• NVIDIA CEO Drops the Blueprint for Europe’s AI Boom

    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it.
    “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris.
    From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future.

    A New Industrial Revolution
    At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing.
    “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance.
    At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware.
    There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers.
    Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue.
    NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth.
    Quantum Meets Classical
    Europe’s quantum ambitions just got a boost.
    The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems.
    Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction.
    “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.”
    Sovereign Models, Smarter Agents
    European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs.
    “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said.
    These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe.
    “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said.
    Huang explained how NVIDIA is helping countries across Europe build AI infrastructure.
    Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments.
    The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents.
    To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity.
    “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute.
    The Industrial Cloud Goes Live
    AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution.
    “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent.
    Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.”
    To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale.
    “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.”
    NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation.
    And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics.
    The Next Wave
    The next wave of AI has begun — and it’s exponential, Huang explained.
    “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.”
    This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said.
    To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.”
    Huang and Grek, as he explained how AI is driving advancements in robotics.
    These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence.
    “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.”
    With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe.
    Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions.
    #nvidia #ceo #drops #blueprint #europes
    NVIDIA CEO Drops the Blueprint for Europe’s AI Boom
    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it. “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris. From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future. A New Industrial Revolution At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing. “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance. At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware. There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers. Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue. NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth. Quantum Meets Classical Europe’s quantum ambitions just got a boost. The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems. Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction. “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.” Sovereign Models, Smarter Agents European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs. “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said. These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe. “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said. Huang explained how NVIDIA is helping countries across Europe build AI infrastructure. Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments. The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents. To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity. “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute. The Industrial Cloud Goes Live AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution. “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent. Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.” To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale. “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.” NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation. And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics. The Next Wave The next wave of AI has begun — and it’s exponential, Huang explained. “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.” This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said. To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.” Huang and Grek, as he explained how AI is driving advancements in robotics. These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence. “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.” With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe. Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions. #nvidia #ceo #drops #blueprint #europes
    BLOGS.NVIDIA.COM
    NVIDIA CEO Drops the Blueprint for Europe’s AI Boom
    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it. “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris. From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future. A New Industrial Revolution At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing. “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance. At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware. There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers. Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue. NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth. Quantum Meets Classical Europe’s quantum ambitions just got a boost. The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems. Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction. “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.” Sovereign Models, Smarter Agents European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs. “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said. These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe. “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said. Huang explained how NVIDIA is helping countries across Europe build AI infrastructure. Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments. The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents. To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity. “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute. The Industrial Cloud Goes Live AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution. “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent. Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.” To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale. “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.” NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation. And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics. The Next Wave The next wave of AI has begun — and it’s exponential, Huang explained. “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.” This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said. To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.” Huang and Grek, as he explained how AI is driving advancements in robotics. These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence. “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.” With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe. Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions.
    Like
    Love
    Sad
    23
    0 Comments 0 Shares
  • Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid

    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand.
    Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation.
    At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics.
    Future use cases for AEON include:

    Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio.
    Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings.
    Part inspection, which includes checking parts for defects or ensuring adherence to specifications.
    Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners.

    “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.”

    Using NVIDIA’s Three Computers to Develop AEON 
    To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models.
    Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations.
    AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning.


    This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment.
    In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation.
    “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.”
    Data Comes to Life Through Reality Capture and Omniverse Integration 
    AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas.

    Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure.
    “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.”
    AEON’s Next Steps
    By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON.
    This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data.
    Watch the Hexagon LIVE keynote, explore presentations and read more about AEON.
    All imagery courtesy of Hexagon.
    #hexagon #taps #nvidia #robotics #software
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio. Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon. #hexagon #taps #nvidia #robotics #software
    BLOGS.NVIDIA.COM
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Reality (HxDR) platform powering Hexagon Reality Cloud Studio (RCS). Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. https://blogs.nvidia.com/wp-content/uploads/2025/06/Copy-of-robotics-hxgn-live-blog-1920x1080-1.mp4 This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon.
    Like
    Love
    Wow
    Sad
    Angry
    38
    0 Comments 0 Shares
  • Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler

    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production.
    Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below.
    Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder.
    In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session.
    From Concept to Completion
    To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms.
    For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI.
    ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated.
    Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY.
    NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU.
    ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images.
    Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost.
    LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY.
    “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY 

    Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models.
    Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch.
    To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x.
    Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started.
    Photorealistic renders. Image courtesy of FITY.
    Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time.
    Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY.
    “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY

    Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #startup #uses #nvidia #rtxpowered #generative
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #startup #uses #nvidia #rtxpowered #generative
    BLOGS.NVIDIA.COM
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. Read more about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from $999. GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. Save the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptation (LoRA) models — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    0 Comments 0 Shares
  • Wētā FX’s expansion to Melbourne is being hailed as a major win in an industry riddled with closures and financial turmoil. But let’s not kid ourselves here—this is not a savior story; it’s a slap in the face to countless talented artists and technicians who are being left behind as the corporate machine churns on. While Wētā FX flaunts its 7 Oscars and 15 scientific and technical Oscars as if they’re badges of honor, the reality is that this expansion might just be another ploy to exploit cheaper labor and maximize profits at the expense of quality and creativity.

    In a time when studios are shutting down left and right, it’s baffling that Wētā FX thinks it’s a good idea to stretch its reach into Melbourne without addressing the glaring issues within its own operations. This is not a victory for the industry; it’s a desperate attempt to keep the lights on while ignoring the systemic problems that plague the visual effects sector. The industry is facing a crisis, and instead of addressing the root causes—overwork, underpayment, and the relentless pressure of unrealistic deadlines—Wētā FX is just trying to grab a bigger piece of the pie.

    Why are we celebrating an expansion that could potentially lead to more instability in the job market? Wētā FX’s move to Melbourne could mean more jobs, yes, but at what cost? What about the existing employees who are already stretched thin? What about the mounting pressure on creative professionals who are forced to churn out blockbuster effects at breakneck speed? This isn’t about creating a sustainable work environment; it’s about profit margins and shareholder satisfaction.

    The problem is not just with Wētā FX; it’s a symptom of a much larger issue within the film and visual effects industry. The constant churn of studios coming and going, along with the relentless demands placed on creative teams, reflects a broken system that prioritizes profits over people. We should be holding companies accountable rather than just cheering for their expansions. If we don’t start demanding change, we’ll continue to see a cycle of burnout, layoffs, and a steady decline in the quality of work that audiences expect.

    And let's talk about the so-called "innovation" that Wētā FX touts. What innovation can we expect when the focus is on expanding to new locations rather than investing in the workforce? New studios don’t equate to new ideas or better working conditions. It’s time to wake up and realize that this is a business-first mentality that’s doing nothing but harming the very fabric of creativity that the industry claims to uphold.

    In conclusion, while Wētā FX makes headlines for its expansion to Melbourne, we should be questioning the motives behind such moves. This isn’t a time for celebration; it’s a time for scrutiny. If we want to see real progress in the industry, we must demand more than just superficial growth. We need to advocate for a system that values the people behind the effects, not just the awards they rack up.

    #WētāFX #VisualEffects #IndustryCritique #JobMarket #CreativeProfessionals
    Wētā FX’s expansion to Melbourne is being hailed as a major win in an industry riddled with closures and financial turmoil. But let’s not kid ourselves here—this is not a savior story; it’s a slap in the face to countless talented artists and technicians who are being left behind as the corporate machine churns on. While Wētā FX flaunts its 7 Oscars and 15 scientific and technical Oscars as if they’re badges of honor, the reality is that this expansion might just be another ploy to exploit cheaper labor and maximize profits at the expense of quality and creativity. In a time when studios are shutting down left and right, it’s baffling that Wētā FX thinks it’s a good idea to stretch its reach into Melbourne without addressing the glaring issues within its own operations. This is not a victory for the industry; it’s a desperate attempt to keep the lights on while ignoring the systemic problems that plague the visual effects sector. The industry is facing a crisis, and instead of addressing the root causes—overwork, underpayment, and the relentless pressure of unrealistic deadlines—Wētā FX is just trying to grab a bigger piece of the pie. Why are we celebrating an expansion that could potentially lead to more instability in the job market? Wētā FX’s move to Melbourne could mean more jobs, yes, but at what cost? What about the existing employees who are already stretched thin? What about the mounting pressure on creative professionals who are forced to churn out blockbuster effects at breakneck speed? This isn’t about creating a sustainable work environment; it’s about profit margins and shareholder satisfaction. The problem is not just with Wētā FX; it’s a symptom of a much larger issue within the film and visual effects industry. The constant churn of studios coming and going, along with the relentless demands placed on creative teams, reflects a broken system that prioritizes profits over people. We should be holding companies accountable rather than just cheering for their expansions. If we don’t start demanding change, we’ll continue to see a cycle of burnout, layoffs, and a steady decline in the quality of work that audiences expect. And let's talk about the so-called "innovation" that Wētā FX touts. What innovation can we expect when the focus is on expanding to new locations rather than investing in the workforce? New studios don’t equate to new ideas or better working conditions. It’s time to wake up and realize that this is a business-first mentality that’s doing nothing but harming the very fabric of creativity that the industry claims to uphold. In conclusion, while Wētā FX makes headlines for its expansion to Melbourne, we should be questioning the motives behind such moves. This isn’t a time for celebration; it’s a time for scrutiny. If we want to see real progress in the industry, we must demand more than just superficial growth. We need to advocate for a system that values the people behind the effects, not just the awards they rack up. #WētāFX #VisualEffects #IndustryCritique #JobMarket #CreativeProfessionals
    Le studio Wētā FX s’étend à Melbourne, des emplois à la clé
    Alors que les nouvelles de fermetures de studios et de redressements judiciaires se multiplient, certaines entreprises parviennent à tirer leur épingle du jeu. C’est le cas de Wētā FX, le studio d’effets visuels aux 7 Oscars et 15 Oscars
    Like
    Love
    Wow
    Sad
    Angry
    425
    1 Comments 0 Shares
  • Ah, California! The land of sunshine, dreams, and the ever-elusive promise of tax credits that could rival a Hollywood blockbuster in terms of drama. Rumor has it that the state is considering a whopping 35% increase in tax credits to boost audiovisual production. Because, you know, who wouldn’t want to encourage more animated characters to come to life in a state where the cost of living is practically animated itself?

    Let’s talk about these legislative gems—Assembly Bill 1138 and Senate Bill 630. Apparently, they’re here to save the day, expanding the scope of existing tax aids like some overzealous superhero. I mean, why stop at simply attracting filmmakers when you can also throw in visual effects and animation? It’s like giving a kid a whole candy store instead of a single lollipop. Who can say no to that?

    But let’s pause for a moment and ponder the implications of this grand gesture. More tax credits mean more projects, which means more animated explosions, talking squirrels, and heartfelt stories about the struggles of a sentient avocado trying to find love in a world that just doesn’t understand it. Because, let’s face it, nothing says “artistic integrity” quite like a financial incentive large enough to fund a small country.

    And what do we have to thank for this potential windfall? Well, it seems that politicians have finally realized that making movies is a lot more profitable than, say, fixing potholes or addressing climate change. Who knew? Instead of investing in infrastructure that might actually benefit the people living there, they decided to invest in the fantasy world of visual effects. Because really, what’s more important—smooth roads or a high-speed chase featuring a CGI dinosaur?

    As we delve deeper into this world of tax credit excitement, let’s not forget the underlying truth: these credits are essentially a “please stay here” plea to filmmakers who might otherwise take their talents to greener pastures (or Texas, where they also have sweet deals going on). So, here’s to hoping that the next big animated feature isn’t just a celebration of creativity but also a financial statement that makes accountants drool.

    So get ready, folks! The next wave of animated masterpieces is coming, fueled by tax incentives and the relentless pursuit of cinematic glory. Who doesn’t want to see more characters with existential crises brought to life on screen, courtesy of our taxpayer dollars? Bravo, California! You’ve truly outdone yourself. Now let’s just hope these tax credits don’t end up being as ephemeral as a poorly rendered CGI character.

    #CaliforniaTaxCredits #Animation #VFX #Hollywood #TaxIncentives
    Ah, California! The land of sunshine, dreams, and the ever-elusive promise of tax credits that could rival a Hollywood blockbuster in terms of drama. Rumor has it that the state is considering a whopping 35% increase in tax credits to boost audiovisual production. Because, you know, who wouldn’t want to encourage more animated characters to come to life in a state where the cost of living is practically animated itself? Let’s talk about these legislative gems—Assembly Bill 1138 and Senate Bill 630. Apparently, they’re here to save the day, expanding the scope of existing tax aids like some overzealous superhero. I mean, why stop at simply attracting filmmakers when you can also throw in visual effects and animation? It’s like giving a kid a whole candy store instead of a single lollipop. Who can say no to that? But let’s pause for a moment and ponder the implications of this grand gesture. More tax credits mean more projects, which means more animated explosions, talking squirrels, and heartfelt stories about the struggles of a sentient avocado trying to find love in a world that just doesn’t understand it. Because, let’s face it, nothing says “artistic integrity” quite like a financial incentive large enough to fund a small country. And what do we have to thank for this potential windfall? Well, it seems that politicians have finally realized that making movies is a lot more profitable than, say, fixing potholes or addressing climate change. Who knew? Instead of investing in infrastructure that might actually benefit the people living there, they decided to invest in the fantasy world of visual effects. Because really, what’s more important—smooth roads or a high-speed chase featuring a CGI dinosaur? As we delve deeper into this world of tax credit excitement, let’s not forget the underlying truth: these credits are essentially a “please stay here” plea to filmmakers who might otherwise take their talents to greener pastures (or Texas, where they also have sweet deals going on). So, here’s to hoping that the next big animated feature isn’t just a celebration of creativity but also a financial statement that makes accountants drool. So get ready, folks! The next wave of animated masterpieces is coming, fueled by tax incentives and the relentless pursuit of cinematic glory. Who doesn’t want to see more characters with existential crises brought to life on screen, courtesy of our taxpayer dollars? Bravo, California! You’ve truly outdone yourself. Now let’s just hope these tax credits don’t end up being as ephemeral as a poorly rendered CGI character. #CaliforniaTaxCredits #Animation #VFX #Hollywood #TaxIncentives
    Bientôt 35% de crédits d’impôts en Californie ? Impact à prévoir sur l’animation et les VFX
    La Californie pourrait augmenter ses crédits d’impôt pour favoriser la production audiovisuelle. Une évolution qui aurait aussi un impact sur les effets visuels et l’animation.Deux projets législatifs (Assembly Bill 1138 & Senate Bill
    Like
    Love
    Wow
    Angry
    Sad
    608
    1 Comments 0 Shares
  • The recent announcement of CEAD inaugurating a center dedicated to 3D printing for manufacturing boat hulls is nothing short of infuriating. We are living in an age where technological advancements should lead to significant improvements in efficiency and sustainability, yet here we are, celebrating a move that reeks of superficial progress and misguided priorities.

    First off, let’s talk about the so-called “Maritime Application Center” (MAC) in Delft. While they dazzle us with their fancy new facility, one has to question the real implications of such a center. Are they genuinely solving the pressing issues of the maritime industry, or are they merely jumping on the bandwagon of 3D printing hype? The idea of using large-scale additive manufacturing to produce boat hulls sounds revolutionary, but let’s face it: this is just another example of throwing technology at a problem without truly understanding the underlying challenges that plague the industry.

    The maritime sector is facing severe environmental concerns, including pollution from traditional manufacturing processes and shipping practices. Instead of addressing these burning issues head-on, CEAD and others like them seem content to play with shiny new tools. 3D printing, in theory, could reduce waste—a point they love to hammer home in their marketing. But what about the energy consumption and material sourcing involved? Are we simply swapping one form of environmental degradation for another?

    Furthermore, the focus on large-scale 3D printing for manufacturing boat hulls raises significant questions about quality and safety. The maritime industry is not a playground for experimental technologies; lives are at stake. Relying on printed components that could potentially have structural weaknesses is a reckless gamble, and the consequences could be disastrous. Are we prepared to accept the liability if these hulls fail at sea?

    Let’s not forget the economic implications of this move. Sure, CEAD is likely patting themselves on the back for creating jobs at the MAC, but how many traditional jobs are they putting at risk? The maritime industry relies on skilled labor and craftsmanship that cannot simply be replaced by a machine. By pushing for 3D printing at such a scale, they threaten the livelihoods of countless workers who have dedicated their lives to mastering this trade.

    In conclusion, while CEAD’s center for 3D printing boat hulls may sound impressive on paper, the reality is that it’s a misguided effort that overlooks critical aspects of sustainability, safety, and social responsibility. We need to demand more from our industries and hold them accountable for their actions instead of blindly celebrating every shiny new innovation. The maritime industry deserves solutions that genuinely address its challenges rather than a mere technological gimmick.

    #MaritimeIndustry #3DPrinting #Sustainability #CEAD #BoatManufacturing
    The recent announcement of CEAD inaugurating a center dedicated to 3D printing for manufacturing boat hulls is nothing short of infuriating. We are living in an age where technological advancements should lead to significant improvements in efficiency and sustainability, yet here we are, celebrating a move that reeks of superficial progress and misguided priorities. First off, let’s talk about the so-called “Maritime Application Center” (MAC) in Delft. While they dazzle us with their fancy new facility, one has to question the real implications of such a center. Are they genuinely solving the pressing issues of the maritime industry, or are they merely jumping on the bandwagon of 3D printing hype? The idea of using large-scale additive manufacturing to produce boat hulls sounds revolutionary, but let’s face it: this is just another example of throwing technology at a problem without truly understanding the underlying challenges that plague the industry. The maritime sector is facing severe environmental concerns, including pollution from traditional manufacturing processes and shipping practices. Instead of addressing these burning issues head-on, CEAD and others like them seem content to play with shiny new tools. 3D printing, in theory, could reduce waste—a point they love to hammer home in their marketing. But what about the energy consumption and material sourcing involved? Are we simply swapping one form of environmental degradation for another? Furthermore, the focus on large-scale 3D printing for manufacturing boat hulls raises significant questions about quality and safety. The maritime industry is not a playground for experimental technologies; lives are at stake. Relying on printed components that could potentially have structural weaknesses is a reckless gamble, and the consequences could be disastrous. Are we prepared to accept the liability if these hulls fail at sea? Let’s not forget the economic implications of this move. Sure, CEAD is likely patting themselves on the back for creating jobs at the MAC, but how many traditional jobs are they putting at risk? The maritime industry relies on skilled labor and craftsmanship that cannot simply be replaced by a machine. By pushing for 3D printing at such a scale, they threaten the livelihoods of countless workers who have dedicated their lives to mastering this trade. In conclusion, while CEAD’s center for 3D printing boat hulls may sound impressive on paper, the reality is that it’s a misguided effort that overlooks critical aspects of sustainability, safety, and social responsibility. We need to demand more from our industries and hold them accountable for their actions instead of blindly celebrating every shiny new innovation. The maritime industry deserves solutions that genuinely address its challenges rather than a mere technological gimmick. #MaritimeIndustry #3DPrinting #Sustainability #CEAD #BoatManufacturing
    CEAD inaugura un centro dedicado a la impresión 3D para fabricar cascos de barcos
    La industria marítima está experimentando una transformación importante gracias a la impresión 3D de gran formato. El grupo holandés CEAD, especialista en fabricación aditiva a gran escala, ha inaugurado recientemente su Maritime Application Center (
    Like
    Love
    Wow
    Sad
    Angry
    587
    1 Comments 0 Shares
  • Ankur Kothari Q&A: Customer Engagement Book Interview

    Reading Time: 9 minutes
    In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns.
    But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic.
    This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results.
    Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.

     
    Ankur Kothari Q&A Interview
    1. What types of customer engagement data are most valuable for making strategic business decisions?
    Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns.
    Second would be demographic information: age, location, income, and other relevant personal characteristics.
    Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews.
    Fourth would be the customer journey data.

    We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data.

    2. How do you distinguish between data that is actionable versus data that is just noise?
    First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance.
    Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in.

    You also want to make sure that there is consistency across sources.
    Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory.
    Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy.

    By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions.

    3. How can customer engagement data be used to identify and prioritize new business opportunities?
    First, it helps us to uncover unmet needs.

    By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points.

    Second would be identifying emerging needs.
    Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly.
    Third would be segmentation analysis.
    Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies.
    Last is to build competitive differentiation.

    Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions.

    4. Can you share an example of where data insights directly influenced a critical decision?
    I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings.
    We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms.
    That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs.

    That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial.

    5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time?
    When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences.
    We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments.
    Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content.

    With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns.

    6. How are you doing the 1:1 personalization?
    We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer.
    So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer.
    That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience.

    We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers.

    7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service?
    Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved.
    The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments.

    Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention.

    So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization.

    8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights?
    I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights.

    Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement.

    Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant.
    As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively.
    So there’s a lack of understanding of marketing and sales as domains.
    It’s a huge effort and can take a lot of investment.

    Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing.

    9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data?
    If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge.
    Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side.

    Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important.

    10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before?
    First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do.
    And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations.
    The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it.

    Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one.

    11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations?
    We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI.
    We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals.

    We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization.

    12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data?
    I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points.
    Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us.
    We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels.
    Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms.

    Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps.

    13. How do you ensure data quality and consistency across multiple channels to make these informed decisions?
    We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies.
    While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing.
    We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats.

    On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically.

    14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years?
    The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices.
    Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities.
    We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases.
    As the world is collecting more data, privacy concerns and regulations come into play.
    I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies.
    And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture.

    So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.

     
    This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die.
    Download the PDF or request a physical copy of the book here.
    The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    #ankur #kothari #qampampa #customer #engagement
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage. #ankur #kothari #qampampa #customer #engagement
    WWW.MOENGAGE.COM
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question (and many others), we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    Like
    Love
    Wow
    Angry
    Sad
    478
    0 Comments 0 Shares
  • EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments

    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausannein Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025
    Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerialimage. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset.
    Key Takeaways:

    Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task.
    Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map.
    Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models.
    Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal.

    Challenge: Seeing the World from Two Different Angles
    The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-Viewbut are often limited to the ground plane, ignoring crucial vertical structures like buildings.

    FG2: Matching Fine-Grained Features
    The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map.

    Here’s a breakdown of their innovative pipeline:

    Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment.
    Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the verticaldimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view.
    Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoFpose.

    Unprecedented Performance and Interpretability
    The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research.

    Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems.
    “A Clearer Path” for Autonomous Navigation
    The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.
    Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models
    #epfl #researchers #unveil #fg2 #cvpr
    EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments
    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausannein Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025 Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerialimage. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset. Key Takeaways: Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task. Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map. Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models. Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal. Challenge: Seeing the World from Two Different Angles The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-Viewbut are often limited to the ground plane, ignoring crucial vertical structures like buildings. FG2: Matching Fine-Grained Features The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map. Here’s a breakdown of their innovative pipeline: Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment. Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the verticaldimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view. Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoFpose. Unprecedented Performance and Interpretability The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research. Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems. “A Clearer Path” for Autonomous Navigation The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them. Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models #epfl #researchers #unveil #fg2 #cvpr
    WWW.MARKTECHPOST.COM
    EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments
    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025 Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerial (or satellite) image. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset. Key Takeaways: Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task. Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map. Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models. Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal. Challenge: Seeing the World from Two Different Angles The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-View (BEV) but are often limited to the ground plane, ignoring crucial vertical structures like buildings. FG2: Matching Fine-Grained Features The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map. Here’s a breakdown of their innovative pipeline: Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment. Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the vertical (height) dimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view. Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoF (x, y, and yaw) pose. Unprecedented Performance and Interpretability The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research. Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems. “A Clearer Path” for Autonomous Navigation The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them. Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models
    Like
    Love
    Wow
    Angry
    Sad
    601
    0 Comments 0 Shares
  • Why Designers Get Stuck In The Details And How To Stop

    You’ve drawn fifty versions of the same screen — and you still hate every one of them. Begrudgingly, you pick three, show them to your product manager, and hear: “Looks cool, but the idea doesn’t work.” Sound familiar?
    In this article, I’ll unpack why designers fall into detail work at the wrong moment, examining both process pitfalls and the underlying psychological reasons, as understanding these traps is the first step to overcoming them. I’ll also share tactics I use to climb out of that trap.
    Reason #1 You’re Afraid To Show Rough Work
    We designers worship detail. We’re taught that true craft equals razor‑sharp typography, perfect grids, and pixel precision. So the minute a task arrives, we pop open Figma and start polishing long before polish is needed.
    I’ve skipped the sketch phase more times than I care to admit. I told myself it would be faster, yet I always ended up spending hours producing a tidy mock‑up when a scribbled thumbnail would have sparked a five‑minute chat with my product manager. Rough sketches felt “unprofessional,” so I hid them.
    The cost? Lost time, wasted energy — and, by the third redo, teammates were quietly wondering if I even understood the brief.
    The real problem here is the habit: we open Figma and start perfecting the UI before we’ve even solved the problem.
    So why do we hide these rough sketches? It’s not just a bad habit or plain silly. There are solid psychological reasons behind it. We often just call it perfectionism, but it’s deeper than wanting things neat. Digging into the psychologyshows there are a couple of flavors driving this:

    Socially prescribed perfectionismIt’s that nagging feeling that everyone else expects perfect work from you, which makes showing anything rough feel like walking into the lion’s den.
    Self-oriented perfectionismWhere you’re the one setting impossibly high standards for yourself, leading to brutal self-criticism if anything looks slightly off.

    Either way, the result’s the same: showing unfinished work feels wrong, and you miss out on that vital early feedback.
    Back to the design side, remember that clients rarely see architects’ first pencil sketches, but these sketches still exist; they guide structural choices before the 3D render. Treat your thumbnails the same way — artifacts meant to collapse uncertainty, not portfolio pieces. Once stakeholders see the upside, roughness becomes a badge of speed, not sloppiness. So, the key is to consciously make that shift:
    Treat early sketches as disposable tools for thinking and actively share them to get feedback faster.

    Reason #2: You Fix The Symptom, Not The Cause
    Before tackling any task, we need to understand what business outcome we’re aiming for. Product managers might come to us asking to enlarge the payment button in the shopping cart because users aren’t noticing it. The suggested solution itself isn’t necessarily bad, but before redesigning the button, we should ask, “What data suggests they aren’t noticing it?” Don’t get me wrong, I’m not saying you shouldn’t trust your product manager. On the contrary, these questions help ensure you’re on the same page and working with the same data.
    From my experience, here are several reasons why users might not be clicking that coveted button:

    Users don’t understand that this step is for payment.
    They understand it’s about payment but expect order confirmation first.
    Due to incorrect translation, users don’t understand what the button means.
    Lack of trust signals.
    Unexpected additional coststhat appear at this stage.
    Technical issues.

    Now, imagine you simply did what the manager suggested. Would you have solved the problem? Hardly.
    Moreover, the responsibility for the unresolved issue would fall on you, as the interface solution lies within the design domain. The product manager actually did their job correctly by identifying a problem: suspiciously, few users are clicking the button.
    Psychologically, taking on this bigger role isn’t easy. It means overcoming the fear of making mistakes and the discomfort of exploring unclear problems rather than just doing tasks. This shift means seeing ourselves as partners who create value — even if it means fighting a hesitation to question product managers— and understanding that using our product logic expertise proactively is crucial for modern designers.
    There’s another critical reason why we, designers, need to be a bit like product managers: the rise of AI. I deliberately used a simple example about enlarging a button, but I’m confident that in the near future, AI will easily handle routine design tasks. This worries me, but at the same time, I’m already gladly stepping into the product manager’s territory: understanding product and business metrics, formulating hypotheses, conducting research, and so on. It might sound like I’m taking work away from PMs, but believe me, they undoubtedly have enough on their plates and are usually more than happy to delegate some responsibilities to designers.
    Reason #3: You’re Solving The Wrong Problem
    Before solving anything, ask whether the problem even deserves your attention.
    During a major home‑screen redesign, our goal was to drive more users into paid services. The initial hypothesis — making service buttons bigger and brighter might help returning users — seemed reasonable enough to test. However, even when A/B testsshowed minimal impact, we continued to tweak those buttons.
    Only later did it click: the home screen isn’t the place to sell; visitors open the app to start, not to buy. We removed that promo block, and nothing broke. Contextual entry points deeper into the journey performed brilliantly. Lesson learned:
    Without the right context, any visual tweak is lipstick on a pig.

    Why did we get stuck polishing buttons instead of stopping sooner? It’s easy to get tunnel vision. Psychologically, it’s likely the good old sunk cost fallacy kicking in: we’d already invested time in the buttons, so stopping felt like wasting that effort, even though the data wasn’t promising.
    It’s just easier to keep fiddling with something familiar than to admit we need a new plan. Perhaps the simple question I should have asked myself when results stalled was: “Are we optimizing the right thing or just polishing something that fundamentally doesn’t fit the user’s primary goal here?” That alone might have saved hours.
    Reason #4: You’re Drowning In Unactionable Feedback
    We all discuss our work with colleagues. But here’s a crucial point: what kind of question do you pose to kick off that discussion? If your go-to is “What do you think?” well, that question might lead you down a rabbit hole of personal opinions rather than actionable insights. While experienced colleagues will cut through the noise, others, unsure what to evaluate, might comment on anything and everything — fonts, button colors, even when you desperately need to discuss a user flow.
    What matters here are two things:

    The question you ask,
    The context you give.

    That means clearly stating the problem, what you’ve learned, and how your idea aims to fix it.
    For instance:
    “The problem is our payment conversion rate has dropped by X%. I’ve interviewed users and found they abandon payment because they don’t understand how the total amount is calculated. My solution is to show a detailed cost breakdown. Do you think this actually solves the problem for them?”

    Here, you’ve stated the problem, shared your insight, explained your solution, and asked a direct question. It’s even better if you prepare a list of specific sub-questions. For instance: “Are all items in the cost breakdown clear?” or “Does the placement of this breakdown feel intuitive within the payment flow?”
    Another good habit is to keep your rough sketches and previous iterations handy. Some of your colleagues’ suggestions might be things you’ve already tried. It’s great if you can discuss them immediately to either revisit those ideas or definitively set them aside.
    I’m not a psychologist, but experience tells me that, psychologically, the reluctance to be this specific often stems from a fear of our solution being rejected. We tend to internalize feedback: a seemingly innocent comment like, “Have you considered other ways to organize this section?” or “Perhaps explore a different structure for this part?” can instantly morph in our minds into “You completely messed up the structure. You’re a bad designer.” Imposter syndrome, in all its glory.
    So, to wrap up this point, here are two recommendations:

    Prepare for every design discussion.A couple of focused questions will yield far more valuable input than a vague “So, what do you think?”.
    Actively work on separating feedback on your design from your self-worth.If a mistake is pointed out, acknowledge it, learn from it, and you’ll be less likely to repeat it. This is often easier said than done. For me, it took years of working with a psychotherapist. If you struggle with this, I sincerely wish you strength in overcoming it.

    Reason #5 You’re Just Tired
    Sometimes, the issue isn’t strategic at all — it’s fatigue. Fussing over icon corners can feel like a cozy bunker when your brain is fried. There’s a name for this: decision fatigue. Basically, your brain’s battery for hard thinking is low, so it hides out in the easy, comfy zone of pixel-pushing.
    A striking example comes from a New York Times article titled “Do You Suffer From Decision Fatigue?.” It described how judges deciding on release requests were far more likely to grant release early in the daycompared to late in the daysimply because their decision-making energy was depleted. Luckily, designers rarely hold someone’s freedom in their hands, but the example dramatically shows how fatigue can impact our judgment and productivity.
    What helps here:

    Swap tasks.Trade tickets with another designer; novelty resets your focus.
    Talk to another designer.If NDA permits, ask peers outside the team for a sanity check.
    Step away.Even a ten‑minute walk can do more than a double‑shot espresso.

    By the way, I came up with these ideas while walking around my office. I was lucky to work near a river, and those short walks quickly turned into a helpful habit.

    And one more trick that helps me snap out of detail mode early: if I catch myself making around 20 little tweaks — changing font weight, color, border radius — I just stop. Over time, it turned into a habit. I have a similar one with Instagram: by the third reel, my brain quietly asks, “Wait, weren’t we working?” Funny how that kind of nudge saves a ton of time.
    Four Steps I Use to Avoid Drowning In Detail
    Knowing these potential traps, here’s the practical process I use to stay on track:
    1. Define the Core Problem & Business Goal
    Before anything, dig deep: what’s the actual problem we’re solving, not just the requested task or a surface-level symptom? Ask ‘why’ repeatedly. What user pain or business need are we addressing? Then, state the clear business goal: “What metric am I moving, and do we have data to prove this is the right lever?” If retention is the goal, decide whether push reminders, gamification, or personalised content is the best route. The wrong lever, or tackling a symptom instead of the cause, dooms everything downstream.
    2. Choose the MechanicOnce the core problem and goal are clear, lock the solution principle or ‘mechanic’ first. Going with a game layer? Decide if it’s leaderboards, streaks, or badges. Write it down. Then move on. No UI yet. This keeps the focus high-level before diving into pixels.
    3. Wireframe the Flow & Get Focused Feedback
    Now open Figma. Map screens, layout, and transitions. Boxes and arrows are enough. Keep the fidelity low so the discussion stays on the flow, not colour. Crucially, when you share these early wires, ask specific questions and provide clear contextto get actionable feedback, not just vague opinions.
    4. Polish the VisualsI only let myself tweak grids, type scales, and shadows after the flow is validated. If progress stalls, or before a major polish effort, I surface the work in a design critique — again using targeted questions and clear context — instead of hiding in version 47. This ensures detailing serves the now-validated solution.
    Even for something as small as a single button, running these four checkpoints takes about ten minutes and saves hours of decorative dithering.
    Wrapping Up
    Next time you feel the pull to vanish into mock‑ups before the problem is nailed down, pause and ask what you might be avoiding. Yes, that can expose an uncomfortable truth. But pausing to ask what you might be avoiding — maybe the fuzzy core problem, or just asking for tough feedback — gives you the power to face the real issue head-on. It keeps the project focused on solving the right problem, not just perfecting a flawed solution.
    Attention to detail is a superpower when used at the right moment. Obsessing over pixels too soon, though, is a bad habit and a warning light telling us the process needs a rethink.
    #why #designers #get #stuck #details
    Why Designers Get Stuck In The Details And How To Stop
    You’ve drawn fifty versions of the same screen — and you still hate every one of them. Begrudgingly, you pick three, show them to your product manager, and hear: “Looks cool, but the idea doesn’t work.” Sound familiar? In this article, I’ll unpack why designers fall into detail work at the wrong moment, examining both process pitfalls and the underlying psychological reasons, as understanding these traps is the first step to overcoming them. I’ll also share tactics I use to climb out of that trap. Reason #1 You’re Afraid To Show Rough Work We designers worship detail. We’re taught that true craft equals razor‑sharp typography, perfect grids, and pixel precision. So the minute a task arrives, we pop open Figma and start polishing long before polish is needed. I’ve skipped the sketch phase more times than I care to admit. I told myself it would be faster, yet I always ended up spending hours producing a tidy mock‑up when a scribbled thumbnail would have sparked a five‑minute chat with my product manager. Rough sketches felt “unprofessional,” so I hid them. The cost? Lost time, wasted energy — and, by the third redo, teammates were quietly wondering if I even understood the brief. The real problem here is the habit: we open Figma and start perfecting the UI before we’ve even solved the problem. So why do we hide these rough sketches? It’s not just a bad habit or plain silly. There are solid psychological reasons behind it. We often just call it perfectionism, but it’s deeper than wanting things neat. Digging into the psychologyshows there are a couple of flavors driving this: Socially prescribed perfectionismIt’s that nagging feeling that everyone else expects perfect work from you, which makes showing anything rough feel like walking into the lion’s den. Self-oriented perfectionismWhere you’re the one setting impossibly high standards for yourself, leading to brutal self-criticism if anything looks slightly off. Either way, the result’s the same: showing unfinished work feels wrong, and you miss out on that vital early feedback. Back to the design side, remember that clients rarely see architects’ first pencil sketches, but these sketches still exist; they guide structural choices before the 3D render. Treat your thumbnails the same way — artifacts meant to collapse uncertainty, not portfolio pieces. Once stakeholders see the upside, roughness becomes a badge of speed, not sloppiness. So, the key is to consciously make that shift: Treat early sketches as disposable tools for thinking and actively share them to get feedback faster. Reason #2: You Fix The Symptom, Not The Cause Before tackling any task, we need to understand what business outcome we’re aiming for. Product managers might come to us asking to enlarge the payment button in the shopping cart because users aren’t noticing it. The suggested solution itself isn’t necessarily bad, but before redesigning the button, we should ask, “What data suggests they aren’t noticing it?” Don’t get me wrong, I’m not saying you shouldn’t trust your product manager. On the contrary, these questions help ensure you’re on the same page and working with the same data. From my experience, here are several reasons why users might not be clicking that coveted button: Users don’t understand that this step is for payment. They understand it’s about payment but expect order confirmation first. Due to incorrect translation, users don’t understand what the button means. Lack of trust signals. Unexpected additional coststhat appear at this stage. Technical issues. Now, imagine you simply did what the manager suggested. Would you have solved the problem? Hardly. Moreover, the responsibility for the unresolved issue would fall on you, as the interface solution lies within the design domain. The product manager actually did their job correctly by identifying a problem: suspiciously, few users are clicking the button. Psychologically, taking on this bigger role isn’t easy. It means overcoming the fear of making mistakes and the discomfort of exploring unclear problems rather than just doing tasks. This shift means seeing ourselves as partners who create value — even if it means fighting a hesitation to question product managers— and understanding that using our product logic expertise proactively is crucial for modern designers. There’s another critical reason why we, designers, need to be a bit like product managers: the rise of AI. I deliberately used a simple example about enlarging a button, but I’m confident that in the near future, AI will easily handle routine design tasks. This worries me, but at the same time, I’m already gladly stepping into the product manager’s territory: understanding product and business metrics, formulating hypotheses, conducting research, and so on. It might sound like I’m taking work away from PMs, but believe me, they undoubtedly have enough on their plates and are usually more than happy to delegate some responsibilities to designers. Reason #3: You’re Solving The Wrong Problem Before solving anything, ask whether the problem even deserves your attention. During a major home‑screen redesign, our goal was to drive more users into paid services. The initial hypothesis — making service buttons bigger and brighter might help returning users — seemed reasonable enough to test. However, even when A/B testsshowed minimal impact, we continued to tweak those buttons. Only later did it click: the home screen isn’t the place to sell; visitors open the app to start, not to buy. We removed that promo block, and nothing broke. Contextual entry points deeper into the journey performed brilliantly. Lesson learned: Without the right context, any visual tweak is lipstick on a pig. Why did we get stuck polishing buttons instead of stopping sooner? It’s easy to get tunnel vision. Psychologically, it’s likely the good old sunk cost fallacy kicking in: we’d already invested time in the buttons, so stopping felt like wasting that effort, even though the data wasn’t promising. It’s just easier to keep fiddling with something familiar than to admit we need a new plan. Perhaps the simple question I should have asked myself when results stalled was: “Are we optimizing the right thing or just polishing something that fundamentally doesn’t fit the user’s primary goal here?” That alone might have saved hours. Reason #4: You’re Drowning In Unactionable Feedback We all discuss our work with colleagues. But here’s a crucial point: what kind of question do you pose to kick off that discussion? If your go-to is “What do you think?” well, that question might lead you down a rabbit hole of personal opinions rather than actionable insights. While experienced colleagues will cut through the noise, others, unsure what to evaluate, might comment on anything and everything — fonts, button colors, even when you desperately need to discuss a user flow. What matters here are two things: The question you ask, The context you give. That means clearly stating the problem, what you’ve learned, and how your idea aims to fix it. For instance: “The problem is our payment conversion rate has dropped by X%. I’ve interviewed users and found they abandon payment because they don’t understand how the total amount is calculated. My solution is to show a detailed cost breakdown. Do you think this actually solves the problem for them?” Here, you’ve stated the problem, shared your insight, explained your solution, and asked a direct question. It’s even better if you prepare a list of specific sub-questions. For instance: “Are all items in the cost breakdown clear?” or “Does the placement of this breakdown feel intuitive within the payment flow?” Another good habit is to keep your rough sketches and previous iterations handy. Some of your colleagues’ suggestions might be things you’ve already tried. It’s great if you can discuss them immediately to either revisit those ideas or definitively set them aside. I’m not a psychologist, but experience tells me that, psychologically, the reluctance to be this specific often stems from a fear of our solution being rejected. We tend to internalize feedback: a seemingly innocent comment like, “Have you considered other ways to organize this section?” or “Perhaps explore a different structure for this part?” can instantly morph in our minds into “You completely messed up the structure. You’re a bad designer.” Imposter syndrome, in all its glory. So, to wrap up this point, here are two recommendations: Prepare for every design discussion.A couple of focused questions will yield far more valuable input than a vague “So, what do you think?”. Actively work on separating feedback on your design from your self-worth.If a mistake is pointed out, acknowledge it, learn from it, and you’ll be less likely to repeat it. This is often easier said than done. For me, it took years of working with a psychotherapist. If you struggle with this, I sincerely wish you strength in overcoming it. Reason #5 You’re Just Tired Sometimes, the issue isn’t strategic at all — it’s fatigue. Fussing over icon corners can feel like a cozy bunker when your brain is fried. There’s a name for this: decision fatigue. Basically, your brain’s battery for hard thinking is low, so it hides out in the easy, comfy zone of pixel-pushing. A striking example comes from a New York Times article titled “Do You Suffer From Decision Fatigue?.” It described how judges deciding on release requests were far more likely to grant release early in the daycompared to late in the daysimply because their decision-making energy was depleted. Luckily, designers rarely hold someone’s freedom in their hands, but the example dramatically shows how fatigue can impact our judgment and productivity. What helps here: Swap tasks.Trade tickets with another designer; novelty resets your focus. Talk to another designer.If NDA permits, ask peers outside the team for a sanity check. Step away.Even a ten‑minute walk can do more than a double‑shot espresso. By the way, I came up with these ideas while walking around my office. I was lucky to work near a river, and those short walks quickly turned into a helpful habit. And one more trick that helps me snap out of detail mode early: if I catch myself making around 20 little tweaks — changing font weight, color, border radius — I just stop. Over time, it turned into a habit. I have a similar one with Instagram: by the third reel, my brain quietly asks, “Wait, weren’t we working?” Funny how that kind of nudge saves a ton of time. Four Steps I Use to Avoid Drowning In Detail Knowing these potential traps, here’s the practical process I use to stay on track: 1. Define the Core Problem & Business Goal Before anything, dig deep: what’s the actual problem we’re solving, not just the requested task or a surface-level symptom? Ask ‘why’ repeatedly. What user pain or business need are we addressing? Then, state the clear business goal: “What metric am I moving, and do we have data to prove this is the right lever?” If retention is the goal, decide whether push reminders, gamification, or personalised content is the best route. The wrong lever, or tackling a symptom instead of the cause, dooms everything downstream. 2. Choose the MechanicOnce the core problem and goal are clear, lock the solution principle or ‘mechanic’ first. Going with a game layer? Decide if it’s leaderboards, streaks, or badges. Write it down. Then move on. No UI yet. This keeps the focus high-level before diving into pixels. 3. Wireframe the Flow & Get Focused Feedback Now open Figma. Map screens, layout, and transitions. Boxes and arrows are enough. Keep the fidelity low so the discussion stays on the flow, not colour. Crucially, when you share these early wires, ask specific questions and provide clear contextto get actionable feedback, not just vague opinions. 4. Polish the VisualsI only let myself tweak grids, type scales, and shadows after the flow is validated. If progress stalls, or before a major polish effort, I surface the work in a design critique — again using targeted questions and clear context — instead of hiding in version 47. This ensures detailing serves the now-validated solution. Even for something as small as a single button, running these four checkpoints takes about ten minutes and saves hours of decorative dithering. Wrapping Up Next time you feel the pull to vanish into mock‑ups before the problem is nailed down, pause and ask what you might be avoiding. Yes, that can expose an uncomfortable truth. But pausing to ask what you might be avoiding — maybe the fuzzy core problem, or just asking for tough feedback — gives you the power to face the real issue head-on. It keeps the project focused on solving the right problem, not just perfecting a flawed solution. Attention to detail is a superpower when used at the right moment. Obsessing over pixels too soon, though, is a bad habit and a warning light telling us the process needs a rethink. #why #designers #get #stuck #details
    SMASHINGMAGAZINE.COM
    Why Designers Get Stuck In The Details And How To Stop
    You’ve drawn fifty versions of the same screen — and you still hate every one of them. Begrudgingly, you pick three, show them to your product manager, and hear: “Looks cool, but the idea doesn’t work.” Sound familiar? In this article, I’ll unpack why designers fall into detail work at the wrong moment, examining both process pitfalls and the underlying psychological reasons, as understanding these traps is the first step to overcoming them. I’ll also share tactics I use to climb out of that trap. Reason #1 You’re Afraid To Show Rough Work We designers worship detail. We’re taught that true craft equals razor‑sharp typography, perfect grids, and pixel precision. So the minute a task arrives, we pop open Figma and start polishing long before polish is needed. I’ve skipped the sketch phase more times than I care to admit. I told myself it would be faster, yet I always ended up spending hours producing a tidy mock‑up when a scribbled thumbnail would have sparked a five‑minute chat with my product manager. Rough sketches felt “unprofessional,” so I hid them. The cost? Lost time, wasted energy — and, by the third redo, teammates were quietly wondering if I even understood the brief. The real problem here is the habit: we open Figma and start perfecting the UI before we’ve even solved the problem. So why do we hide these rough sketches? It’s not just a bad habit or plain silly. There are solid psychological reasons behind it. We often just call it perfectionism, but it’s deeper than wanting things neat. Digging into the psychology (like the research by Hewitt and Flett) shows there are a couple of flavors driving this: Socially prescribed perfectionismIt’s that nagging feeling that everyone else expects perfect work from you, which makes showing anything rough feel like walking into the lion’s den. Self-oriented perfectionismWhere you’re the one setting impossibly high standards for yourself, leading to brutal self-criticism if anything looks slightly off. Either way, the result’s the same: showing unfinished work feels wrong, and you miss out on that vital early feedback. Back to the design side, remember that clients rarely see architects’ first pencil sketches, but these sketches still exist; they guide structural choices before the 3D render. Treat your thumbnails the same way — artifacts meant to collapse uncertainty, not portfolio pieces. Once stakeholders see the upside, roughness becomes a badge of speed, not sloppiness. So, the key is to consciously make that shift: Treat early sketches as disposable tools for thinking and actively share them to get feedback faster. Reason #2: You Fix The Symptom, Not The Cause Before tackling any task, we need to understand what business outcome we’re aiming for. Product managers might come to us asking to enlarge the payment button in the shopping cart because users aren’t noticing it. The suggested solution itself isn’t necessarily bad, but before redesigning the button, we should ask, “What data suggests they aren’t noticing it?” Don’t get me wrong, I’m not saying you shouldn’t trust your product manager. On the contrary, these questions help ensure you’re on the same page and working with the same data. From my experience, here are several reasons why users might not be clicking that coveted button: Users don’t understand that this step is for payment. They understand it’s about payment but expect order confirmation first. Due to incorrect translation, users don’t understand what the button means. Lack of trust signals (no security icons, unclear seller information). Unexpected additional costs (hidden fees, shipping) that appear at this stage. Technical issues (inactive button, page freezing). Now, imagine you simply did what the manager suggested. Would you have solved the problem? Hardly. Moreover, the responsibility for the unresolved issue would fall on you, as the interface solution lies within the design domain. The product manager actually did their job correctly by identifying a problem: suspiciously, few users are clicking the button. Psychologically, taking on this bigger role isn’t easy. It means overcoming the fear of making mistakes and the discomfort of exploring unclear problems rather than just doing tasks. This shift means seeing ourselves as partners who create value — even if it means fighting a hesitation to question product managers (which might come from a fear of speaking up or a desire to avoid challenging authority) — and understanding that using our product logic expertise proactively is crucial for modern designers. There’s another critical reason why we, designers, need to be a bit like product managers: the rise of AI. I deliberately used a simple example about enlarging a button, but I’m confident that in the near future, AI will easily handle routine design tasks. This worries me, but at the same time, I’m already gladly stepping into the product manager’s territory: understanding product and business metrics, formulating hypotheses, conducting research, and so on. It might sound like I’m taking work away from PMs, but believe me, they undoubtedly have enough on their plates and are usually more than happy to delegate some responsibilities to designers. Reason #3: You’re Solving The Wrong Problem Before solving anything, ask whether the problem even deserves your attention. During a major home‑screen redesign, our goal was to drive more users into paid services. The initial hypothesis — making service buttons bigger and brighter might help returning users — seemed reasonable enough to test. However, even when A/B tests (a method of comparing two versions of a design to determine which performs better) showed minimal impact, we continued to tweak those buttons. Only later did it click: the home screen isn’t the place to sell; visitors open the app to start, not to buy. We removed that promo block, and nothing broke. Contextual entry points deeper into the journey performed brilliantly. Lesson learned: Without the right context, any visual tweak is lipstick on a pig. Why did we get stuck polishing buttons instead of stopping sooner? It’s easy to get tunnel vision. Psychologically, it’s likely the good old sunk cost fallacy kicking in: we’d already invested time in the buttons, so stopping felt like wasting that effort, even though the data wasn’t promising. It’s just easier to keep fiddling with something familiar than to admit we need a new plan. Perhaps the simple question I should have asked myself when results stalled was: “Are we optimizing the right thing or just polishing something that fundamentally doesn’t fit the user’s primary goal here?” That alone might have saved hours. Reason #4: You’re Drowning In Unactionable Feedback We all discuss our work with colleagues. But here’s a crucial point: what kind of question do you pose to kick off that discussion? If your go-to is “What do you think?” well, that question might lead you down a rabbit hole of personal opinions rather than actionable insights. While experienced colleagues will cut through the noise, others, unsure what to evaluate, might comment on anything and everything — fonts, button colors, even when you desperately need to discuss a user flow. What matters here are two things: The question you ask, The context you give. That means clearly stating the problem, what you’ve learned, and how your idea aims to fix it. For instance: “The problem is our payment conversion rate has dropped by X%. I’ve interviewed users and found they abandon payment because they don’t understand how the total amount is calculated. My solution is to show a detailed cost breakdown. Do you think this actually solves the problem for them?” Here, you’ve stated the problem (conversion drop), shared your insight (user confusion), explained your solution (cost breakdown), and asked a direct question. It’s even better if you prepare a list of specific sub-questions. For instance: “Are all items in the cost breakdown clear?” or “Does the placement of this breakdown feel intuitive within the payment flow?” Another good habit is to keep your rough sketches and previous iterations handy. Some of your colleagues’ suggestions might be things you’ve already tried. It’s great if you can discuss them immediately to either revisit those ideas or definitively set them aside. I’m not a psychologist, but experience tells me that, psychologically, the reluctance to be this specific often stems from a fear of our solution being rejected. We tend to internalize feedback: a seemingly innocent comment like, “Have you considered other ways to organize this section?” or “Perhaps explore a different structure for this part?” can instantly morph in our minds into “You completely messed up the structure. You’re a bad designer.” Imposter syndrome, in all its glory. So, to wrap up this point, here are two recommendations: Prepare for every design discussion.A couple of focused questions will yield far more valuable input than a vague “So, what do you think?”. Actively work on separating feedback on your design from your self-worth.If a mistake is pointed out, acknowledge it, learn from it, and you’ll be less likely to repeat it. This is often easier said than done. For me, it took years of working with a psychotherapist. If you struggle with this, I sincerely wish you strength in overcoming it. Reason #5 You’re Just Tired Sometimes, the issue isn’t strategic at all — it’s fatigue. Fussing over icon corners can feel like a cozy bunker when your brain is fried. There’s a name for this: decision fatigue. Basically, your brain’s battery for hard thinking is low, so it hides out in the easy, comfy zone of pixel-pushing. A striking example comes from a New York Times article titled “Do You Suffer From Decision Fatigue?.” It described how judges deciding on release requests were far more likely to grant release early in the day (about 70% of cases) compared to late in the day (less than 10%) simply because their decision-making energy was depleted. Luckily, designers rarely hold someone’s freedom in their hands, but the example dramatically shows how fatigue can impact our judgment and productivity. What helps here: Swap tasks.Trade tickets with another designer; novelty resets your focus. Talk to another designer.If NDA permits, ask peers outside the team for a sanity check. Step away.Even a ten‑minute walk can do more than a double‑shot espresso. By the way, I came up with these ideas while walking around my office. I was lucky to work near a river, and those short walks quickly turned into a helpful habit. And one more trick that helps me snap out of detail mode early: if I catch myself making around 20 little tweaks — changing font weight, color, border radius — I just stop. Over time, it turned into a habit. I have a similar one with Instagram: by the third reel, my brain quietly asks, “Wait, weren’t we working?” Funny how that kind of nudge saves a ton of time. Four Steps I Use to Avoid Drowning In Detail Knowing these potential traps, here’s the practical process I use to stay on track: 1. Define the Core Problem & Business Goal Before anything, dig deep: what’s the actual problem we’re solving, not just the requested task or a surface-level symptom? Ask ‘why’ repeatedly. What user pain or business need are we addressing? Then, state the clear business goal: “What metric am I moving, and do we have data to prove this is the right lever?” If retention is the goal, decide whether push reminders, gamification, or personalised content is the best route. The wrong lever, or tackling a symptom instead of the cause, dooms everything downstream. 2. Choose the Mechanic (Solution Principle) Once the core problem and goal are clear, lock the solution principle or ‘mechanic’ first. Going with a game layer? Decide if it’s leaderboards, streaks, or badges. Write it down. Then move on. No UI yet. This keeps the focus high-level before diving into pixels. 3. Wireframe the Flow & Get Focused Feedback Now open Figma. Map screens, layout, and transitions. Boxes and arrows are enough. Keep the fidelity low so the discussion stays on the flow, not colour. Crucially, when you share these early wires, ask specific questions and provide clear context (as discussed in ‘Reason #4’) to get actionable feedback, not just vague opinions. 4. Polish the Visuals (Mindfully) I only let myself tweak grids, type scales, and shadows after the flow is validated. If progress stalls, or before a major polish effort, I surface the work in a design critique — again using targeted questions and clear context — instead of hiding in version 47. This ensures detailing serves the now-validated solution. Even for something as small as a single button, running these four checkpoints takes about ten minutes and saves hours of decorative dithering. Wrapping Up Next time you feel the pull to vanish into mock‑ups before the problem is nailed down, pause and ask what you might be avoiding. Yes, that can expose an uncomfortable truth. But pausing to ask what you might be avoiding — maybe the fuzzy core problem, or just asking for tough feedback — gives you the power to face the real issue head-on. It keeps the project focused on solving the right problem, not just perfecting a flawed solution. Attention to detail is a superpower when used at the right moment. Obsessing over pixels too soon, though, is a bad habit and a warning light telling us the process needs a rethink.
    Like
    Love
    Wow
    Angry
    Sad
    596
    0 Comments 0 Shares
  • EasyDMARC Integrates With Pax8 Marketplace To Simplify Email Security For MSPs

    Originally published at EasyDMARC Integrates With Pax8 Marketplace To Simplify Email Security For MSPs by Anush Yolyan.

    The integration will deliver simple, accessible, and streamlined email security for vulnerable inboxes

    Global, 4 November 2024 – US-based email security firm EasyDMARC has today announced its integration with Pax8 Marketplace, the leading cloud commerce marketplace. As one of the first DMARC solution providers on the Pax8 Marketplace, EasyDMARC is expanding its mission to protect inboxes from the rising threat of phishing attacks with a rigorous, user-friendly DMARC solution.

    The integration comes as Google highlights the impressive results of recently implemented email authentication measures for bulk senders: a 65% reduction in unauthenticated messages to Gmail users, a 50% increase in bulk senders following best security practices, and 265 billion fewer unauthenticated messages sent in 2024. With email being such a crucial communication channel for businesses, email authentication measures are an essential part of any business’s cybersecurity offering. 

    Key features of the integration include:

    Centralized billing

    With centralized billing, customers can now streamline their cloud services under a single pane of glass, simplifying the management and billing of their EasyDMARC solution. This consolidated approach enables partners to reduce administrative complexity and manage all cloud expenses through one interface, providing a seamless billing and support experience.

    Automated provisioning 

    Through automated provisioning, Pax8’s automation capabilities make deploying DMARC across client accounts quick and hassle-free. By eliminating manual configurations, this integration ensures that customers can implement email security solutions rapidly, allowing them to safeguard client inboxes without delay.

    Bundled offerings

    The bundled offerings available through Pax8 allow partners to enhance their service portfolios by combining EasyDMARC with complementary security solutions. By creating all-in-one security packages, partners can offer their clients more robust protection, addressing a broader range of security needs from a single, trusted platform.

    Gerasim Hovhannisyan, Co-Founder and CEO of EasyDMARC, said:

    “We’re thrilled to be working with Pax8  to provide MSPs with a streamlined, effective way to deliver top-tier email security to their clients, all within a platform that equips them with everything needed to stay secure.  As phishing attacks grow in frequency and sophistication, businesses can no longer afford to overlook the importance of email security. Email authentication is a vital defense against the evolving threat of phishing and is crucial in preserving the integrity of email communication. This integration is designed to allow businesses of all sizes to benefit from DMARC’s extensive capabilities.”

    Ryan Burton, Vice President of Marketplace Vendor Strategy, at Pax8 said: 

    “We’re delighted to welcome EasyDMARC to the Pax8 Marketplace as an enterprise-class DMARC solution provider. This integration gives MSPs the tools they need to meet the growing demand for email security, with simplified deployment, billing, and bundling benefits. With EasyDMARC’s technical capabilities and intelligence, MSPs can deliver robust protection against phishing threats without the technical hassle that often holds businesses back.”

    About EasyDMARC

    EasyDMARC is a cloud-native B2B SaaS solution that addresses email security and deliverability problems with just a few clicks. For Managed Service Providers seeking to increase their revenue, EasyDMARC presents an ideal solution. The email authentication platform streamlines domain management, providing capabilities such as organizational control, domain grouping, and access management.

    Additionally, EasyDMARC offers a comprehensive sales and marketing enablement program designed to boost DMARC sales. All of these features are available for MSPs on a scalable platform with a flexible pay-as-you-go pricing model.

    For more information on the EasyDMARC, visit: /

    About Pax8 

    Pax8 is the technology marketplace of the future, linking partners, vendors, and small to midsized businessesthrough AI-powered insights and comprehensive product support. With a global partner ecosystem of over 38,000 managed service providers, Pax8 empowers SMBs worldwide by providing software and services that unlock their growth potential and enhance their security. Committed to innovating cloud commerce at scale, Pax8 drives customer acquisition and solution consumption across its entire ecosystem.

    Find out more: /

    The post EasyDMARC Integrates With Pax8 Marketplace To Simplify Email Security For MSPs appeared first on EasyDMARC.
    #easydmarc #integrates #with #pax8 #marketplace
    EasyDMARC Integrates With Pax8 Marketplace To Simplify Email Security For MSPs
    Originally published at EasyDMARC Integrates With Pax8 Marketplace To Simplify Email Security For MSPs by Anush Yolyan. The integration will deliver simple, accessible, and streamlined email security for vulnerable inboxes Global, 4 November 2024 – US-based email security firm EasyDMARC has today announced its integration with Pax8 Marketplace, the leading cloud commerce marketplace. As one of the first DMARC solution providers on the Pax8 Marketplace, EasyDMARC is expanding its mission to protect inboxes from the rising threat of phishing attacks with a rigorous, user-friendly DMARC solution. The integration comes as Google highlights the impressive results of recently implemented email authentication measures for bulk senders: a 65% reduction in unauthenticated messages to Gmail users, a 50% increase in bulk senders following best security practices, and 265 billion fewer unauthenticated messages sent in 2024. With email being such a crucial communication channel for businesses, email authentication measures are an essential part of any business’s cybersecurity offering.  Key features of the integration include: Centralized billing With centralized billing, customers can now streamline their cloud services under a single pane of glass, simplifying the management and billing of their EasyDMARC solution. This consolidated approach enables partners to reduce administrative complexity and manage all cloud expenses through one interface, providing a seamless billing and support experience. Automated provisioning  Through automated provisioning, Pax8’s automation capabilities make deploying DMARC across client accounts quick and hassle-free. By eliminating manual configurations, this integration ensures that customers can implement email security solutions rapidly, allowing them to safeguard client inboxes without delay. Bundled offerings The bundled offerings available through Pax8 allow partners to enhance their service portfolios by combining EasyDMARC with complementary security solutions. By creating all-in-one security packages, partners can offer their clients more robust protection, addressing a broader range of security needs from a single, trusted platform. Gerasim Hovhannisyan, Co-Founder and CEO of EasyDMARC, said: “We’re thrilled to be working with Pax8  to provide MSPs with a streamlined, effective way to deliver top-tier email security to their clients, all within a platform that equips them with everything needed to stay secure.  As phishing attacks grow in frequency and sophistication, businesses can no longer afford to overlook the importance of email security. Email authentication is a vital defense against the evolving threat of phishing and is crucial in preserving the integrity of email communication. This integration is designed to allow businesses of all sizes to benefit from DMARC’s extensive capabilities.” Ryan Burton, Vice President of Marketplace Vendor Strategy, at Pax8 said:  “We’re delighted to welcome EasyDMARC to the Pax8 Marketplace as an enterprise-class DMARC solution provider. This integration gives MSPs the tools they need to meet the growing demand for email security, with simplified deployment, billing, and bundling benefits. With EasyDMARC’s technical capabilities and intelligence, MSPs can deliver robust protection against phishing threats without the technical hassle that often holds businesses back.” About EasyDMARC EasyDMARC is a cloud-native B2B SaaS solution that addresses email security and deliverability problems with just a few clicks. For Managed Service Providers seeking to increase their revenue, EasyDMARC presents an ideal solution. The email authentication platform streamlines domain management, providing capabilities such as organizational control, domain grouping, and access management. Additionally, EasyDMARC offers a comprehensive sales and marketing enablement program designed to boost DMARC sales. All of these features are available for MSPs on a scalable platform with a flexible pay-as-you-go pricing model. For more information on the EasyDMARC, visit: / About Pax8  Pax8 is the technology marketplace of the future, linking partners, vendors, and small to midsized businessesthrough AI-powered insights and comprehensive product support. With a global partner ecosystem of over 38,000 managed service providers, Pax8 empowers SMBs worldwide by providing software and services that unlock their growth potential and enhance their security. Committed to innovating cloud commerce at scale, Pax8 drives customer acquisition and solution consumption across its entire ecosystem. Find out more: / The post EasyDMARC Integrates With Pax8 Marketplace To Simplify Email Security For MSPs appeared first on EasyDMARC. #easydmarc #integrates #with #pax8 #marketplace
    EASYDMARC.COM
    EasyDMARC Integrates With Pax8 Marketplace To Simplify Email Security For MSPs
    Originally published at EasyDMARC Integrates With Pax8 Marketplace To Simplify Email Security For MSPs by Anush Yolyan. The integration will deliver simple, accessible, and streamlined email security for vulnerable inboxes Global, 4 November 2024 – US-based email security firm EasyDMARC has today announced its integration with Pax8 Marketplace, the leading cloud commerce marketplace. As one of the first DMARC solution providers on the Pax8 Marketplace, EasyDMARC is expanding its mission to protect inboxes from the rising threat of phishing attacks with a rigorous, user-friendly DMARC solution. The integration comes as Google highlights the impressive results of recently implemented email authentication measures for bulk senders: a 65% reduction in unauthenticated messages to Gmail users, a 50% increase in bulk senders following best security practices, and 265 billion fewer unauthenticated messages sent in 2024. With email being such a crucial communication channel for businesses, email authentication measures are an essential part of any business’s cybersecurity offering.  Key features of the integration include: Centralized billing With centralized billing, customers can now streamline their cloud services under a single pane of glass, simplifying the management and billing of their EasyDMARC solution. This consolidated approach enables partners to reduce administrative complexity and manage all cloud expenses through one interface, providing a seamless billing and support experience. Automated provisioning  Through automated provisioning, Pax8’s automation capabilities make deploying DMARC across client accounts quick and hassle-free. By eliminating manual configurations, this integration ensures that customers can implement email security solutions rapidly, allowing them to safeguard client inboxes without delay. Bundled offerings The bundled offerings available through Pax8 allow partners to enhance their service portfolios by combining EasyDMARC with complementary security solutions. By creating all-in-one security packages, partners can offer their clients more robust protection, addressing a broader range of security needs from a single, trusted platform. Gerasim Hovhannisyan, Co-Founder and CEO of EasyDMARC, said: “We’re thrilled to be working with Pax8  to provide MSPs with a streamlined, effective way to deliver top-tier email security to their clients, all within a platform that equips them with everything needed to stay secure.  As phishing attacks grow in frequency and sophistication, businesses can no longer afford to overlook the importance of email security. Email authentication is a vital defense against the evolving threat of phishing and is crucial in preserving the integrity of email communication. This integration is designed to allow businesses of all sizes to benefit from DMARC’s extensive capabilities.” Ryan Burton, Vice President of Marketplace Vendor Strategy, at Pax8 said:  “We’re delighted to welcome EasyDMARC to the Pax8 Marketplace as an enterprise-class DMARC solution provider. This integration gives MSPs the tools they need to meet the growing demand for email security, with simplified deployment, billing, and bundling benefits. With EasyDMARC’s technical capabilities and intelligence, MSPs can deliver robust protection against phishing threats without the technical hassle that often holds businesses back.” About EasyDMARC EasyDMARC is a cloud-native B2B SaaS solution that addresses email security and deliverability problems with just a few clicks. For Managed Service Providers seeking to increase their revenue, EasyDMARC presents an ideal solution. The email authentication platform streamlines domain management, providing capabilities such as organizational control, domain grouping, and access management. Additionally, EasyDMARC offers a comprehensive sales and marketing enablement program designed to boost DMARC sales. All of these features are available for MSPs on a scalable platform with a flexible pay-as-you-go pricing model. For more information on the EasyDMARC, visit: https://easydmarc.com/ About Pax8  Pax8 is the technology marketplace of the future, linking partners, vendors, and small to midsized businesses (SMBs) through AI-powered insights and comprehensive product support. With a global partner ecosystem of over 38,000 managed service providers, Pax8 empowers SMBs worldwide by providing software and services that unlock their growth potential and enhance their security. Committed to innovating cloud commerce at scale, Pax8 drives customer acquisition and solution consumption across its entire ecosystem. Find out more: https://www.pax8.com/en-us/ The post EasyDMARC Integrates With Pax8 Marketplace To Simplify Email Security For MSPs appeared first on EasyDMARC.
    0 Comments 0 Shares
More Results