessible. She took back the rights to her collection and donated it to the New York Public Library, where many photos can be accessed by researchers in person, and the entire array of photos is available online to the public in the Digital Collections. Searching “Martha Swope” yields over 50,000 items from more than 800 productions, featuring a huge variety of figures, from a white-suited John Travolta busting a disco move in Saturday Night Fever to Andrew Lloyd Webber with Nancy Reagan at a performance of Phantom of the Opera.
    Swope’s extensive career was recognized in 2004 with a special Tony Award, a Tony Honors for Excellence in Theater, which are given intermittently to notable figures in theater who operate outside of traditional awards categories. She also received a lifetime achievement award from the League of Professional Theater Women in 2007. Though she retired in 1994 and died in 2017, her work still reverberates through dance and Broadway history today. For decades, she captured the fleeting moments of theater that would otherwise never be seen by the public. And her passion was clear and straightforward. As she once told an interviewer: “I’m not interested in what’s going on on my side of the camera. I’m interested in what’s happening on the other side.”

    Get the latest Travel & Culture stories in your inbox.
    #meet #martha #swope #legendary #broadway
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals She spent nearly 40 years taking theater and dance pictures, providing glimpses behind the scenes and creating images that the public couldn’t otherwise access Stephanie Rudig - Freelance Writer June 11, 2025 Photographer Martha Swope sitting on a floor covered with prints of her photos in 1987 Andrea Legge / © NYPL Martha Swope wanted to be a dancer. She moved from her home state of Texas to New York to attend the School of American Ballet, hoping to start a career in dance. Swope also happened to be an amateur photographer. So, in 1957, a fellow classmate invited her to bring her camera and document rehearsals for a little theater show he was working on. The classmate was director and choreographer Jerome Robbins, and the show was West Side Story. One of those rehearsal shots ended up in Life magazine, and Swope quickly started getting professional bookings. It’s notoriously tough to make it on Broadway, but through photography, Swope carved out a career capturing theater and dance. Over the course of nearly four decades, she photographed hundreds more rehearsals, productions and promotional studio shots. Unidentified male chorus members dancing during rehearsals for musical West Side Story in 1957 Martha Swope / © NYPL At a time when live performances were not often or easily captured, Swope’s photographs caught the animated moments and distilled the essence of a show into a single image: André De Shields clad in a jumpsuit as the title character in The Wiz, Patti LuPone with her arms raised overhead in Evita, the cast of Cats leaping in feline formations, a close-up of a forlorn Sheryl Lee Ralph in Dreamgirls and the row of dancers obscuring their faces with their headshots in A Chorus Line were all captured by Swope’s camera. She was also the house photographer for the New York City Ballet and the Martha Graham Dance Company and photographed other major dance companies such as the Ailey School. Her vision of the stage became fairly ubiquitous, with Playbill reporting that in the late 1970s, two-thirds of Broadway productions were photographed by Swope, meaning her work dominated theater and dance coverage. Carol Rosegg was early in her photography career when she heard that Swope was looking for an assistant. “I didn't frankly even know who she was,” Rosegg says. “Then the press agent who told me said, ‘Pick up any New York Times and you’ll find out.’” Swope’s background as a dancer likely equipped her to press the shutter at the exact right moment to capture movement, and to know when everyone on stage was precisely posed. She taught herself photography and early on used a Brownie camera, a simple box model made by Kodak. “She was what she described as ‘a dancer with a Brownie,’” says Barbara Stratyner, a historian of the performing arts who curated exhibitions of Swope’s work at the New York Public Library. An ensemble of dancers in rehearsal for the stage production Cats in 1982 Martha Swope / © NYPL “Dance was her first love,” Rosegg says. “She knew everything about dance. She would never use a photo of a dancer whose foot was wrong; the feet had to be perfect.” According to Rosegg, once the photo subjects knew she was shooting, “the anxiety level came down a little bit.” They knew that they’d look good in the resulting photos, and they likely trusted her intuition as a fellow dancer. Swope moved with the bearing of a dancer and often stood with her feet in ballet’s fourth position while she shot. She continued to take dance classes throughout her life, including at the prestigious Martha Graham School. Stratyner says, “As Graham got older,was, I think, the only person who was allowed to photograph rehearsals, because Graham didn’t want rehearsals shown.” Photographic technology and the theater and dance landscapes evolved greatly over the course of Swope’s career. Rosegg points out that at the start of her own career, cameras didn’t even automatically advance the film after each shot. She explains the delicate nature of working with film, saying, “When you were shooting film, you actually had to compose, because you had 35 shots and then you had to change your film.” Swope also worked during a period of changing over from all black-and-white photos to a mixture of black-and-white and color photography. Rosegg notes that simultaneously, Swope would shoot black-and-white, and she herself would shoot color. Looking at Swope’s portfolio is also an examination of increasingly crisp photo production. Advances in photography made shooting in the dark or capturing subjects under blinding stage lights easier, and they allowed for better zooming in from afar. Martha Graham rehearses dancer Takako Asakawa and others in Heretic, a dance work choreographed by Graham, in 1986 Martha Swope / © NYPL It’s much more common nowadays to get a look behind the curtain of theater productions via social media. “The theater photographers of today need to supply so much content,” Rosegg says. “We didn’t have any of that, and getting to go backstage was kind of a big deal.” Photographers coming to document a rehearsal once might have been seen as an intrusion, but now, as Rosegg puts it, “everybody is desperate for you to come, and if you’re not there, they’re shooting it on their iPhone.” Even with exclusive behind-the-scenes access to the hottest tickets in town and the biggest stars of the day, Swope remained unpretentious. She lived and worked in a brownstone with her apartment above her studio, where the film was developed in a closet and the bathroom served as a darkroom. Rosegg recalls that a phone sat in the darkroom so they could be reached while printing, and she would be amazed at the big-name producers and theater glitterati who rang in while she was making prints in an unventilated space. From left to right: Paul Winfield, Ruby Dee, Marsha Jackson and Denzel Washington in the stage production Checkmates in 1988 Martha Swope / © NYPL Swope’s approachability extended to how she chose to preserve her work. She originally sold her body of work to Time Life, and, according to Stratyner, she was unhappy with the way the photos became relatively inaccessible. She took back the rights to her collection and donated it to the New York Public Library, where many photos can be accessed by researchers in person, and the entire array of photos is available online to the public in the Digital Collections. Searching “Martha Swope” yields over 50,000 items from more than 800 productions, featuring a huge variety of figures, from a white-suited John Travolta busting a disco move in Saturday Night Fever to Andrew Lloyd Webber with Nancy Reagan at a performance of Phantom of the Opera. Swope’s extensive career was recognized in 2004 with a special Tony Award, a Tony Honors for Excellence in Theater, which are given intermittently to notable figures in theater who operate outside of traditional awards categories. She also received a lifetime achievement award from the League of Professional Theater Women in 2007. Though she retired in 1994 and died in 2017, her work still reverberates through dance and Broadway history today. For decades, she captured the fleeting moments of theater that would otherwise never be seen by the public. And her passion was clear and straightforward. As she once told an interviewer: “I’m not interested in what’s going on on my side of the camera. I’m interested in what’s happening on the other side.” Get the latest Travel & Culture stories in your inbox. #meet #martha #swope #legendary #broadway
    WWW.SMITHSONIANMAG.COM
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals She spent nearly 40 years taking theater and dance pictures, providing glimpses behind the scenes and creating images that the public couldn’t otherwise access Stephanie Rudig - Freelance Writer June 11, 2025 Photographer Martha Swope sitting on a floor covered with prints of her photos in 1987 Andrea Legge / © NYPL Martha Swope wanted to be a dancer. She moved from her home state of Texas to New York to attend the School of American Ballet, hoping to start a career in dance. Swope also happened to be an amateur photographer. So, in 1957, a fellow classmate invited her to bring her camera and document rehearsals for a little theater show he was working on. The classmate was director and choreographer Jerome Robbins, and the show was West Side Story. One of those rehearsal shots ended up in Life magazine, and Swope quickly started getting professional bookings. It’s notoriously tough to make it on Broadway, but through photography, Swope carved out a career capturing theater and dance. Over the course of nearly four decades, she photographed hundreds more rehearsals, productions and promotional studio shots. Unidentified male chorus members dancing during rehearsals for musical West Side Story in 1957 Martha Swope / © NYPL At a time when live performances were not often or easily captured, Swope’s photographs caught the animated moments and distilled the essence of a show into a single image: André De Shields clad in a jumpsuit as the title character in The Wiz, Patti LuPone with her arms raised overhead in Evita, the cast of Cats leaping in feline formations, a close-up of a forlorn Sheryl Lee Ralph in Dreamgirls and the row of dancers obscuring their faces with their headshots in A Chorus Line were all captured by Swope’s camera. She was also the house photographer for the New York City Ballet and the Martha Graham Dance Company and photographed other major dance companies such as the Ailey School. Her vision of the stage became fairly ubiquitous, with Playbill reporting that in the late 1970s, two-thirds of Broadway productions were photographed by Swope, meaning her work dominated theater and dance coverage. Carol Rosegg was early in her photography career when she heard that Swope was looking for an assistant. “I didn't frankly even know who she was,” Rosegg says. “Then the press agent who told me said, ‘Pick up any New York Times and you’ll find out.’” Swope’s background as a dancer likely equipped her to press the shutter at the exact right moment to capture movement, and to know when everyone on stage was precisely posed. She taught herself photography and early on used a Brownie camera, a simple box model made by Kodak. “She was what she described as ‘a dancer with a Brownie,’” says Barbara Stratyner, a historian of the performing arts who curated exhibitions of Swope’s work at the New York Public Library. An ensemble of dancers in rehearsal for the stage production Cats in 1982 Martha Swope / © NYPL “Dance was her first love,” Rosegg says. “She knew everything about dance. She would never use a photo of a dancer whose foot was wrong; the feet had to be perfect.” According to Rosegg, once the photo subjects knew she was shooting, “the anxiety level came down a little bit.” They knew that they’d look good in the resulting photos, and they likely trusted her intuition as a fellow dancer. Swope moved with the bearing of a dancer and often stood with her feet in ballet’s fourth position while she shot. She continued to take dance classes throughout her life, including at the prestigious Martha Graham School. Stratyner says, “As Graham got older, [Swope] was, I think, the only person who was allowed to photograph rehearsals, because Graham didn’t want rehearsals shown.” Photographic technology and the theater and dance landscapes evolved greatly over the course of Swope’s career. Rosegg points out that at the start of her own career, cameras didn’t even automatically advance the film after each shot. She explains the delicate nature of working with film, saying, “When you were shooting film, you actually had to compose, because you had 35 shots and then you had to change your film.” Swope also worked during a period of changing over from all black-and-white photos to a mixture of black-and-white and color photography. Rosegg notes that simultaneously, Swope would shoot black-and-white, and she herself would shoot color. Looking at Swope’s portfolio is also an examination of increasingly crisp photo production. Advances in photography made shooting in the dark or capturing subjects under blinding stage lights easier, and they allowed for better zooming in from afar. Martha Graham rehearses dancer Takako Asakawa and others in Heretic, a dance work choreographed by Graham, in 1986 Martha Swope / © NYPL It’s much more common nowadays to get a look behind the curtain of theater productions via social media. “The theater photographers of today need to supply so much content,” Rosegg says. “We didn’t have any of that, and getting to go backstage was kind of a big deal.” Photographers coming to document a rehearsal once might have been seen as an intrusion, but now, as Rosegg puts it, “everybody is desperate for you to come, and if you’re not there, they’re shooting it on their iPhone.” Even with exclusive behind-the-scenes access to the hottest tickets in town and the biggest stars of the day, Swope remained unpretentious. She lived and worked in a brownstone with her apartment above her studio, where the film was developed in a closet and the bathroom served as a darkroom. Rosegg recalls that a phone sat in the darkroom so they could be reached while printing, and she would be amazed at the big-name producers and theater glitterati who rang in while she was making prints in an unventilated space. From left to right: Paul Winfield, Ruby Dee, Marsha Jackson and Denzel Washington in the stage production Checkmates in 1988 Martha Swope / © NYPL Swope’s approachability extended to how she chose to preserve her work. She originally sold her body of work to Time Life, and, according to Stratyner, she was unhappy with the way the photos became relatively inaccessible. She took back the rights to her collection and donated it to the New York Public Library, where many photos can be accessed by researchers in person, and the entire array of photos is available online to the public in the Digital Collections. Searching “Martha Swope” yields over 50,000 items from more than 800 productions, featuring a huge variety of figures, from a white-suited John Travolta busting a disco move in Saturday Night Fever to Andrew Lloyd Webber with Nancy Reagan at a performance of Phantom of the Opera. Swope’s extensive career was recognized in 2004 with a special Tony Award, a Tony Honors for Excellence in Theater, which are given intermittently to notable figures in theater who operate outside of traditional awards categories. She also received a lifetime achievement award from the League of Professional Theater Women in 2007. Though she retired in 1994 and died in 2017, her work still reverberates through dance and Broadway history today. For decades, she captured the fleeting moments of theater that would otherwise never be seen by the public. And her passion was clear and straightforward. As she once told an interviewer: “I’m not interested in what’s going on on my side of the camera. I’m interested in what’s happening on the other side.” Get the latest Travel & Culture stories in your inbox.
    0 Commenti 0 condivisioni