• Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration

    Telecom companies last year spent nearly billion in capital expenditures and over trillion in operating expenditures.
    These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations.
    For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type.
    These factors directly affect network performance, user experience and energy consumption.
    To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration.
    At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos.
    Automate Network Configuration With the AI Blueprint
    NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices.
    The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI.
    This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures.
    Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies.
    The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input.
    Powered and Deployed by Industry Leaders
    Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience.
    With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes.
    Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond.
    “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.”
    Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies
    The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality.
    Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences.
    NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing.
    Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference.
    For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos.
    Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems.
    Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing.
    The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making.
    Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance, designed to accelerate telecom operators’ journeys toward fully autonomous network operations.
    ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy.
    Get started with the new blueprint today.
    Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA.
    #calling #llms #new #nvidia #blueprint
    Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration
    Telecom companies last year spent nearly billion in capital expenditures and over trillion in operating expenditures. These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations. For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type. These factors directly affect network performance, user experience and energy consumption. To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration. At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos. Automate Network Configuration With the AI Blueprint NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices. The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI. This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures. Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies. The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input. Powered and Deployed by Industry Leaders Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience. With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes. Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond. “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.” Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality. Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences. NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing. Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference. For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos. Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems. Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing. The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making. Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance, designed to accelerate telecom operators’ journeys toward fully autonomous network operations. ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy. Get started with the new blueprint today. Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA. #calling #llms #new #nvidia #blueprint
    BLOGS.NVIDIA.COM
    Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration
    Telecom companies last year spent nearly $295 billion in capital expenditures and over $1 trillion in operating expenditures. These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations. For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type. These factors directly affect network performance, user experience and energy consumption. To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration. At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos. Automate Network Configuration With the AI Blueprint NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices. The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI. This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures. Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies. The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input. Powered and Deployed by Industry Leaders Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience. With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes. Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond. “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.” Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality. Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences. NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing. Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference. For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos. Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems. Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing. The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making. Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance (ISNA), designed to accelerate telecom operators’ journeys toward fully autonomous network operations. ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy. Get started with the new blueprint today. Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA.
    Like
    Love
    Wow
    Sad
    Angry
    80
    0 Comments 0 Shares
  • EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments

    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausannein Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025
    Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerialimage. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset.
    Key Takeaways:

    Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task.
    Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map.
    Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models.
    Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal.

    Challenge: Seeing the World from Two Different Angles
    The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-Viewbut are often limited to the ground plane, ignoring crucial vertical structures like buildings.

    FG2: Matching Fine-Grained Features
    The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map.

    Here’s a breakdown of their innovative pipeline:

    Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment.
    Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the verticaldimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view.
    Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoFpose.

    Unprecedented Performance and Interpretability
    The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research.

    Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems.
    “A Clearer Path” for Autonomous Navigation
    The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.
    Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models
    #epfl #researchers #unveil #fg2 #cvpr
    EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments
    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausannein Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025 Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerialimage. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset. Key Takeaways: Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task. Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map. Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models. Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal. Challenge: Seeing the World from Two Different Angles The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-Viewbut are often limited to the ground plane, ignoring crucial vertical structures like buildings. FG2: Matching Fine-Grained Features The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map. Here’s a breakdown of their innovative pipeline: Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment. Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the verticaldimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view. Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoFpose. Unprecedented Performance and Interpretability The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research. Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems. “A Clearer Path” for Autonomous Navigation The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them. Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models #epfl #researchers #unveil #fg2 #cvpr
    WWW.MARKTECHPOST.COM
    EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments
    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025 Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerial (or satellite) image. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset. Key Takeaways: Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task. Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map. Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models. Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal. Challenge: Seeing the World from Two Different Angles The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-View (BEV) but are often limited to the ground plane, ignoring crucial vertical structures like buildings. FG2: Matching Fine-Grained Features The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map. Here’s a breakdown of their innovative pipeline: Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment. Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the vertical (height) dimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view. Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoF (x, y, and yaw) pose. Unprecedented Performance and Interpretability The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research. Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems. “A Clearer Path” for Autonomous Navigation The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them. Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models
    Like
    Love
    Wow
    Angry
    Sad
    601
    0 Comments 0 Shares
  • Inside the thinking behind Frontify Futures' standout brand identity

    Who knows where branding will go in the future? However, for many of us working in the creative industries, it's our job to know. So it's something we need to start talking about, and Frontify Futures wants to be the platform where that conversation unfolds.
    This ambitious new thought leadership initiative from Frontify brings together an extraordinary coalition of voices—CMOs who've scaled global brands, creative leaders reimagining possibilities, strategy directors pioneering new approaches, and cultural forecasters mapping emerging opportunities—to explore how effectiveness, innovation, and scale will shape tomorrow's brand-building landscape.
    But Frontify Futures isn't just another content platform. Excitingly, from a design perspective, it's also a living experiment in what brand identity can become when technology meets craft, when systems embrace chaos, and when the future itself becomes a design material.
    Endless variation
    What makes Frontify Futures' typography unique isn't just its custom foundation: it's how that foundation enables endless variation and evolution. This was primarily achieved, reveals developer and digital art director Daniel Powell, by building bespoke tools for the project.

    "Rather than rely solely on streamlined tools built for speed and production, we started building our own," he explains. "The first was a node-based design tool that takes our custom Frame and Hairline fonts as a base and uses them as the foundations for our type generator. With it, we can generate unique type variations for each content strand—each article, even—and create both static and animated type, exportable as video or rendered live in the browser."
    Each of these tools included what Daniel calls a "chaos element: a small but intentional glitch in the system. A microstatement about the nature of the future: that it can be anticipated but never fully known. It's our way of keeping gesture alive inside the system."
    One of the clearest examples of this is the colour palette generator. "It samples from a dynamic photo grid tied to a rotating colour wheel that completes one full revolution per year," Daniel explains. "But here's the twist: wind speed and direction in St. Gallen, Switzerland—Frontify's HQ—nudges the wheel unpredictably off-centre. It's a subtle, living mechanic; each article contains a log of the wind data in its code as a kind of Easter Egg."

    Another favourite of Daniel's—yet to be released—is an expanded version of Conway's Game of Life. "It's been running continuously for over a month now, evolving patterns used in one of the content strand headers," he reveals. "The designer becomes a kind of photographer, capturing moments from a petri dish of generative motion."
    Core Philosophy
    In developing this unique identity, two phrases stood out to Daniel as guiding lights from the outset. The first was, 'We will show, not tell.'
    "This became the foundation for how we approached the identity," recalls Daniel. "It had to feel like a playground: open, experimental, and fluid. Not overly precious or prescriptive. A system the Frontify team could truly own, shape, and evolve. A platform, not a final product. A foundation, just as the future is always built on the past."

    The second guiding phrase, pulled directly from Frontify's rebrand materials, felt like "a call to action," says Daniel. "'Gestural and geometric. Human and machine. Art and science.' It's a tension that feels especially relevant in the creative industries today. As technology accelerates, we ask ourselves: how do we still hold onto our craft? What does it mean to be expressive in an increasingly systemised world?"
    Stripped back and skeletal typography
    The identity that Daniel and his team created reflects these themes through typography that literally embodies the platform's core philosophy. It really started from this idea of the past being built upon the 'foundations' of the past," he explains. "At the time Frontify Futures was being created, Frontify itself was going through a rebrand. With that, they'd started using a new variable typeface called Cranny, a custom cut of Azurio by Narrow Type."
    Daniel's team took Cranny and "pushed it into a stripped-back and almost skeletal take". The result was Crany-Frame and Crany-Hairline. "These fonts then served as our base scaffolding," he continues. "They were never seen in design, but instead, we applied decoration them to produce new typefaces for each content strand, giving the identity the space to grow and allow new ideas and shapes to form."

    As Daniel saw it, the demands on the typeface were pretty simple. "It needed to set an atmosphere. We needed it needed to feel alive. We wanted it to be something shifting and repositioning. And so, while we have a bunch of static cuts of each base style, we rarely use them; the typefaces you see on the website and social only exist at the moment as a string of parameters to create a general style that we use to create live animating versions of the font generated on the fly."
    In addition to setting the atmosphere, it needed to be extremely flexible and feature live inputs, as a significant part of the branding is about the unpredictability of the future. "So Daniel's team built in those aforementioned "chaos moments where everything from user interaction to live windspeeds can affect the font."
    Design Process
    The process of creating the typefaces is a fascinating one. "We started by working with the custom cut of Azuriofrom Narrow Type. We then redrew it to take inspiration from how a frame and a hairline could be produced from this original cut. From there, we built a type generation tool that uses them as a base.
    "It's a custom node-based system that lets us really get in there and play with the overlays for everything from grid-sizing, shapes and timing for the animation," he outlines. "We used this tool to design the variants for different content strands. We weren't just designing letterforms; we were designing a comprehensive toolset that could evolve in tandem with the content.
    "That became a big part of the process: designing systems that designers could actually use, not just look at; again, it was a wider conversation and concept around the future and how designers and machines can work together."

    In short, the evolution of the typeface system reflects the platform's broader commitment to continuous growth and adaptation." The whole idea was to make something open enough to keep building on," Daniel stresses. "We've already got tools in place to generate new weights, shapes and animated variants, and the tool itself still has a ton of unused functionality.
    "I can see that growing as new content strands emerge; we'll keep adapting the type with them," he adds. "It's less about version numbers and more about ongoing movement. The system's alive; that's the point.
    A provocation for the industry
    In this context, the Frontify Futures identity represents more than smart visual branding; it's also a manifesto for how creative systems might evolve in an age of increasing automation and systematisation. By building unpredictability into their tools, embracing the tension between human craft and machine precision, and creating systems that grow and adapt rather than merely scale, Daniel and the Frontify team have created something that feels genuinely forward-looking.
    For creatives grappling with similar questions about the future of their craft, Frontify Futures offers both inspiration and practical demonstration. It shows how brands can remain human while embracing technological capability, how systems can be both consistent and surprising, and how the future itself can become a creative medium.
    This clever approach suggests that the future of branding lies not in choosing between human creativity and systematic efficiency but in finding new ways to make them work together, creating something neither could achieve alone.
    #inside #thinking #behind #frontify #futures039
    Inside the thinking behind Frontify Futures' standout brand identity
    Who knows where branding will go in the future? However, for many of us working in the creative industries, it's our job to know. So it's something we need to start talking about, and Frontify Futures wants to be the platform where that conversation unfolds. This ambitious new thought leadership initiative from Frontify brings together an extraordinary coalition of voices—CMOs who've scaled global brands, creative leaders reimagining possibilities, strategy directors pioneering new approaches, and cultural forecasters mapping emerging opportunities—to explore how effectiveness, innovation, and scale will shape tomorrow's brand-building landscape. But Frontify Futures isn't just another content platform. Excitingly, from a design perspective, it's also a living experiment in what brand identity can become when technology meets craft, when systems embrace chaos, and when the future itself becomes a design material. Endless variation What makes Frontify Futures' typography unique isn't just its custom foundation: it's how that foundation enables endless variation and evolution. This was primarily achieved, reveals developer and digital art director Daniel Powell, by building bespoke tools for the project. "Rather than rely solely on streamlined tools built for speed and production, we started building our own," he explains. "The first was a node-based design tool that takes our custom Frame and Hairline fonts as a base and uses them as the foundations for our type generator. With it, we can generate unique type variations for each content strand—each article, even—and create both static and animated type, exportable as video or rendered live in the browser." Each of these tools included what Daniel calls a "chaos element: a small but intentional glitch in the system. A microstatement about the nature of the future: that it can be anticipated but never fully known. It's our way of keeping gesture alive inside the system." One of the clearest examples of this is the colour palette generator. "It samples from a dynamic photo grid tied to a rotating colour wheel that completes one full revolution per year," Daniel explains. "But here's the twist: wind speed and direction in St. Gallen, Switzerland—Frontify's HQ—nudges the wheel unpredictably off-centre. It's a subtle, living mechanic; each article contains a log of the wind data in its code as a kind of Easter Egg." Another favourite of Daniel's—yet to be released—is an expanded version of Conway's Game of Life. "It's been running continuously for over a month now, evolving patterns used in one of the content strand headers," he reveals. "The designer becomes a kind of photographer, capturing moments from a petri dish of generative motion." Core Philosophy In developing this unique identity, two phrases stood out to Daniel as guiding lights from the outset. The first was, 'We will show, not tell.' "This became the foundation for how we approached the identity," recalls Daniel. "It had to feel like a playground: open, experimental, and fluid. Not overly precious or prescriptive. A system the Frontify team could truly own, shape, and evolve. A platform, not a final product. A foundation, just as the future is always built on the past." The second guiding phrase, pulled directly from Frontify's rebrand materials, felt like "a call to action," says Daniel. "'Gestural and geometric. Human and machine. Art and science.' It's a tension that feels especially relevant in the creative industries today. As technology accelerates, we ask ourselves: how do we still hold onto our craft? What does it mean to be expressive in an increasingly systemised world?" Stripped back and skeletal typography The identity that Daniel and his team created reflects these themes through typography that literally embodies the platform's core philosophy. It really started from this idea of the past being built upon the 'foundations' of the past," he explains. "At the time Frontify Futures was being created, Frontify itself was going through a rebrand. With that, they'd started using a new variable typeface called Cranny, a custom cut of Azurio by Narrow Type." Daniel's team took Cranny and "pushed it into a stripped-back and almost skeletal take". The result was Crany-Frame and Crany-Hairline. "These fonts then served as our base scaffolding," he continues. "They were never seen in design, but instead, we applied decoration them to produce new typefaces for each content strand, giving the identity the space to grow and allow new ideas and shapes to form." As Daniel saw it, the demands on the typeface were pretty simple. "It needed to set an atmosphere. We needed it needed to feel alive. We wanted it to be something shifting and repositioning. And so, while we have a bunch of static cuts of each base style, we rarely use them; the typefaces you see on the website and social only exist at the moment as a string of parameters to create a general style that we use to create live animating versions of the font generated on the fly." In addition to setting the atmosphere, it needed to be extremely flexible and feature live inputs, as a significant part of the branding is about the unpredictability of the future. "So Daniel's team built in those aforementioned "chaos moments where everything from user interaction to live windspeeds can affect the font." Design Process The process of creating the typefaces is a fascinating one. "We started by working with the custom cut of Azuriofrom Narrow Type. We then redrew it to take inspiration from how a frame and a hairline could be produced from this original cut. From there, we built a type generation tool that uses them as a base. "It's a custom node-based system that lets us really get in there and play with the overlays for everything from grid-sizing, shapes and timing for the animation," he outlines. "We used this tool to design the variants for different content strands. We weren't just designing letterforms; we were designing a comprehensive toolset that could evolve in tandem with the content. "That became a big part of the process: designing systems that designers could actually use, not just look at; again, it was a wider conversation and concept around the future and how designers and machines can work together." In short, the evolution of the typeface system reflects the platform's broader commitment to continuous growth and adaptation." The whole idea was to make something open enough to keep building on," Daniel stresses. "We've already got tools in place to generate new weights, shapes and animated variants, and the tool itself still has a ton of unused functionality. "I can see that growing as new content strands emerge; we'll keep adapting the type with them," he adds. "It's less about version numbers and more about ongoing movement. The system's alive; that's the point. A provocation for the industry In this context, the Frontify Futures identity represents more than smart visual branding; it's also a manifesto for how creative systems might evolve in an age of increasing automation and systematisation. By building unpredictability into their tools, embracing the tension between human craft and machine precision, and creating systems that grow and adapt rather than merely scale, Daniel and the Frontify team have created something that feels genuinely forward-looking. For creatives grappling with similar questions about the future of their craft, Frontify Futures offers both inspiration and practical demonstration. It shows how brands can remain human while embracing technological capability, how systems can be both consistent and surprising, and how the future itself can become a creative medium. This clever approach suggests that the future of branding lies not in choosing between human creativity and systematic efficiency but in finding new ways to make them work together, creating something neither could achieve alone. #inside #thinking #behind #frontify #futures039
    WWW.CREATIVEBOOM.COM
    Inside the thinking behind Frontify Futures' standout brand identity
    Who knows where branding will go in the future? However, for many of us working in the creative industries, it's our job to know. So it's something we need to start talking about, and Frontify Futures wants to be the platform where that conversation unfolds. This ambitious new thought leadership initiative from Frontify brings together an extraordinary coalition of voices—CMOs who've scaled global brands, creative leaders reimagining possibilities, strategy directors pioneering new approaches, and cultural forecasters mapping emerging opportunities—to explore how effectiveness, innovation, and scale will shape tomorrow's brand-building landscape. But Frontify Futures isn't just another content platform. Excitingly, from a design perspective, it's also a living experiment in what brand identity can become when technology meets craft, when systems embrace chaos, and when the future itself becomes a design material. Endless variation What makes Frontify Futures' typography unique isn't just its custom foundation: it's how that foundation enables endless variation and evolution. This was primarily achieved, reveals developer and digital art director Daniel Powell, by building bespoke tools for the project. "Rather than rely solely on streamlined tools built for speed and production, we started building our own," he explains. "The first was a node-based design tool that takes our custom Frame and Hairline fonts as a base and uses them as the foundations for our type generator. With it, we can generate unique type variations for each content strand—each article, even—and create both static and animated type, exportable as video or rendered live in the browser." Each of these tools included what Daniel calls a "chaos element: a small but intentional glitch in the system. A microstatement about the nature of the future: that it can be anticipated but never fully known. It's our way of keeping gesture alive inside the system." One of the clearest examples of this is the colour palette generator. "It samples from a dynamic photo grid tied to a rotating colour wheel that completes one full revolution per year," Daniel explains. "But here's the twist: wind speed and direction in St. Gallen, Switzerland—Frontify's HQ—nudges the wheel unpredictably off-centre. It's a subtle, living mechanic; each article contains a log of the wind data in its code as a kind of Easter Egg." Another favourite of Daniel's—yet to be released—is an expanded version of Conway's Game of Life. "It's been running continuously for over a month now, evolving patterns used in one of the content strand headers," he reveals. "The designer becomes a kind of photographer, capturing moments from a petri dish of generative motion." Core Philosophy In developing this unique identity, two phrases stood out to Daniel as guiding lights from the outset. The first was, 'We will show, not tell.' "This became the foundation for how we approached the identity," recalls Daniel. "It had to feel like a playground: open, experimental, and fluid. Not overly precious or prescriptive. A system the Frontify team could truly own, shape, and evolve. A platform, not a final product. A foundation, just as the future is always built on the past." The second guiding phrase, pulled directly from Frontify's rebrand materials, felt like "a call to action," says Daniel. "'Gestural and geometric. Human and machine. Art and science.' It's a tension that feels especially relevant in the creative industries today. As technology accelerates, we ask ourselves: how do we still hold onto our craft? What does it mean to be expressive in an increasingly systemised world?" Stripped back and skeletal typography The identity that Daniel and his team created reflects these themes through typography that literally embodies the platform's core philosophy. It really started from this idea of the past being built upon the 'foundations' of the past," he explains. "At the time Frontify Futures was being created, Frontify itself was going through a rebrand. With that, they'd started using a new variable typeface called Cranny, a custom cut of Azurio by Narrow Type." Daniel's team took Cranny and "pushed it into a stripped-back and almost skeletal take". The result was Crany-Frame and Crany-Hairline. "These fonts then served as our base scaffolding," he continues. "They were never seen in design, but instead, we applied decoration them to produce new typefaces for each content strand, giving the identity the space to grow and allow new ideas and shapes to form." As Daniel saw it, the demands on the typeface were pretty simple. "It needed to set an atmosphere. We needed it needed to feel alive. We wanted it to be something shifting and repositioning. And so, while we have a bunch of static cuts of each base style, we rarely use them; the typefaces you see on the website and social only exist at the moment as a string of parameters to create a general style that we use to create live animating versions of the font generated on the fly." In addition to setting the atmosphere, it needed to be extremely flexible and feature live inputs, as a significant part of the branding is about the unpredictability of the future. "So Daniel's team built in those aforementioned "chaos moments where everything from user interaction to live windspeeds can affect the font." Design Process The process of creating the typefaces is a fascinating one. "We started by working with the custom cut of Azurio (Cranny) from Narrow Type. We then redrew it to take inspiration from how a frame and a hairline could be produced from this original cut. From there, we built a type generation tool that uses them as a base. "It's a custom node-based system that lets us really get in there and play with the overlays for everything from grid-sizing, shapes and timing for the animation," he outlines. "We used this tool to design the variants for different content strands. We weren't just designing letterforms; we were designing a comprehensive toolset that could evolve in tandem with the content. "That became a big part of the process: designing systems that designers could actually use, not just look at; again, it was a wider conversation and concept around the future and how designers and machines can work together." In short, the evolution of the typeface system reflects the platform's broader commitment to continuous growth and adaptation." The whole idea was to make something open enough to keep building on," Daniel stresses. "We've already got tools in place to generate new weights, shapes and animated variants, and the tool itself still has a ton of unused functionality. "I can see that growing as new content strands emerge; we'll keep adapting the type with them," he adds. "It's less about version numbers and more about ongoing movement. The system's alive; that's the point. A provocation for the industry In this context, the Frontify Futures identity represents more than smart visual branding; it's also a manifesto for how creative systems might evolve in an age of increasing automation and systematisation. By building unpredictability into their tools, embracing the tension between human craft and machine precision, and creating systems that grow and adapt rather than merely scale, Daniel and the Frontify team have created something that feels genuinely forward-looking. For creatives grappling with similar questions about the future of their craft, Frontify Futures offers both inspiration and practical demonstration. It shows how brands can remain human while embracing technological capability, how systems can be both consistent and surprising, and how the future itself can become a creative medium. This clever approach suggests that the future of branding lies not in choosing between human creativity and systematic efficiency but in finding new ways to make them work together, creating something neither could achieve alone.
    0 Comments 0 Shares
  • Komires: Matali Physics 6.9 Released

    We are pleased to announce the release of Matali Physics 6.9, the next significant step on the way to the seventh major version of the environment. Matali Physics 6.9 introduces a number of improvements and fixes to Matali Physics Core, Matali Render and Matali Games modules, presents physics-driven, completely dynamic light sources, real-time object scaling with destruction, lighting model simulating global illuminationin some aspects, comprehensive support for Wayland on Linux, and more.

    Posted by komires on Jun 3rd, 2025
    What is Matali Physics?
    Matali Physics is an advanced, modern, multi-platform, high-performance 3d physics environment intended for games, VR, AR, physics-based simulations and robotics. Matali Physics consists of the advanced 3d physics engine Matali Physics Core and other physics-driven modules that all together provide comprehensive simulation of physical phenomena and physics-based modeling of both real and imaginary objects.
    What's new in version 6.9?

    Physics-driven, completely dynamic light sources. The introduced solution allows for processing hundreds of movable, long-range and shadow-casting light sources, where with each source can be assigned logic that controls its behavior, changes light parameters, volumetric effects parameters and others;
    Real-time object scaling with destruction. All groups of physics objects and groups of physics objects with constraints may be subject to destruction process during real-time scaling, allowing group members to break off at different sizes;
    Lighting model simulating global illuminationin some aspects. Based on own research and development work, processed in real time, ready for dynamic scenes, fast on mobile devices, not based on lightmaps, light probes, baked lights, etc.;
    Comprehensive support for Wayland on Linux. The latest version allows Matali Physics SDK users to create advanced, high-performance, physics-based, Vulkan-based games for modern Linux distributions where Wayland is the main display server protocol;
    Other improvements and fixes which complete list is available on the History webpage.

    What platforms does Matali Physics support?

    Android
    Android TV
    *BSD
    iOS
    iPadOS
    LinuxmacOS
    Steam Deck
    tvOS
    UWPWindowsWhat are the benefits of using Matali Physics?

    Physics simulation, graphics, sound and music integrated into one total multimedia solution where creating complex interactions and behaviors is common and relatively easy
    Composed of dedicated modules that do not require additional licences and fees
    Supports fully dynamic and destructible scenes
    Supports physics-based behavioral animations
    Supports physical AI, object motion and state change control
    Supports physics-based GUI
    Supports physics-based particle effects
    Supports multi-scene physics simulation and scene combining
    Supports physics-based photo mode
    Supports physics-driven sound
    Supports physics-driven music
    Supports debug visualization
    Fully serializable and deserializable
    Available for all major mobile, desktop and TV platforms
    New features on request
    Dedicated technical support
    Regular updates and fixes

    If you have questions related to the latest version and the use of Matali Physics environment as a game creation solution, please do not hesitate to contact us.
    #komires #matali #physics #released
    Komires: Matali Physics 6.9 Released
    We are pleased to announce the release of Matali Physics 6.9, the next significant step on the way to the seventh major version of the environment. Matali Physics 6.9 introduces a number of improvements and fixes to Matali Physics Core, Matali Render and Matali Games modules, presents physics-driven, completely dynamic light sources, real-time object scaling with destruction, lighting model simulating global illuminationin some aspects, comprehensive support for Wayland on Linux, and more. Posted by komires on Jun 3rd, 2025 What is Matali Physics? Matali Physics is an advanced, modern, multi-platform, high-performance 3d physics environment intended for games, VR, AR, physics-based simulations and robotics. Matali Physics consists of the advanced 3d physics engine Matali Physics Core and other physics-driven modules that all together provide comprehensive simulation of physical phenomena and physics-based modeling of both real and imaginary objects. What's new in version 6.9? Physics-driven, completely dynamic light sources. The introduced solution allows for processing hundreds of movable, long-range and shadow-casting light sources, where with each source can be assigned logic that controls its behavior, changes light parameters, volumetric effects parameters and others; Real-time object scaling with destruction. All groups of physics objects and groups of physics objects with constraints may be subject to destruction process during real-time scaling, allowing group members to break off at different sizes; Lighting model simulating global illuminationin some aspects. Based on own research and development work, processed in real time, ready for dynamic scenes, fast on mobile devices, not based on lightmaps, light probes, baked lights, etc.; Comprehensive support for Wayland on Linux. The latest version allows Matali Physics SDK users to create advanced, high-performance, physics-based, Vulkan-based games for modern Linux distributions where Wayland is the main display server protocol; Other improvements and fixes which complete list is available on the History webpage. What platforms does Matali Physics support? Android Android TV *BSD iOS iPadOS LinuxmacOS Steam Deck tvOS UWPWindowsWhat are the benefits of using Matali Physics? Physics simulation, graphics, sound and music integrated into one total multimedia solution where creating complex interactions and behaviors is common and relatively easy Composed of dedicated modules that do not require additional licences and fees Supports fully dynamic and destructible scenes Supports physics-based behavioral animations Supports physical AI, object motion and state change control Supports physics-based GUI Supports physics-based particle effects Supports multi-scene physics simulation and scene combining Supports physics-based photo mode Supports physics-driven sound Supports physics-driven music Supports debug visualization Fully serializable and deserializable Available for all major mobile, desktop and TV platforms New features on request Dedicated technical support Regular updates and fixes If you have questions related to the latest version and the use of Matali Physics environment as a game creation solution, please do not hesitate to contact us. #komires #matali #physics #released
    WWW.INDIEDB.COM
    Komires: Matali Physics 6.9 Released
    We are pleased to announce the release of Matali Physics 6.9, the next significant step on the way to the seventh major version of the environment. Matali Physics 6.9 introduces a number of improvements and fixes to Matali Physics Core, Matali Render and Matali Games modules, presents physics-driven, completely dynamic light sources, real-time object scaling with destruction, lighting model simulating global illumination (GI) in some aspects, comprehensive support for Wayland on Linux, and more. Posted by komires on Jun 3rd, 2025 What is Matali Physics? Matali Physics is an advanced, modern, multi-platform, high-performance 3d physics environment intended for games, VR, AR, physics-based simulations and robotics. Matali Physics consists of the advanced 3d physics engine Matali Physics Core and other physics-driven modules that all together provide comprehensive simulation of physical phenomena and physics-based modeling of both real and imaginary objects. What's new in version 6.9? Physics-driven, completely dynamic light sources. The introduced solution allows for processing hundreds of movable, long-range and shadow-casting light sources, where with each source can be assigned logic that controls its behavior, changes light parameters, volumetric effects parameters and others; Real-time object scaling with destruction. All groups of physics objects and groups of physics objects with constraints may be subject to destruction process during real-time scaling, allowing group members to break off at different sizes; Lighting model simulating global illumination (GI) in some aspects. Based on own research and development work, processed in real time, ready for dynamic scenes, fast on mobile devices, not based on lightmaps, light probes, baked lights, etc.; Comprehensive support for Wayland on Linux. The latest version allows Matali Physics SDK users to create advanced, high-performance, physics-based, Vulkan-based games for modern Linux distributions where Wayland is the main display server protocol; Other improvements and fixes which complete list is available on the History webpage. What platforms does Matali Physics support? Android Android TV *BSD iOS iPadOS Linux (distributions) macOS Steam Deck tvOS UWP (Desktop, Xbox Series X/S) Windows (Classic, GDK, Handheld consoles) What are the benefits of using Matali Physics? Physics simulation, graphics, sound and music integrated into one total multimedia solution where creating complex interactions and behaviors is common and relatively easy Composed of dedicated modules that do not require additional licences and fees Supports fully dynamic and destructible scenes Supports physics-based behavioral animations Supports physical AI, object motion and state change control Supports physics-based GUI Supports physics-based particle effects Supports multi-scene physics simulation and scene combining Supports physics-based photo mode Supports physics-driven sound Supports physics-driven music Supports debug visualization Fully serializable and deserializable Available for all major mobile, desktop and TV platforms New features on request Dedicated technical support Regular updates and fixes If you have questions related to the latest version and the use of Matali Physics environment as a game creation solution, please do not hesitate to contact us.
    0 Comments 0 Shares
  • 15 riveting images from the 2025 UN World Oceans Day Photo Competition

    Big and Small Underwater Faces — 3rd Place.
    Trips to the Antarctic Peninsula always yield amazing encounters with leopard seals. Boldly approaching me and baring his teeth, this individual was keen to point out that this part of Antarctica was his territory. This picture was shot at dusk, resulting in the rather moody atmosphere.
     
    Credit: Lars von Ritter Zahony/ World Ocean’s Day

    Get the Popular Science daily newsletter
    Breakthroughs, discoveries, and DIY tips sent every weekday.

    The striking eye of a humpback whale named Sweet Girl peers at the camera. Just four days later, she would be dead, hit by a speeding boat and one of the 20,000 whales killed by ship strikes each year. Photographer Rachel Moore’s captivating imageof Sweet Girl earned top honors at the 2025 United Nations World Oceans Day Photo Competition.
    Wonder: Sustaining What Sustains Us — WinnerThis photo, taken in Mo’orea, French Polynesia in 2024, captures the eye of a humpback whale named Sweet Girl, just days before her tragic death. Four days after I captured this intimate moment, she was struck and killed by a fast-moving ship. Her death serves as a heartbreaking reminder of the 20,000 whales lost to ship strikes every year. We are using her story to advocate for stronger protections, petitioning for stricter speed laws around Tahiti and Mo’orea during whale season. I hope Sweet Girl’s legacy will spark real change to protect these incredible animals and prevent further senseless loss.Credit: Rachel Moore/ United Nations World Oceans Day www.unworldoceansday.org
    Now in its twelfth year, the competition coordinated in collaboration between the UN Division for Ocean Affairs and the Law of the Sea, DivePhotoGuide, Oceanic Global, and  the Intergovernmental Oceanographic Commission of UNESCO. Each year, thousands of underwater photographers submit images that judges award prizes for across four categories: Big and Small Underwater Faces, Underwater Seascapes, Above Water Seascapes, and Wonder: Sustaining What Sustains Us.
    This year’s winning images include a curious leopard seal, a swarm of jellyfish, and a very grumpy looking Japanese warbonnet. Given our oceans’ perilous state, all competition participants were required to sign a charter of 14 commitments regarding ethics in photography.
    Underwater Seascapes — Honorable MentionWith only orcas as their natural predators, leopard seals are Antarctica’s most versatile hunters, preying on everything from fish and cephalopods to penguins and other seals. Gentoo penguins are a favored menu item, and leopard seals can be observed patrolling the waters around their colonies. For this shot, I used a split image to capture both worlds: the gentoo penguin colony in the background with the leopard seal on the hunt in the foreground.Credit: Lars von Ritter Zahony/ United Nations World Oceans Day www.unworldoceansday.org
    Above Water Seascapes – WinnerA serene lake cradled by arid dunes, where a gentle stream breathes life into the heart of Mother Earth’s creation: Captured from an airplane, this image reveals the powerful contrasts and hidden beauty where land and ocean meet, reminding us that the ocean is the source of all life and that everything in nature is deeply connected. The location is a remote stretch of coastline near Shark Bay, Western Australia.Credit: Leander Nardin/ United Nations World Oceans Day www.unworldoceansday.org
    Above Water Seascapes — 3rd PlaceParadise Harbour is one of the most beautiful places on the Antarctic Peninsula. When I visited, the sea was extremely calm, and I was lucky enough to witness a wonderfully clear reflection of the Suárez Glacierin the water. The only problem was the waves created by our speedboat, and the only way to capture the perfect reflection was to lie on the bottom of the boat while it moved towards the glacier.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org
    Underwater Seascapes — 3rd Place“La Rapadura” is a natural hidden treasure on the northern coast of Tenerife, in the Spanish territory of the Canary Islands. Only discovered in 1996, it is one of the most astonishing underwater landscapes in the world, consistently ranking among the planet’s best dive sites. These towering columns of basalt are the result of volcanic processes that occurred between 500,000 and a million years ago. The formation was created when a basaltic lava flow reached the ocean, where, upon cooling and solidifying, it contracted, creating natural structures often compared to the pipes of church organs. Located in a region where marine life has been impacted by once common illegal fishing practices, this stunning natural monument has both geological and ecological value, and scientists and underwater photographers are advocating for its protection.Credit: Pedro Carrillo/ United Nations World Oceans Day www.unworldoceansday.org
    Underwater Seascapes — WinnerThis year, I had the incredible opportunity to visit a jellyfish lake during a liveaboard trip around southern Raja Ampat, Indonesia. Being surrounded by millions of jellyfish, which have evolved to lose their stinging ability due to the absence of predators, was one of the most breathtaking experiences I’ve ever had.Credit: Dani Escayola/ United Nations World Oceans Day www.unworldoceansday.org
    Underwater Seascapes — 2nd PlaceThis shot captures a school of rays resting at a cleaning station in Mauritius, where strong currents once attracted them regularly. Some rays grew accustomed to divers, allowing close encounters like this. Sadly, after the severe bleaching that the reefs here suffered last year, such gatherings have become rare, and I fear I may not witness this again at the same spot.Credit: Gerald Rambert/ United Nations World Oceans Day www.unworldoceansday.org
    Wonder: Sustaining What Sustains Us — 3rd PlaceShot in Cuba’s Jardines de la Reina—a protected shark sanctuary—this image captures a Caribbean reef shark weaving through a group of silky sharks near the surface. Using a slow shutter and strobes as the shark pivoted sharply, the motion blurred into a wave-like arc across its head, lit by the golden hues of sunset. The abundance and behavior of sharks here is a living symbol of what protected oceans can look like.Credit: Steven Lopez/ United Nations World Oceans Day www.unworldoceansday.org
     Above Water Seascapes — 2nd PlaceNorthern gannetssoar above the dramatic cliffs of Scotland’s Hermaness National Nature Reserve, their sleek white bodies and black-tipped wings slicing through the Shetland winds. These seabirds, the largest in the North Atlantic, are renowned for their striking plunge-dives, reaching speeds up to 100 kphas they hunt for fish beneath the waves. The cliffs of Hermaness provide ideal nesting sites, with updrafts aiding their take-offs and landings. Each spring, thousands return to this rugged coastline, forming one of the UK’s most significant gannet colonies. It was a major challenge to take photos at the edge of these cliffs at almost 200 meterswith the winds up to 30 kph.Credit: Nur Tucker/ United Nations World Oceans Day www.unworldoceansday.org
    Above Water Seascapes — Honorable MentionA South Atlantic swell breaks on the Dungeons Reef off the Cape Peninsula, South Africa, shot while photographing a big-wave surf session in October 2017. It’s the crescendoing sounds of these breaking swells that always amazes me.Credit: Ken Findlay/ United Nations World Oceans Day www.unworldoceansday.org
    Wonder: Sustaining What Sustains Us — Honorable MentionHumpback whales in their thousands migrate along the Ningaloo Reef in Western Australia every year on the way to and from their calving grounds. In four seasons of swimming with them on the reef here, this is the only encounter I’ve had like this one. This pair of huge adult whales repeatedly spy-hopped alongside us, seeking to interact with and investigate us, leaving me completely breathless. The female in the foreground was much more confident than the male behind and would constantly make close approaches, whilst the male hung back a little, still interested but shy. After more than 10 years working with wildlife in the water, this was one of the best experiences of my life.Credit: Ollie Clarke/ United Nations World Oceans Day www.unworldoceansday.org
    Big and Small Underwater Faces — 2nd PlaceOn one of my many blackwater dives in Anilao, in the Philippines, my guide and I spotted something moving erratically at a depth of around 20 meters, about 10 to 15 centimeters in size. We quickly realized that it was a rare blanket octopus. As we approached, it opened up its beautiful blanket, revealing its multicolored mantle. I managed to take a few shots before it went on its way. I felt truly privileged to have captured this fascinating deep-sea cephalopod. Among its many unique characteristics, this species exhibits some of the most extreme sexual size-dimorphism in nature, with females weighing up to 40,000 times more than males.Credit: Giacomo Marchione/ United Nations World Oceans Day www.unworldoceansday.org
    Big and Small Underwater Faces – WinnerThis photo of a Japanese warbonnetwas captured in the Sea of Japan, about 50 milessouthwest of Vladivostok, Russia. I found the ornate fish at a depth of about 30 meters, under the stern of a shipwreck. This species does not appear to be afraid of divers—on the contrary, it seems to enjoy the attention—and it even tried to sit on the dome port of my camera.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org
    Wonder: Sustaining What Sustains Us — 2nd PlaceA juvenile pinnate batfishcaptured with a slow shutter speed, a snooted light, and deliberate camera panning to create a sense of motion and drama. Juvenile pinnate batfish are known for their striking black bodies outlined in vibrant orange—a coloration they lose within just a few months as they mature. I encountered this restless subject in the tropical waters of Indonesia’s Lembeh Strait. Capturing this image took patience and persistence over two dives, as these active young fish constantly dart for cover in crevices, making the shot particularly challenging.Credit: Luis Arpa/ United Nations World Oceans Day www.unworldoceansday.org
    #riveting #images #world #oceans #dayphoto
    15 riveting images from the 2025 UN World Oceans Day Photo Competition
    Big and Small Underwater Faces — 3rd Place. Trips to the Antarctic Peninsula always yield amazing encounters with leopard seals. Boldly approaching me and baring his teeth, this individual was keen to point out that this part of Antarctica was his territory. This picture was shot at dusk, resulting in the rather moody atmosphere.   Credit: Lars von Ritter Zahony/ World Ocean’s Day Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. The striking eye of a humpback whale named Sweet Girl peers at the camera. Just four days later, she would be dead, hit by a speeding boat and one of the 20,000 whales killed by ship strikes each year. Photographer Rachel Moore’s captivating imageof Sweet Girl earned top honors at the 2025 United Nations World Oceans Day Photo Competition. Wonder: Sustaining What Sustains Us — WinnerThis photo, taken in Mo’orea, French Polynesia in 2024, captures the eye of a humpback whale named Sweet Girl, just days before her tragic death. Four days after I captured this intimate moment, she was struck and killed by a fast-moving ship. Her death serves as a heartbreaking reminder of the 20,000 whales lost to ship strikes every year. We are using her story to advocate for stronger protections, petitioning for stricter speed laws around Tahiti and Mo’orea during whale season. I hope Sweet Girl’s legacy will spark real change to protect these incredible animals and prevent further senseless loss.Credit: Rachel Moore/ United Nations World Oceans Day www.unworldoceansday.org Now in its twelfth year, the competition coordinated in collaboration between the UN Division for Ocean Affairs and the Law of the Sea, DivePhotoGuide, Oceanic Global, and  the Intergovernmental Oceanographic Commission of UNESCO. Each year, thousands of underwater photographers submit images that judges award prizes for across four categories: Big and Small Underwater Faces, Underwater Seascapes, Above Water Seascapes, and Wonder: Sustaining What Sustains Us. This year’s winning images include a curious leopard seal, a swarm of jellyfish, and a very grumpy looking Japanese warbonnet. Given our oceans’ perilous state, all competition participants were required to sign a charter of 14 commitments regarding ethics in photography. Underwater Seascapes — Honorable MentionWith only orcas as their natural predators, leopard seals are Antarctica’s most versatile hunters, preying on everything from fish and cephalopods to penguins and other seals. Gentoo penguins are a favored menu item, and leopard seals can be observed patrolling the waters around their colonies. For this shot, I used a split image to capture both worlds: the gentoo penguin colony in the background with the leopard seal on the hunt in the foreground.Credit: Lars von Ritter Zahony/ United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes – WinnerA serene lake cradled by arid dunes, where a gentle stream breathes life into the heart of Mother Earth’s creation: Captured from an airplane, this image reveals the powerful contrasts and hidden beauty where land and ocean meet, reminding us that the ocean is the source of all life and that everything in nature is deeply connected. The location is a remote stretch of coastline near Shark Bay, Western Australia.Credit: Leander Nardin/ United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — 3rd PlaceParadise Harbour is one of the most beautiful places on the Antarctic Peninsula. When I visited, the sea was extremely calm, and I was lucky enough to witness a wonderfully clear reflection of the Suárez Glacierin the water. The only problem was the waves created by our speedboat, and the only way to capture the perfect reflection was to lie on the bottom of the boat while it moved towards the glacier.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 3rd Place“La Rapadura” is a natural hidden treasure on the northern coast of Tenerife, in the Spanish territory of the Canary Islands. Only discovered in 1996, it is one of the most astonishing underwater landscapes in the world, consistently ranking among the planet’s best dive sites. These towering columns of basalt are the result of volcanic processes that occurred between 500,000 and a million years ago. The formation was created when a basaltic lava flow reached the ocean, where, upon cooling and solidifying, it contracted, creating natural structures often compared to the pipes of church organs. Located in a region where marine life has been impacted by once common illegal fishing practices, this stunning natural monument has both geological and ecological value, and scientists and underwater photographers are advocating for its protection.Credit: Pedro Carrillo/ United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — WinnerThis year, I had the incredible opportunity to visit a jellyfish lake during a liveaboard trip around southern Raja Ampat, Indonesia. Being surrounded by millions of jellyfish, which have evolved to lose their stinging ability due to the absence of predators, was one of the most breathtaking experiences I’ve ever had.Credit: Dani Escayola/ United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 2nd PlaceThis shot captures a school of rays resting at a cleaning station in Mauritius, where strong currents once attracted them regularly. Some rays grew accustomed to divers, allowing close encounters like this. Sadly, after the severe bleaching that the reefs here suffered last year, such gatherings have become rare, and I fear I may not witness this again at the same spot.Credit: Gerald Rambert/ United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 3rd PlaceShot in Cuba’s Jardines de la Reina—a protected shark sanctuary—this image captures a Caribbean reef shark weaving through a group of silky sharks near the surface. Using a slow shutter and strobes as the shark pivoted sharply, the motion blurred into a wave-like arc across its head, lit by the golden hues of sunset. The abundance and behavior of sharks here is a living symbol of what protected oceans can look like.Credit: Steven Lopez/ United Nations World Oceans Day www.unworldoceansday.org  Above Water Seascapes — 2nd PlaceNorthern gannetssoar above the dramatic cliffs of Scotland’s Hermaness National Nature Reserve, their sleek white bodies and black-tipped wings slicing through the Shetland winds. These seabirds, the largest in the North Atlantic, are renowned for their striking plunge-dives, reaching speeds up to 100 kphas they hunt for fish beneath the waves. The cliffs of Hermaness provide ideal nesting sites, with updrafts aiding their take-offs and landings. Each spring, thousands return to this rugged coastline, forming one of the UK’s most significant gannet colonies. It was a major challenge to take photos at the edge of these cliffs at almost 200 meterswith the winds up to 30 kph.Credit: Nur Tucker/ United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — Honorable MentionA South Atlantic swell breaks on the Dungeons Reef off the Cape Peninsula, South Africa, shot while photographing a big-wave surf session in October 2017. It’s the crescendoing sounds of these breaking swells that always amazes me.Credit: Ken Findlay/ United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — Honorable MentionHumpback whales in their thousands migrate along the Ningaloo Reef in Western Australia every year on the way to and from their calving grounds. In four seasons of swimming with them on the reef here, this is the only encounter I’ve had like this one. This pair of huge adult whales repeatedly spy-hopped alongside us, seeking to interact with and investigate us, leaving me completely breathless. The female in the foreground was much more confident than the male behind and would constantly make close approaches, whilst the male hung back a little, still interested but shy. After more than 10 years working with wildlife in the water, this was one of the best experiences of my life.Credit: Ollie Clarke/ United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces — 2nd PlaceOn one of my many blackwater dives in Anilao, in the Philippines, my guide and I spotted something moving erratically at a depth of around 20 meters, about 10 to 15 centimeters in size. We quickly realized that it was a rare blanket octopus. As we approached, it opened up its beautiful blanket, revealing its multicolored mantle. I managed to take a few shots before it went on its way. I felt truly privileged to have captured this fascinating deep-sea cephalopod. Among its many unique characteristics, this species exhibits some of the most extreme sexual size-dimorphism in nature, with females weighing up to 40,000 times more than males.Credit: Giacomo Marchione/ United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces – WinnerThis photo of a Japanese warbonnetwas captured in the Sea of Japan, about 50 milessouthwest of Vladivostok, Russia. I found the ornate fish at a depth of about 30 meters, under the stern of a shipwreck. This species does not appear to be afraid of divers—on the contrary, it seems to enjoy the attention—and it even tried to sit on the dome port of my camera.Credit: Andrey Nosik/ United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 2nd PlaceA juvenile pinnate batfishcaptured with a slow shutter speed, a snooted light, and deliberate camera panning to create a sense of motion and drama. Juvenile pinnate batfish are known for their striking black bodies outlined in vibrant orange—a coloration they lose within just a few months as they mature. I encountered this restless subject in the tropical waters of Indonesia’s Lembeh Strait. Capturing this image took patience and persistence over two dives, as these active young fish constantly dart for cover in crevices, making the shot particularly challenging.Credit: Luis Arpa/ United Nations World Oceans Day www.unworldoceansday.org #riveting #images #world #oceans #dayphoto
    WWW.POPSCI.COM
    15 riveting images from the 2025 UN World Oceans Day Photo Competition
    Big and Small Underwater Faces — 3rd Place. Trips to the Antarctic Peninsula always yield amazing encounters with leopard seals (Hydrurga leptonyx). Boldly approaching me and baring his teeth, this individual was keen to point out that this part of Antarctica was his territory. This picture was shot at dusk, resulting in the rather moody atmosphere.   Credit: Lars von Ritter Zahony (Germany) / World Ocean’s Day Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. The striking eye of a humpback whale named Sweet Girl peers at the camera. Just four days later, she would be dead, hit by a speeding boat and one of the 20,000 whales killed by ship strikes each year. Photographer Rachel Moore’s captivating image (seen below) of Sweet Girl earned top honors at the 2025 United Nations World Oceans Day Photo Competition. Wonder: Sustaining What Sustains Us — WinnerThis photo, taken in Mo’orea, French Polynesia in 2024, captures the eye of a humpback whale named Sweet Girl, just days before her tragic death. Four days after I captured this intimate moment, she was struck and killed by a fast-moving ship. Her death serves as a heartbreaking reminder of the 20,000 whales lost to ship strikes every year. We are using her story to advocate for stronger protections, petitioning for stricter speed laws around Tahiti and Mo’orea during whale season. I hope Sweet Girl’s legacy will spark real change to protect these incredible animals and prevent further senseless loss.Credit: Rachel Moore (USA) / United Nations World Oceans Day www.unworldoceansday.org Now in its twelfth year, the competition coordinated in collaboration between the UN Division for Ocean Affairs and the Law of the Sea, DivePhotoGuide (DPG), Oceanic Global, and  the Intergovernmental Oceanographic Commission of UNESCO. Each year, thousands of underwater photographers submit images that judges award prizes for across four categories: Big and Small Underwater Faces, Underwater Seascapes, Above Water Seascapes, and Wonder: Sustaining What Sustains Us. This year’s winning images include a curious leopard seal, a swarm of jellyfish, and a very grumpy looking Japanese warbonnet. Given our oceans’ perilous state, all competition participants were required to sign a charter of 14 commitments regarding ethics in photography. Underwater Seascapes — Honorable MentionWith only orcas as their natural predators, leopard seals are Antarctica’s most versatile hunters, preying on everything from fish and cephalopods to penguins and other seals. Gentoo penguins are a favored menu item, and leopard seals can be observed patrolling the waters around their colonies. For this shot, I used a split image to capture both worlds: the gentoo penguin colony in the background with the leopard seal on the hunt in the foreground.Credit: Lars von Ritter Zahony (Germany) / United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes – WinnerA serene lake cradled by arid dunes, where a gentle stream breathes life into the heart of Mother Earth’s creation: Captured from an airplane, this image reveals the powerful contrasts and hidden beauty where land and ocean meet, reminding us that the ocean is the source of all life and that everything in nature is deeply connected. The location is a remote stretch of coastline near Shark Bay, Western Australia.Credit: Leander Nardin (Austria) / United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — 3rd PlaceParadise Harbour is one of the most beautiful places on the Antarctic Peninsula. When I visited, the sea was extremely calm, and I was lucky enough to witness a wonderfully clear reflection of the Suárez Glacier (aka Petzval Glacier) in the water. The only problem was the waves created by our speedboat, and the only way to capture the perfect reflection was to lie on the bottom of the boat while it moved towards the glacier.Credit: Andrey Nosik (Russia) / United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 3rd Place“La Rapadura” is a natural hidden treasure on the northern coast of Tenerife, in the Spanish territory of the Canary Islands. Only discovered in 1996, it is one of the most astonishing underwater landscapes in the world, consistently ranking among the planet’s best dive sites. These towering columns of basalt are the result of volcanic processes that occurred between 500,000 and a million years ago. The formation was created when a basaltic lava flow reached the ocean, where, upon cooling and solidifying, it contracted, creating natural structures often compared to the pipes of church organs. Located in a region where marine life has been impacted by once common illegal fishing practices, this stunning natural monument has both geological and ecological value, and scientists and underwater photographers are advocating for its protection. (Model: Yolanda Garcia)Credit: Pedro Carrillo (Spain) / United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — WinnerThis year, I had the incredible opportunity to visit a jellyfish lake during a liveaboard trip around southern Raja Ampat, Indonesia. Being surrounded by millions of jellyfish, which have evolved to lose their stinging ability due to the absence of predators, was one of the most breathtaking experiences I’ve ever had.Credit: Dani Escayola (Spain) / United Nations World Oceans Day www.unworldoceansday.org Underwater Seascapes — 2nd PlaceThis shot captures a school of rays resting at a cleaning station in Mauritius, where strong currents once attracted them regularly. Some rays grew accustomed to divers, allowing close encounters like this. Sadly, after the severe bleaching that the reefs here suffered last year, such gatherings have become rare, and I fear I may not witness this again at the same spot.Credit: Gerald Rambert (Mauritius) / United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 3rd PlaceShot in Cuba’s Jardines de la Reina—a protected shark sanctuary—this image captures a Caribbean reef shark weaving through a group of silky sharks near the surface. Using a slow shutter and strobes as the shark pivoted sharply, the motion blurred into a wave-like arc across its head, lit by the golden hues of sunset. The abundance and behavior of sharks here is a living symbol of what protected oceans can look like.Credit: Steven Lopez (USA) / United Nations World Oceans Day www.unworldoceansday.org  Above Water Seascapes — 2nd PlaceNorthern gannets (Morus bassanus) soar above the dramatic cliffs of Scotland’s Hermaness National Nature Reserve, their sleek white bodies and black-tipped wings slicing through the Shetland winds. These seabirds, the largest in the North Atlantic, are renowned for their striking plunge-dives, reaching speeds up to 100 kph (60 mph) as they hunt for fish beneath the waves. The cliffs of Hermaness provide ideal nesting sites, with updrafts aiding their take-offs and landings. Each spring, thousands return to this rugged coastline, forming one of the UK’s most significant gannet colonies. It was a major challenge to take photos at the edge of these cliffs at almost 200 meters (650 feet) with the winds up to 30 kph (20 mph).Credit: Nur Tucker (UK/Turkey) / United Nations World Oceans Day www.unworldoceansday.org Above Water Seascapes — Honorable MentionA South Atlantic swell breaks on the Dungeons Reef off the Cape Peninsula, South Africa, shot while photographing a big-wave surf session in October 2017. It’s the crescendoing sounds of these breaking swells that always amazes me.Credit: Ken Findlay (South Africa) / United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — Honorable MentionHumpback whales in their thousands migrate along the Ningaloo Reef in Western Australia every year on the way to and from their calving grounds. In four seasons of swimming with them on the reef here, this is the only encounter I’ve had like this one. This pair of huge adult whales repeatedly spy-hopped alongside us, seeking to interact with and investigate us, leaving me completely breathless. The female in the foreground was much more confident than the male behind and would constantly make close approaches, whilst the male hung back a little, still interested but shy. After more than 10 years working with wildlife in the water, this was one of the best experiences of my life.Credit: Ollie Clarke (UK) / United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces — 2nd PlaceOn one of my many blackwater dives in Anilao, in the Philippines, my guide and I spotted something moving erratically at a depth of around 20 meters (65 feet), about 10 to 15 centimeters in size. We quickly realized that it was a rare blanket octopus (Tremoctopus sp.). As we approached, it opened up its beautiful blanket, revealing its multicolored mantle. I managed to take a few shots before it went on its way. I felt truly privileged to have captured this fascinating deep-sea cephalopod. Among its many unique characteristics, this species exhibits some of the most extreme sexual size-dimorphism in nature, with females weighing up to 40,000 times more than males.Credit: Giacomo Marchione (Italy) / United Nations World Oceans Day www.unworldoceansday.org Big and Small Underwater Faces – WinnerThis photo of a Japanese warbonnet (Chirolophis japonicus) was captured in the Sea of Japan, about 50 miles (80 kilometers) southwest of Vladivostok, Russia. I found the ornate fish at a depth of about 30 meters (100 feet), under the stern of a shipwreck. This species does not appear to be afraid of divers—on the contrary, it seems to enjoy the attention—and it even tried to sit on the dome port of my camera.Credit: Andrey Nosik (Russia) / United Nations World Oceans Day www.unworldoceansday.org Wonder: Sustaining What Sustains Us — 2nd PlaceA juvenile pinnate batfish (Platax pinnatus) captured with a slow shutter speed, a snooted light, and deliberate camera panning to create a sense of motion and drama. Juvenile pinnate batfish are known for their striking black bodies outlined in vibrant orange—a coloration they lose within just a few months as they mature. I encountered this restless subject in the tropical waters of Indonesia’s Lembeh Strait. Capturing this image took patience and persistence over two dives, as these active young fish constantly dart for cover in crevices, making the shot particularly challenging.Credit: Luis Arpa (Spain) / United Nations World Oceans Day www.unworldoceansday.org
    0 Comments 0 Shares
  • Trump’s military parade is a warning

    Donald Trump’s military parade in Washington this weekend — a show of force in the capital that just happens to take place on the president’s birthday — smacks of authoritarian Dear Leader-style politics.Yet as disconcerting as the imagery of tanks rolling down Constitution Avenue will be, it’s not even close to Trump’s most insidious assault on the US military’s historic and democratically essential nonpartisan ethos.In fact, it’s not even the most worrying thing he’s done this week.On Tuesday, the president gave a speech at Fort Bragg, an Army base home to Special Operations Command. While presidential speeches to soldiers are not uncommon — rows of uniformed troops make a great backdrop for a foreign policy speech — they generally avoid overt partisan attacks and campaign-style rhetoric. The soldiers, for their part, are expected to be studiously neutral, laughing at jokes and such, but remaining fully impassive during any policy conversation.That’s not what happened at Fort Bragg. Trump’s speech was a partisan tirade that targeted “radical left” opponents ranging from Joe Biden to Los Angeles Mayor Karen Bass. He celebrated his deployment of Marines to Los Angeles, proposed jailing people for burning the American flag, and called on soldiers to be “aggressive” toward the protesters they encountered.The soldiers, for their part, cheered Trump and booed his enemies — as they were seemingly expected to. Reporters at Military.com, a military news service, uncovered internal communications from 82nd Airborne leadership suggesting that the crowd was screened for their political opinions.“If soldiers have political views that are in opposition to the current administration and they don’t want to be in the audience then they need to speak with their leadership and get swapped out,” one note read.To call this unusual is an understatement. I spoke with four different experts on civil-military relations, two of whom teach at the Naval War College, about the speech and its implications. To a person, they said it was a step towards politicizing the military with no real precedent in modern American history.“That is, I think, a really big red flag because it means the military’s professional ethic is breaking down internally,” says Risa Brooks, a professor at Marquette University. “Its capacity to maintain that firewall against civilian politicization may be faltering.”This may sound alarmist — like an overreading of a one-off incident — but it’s part of a bigger pattern. The totality of Trump administration policies, ranging from the parade in Washington to the LA troop deployment to Secretary of Defense Pete Hegseth’s firing of high-ranking women and officers of color, suggests a concerted effort to erode the military’s professional ethos and turn it into an institution subservient to the Trump administration’s whims. This is a signal policy aim of would-be dictators, who wish to head off the risk of a coup and ensure the armed forces’ political reliability if they are needed to repress dissent in a crisis.Steve Saideman, a professor at Carleton University, put together a list of eight different signs that a military is being politicized in this fashion. The Trump administration has exhibited six out of the eight.“The biggest theme is that we are seeing a number of checks on the executive fail at the same time — and that’s what’s making individual events seem more alarming than they might otherwise,” says Jessica Blankshain, a professor at the Naval War College.That Trump is trying to politicize the military does not mean he has succeeded. There are several signs, including Trump’s handpicked chair of the Joint Chiefs repudiating the president’s claims of a migrant invasion during congressional testimony, that the US military is resisting Trump’s politicization.But the events in Fort Bragg and Washington suggest that we are in the midst of a quiet crisis in civil-military relations in the United States — one whose implications for American democracy’s future could well be profound.The Trump crisis in civil-military relations, explainedA military is, by sheer fact of its existence, a threat to any civilian government. If you have an institution that controls the overwhelming bulk of weaponry in a society, it always has the physical capacity to seize control of the government at gunpoint. A key question for any government is how to convince the armed forces that they cannot or should not take power for themselves.Democracies typically do this through a process called “professionalization.” Soldiers are rigorously taught to think of themselves as a class of public servants, people trained to perform a specific job within defined parameters. Their ultimate loyalty is not to their generals or even individual presidents, but rather to the people and the constitutional order.Samuel Huntington, the late Harvard political scientist, is the canonical theorist of a professional military. In his book The Soldier and the State, he described optimal professionalization as a system of “objective control”: one in which the military retains autonomy in how they fight and plan for wars while deferring to politicians on whether and why to fight in the first place. In effect, they stay out of the politicians’ affairs while the politicians stay out of theirs.The idea of such a system is to emphasize to the military that they are professionals: Their responsibility isn’t deciding when to use force, but only to conduct operations as effectively as possible once ordered to engage in them. There is thus a strict firewall between military affairs, on the one hand, and policy-political affairs on the other.Typically, the chief worry is that the military breaches this bargain: that, for example, a general starts speaking out against elected officials’ policies in ways that undermine civilian control. This is not a hypothetical fear in the United States, with the most famous such example being Gen. Douglas MacArthur’s insubordination during the Korean War. Thankfully, not even MacArthur attempted the worst-case version of military overstep — a coup.But in backsliding democracies like the modern United States, where the chief executive is attempting an anti-democratic power grab, the military poses a very different kind of threat to democracy — in fact, something akin to the exact opposite of the typical scenario.In such cases, the issue isn’t the military inserting itself into politics but rather the civilians dragging them into it in ways that upset the democratic political order. The worst-case scenario is that the military acts on presidential directives to use force against domestic dissenters, destroying democracy not by ignoring civilian orders, but by following them.There are two ways to arrive at such a worst-case scenario, both of which are in evidence in the early days of Trump 2.0.First is politicization: an intentional attack on the constraints against partisan activity inside the professional ranks.Many of Pete Hegseth’s major moves as secretary of defense fit this bill, including his decisions to fire nonwhite and female generals seen as politically unreliable and his effort to undermine the independence of the military’s lawyers. The breaches in protocol at Fort Bragg are both consequences and causes of politicization: They could only happen in an environment of loosened constraint, and they might encourage more overt political action if gone unpunished.The second pathway to breakdown is the weaponization of professionalism against itself. Here, Trump exploits the military’s deference to politicians by ordering it to engage in undemocraticactivities. In practice, this looks a lot like the LA deployments, and, more specifically, the lack of any visible military pushback. While the military readily agreeing to deployments is normally a good sign — that civilian control is holding — these aren’t normal times. And this isn’t a normal deployment, but rather one that comes uncomfortably close to the military being ordered to assist in repressing overwhelmingly peaceful demonstrations against executive abuses of power.“It’s really been pretty uncommon to use the military for law enforcement,” says David Burbach, another Naval War College professor. “This is really bringing the military into frontline law enforcement when. … these are really not huge disturbances.”This, then, is the crisis: an incremental and slow-rolling effort by the Trump administration to erode the norms and procedures designed to prevent the military from being used as a tool of domestic repression. Is it time to panic?Among the experts I spoke with, there was consensus that the military’s professional and nonpartisan ethos was weakening. This isn’t just because of Trump, but his terms — the first to a degree, and now the second acutely — are major stressors.Yet there was no consensus on just how much military nonpartisanship has eroded — that is, how close we are to a moment when the US military might be willing to follow obviously authoritarian orders.For all its faults, the US military’s professional ethos is a really important part of its identity and self-conception. While few soldiers may actually read Sam Huntington or similar scholars, the general idea that they serve the people and the republic is a bedrock principle among the ranks. There is a reason why the United States has never, in over 250 years of governance, experienced a military coup — or even come particularly close to one.In theory, this ethos should also galvanize resistance to Trump’s efforts at politicization. Soldiers are not unthinking automatons: While they are trained to follow commands, they are explicitly obligated to refuse illegal orders, even coming from the president. The more aggressive Trump’s efforts to use the military as a tool of repression gets, the more likely there is to be resistance.Or, at least theoretically.The truth is that we don’t really know how the US military will respond to a situation like this. Like so many of Trump’s second-term policies, their efforts to bend the military to their will are unprecedented — actions with no real parallel in the modern history of the American military. Experts can only make informed guesses, based on their sense of US military culture as well as comparisons to historical and foreign cases.For this reason, there are probably only two things we can say with confidence.First, what we’ve seen so far is not yet sufficient evidence to declare that the military is in Trump’s thrall. The signs of decay are too limited to ground any conclusions that the longstanding professional norm is entirely gone.“We have seen a few things that are potentially alarming about erosion of the military’s non-partisan norm. But not in a way that’s definitive at this point,” Blankshain says.Second, the stressors on this tradition are going to keep piling on. Trump’s record makes it exceptionally clear that he wants the military to serve him personally — and that he, and Hegseth, will keep working to make it so. This means we really are in the midst of a quiet crisis, and will likely remain so for the foreseeable future.“The fact that he’s getting the troops to cheer for booing Democratic leaders at a time when there’s actuallya blue city and a blue state…he is ordering the troops to take a side,” Saideman says. “There may not be a coherent plan behind this. But there are a lot of things going on that are all in the same direction.”See More: Politics
    #trumpampamp8217s #military #parade #warning
    Trump’s military parade is a warning
    Donald Trump’s military parade in Washington this weekend — a show of force in the capital that just happens to take place on the president’s birthday — smacks of authoritarian Dear Leader-style politics.Yet as disconcerting as the imagery of tanks rolling down Constitution Avenue will be, it’s not even close to Trump’s most insidious assault on the US military’s historic and democratically essential nonpartisan ethos.In fact, it’s not even the most worrying thing he’s done this week.On Tuesday, the president gave a speech at Fort Bragg, an Army base home to Special Operations Command. While presidential speeches to soldiers are not uncommon — rows of uniformed troops make a great backdrop for a foreign policy speech — they generally avoid overt partisan attacks and campaign-style rhetoric. The soldiers, for their part, are expected to be studiously neutral, laughing at jokes and such, but remaining fully impassive during any policy conversation.That’s not what happened at Fort Bragg. Trump’s speech was a partisan tirade that targeted “radical left” opponents ranging from Joe Biden to Los Angeles Mayor Karen Bass. He celebrated his deployment of Marines to Los Angeles, proposed jailing people for burning the American flag, and called on soldiers to be “aggressive” toward the protesters they encountered.The soldiers, for their part, cheered Trump and booed his enemies — as they were seemingly expected to. Reporters at Military.com, a military news service, uncovered internal communications from 82nd Airborne leadership suggesting that the crowd was screened for their political opinions.“If soldiers have political views that are in opposition to the current administration and they don’t want to be in the audience then they need to speak with their leadership and get swapped out,” one note read.To call this unusual is an understatement. I spoke with four different experts on civil-military relations, two of whom teach at the Naval War College, about the speech and its implications. To a person, they said it was a step towards politicizing the military with no real precedent in modern American history.“That is, I think, a really big red flag because it means the military’s professional ethic is breaking down internally,” says Risa Brooks, a professor at Marquette University. “Its capacity to maintain that firewall against civilian politicization may be faltering.”This may sound alarmist — like an overreading of a one-off incident — but it’s part of a bigger pattern. The totality of Trump administration policies, ranging from the parade in Washington to the LA troop deployment to Secretary of Defense Pete Hegseth’s firing of high-ranking women and officers of color, suggests a concerted effort to erode the military’s professional ethos and turn it into an institution subservient to the Trump administration’s whims. This is a signal policy aim of would-be dictators, who wish to head off the risk of a coup and ensure the armed forces’ political reliability if they are needed to repress dissent in a crisis.Steve Saideman, a professor at Carleton University, put together a list of eight different signs that a military is being politicized in this fashion. The Trump administration has exhibited six out of the eight.“The biggest theme is that we are seeing a number of checks on the executive fail at the same time — and that’s what’s making individual events seem more alarming than they might otherwise,” says Jessica Blankshain, a professor at the Naval War College.That Trump is trying to politicize the military does not mean he has succeeded. There are several signs, including Trump’s handpicked chair of the Joint Chiefs repudiating the president’s claims of a migrant invasion during congressional testimony, that the US military is resisting Trump’s politicization.But the events in Fort Bragg and Washington suggest that we are in the midst of a quiet crisis in civil-military relations in the United States — one whose implications for American democracy’s future could well be profound.The Trump crisis in civil-military relations, explainedA military is, by sheer fact of its existence, a threat to any civilian government. If you have an institution that controls the overwhelming bulk of weaponry in a society, it always has the physical capacity to seize control of the government at gunpoint. A key question for any government is how to convince the armed forces that they cannot or should not take power for themselves.Democracies typically do this through a process called “professionalization.” Soldiers are rigorously taught to think of themselves as a class of public servants, people trained to perform a specific job within defined parameters. Their ultimate loyalty is not to their generals or even individual presidents, but rather to the people and the constitutional order.Samuel Huntington, the late Harvard political scientist, is the canonical theorist of a professional military. In his book The Soldier and the State, he described optimal professionalization as a system of “objective control”: one in which the military retains autonomy in how they fight and plan for wars while deferring to politicians on whether and why to fight in the first place. In effect, they stay out of the politicians’ affairs while the politicians stay out of theirs.The idea of such a system is to emphasize to the military that they are professionals: Their responsibility isn’t deciding when to use force, but only to conduct operations as effectively as possible once ordered to engage in them. There is thus a strict firewall between military affairs, on the one hand, and policy-political affairs on the other.Typically, the chief worry is that the military breaches this bargain: that, for example, a general starts speaking out against elected officials’ policies in ways that undermine civilian control. This is not a hypothetical fear in the United States, with the most famous such example being Gen. Douglas MacArthur’s insubordination during the Korean War. Thankfully, not even MacArthur attempted the worst-case version of military overstep — a coup.But in backsliding democracies like the modern United States, where the chief executive is attempting an anti-democratic power grab, the military poses a very different kind of threat to democracy — in fact, something akin to the exact opposite of the typical scenario.In such cases, the issue isn’t the military inserting itself into politics but rather the civilians dragging them into it in ways that upset the democratic political order. The worst-case scenario is that the military acts on presidential directives to use force against domestic dissenters, destroying democracy not by ignoring civilian orders, but by following them.There are two ways to arrive at such a worst-case scenario, both of which are in evidence in the early days of Trump 2.0.First is politicization: an intentional attack on the constraints against partisan activity inside the professional ranks.Many of Pete Hegseth’s major moves as secretary of defense fit this bill, including his decisions to fire nonwhite and female generals seen as politically unreliable and his effort to undermine the independence of the military’s lawyers. The breaches in protocol at Fort Bragg are both consequences and causes of politicization: They could only happen in an environment of loosened constraint, and they might encourage more overt political action if gone unpunished.The second pathway to breakdown is the weaponization of professionalism against itself. Here, Trump exploits the military’s deference to politicians by ordering it to engage in undemocraticactivities. In practice, this looks a lot like the LA deployments, and, more specifically, the lack of any visible military pushback. While the military readily agreeing to deployments is normally a good sign — that civilian control is holding — these aren’t normal times. And this isn’t a normal deployment, but rather one that comes uncomfortably close to the military being ordered to assist in repressing overwhelmingly peaceful demonstrations against executive abuses of power.“It’s really been pretty uncommon to use the military for law enforcement,” says David Burbach, another Naval War College professor. “This is really bringing the military into frontline law enforcement when. … these are really not huge disturbances.”This, then, is the crisis: an incremental and slow-rolling effort by the Trump administration to erode the norms and procedures designed to prevent the military from being used as a tool of domestic repression. Is it time to panic?Among the experts I spoke with, there was consensus that the military’s professional and nonpartisan ethos was weakening. This isn’t just because of Trump, but his terms — the first to a degree, and now the second acutely — are major stressors.Yet there was no consensus on just how much military nonpartisanship has eroded — that is, how close we are to a moment when the US military might be willing to follow obviously authoritarian orders.For all its faults, the US military’s professional ethos is a really important part of its identity and self-conception. While few soldiers may actually read Sam Huntington or similar scholars, the general idea that they serve the people and the republic is a bedrock principle among the ranks. There is a reason why the United States has never, in over 250 years of governance, experienced a military coup — or even come particularly close to one.In theory, this ethos should also galvanize resistance to Trump’s efforts at politicization. Soldiers are not unthinking automatons: While they are trained to follow commands, they are explicitly obligated to refuse illegal orders, even coming from the president. The more aggressive Trump’s efforts to use the military as a tool of repression gets, the more likely there is to be resistance.Or, at least theoretically.The truth is that we don’t really know how the US military will respond to a situation like this. Like so many of Trump’s second-term policies, their efforts to bend the military to their will are unprecedented — actions with no real parallel in the modern history of the American military. Experts can only make informed guesses, based on their sense of US military culture as well as comparisons to historical and foreign cases.For this reason, there are probably only two things we can say with confidence.First, what we’ve seen so far is not yet sufficient evidence to declare that the military is in Trump’s thrall. The signs of decay are too limited to ground any conclusions that the longstanding professional norm is entirely gone.“We have seen a few things that are potentially alarming about erosion of the military’s non-partisan norm. But not in a way that’s definitive at this point,” Blankshain says.Second, the stressors on this tradition are going to keep piling on. Trump’s record makes it exceptionally clear that he wants the military to serve him personally — and that he, and Hegseth, will keep working to make it so. This means we really are in the midst of a quiet crisis, and will likely remain so for the foreseeable future.“The fact that he’s getting the troops to cheer for booing Democratic leaders at a time when there’s actuallya blue city and a blue state…he is ordering the troops to take a side,” Saideman says. “There may not be a coherent plan behind this. But there are a lot of things going on that are all in the same direction.”See More: Politics #trumpampamp8217s #military #parade #warning
    WWW.VOX.COM
    Trump’s military parade is a warning
    Donald Trump’s military parade in Washington this weekend — a show of force in the capital that just happens to take place on the president’s birthday — smacks of authoritarian Dear Leader-style politics (even though Trump actually got the idea after attending the 2017 Bastille Day parade in Paris).Yet as disconcerting as the imagery of tanks rolling down Constitution Avenue will be, it’s not even close to Trump’s most insidious assault on the US military’s historic and democratically essential nonpartisan ethos.In fact, it’s not even the most worrying thing he’s done this week.On Tuesday, the president gave a speech at Fort Bragg, an Army base home to Special Operations Command. While presidential speeches to soldiers are not uncommon — rows of uniformed troops make a great backdrop for a foreign policy speech — they generally avoid overt partisan attacks and campaign-style rhetoric. The soldiers, for their part, are expected to be studiously neutral, laughing at jokes and such, but remaining fully impassive during any policy conversation.That’s not what happened at Fort Bragg. Trump’s speech was a partisan tirade that targeted “radical left” opponents ranging from Joe Biden to Los Angeles Mayor Karen Bass. He celebrated his deployment of Marines to Los Angeles, proposed jailing people for burning the American flag, and called on soldiers to be “aggressive” toward the protesters they encountered.The soldiers, for their part, cheered Trump and booed his enemies — as they were seemingly expected to. Reporters at Military.com, a military news service, uncovered internal communications from 82nd Airborne leadership suggesting that the crowd was screened for their political opinions.“If soldiers have political views that are in opposition to the current administration and they don’t want to be in the audience then they need to speak with their leadership and get swapped out,” one note read.To call this unusual is an understatement. I spoke with four different experts on civil-military relations, two of whom teach at the Naval War College, about the speech and its implications. To a person, they said it was a step towards politicizing the military with no real precedent in modern American history.“That is, I think, a really big red flag because it means the military’s professional ethic is breaking down internally,” says Risa Brooks, a professor at Marquette University. “Its capacity to maintain that firewall against civilian politicization may be faltering.”This may sound alarmist — like an overreading of a one-off incident — but it’s part of a bigger pattern. The totality of Trump administration policies, ranging from the parade in Washington to the LA troop deployment to Secretary of Defense Pete Hegseth’s firing of high-ranking women and officers of color, suggests a concerted effort to erode the military’s professional ethos and turn it into an institution subservient to the Trump administration’s whims. This is a signal policy aim of would-be dictators, who wish to head off the risk of a coup and ensure the armed forces’ political reliability if they are needed to repress dissent in a crisis.Steve Saideman, a professor at Carleton University, put together a list of eight different signs that a military is being politicized in this fashion. The Trump administration has exhibited six out of the eight.“The biggest theme is that we are seeing a number of checks on the executive fail at the same time — and that’s what’s making individual events seem more alarming than they might otherwise,” says Jessica Blankshain, a professor at the Naval War College (speaking not for the military but in a personal capacity).That Trump is trying to politicize the military does not mean he has succeeded. There are several signs, including Trump’s handpicked chair of the Joint Chiefs repudiating the president’s claims of a migrant invasion during congressional testimony, that the US military is resisting Trump’s politicization.But the events in Fort Bragg and Washington suggest that we are in the midst of a quiet crisis in civil-military relations in the United States — one whose implications for American democracy’s future could well be profound.The Trump crisis in civil-military relations, explainedA military is, by sheer fact of its existence, a threat to any civilian government. If you have an institution that controls the overwhelming bulk of weaponry in a society, it always has the physical capacity to seize control of the government at gunpoint. A key question for any government is how to convince the armed forces that they cannot or should not take power for themselves.Democracies typically do this through a process called “professionalization.” Soldiers are rigorously taught to think of themselves as a class of public servants, people trained to perform a specific job within defined parameters. Their ultimate loyalty is not to their generals or even individual presidents, but rather to the people and the constitutional order.Samuel Huntington, the late Harvard political scientist, is the canonical theorist of a professional military. In his book The Soldier and the State, he described optimal professionalization as a system of “objective control”: one in which the military retains autonomy in how they fight and plan for wars while deferring to politicians on whether and why to fight in the first place. In effect, they stay out of the politicians’ affairs while the politicians stay out of theirs.The idea of such a system is to emphasize to the military that they are professionals: Their responsibility isn’t deciding when to use force, but only to conduct operations as effectively as possible once ordered to engage in them. There is thus a strict firewall between military affairs, on the one hand, and policy-political affairs on the other.Typically, the chief worry is that the military breaches this bargain: that, for example, a general starts speaking out against elected officials’ policies in ways that undermine civilian control. This is not a hypothetical fear in the United States, with the most famous such example being Gen. Douglas MacArthur’s insubordination during the Korean War. Thankfully, not even MacArthur attempted the worst-case version of military overstep — a coup.But in backsliding democracies like the modern United States, where the chief executive is attempting an anti-democratic power grab, the military poses a very different kind of threat to democracy — in fact, something akin to the exact opposite of the typical scenario.In such cases, the issue isn’t the military inserting itself into politics but rather the civilians dragging them into it in ways that upset the democratic political order. The worst-case scenario is that the military acts on presidential directives to use force against domestic dissenters, destroying democracy not by ignoring civilian orders, but by following them.There are two ways to arrive at such a worst-case scenario, both of which are in evidence in the early days of Trump 2.0.First is politicization: an intentional attack on the constraints against partisan activity inside the professional ranks.Many of Pete Hegseth’s major moves as secretary of defense fit this bill, including his decisions to fire nonwhite and female generals seen as politically unreliable and his effort to undermine the independence of the military’s lawyers. The breaches in protocol at Fort Bragg are both consequences and causes of politicization: They could only happen in an environment of loosened constraint, and they might encourage more overt political action if gone unpunished.The second pathway to breakdown is the weaponization of professionalism against itself. Here, Trump exploits the military’s deference to politicians by ordering it to engage in undemocratic (and even questionably legal) activities. In practice, this looks a lot like the LA deployments, and, more specifically, the lack of any visible military pushback. While the military readily agreeing to deployments is normally a good sign — that civilian control is holding — these aren’t normal times. And this isn’t a normal deployment, but rather one that comes uncomfortably close to the military being ordered to assist in repressing overwhelmingly peaceful demonstrations against executive abuses of power.“It’s really been pretty uncommon to use the military for law enforcement,” says David Burbach, another Naval War College professor (also speaking personally). “This is really bringing the military into frontline law enforcement when. … these are really not huge disturbances.”This, then, is the crisis: an incremental and slow-rolling effort by the Trump administration to erode the norms and procedures designed to prevent the military from being used as a tool of domestic repression. Is it time to panic?Among the experts I spoke with, there was consensus that the military’s professional and nonpartisan ethos was weakening. This isn’t just because of Trump, but his terms — the first to a degree, and now the second acutely — are major stressors.Yet there was no consensus on just how much military nonpartisanship has eroded — that is, how close we are to a moment when the US military might be willing to follow obviously authoritarian orders.For all its faults, the US military’s professional ethos is a really important part of its identity and self-conception. While few soldiers may actually read Sam Huntington or similar scholars, the general idea that they serve the people and the republic is a bedrock principle among the ranks. There is a reason why the United States has never, in over 250 years of governance, experienced a military coup — or even come particularly close to one.In theory, this ethos should also galvanize resistance to Trump’s efforts at politicization. Soldiers are not unthinking automatons: While they are trained to follow commands, they are explicitly obligated to refuse illegal orders, even coming from the president. The more aggressive Trump’s efforts to use the military as a tool of repression gets, the more likely there is to be resistance.Or, at least theoretically.The truth is that we don’t really know how the US military will respond to a situation like this. Like so many of Trump’s second-term policies, their efforts to bend the military to their will are unprecedented — actions with no real parallel in the modern history of the American military. Experts can only make informed guesses, based on their sense of US military culture as well as comparisons to historical and foreign cases.For this reason, there are probably only two things we can say with confidence.First, what we’ve seen so far is not yet sufficient evidence to declare that the military is in Trump’s thrall. The signs of decay are too limited to ground any conclusions that the longstanding professional norm is entirely gone.“We have seen a few things that are potentially alarming about erosion of the military’s non-partisan norm. But not in a way that’s definitive at this point,” Blankshain says.Second, the stressors on this tradition are going to keep piling on. Trump’s record makes it exceptionally clear that he wants the military to serve him personally — and that he, and Hegseth, will keep working to make it so. This means we really are in the midst of a quiet crisis, and will likely remain so for the foreseeable future.“The fact that he’s getting the troops to cheer for booing Democratic leaders at a time when there’s actually [a deployment to] a blue city and a blue state…he is ordering the troops to take a side,” Saideman says. “There may not be a coherent plan behind this. But there are a lot of things going on that are all in the same direction.”See More: Politics
    0 Comments 0 Shares
  • A shortage of high-voltage power cables could stall the clean energy transition

    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why.
    A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea.
    Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment.
    High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress.

    "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg.
    The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities.
    // Related Stories

    As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct currentcables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses.

    But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometersof new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years.
    Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused.
    Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule.
    Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross.
    Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted.
    The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them."
    #shortage #highvoltage #power #cables #could
    A shortage of high-voltage power cables could stall the clean energy transition
    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why. A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea. Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment. High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress. "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg. The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities. // Related Stories As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct currentcables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses. But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometersof new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years. Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused. Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule. Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross. Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted. The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them." #shortage #highvoltage #power #cables #could
    WWW.TECHSPOT.COM
    A shortage of high-voltage power cables could stall the clean energy transition
    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why. A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea. Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment. High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress. "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg. The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities. // Related Stories As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct current (HVDC) cables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses. But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometers (around 49.7 million miles) of new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years. Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused. Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule. Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross. Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted. The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them."
    0 Comments 0 Shares
  • Znamy sie completes a coastal-inspired patisserie in Warsaw

    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" ";
    Japanese architect Shigeru Ban has created the Blue Ocean Domefor the Osaka-Kansai Expo 2025, addressing the urgent issue of marine plastic pollution and raising crucial awareness about it.Named Blue Ocean Dome, the pavilion stands out with its innovative design, comprising three distinct dome types: Dome A, Dome B, and Dome C. Each dome is specifically crafted to host captivating installations and dynamic exhibitions, promising an unforgettable experience for all visitors throughout the event. Image © Taiki FukaoThe project was commissioned by the Zero Emissions Research and Initiatives , a global network of creative minds, seeking solutions to the ever increasing problems of the world.Rather than outright rejecting plastic, the pavilion inspires deep reflection on how we use and manage materials, highlighting our critical responsibility to make sustainable choices for the future.The BOD merges traditional and modern materials—like bamboo, paper, and carbon fiber reinforced plastic—to unlock new and innovative architectural possibilities.Dome A, serving as the striking entrance, is expertly crafted from laminated bamboo. This innovative design not only showcases the beauty of bamboo but also tackles the pressing issue of abandoned bamboo groves in Japan, which pose a risk to land stability due to their shallow root systems.Utilizing raw bamboo for structural purposes is often difficult; however, through advanced processing, it is transformed into thin, laminated boards that boast strength even greater than that of conventional wood. These boards have been skillfully fashioned into a remarkable 19-meter dome, drawing inspiration from traditional Japanese bamboo hats. This project brilliantly turns an environmental challenge into a sustainable architectural solution, highlighting the potential of bamboo as a valuable resource.Dome B stands as the central and largest structure of its kind, boasting a remarkable diameter of 42 meters. It is primarily constructed from Carbon Fiber Reinforced Polymer, a cutting-edge material revered for its extraordinary strength-to-weight ratio—four times stronger than steel yet only one-fifth the weight. While CFRP is predominantly seen in industries such as aerospace and automotive due to its high cost, its application in architecture is pioneering.In this project, the choice of CFRP was not just advantageous; it was essential. The primary goal was to minimize the foundation weight on the reclaimed land of the Expo site, making sustainability a top priority. To mitigate the environmental consequences of deep foundation piles, the structure had to be lighter than the soil excavated for its foundation. CFRP not only met this stringent requirement but also ensured the dome's structural integrity, showcasing a perfect marriage of innovation and environmental responsibility.Dome C, with its impressive 19-meter diameter, is crafted entirely from paper tubes that are 100% recyclable after use. Its innovative design features a three-dimensional truss structure, connected by elegant wooden spheres, evoking the beauty of molecular structures.To champion sustainability and minimize waste following the six-month Expo, the entire BOD pavilion has been meticulously designed for effortless disassembly and relocation. It is anchored by a robust steel foundation system and boasts a modular design that allows it to be conveniently packed into standard shipping containers. After the Expo concludes, this remarkable pavilion will be transported to the Maldives, where it will be transformed into a stunning resort facility, breathing new life into its design and purpose.Recently, Shigeru Ban's Paper Log House was revealed at Philip Johnson's Glass House Venue. In addition, Ban installed his Paper Partition Sheltersfor the victims of the Turkey-Syria earthquake in Mersin and Hatay provinces of Turkey.All images © Hiroyuki Hirai unless otherwise stated.> via Shigeru Ban Architects 
    #znamy #sie #completes #coastalinspired #patisserie
    Znamy sie completes a coastal-inspired patisserie in Warsaw
    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "; Japanese architect Shigeru Ban has created the Blue Ocean Domefor the Osaka-Kansai Expo 2025, addressing the urgent issue of marine plastic pollution and raising crucial awareness about it.Named Blue Ocean Dome, the pavilion stands out with its innovative design, comprising three distinct dome types: Dome A, Dome B, and Dome C. Each dome is specifically crafted to host captivating installations and dynamic exhibitions, promising an unforgettable experience for all visitors throughout the event. Image © Taiki FukaoThe project was commissioned by the Zero Emissions Research and Initiatives , a global network of creative minds, seeking solutions to the ever increasing problems of the world.Rather than outright rejecting plastic, the pavilion inspires deep reflection on how we use and manage materials, highlighting our critical responsibility to make sustainable choices for the future.The BOD merges traditional and modern materials—like bamboo, paper, and carbon fiber reinforced plastic—to unlock new and innovative architectural possibilities.Dome A, serving as the striking entrance, is expertly crafted from laminated bamboo. This innovative design not only showcases the beauty of bamboo but also tackles the pressing issue of abandoned bamboo groves in Japan, which pose a risk to land stability due to their shallow root systems.Utilizing raw bamboo for structural purposes is often difficult; however, through advanced processing, it is transformed into thin, laminated boards that boast strength even greater than that of conventional wood. These boards have been skillfully fashioned into a remarkable 19-meter dome, drawing inspiration from traditional Japanese bamboo hats. This project brilliantly turns an environmental challenge into a sustainable architectural solution, highlighting the potential of bamboo as a valuable resource.Dome B stands as the central and largest structure of its kind, boasting a remarkable diameter of 42 meters. It is primarily constructed from Carbon Fiber Reinforced Polymer, a cutting-edge material revered for its extraordinary strength-to-weight ratio—four times stronger than steel yet only one-fifth the weight. While CFRP is predominantly seen in industries such as aerospace and automotive due to its high cost, its application in architecture is pioneering.In this project, the choice of CFRP was not just advantageous; it was essential. The primary goal was to minimize the foundation weight on the reclaimed land of the Expo site, making sustainability a top priority. To mitigate the environmental consequences of deep foundation piles, the structure had to be lighter than the soil excavated for its foundation. CFRP not only met this stringent requirement but also ensured the dome's structural integrity, showcasing a perfect marriage of innovation and environmental responsibility.Dome C, with its impressive 19-meter diameter, is crafted entirely from paper tubes that are 100% recyclable after use. Its innovative design features a three-dimensional truss structure, connected by elegant wooden spheres, evoking the beauty of molecular structures.To champion sustainability and minimize waste following the six-month Expo, the entire BOD pavilion has been meticulously designed for effortless disassembly and relocation. It is anchored by a robust steel foundation system and boasts a modular design that allows it to be conveniently packed into standard shipping containers. After the Expo concludes, this remarkable pavilion will be transported to the Maldives, where it will be transformed into a stunning resort facility, breathing new life into its design and purpose.Recently, Shigeru Ban's Paper Log House was revealed at Philip Johnson's Glass House Venue. In addition, Ban installed his Paper Partition Sheltersfor the victims of the Turkey-Syria earthquake in Mersin and Hatay provinces of Turkey.All images © Hiroyuki Hirai unless otherwise stated.> via Shigeru Ban Architects  #znamy #sie #completes #coastalinspired #patisserie
    WORLDARCHITECTURE.ORG
    Znamy sie completes a coastal-inspired patisserie in Warsaw
    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd" Japanese architect Shigeru Ban has created the Blue Ocean Dome (BOD) for the Osaka-Kansai Expo 2025, addressing the urgent issue of marine plastic pollution and raising crucial awareness about it.Named Blue Ocean Dome, the pavilion stands out with its innovative design, comprising three distinct dome types: Dome A, Dome B, and Dome C. Each dome is specifically crafted to host captivating installations and dynamic exhibitions, promising an unforgettable experience for all visitors throughout the event. Image © Taiki FukaoThe project was commissioned by the Zero Emissions Research and Initiatives (ZERI), a global network of creative minds, seeking solutions to the ever increasing problems of the world.Rather than outright rejecting plastic, the pavilion inspires deep reflection on how we use and manage materials, highlighting our critical responsibility to make sustainable choices for the future.The BOD merges traditional and modern materials—like bamboo, paper, and carbon fiber reinforced plastic (CFRP)—to unlock new and innovative architectural possibilities.Dome A, serving as the striking entrance, is expertly crafted from laminated bamboo. This innovative design not only showcases the beauty of bamboo but also tackles the pressing issue of abandoned bamboo groves in Japan, which pose a risk to land stability due to their shallow root systems.Utilizing raw bamboo for structural purposes is often difficult; however, through advanced processing, it is transformed into thin, laminated boards that boast strength even greater than that of conventional wood. These boards have been skillfully fashioned into a remarkable 19-meter dome, drawing inspiration from traditional Japanese bamboo hats. This project brilliantly turns an environmental challenge into a sustainable architectural solution, highlighting the potential of bamboo as a valuable resource.Dome B stands as the central and largest structure of its kind, boasting a remarkable diameter of 42 meters. It is primarily constructed from Carbon Fiber Reinforced Polymer (CFRP), a cutting-edge material revered for its extraordinary strength-to-weight ratio—four times stronger than steel yet only one-fifth the weight. While CFRP is predominantly seen in industries such as aerospace and automotive due to its high cost, its application in architecture is pioneering.In this project, the choice of CFRP was not just advantageous; it was essential. The primary goal was to minimize the foundation weight on the reclaimed land of the Expo site, making sustainability a top priority. To mitigate the environmental consequences of deep foundation piles, the structure had to be lighter than the soil excavated for its foundation. CFRP not only met this stringent requirement but also ensured the dome's structural integrity, showcasing a perfect marriage of innovation and environmental responsibility.Dome C, with its impressive 19-meter diameter, is crafted entirely from paper tubes that are 100% recyclable after use. Its innovative design features a three-dimensional truss structure, connected by elegant wooden spheres, evoking the beauty of molecular structures.To champion sustainability and minimize waste following the six-month Expo, the entire BOD pavilion has been meticulously designed for effortless disassembly and relocation. It is anchored by a robust steel foundation system and boasts a modular design that allows it to be conveniently packed into standard shipping containers. After the Expo concludes, this remarkable pavilion will be transported to the Maldives, where it will be transformed into a stunning resort facility, breathing new life into its design and purpose.Recently, Shigeru Ban's Paper Log House was revealed at Philip Johnson's Glass House Venue. In addition, Ban installed his Paper Partition Shelters (PPS) for the victims of the Turkey-Syria earthquake in Mersin and Hatay provinces of Turkey.All images © Hiroyuki Hirai unless otherwise stated.> via Shigeru Ban Architects 
    0 Comments 0 Shares
  • UMass and MIT Test Cold Spray 3D Printing to Repair Aging Massachusetts Bridge

    Researchers from the US-based University of Massachusetts Amherst, in collaboration with the Massachusetts Institute of TechnologyDepartment of Mechanical Engineering, have applied cold spray to repair the deteriorating “Brown Bridge” in Great Barrington, built in 1949. The project marks the first known use of this method on bridge infrastructure and aims to evaluate its effectiveness as a faster, more cost-effective, and less disruptive alternative to conventional repair techniques.
    “Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” said Simos Gerasimidis, associate professor of civil and environmental engineering at the University of Massachusetts Amherst. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that,” he added.
    The pilot project is also a collaboration with the Massachusetts Department of Transportation, the Massachusetts Technology Collaborative, the U.S. Department of Transportation, and the Federal Highway Administration. It was supported by the Massachusetts Manufacturing Innovation Initiative, which provided essential equipment for the demonstration.
    Members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst.
    Tackling America’s Bridge Crisis with Cold Spray Technology
    Nearly half of the bridges across the United States are in “fair” condition, while 6.8% are classified as “poor,” according to the 2025 Report Card for America’s Infrastructure. In Massachusetts, about 9% of the state’s 5,295 bridges are considered structurally deficient. The costs of restoring this infrastructure are projected to exceed billion—well beyond current funding levels. 
    The cold spray method consists of propelling metal powder particles at high velocity onto the beam’s surface. Successive applications build up additional layers, helping restore its thickness and structural integrity. This method has successfully been used to repair large structures such as submarines, airplanes, and ships, but this marks the first instance of its application to a bridge.
    One of cold spray’s key advantages is its ability to be deployed with minimal traffic disruption.  “Every time you do repairs on a bridge you have to block traffic, you have to make traffic controls for substantial amounts of time,” explained Gerasimidis. “This will allow us toon this actual bridge while cars are going.”
    To enhance precision, the research team integrated 3D LiDAR scanning technology into the process. Unlike visual inspections, which can be subjective and time-consuming, LiDAR creates high-resolution digital models that pinpoint areas of corrosion. This allows teams to develop targeted repair plans and deposit materials only where needed—reducing waste and potentially extending a bridge’s lifespan.
    Next steps: Testing Cold-Sprayed Repairs
    The bridge is scheduled for demolition in the coming years. When that happens, researchers will retrieve the repaired sections for further analysis. They plan to assess the durability, corrosion resistance, and mechanical performance of the cold-sprayed steel in real-world conditions, comparing it to results from laboratory tests.
    “This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” said John Hart, Class of 1922 Professor in the Department of Mechanical Engineering at MIT. “I think we’re just at the beginning of a digital transformation of bridge inspection, repair and maintenance, among many other important use cases.”
    3D Printing for Infrastructure Repairs
    Beyond cold spray techniques, other innovative 3D printing methods are emerging to address construction repair challenges. For example, researchers at University College Londonhave developed an asphalt 3D printer specifically designed to repair road cracks and potholes. “The material properties of 3D printed asphalt are tunable, and combined with the flexibility and efficiency of the printing platform, this technique offers a compelling new design approach to the maintenance of infrastructure,” the UCL team explained.
    Similarly, in 2018, Cintec, a Wales-based international structural engineering firm, contributed to restoring the historic Government building known as the Red House in the Republic of Trinidad and Tobago. This project, managed by Cintec’s North American branch, marked the first use of additive manufacturing within sacrificial structures. It also featured the installation of what are claimed to be the longest reinforcement anchors ever inserted into a structure—measuring an impressive 36.52 meters.
    Join our Additive Manufacturing Advantageevent on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now.
    Who won the2024 3D Printing Industry Awards?
    Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news.
    You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content.
    Featured image shows members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst.
    #umass #mit #test #cold #spray
    UMass and MIT Test Cold Spray 3D Printing to Repair Aging Massachusetts Bridge
    Researchers from the US-based University of Massachusetts Amherst, in collaboration with the Massachusetts Institute of TechnologyDepartment of Mechanical Engineering, have applied cold spray to repair the deteriorating “Brown Bridge” in Great Barrington, built in 1949. The project marks the first known use of this method on bridge infrastructure and aims to evaluate its effectiveness as a faster, more cost-effective, and less disruptive alternative to conventional repair techniques. “Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” said Simos Gerasimidis, associate professor of civil and environmental engineering at the University of Massachusetts Amherst. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that,” he added. The pilot project is also a collaboration with the Massachusetts Department of Transportation, the Massachusetts Technology Collaborative, the U.S. Department of Transportation, and the Federal Highway Administration. It was supported by the Massachusetts Manufacturing Innovation Initiative, which provided essential equipment for the demonstration. Members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst. Tackling America’s Bridge Crisis with Cold Spray Technology Nearly half of the bridges across the United States are in “fair” condition, while 6.8% are classified as “poor,” according to the 2025 Report Card for America’s Infrastructure. In Massachusetts, about 9% of the state’s 5,295 bridges are considered structurally deficient. The costs of restoring this infrastructure are projected to exceed billion—well beyond current funding levels.  The cold spray method consists of propelling metal powder particles at high velocity onto the beam’s surface. Successive applications build up additional layers, helping restore its thickness and structural integrity. This method has successfully been used to repair large structures such as submarines, airplanes, and ships, but this marks the first instance of its application to a bridge. One of cold spray’s key advantages is its ability to be deployed with minimal traffic disruption.  “Every time you do repairs on a bridge you have to block traffic, you have to make traffic controls for substantial amounts of time,” explained Gerasimidis. “This will allow us toon this actual bridge while cars are going.” To enhance precision, the research team integrated 3D LiDAR scanning technology into the process. Unlike visual inspections, which can be subjective and time-consuming, LiDAR creates high-resolution digital models that pinpoint areas of corrosion. This allows teams to develop targeted repair plans and deposit materials only where needed—reducing waste and potentially extending a bridge’s lifespan. Next steps: Testing Cold-Sprayed Repairs The bridge is scheduled for demolition in the coming years. When that happens, researchers will retrieve the repaired sections for further analysis. They plan to assess the durability, corrosion resistance, and mechanical performance of the cold-sprayed steel in real-world conditions, comparing it to results from laboratory tests. “This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” said John Hart, Class of 1922 Professor in the Department of Mechanical Engineering at MIT. “I think we’re just at the beginning of a digital transformation of bridge inspection, repair and maintenance, among many other important use cases.” 3D Printing for Infrastructure Repairs Beyond cold spray techniques, other innovative 3D printing methods are emerging to address construction repair challenges. For example, researchers at University College Londonhave developed an asphalt 3D printer specifically designed to repair road cracks and potholes. “The material properties of 3D printed asphalt are tunable, and combined with the flexibility and efficiency of the printing platform, this technique offers a compelling new design approach to the maintenance of infrastructure,” the UCL team explained. Similarly, in 2018, Cintec, a Wales-based international structural engineering firm, contributed to restoring the historic Government building known as the Red House in the Republic of Trinidad and Tobago. This project, managed by Cintec’s North American branch, marked the first use of additive manufacturing within sacrificial structures. It also featured the installation of what are claimed to be the longest reinforcement anchors ever inserted into a structure—measuring an impressive 36.52 meters. Join our Additive Manufacturing Advantageevent on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now. Who won the2024 3D Printing Industry Awards? Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news. You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content. Featured image shows members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst. #umass #mit #test #cold #spray
    3DPRINTINGINDUSTRY.COM
    UMass and MIT Test Cold Spray 3D Printing to Repair Aging Massachusetts Bridge
    Researchers from the US-based University of Massachusetts Amherst (UMass), in collaboration with the Massachusetts Institute of Technology (MIT) Department of Mechanical Engineering, have applied cold spray to repair the deteriorating “Brown Bridge” in Great Barrington, built in 1949. The project marks the first known use of this method on bridge infrastructure and aims to evaluate its effectiveness as a faster, more cost-effective, and less disruptive alternative to conventional repair techniques. “Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” said Simos Gerasimidis, associate professor of civil and environmental engineering at the University of Massachusetts Amherst. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that,” he added. The pilot project is also a collaboration with the Massachusetts Department of Transportation (MassDOT), the Massachusetts Technology Collaborative (MassTech), the U.S. Department of Transportation, and the Federal Highway Administration. It was supported by the Massachusetts Manufacturing Innovation Initiative, which provided essential equipment for the demonstration. Members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis (left, standing). Photo via UMass Amherst. Tackling America’s Bridge Crisis with Cold Spray Technology Nearly half of the bridges across the United States are in “fair” condition, while 6.8% are classified as “poor,” according to the 2025 Report Card for America’s Infrastructure. In Massachusetts, about 9% of the state’s 5,295 bridges are considered structurally deficient. The costs of restoring this infrastructure are projected to exceed $190 billion—well beyond current funding levels.  The cold spray method consists of propelling metal powder particles at high velocity onto the beam’s surface. Successive applications build up additional layers, helping restore its thickness and structural integrity. This method has successfully been used to repair large structures such as submarines, airplanes, and ships, but this marks the first instance of its application to a bridge. One of cold spray’s key advantages is its ability to be deployed with minimal traffic disruption.  “Every time you do repairs on a bridge you have to block traffic, you have to make traffic controls for substantial amounts of time,” explained Gerasimidis. “This will allow us to [apply the technique] on this actual bridge while cars are going [across].” To enhance precision, the research team integrated 3D LiDAR scanning technology into the process. Unlike visual inspections, which can be subjective and time-consuming, LiDAR creates high-resolution digital models that pinpoint areas of corrosion. This allows teams to develop targeted repair plans and deposit materials only where needed—reducing waste and potentially extending a bridge’s lifespan. Next steps: Testing Cold-Sprayed Repairs The bridge is scheduled for demolition in the coming years. When that happens, researchers will retrieve the repaired sections for further analysis. They plan to assess the durability, corrosion resistance, and mechanical performance of the cold-sprayed steel in real-world conditions, comparing it to results from laboratory tests. “This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” said John Hart, Class of 1922 Professor in the Department of Mechanical Engineering at MIT. “I think we’re just at the beginning of a digital transformation of bridge inspection, repair and maintenance, among many other important use cases.” 3D Printing for Infrastructure Repairs Beyond cold spray techniques, other innovative 3D printing methods are emerging to address construction repair challenges. For example, researchers at University College London (UCL) have developed an asphalt 3D printer specifically designed to repair road cracks and potholes. “The material properties of 3D printed asphalt are tunable, and combined with the flexibility and efficiency of the printing platform, this technique offers a compelling new design approach to the maintenance of infrastructure,” the UCL team explained. Similarly, in 2018, Cintec, a Wales-based international structural engineering firm, contributed to restoring the historic Government building known as the Red House in the Republic of Trinidad and Tobago. This project, managed by Cintec’s North American branch, marked the first use of additive manufacturing within sacrificial structures. It also featured the installation of what are claimed to be the longest reinforcement anchors ever inserted into a structure—measuring an impressive 36.52 meters. Join our Additive Manufacturing Advantage (AMAA) event on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now. Who won the2024 3D Printing Industry Awards? Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news. You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content. Featured image shows members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis (left, standing). Photo via UMass Amherst.
    0 Comments 0 Shares