• So, there’s this thing going on. Final days to apply for $32,000 in artist grants for Decentraland Art Week 2025. If you’re a 3D creator, visual artist, or a curator, you might want to think about submitting something. Or not. I mean, it’s up to you.

    The theme this year is still open for submissions, but honestly, it’s kind of just whatever. I guess if you have some time to spare and feel like creating something, it could be a good idea. If you’re into that kind of thing.

    Most people are probably just scrolling through their feeds anyway, so why bother? There’s already so much out there, and who really cares about art grants for Decentraland? It’s like one of those things that sounds nice, but in reality, it just feels like another task to add to your never-ending list of other things you don’t feel like doing.

    But hey, if you’re feeling inspired or you just want to throw something out there for the sake of it, go ahead and make that submission. It could be fun, I guess. Or it could just be another thing that you’ll forget about in a week.

    In the end, it’s just a grant. It’s not the end of the world if you miss it. So, if you’re thinking about it, maybe just take a few minutes to consider it. Or not. Whatever floats your boat, really.

    Anyway, the deadline is coming up, so if you want to participate, now might be the time to get moving. Or maybe just keep scrolling. Your choice.

    #Decentraland #ArtGrants #ArtistOpportunities #3DCreators #VisualArt
    So, there’s this thing going on. Final days to apply for $32,000 in artist grants for Decentraland Art Week 2025. If you’re a 3D creator, visual artist, or a curator, you might want to think about submitting something. Or not. I mean, it’s up to you. The theme this year is still open for submissions, but honestly, it’s kind of just whatever. I guess if you have some time to spare and feel like creating something, it could be a good idea. If you’re into that kind of thing. Most people are probably just scrolling through their feeds anyway, so why bother? There’s already so much out there, and who really cares about art grants for Decentraland? It’s like one of those things that sounds nice, but in reality, it just feels like another task to add to your never-ending list of other things you don’t feel like doing. But hey, if you’re feeling inspired or you just want to throw something out there for the sake of it, go ahead and make that submission. It could be fun, I guess. Or it could just be another thing that you’ll forget about in a week. In the end, it’s just a grant. It’s not the end of the world if you miss it. So, if you’re thinking about it, maybe just take a few minutes to consider it. Or not. Whatever floats your boat, really. Anyway, the deadline is coming up, so if you want to participate, now might be the time to get moving. Or maybe just keep scrolling. Your choice. #Decentraland #ArtGrants #ArtistOpportunities #3DCreators #VisualArt
    Final days to apply for $32,000 in artist grants for Decentraland Art Week 2025
    3D creators, visual artists and curators still have time to make submissions on this year's theme.
    Like
    Love
    Wow
    Sad
    Angry
    269
    1 Comentários 0 Compartilhamentos 0 Anterior
  • Zuzana Licko, a name that should be celebrated as a pioneer of digital typography, is instead a glaring reminder of how the past can be romanticized to the point of absurdity. Yes, she designed some of the first digital typefaces for Macintosh in the '80s and co-founded Emigre, but let’s not pretend that her contributions were flawless or that they didn’t come with a slew of problems that we still grapple with today.

    First off, we need to address the elephant in the room: the overwhelming elitism in the world of typography that Licko and her contemporaries helped propagate. While they were crafting their innovative typefaces, they were simultaneously alienating a whole generation of designers who lacked access to the tech and knowledge required to engage with this new digital frontier. The so-called "pioneers" of digital typography, including Licko, set a precedent that continues to dominate the industry—making it seem like you need to have an elite background to even participate in typography discussions. This is infuriating and downright unacceptable!

    Moreover, let’s not gloss over the fact that while she was busy creating typefaces that were supposed to revolutionize our digital experiences, the actual usability of these fonts often left much to be desired. Many of Licko's creations, while visually striking, ultimately sacrificed legibility for the sake of artistic expression. This is a major flaw in her work that deserves criticism. Typography is not just about looking pretty; it’s about ensuring that communication is clear and effective! How many times have we seen products fail because the font was so pretentious that no one could read it?

    And don’t even get me started on Emigre magazine. Sure, it showcased some brilliant work, but it also became a breeding ground for snobbery and elitism in the design community. Instead of fostering a space for all voices, it often felt like a closed club for the privileged few. This is not what design should be about! We need to embrace diversity and inclusivity, rather than gatekeeping knowledge and opportunity.

    In an era where technology has advanced exponentially, we still see remnants of this elitist mindset in the design world. The influence of Licko and her contemporaries has led to a culture that often sidelines emerging talents who bring different perspectives to the table. Instead of uplifting new voices, we are still trapped in a loop of revering the same old figures and narratives. This is not progress; it’s stagnation!

    Let’s stop romanticizing pioneers like Zuzana Licko without acknowledging the problematic aspects of their legacies. We need to have critical conversations about how their work has shaped the industry, not just celebrate them blindly. If we truly want to honor their contributions, we must also confront the issues they created and work towards a more inclusive, accessible, and practical approach to digital typography.

    #Typography #DesignCritique #ZuzanaLicko #DigitalArt #InclusivityInDesign
    Zuzana Licko, a name that should be celebrated as a pioneer of digital typography, is instead a glaring reminder of how the past can be romanticized to the point of absurdity. Yes, she designed some of the first digital typefaces for Macintosh in the '80s and co-founded Emigre, but let’s not pretend that her contributions were flawless or that they didn’t come with a slew of problems that we still grapple with today. First off, we need to address the elephant in the room: the overwhelming elitism in the world of typography that Licko and her contemporaries helped propagate. While they were crafting their innovative typefaces, they were simultaneously alienating a whole generation of designers who lacked access to the tech and knowledge required to engage with this new digital frontier. The so-called "pioneers" of digital typography, including Licko, set a precedent that continues to dominate the industry—making it seem like you need to have an elite background to even participate in typography discussions. This is infuriating and downright unacceptable! Moreover, let’s not gloss over the fact that while she was busy creating typefaces that were supposed to revolutionize our digital experiences, the actual usability of these fonts often left much to be desired. Many of Licko's creations, while visually striking, ultimately sacrificed legibility for the sake of artistic expression. This is a major flaw in her work that deserves criticism. Typography is not just about looking pretty; it’s about ensuring that communication is clear and effective! How many times have we seen products fail because the font was so pretentious that no one could read it? And don’t even get me started on Emigre magazine. Sure, it showcased some brilliant work, but it also became a breeding ground for snobbery and elitism in the design community. Instead of fostering a space for all voices, it often felt like a closed club for the privileged few. This is not what design should be about! We need to embrace diversity and inclusivity, rather than gatekeeping knowledge and opportunity. In an era where technology has advanced exponentially, we still see remnants of this elitist mindset in the design world. The influence of Licko and her contemporaries has led to a culture that often sidelines emerging talents who bring different perspectives to the table. Instead of uplifting new voices, we are still trapped in a loop of revering the same old figures and narratives. This is not progress; it’s stagnation! Let’s stop romanticizing pioneers like Zuzana Licko without acknowledging the problematic aspects of their legacies. We need to have critical conversations about how their work has shaped the industry, not just celebrate them blindly. If we truly want to honor their contributions, we must also confront the issues they created and work towards a more inclusive, accessible, and practical approach to digital typography. #Typography #DesignCritique #ZuzanaLicko #DigitalArt #InclusivityInDesign
    Zuzana Licko, pionnière de la typographie numérique
    Dans les 80s, Zuzana Licko dessine les premiers caractères de typographie numérique, pour Macintosh, et co-fonde le magazine-fonderie Emigre. L’article Zuzana Licko, pionnière de la typographie numérique est apparu en premier sur Graphéine - Agence d
    Like
    Love
    Wow
    Sad
    Angry
    524
    1 Comentários 0 Compartilhamentos 0 Anterior
  • Monitoring and Support Engineer at Keyword Studios

    Monitoring and Support EngineerKeyword StudiosPasig City Metro Manila Philippines2 hours agoApplyWe are seeking an experienced Monitoring and Support Engineer to support the technology initiatives of the IT Infrastructure team at Keywords. The Monitoring and Support Engineer will be responsible for follow-the-sun monitoring of IT infrastructure, prompt reaction on all infrastructure incident, primary resolution of infrastructure incidents and support requests.ResponsibilitiesFull scope of tasks including but not limited to:Ensure that all incidents are handled within SLAs.Initial troubleshooting of Infrastructure incidents.Ensure maximum network & service availability through proactive monitoring.Ensure all the incident and alert tickets contain detailed technical information.Initial troubleshooting of Infrastructure incidents, restoration of services and escalation to level 3 experts if necessary.Participate in Problem management processes.Ensure that all incidents and critical alerts are documented and escalated if necessary.Ensure effective communication to customers about incidents and outages.Identify opportunities for process improvement and efficiency enhancements.Participate in documentation creation to reduce BAU support activities by ensuring that the Service Desks have adequate knowledge articles to close support tickets as level 1.Participate in reporting on monitored data and incidents on company infrastructure.Implement best practices and lessons learned from initiatives and projects to optimize future outcomes.RequirementsBachelor's degree in a relevant technical field or equivalent experience.Understanding of IT Infrastructure technologies, standards and trends.Technical background with 3+ years’ experience in IT operations role delivering IT infrastructure support, monitoring and incident management.Technical knowledge of the Microsoft Stack, Windows networking, Active Directory, ExchangeTechnical knowledge of Network, Storage and Server equipment, virtualization and production setupsExceptional communication and presentation skills, with the ability to articulate technical concepts to non-technical audiences.Strong analytical and problem-solving skills.Strong customer service orientation.BenefitsGreat Place to Work certified for 4 consecutive yearsFlexible work arrangementGlobal exposure
    Create Your Profile — Game companies can contact you with their relevant job openings.
    Apply
    #monitoring #support #engineer #keyword #studios
    Monitoring and Support Engineer at Keyword Studios
    Monitoring and Support EngineerKeyword StudiosPasig City Metro Manila Philippines2 hours agoApplyWe are seeking an experienced Monitoring and Support Engineer to support the technology initiatives of the IT Infrastructure team at Keywords. The Monitoring and Support Engineer will be responsible for follow-the-sun monitoring of IT infrastructure, prompt reaction on all infrastructure incident, primary resolution of infrastructure incidents and support requests.ResponsibilitiesFull scope of tasks including but not limited to:Ensure that all incidents are handled within SLAs.Initial troubleshooting of Infrastructure incidents.Ensure maximum network & service availability through proactive monitoring.Ensure all the incident and alert tickets contain detailed technical information.Initial troubleshooting of Infrastructure incidents, restoration of services and escalation to level 3 experts if necessary.Participate in Problem management processes.Ensure that all incidents and critical alerts are documented and escalated if necessary.Ensure effective communication to customers about incidents and outages.Identify opportunities for process improvement and efficiency enhancements.Participate in documentation creation to reduce BAU support activities by ensuring that the Service Desks have adequate knowledge articles to close support tickets as level 1.Participate in reporting on monitored data and incidents on company infrastructure.Implement best practices and lessons learned from initiatives and projects to optimize future outcomes.RequirementsBachelor's degree in a relevant technical field or equivalent experience.Understanding of IT Infrastructure technologies, standards and trends.Technical background with 3+ years’ experience in IT operations role delivering IT infrastructure support, monitoring and incident management.Technical knowledge of the Microsoft Stack, Windows networking, Active Directory, ExchangeTechnical knowledge of Network, Storage and Server equipment, virtualization and production setupsExceptional communication and presentation skills, with the ability to articulate technical concepts to non-technical audiences.Strong analytical and problem-solving skills.Strong customer service orientation.BenefitsGreat Place to Work certified for 4 consecutive yearsFlexible work arrangementGlobal exposure Create Your Profile — Game companies can contact you with their relevant job openings. Apply #monitoring #support #engineer #keyword #studios
    Monitoring and Support Engineer at Keyword Studios
    Monitoring and Support EngineerKeyword StudiosPasig City Metro Manila Philippines2 hours agoApplyWe are seeking an experienced Monitoring and Support Engineer to support the technology initiatives of the IT Infrastructure team at Keywords. The Monitoring and Support Engineer will be responsible for follow-the-sun monitoring of IT infrastructure, prompt reaction on all infrastructure incident, primary resolution of infrastructure incidents and support requests.ResponsibilitiesFull scope of tasks including but not limited to:Ensure that all incidents are handled within SLAs.Initial troubleshooting of Infrastructure incidents.Ensure maximum network & service availability through proactive monitoring.Ensure all the incident and alert tickets contain detailed technical information.Initial troubleshooting of Infrastructure incidents, restoration of services and escalation to level 3 experts if necessary.Participate in Problem management processes.Ensure that all incidents and critical alerts are documented and escalated if necessary.Ensure effective communication to customers about incidents and outages.Identify opportunities for process improvement and efficiency enhancements.Participate in documentation creation to reduce BAU support activities by ensuring that the Service Desks have adequate knowledge articles to close support tickets as level 1.Participate in reporting on monitored data and incidents on company infrastructure.Implement best practices and lessons learned from initiatives and projects to optimize future outcomes.RequirementsBachelor's degree in a relevant technical field or equivalent experience.Understanding of IT Infrastructure technologies, standards and trends.Technical background with 3+ years’ experience in IT operations role delivering IT infrastructure support, monitoring and incident management.Technical knowledge of the Microsoft Stack, Windows networking, Active Directory, ExchangeTechnical knowledge of Network, Storage and Server equipment, virtualization and production setupsExceptional communication and presentation skills, with the ability to articulate technical concepts to non-technical audiences.Strong analytical and problem-solving skills.Strong customer service orientation.BenefitsGreat Place to Work certified for 4 consecutive yearsFlexible work arrangementGlobal exposure Create Your Profile — Game companies can contact you with their relevant job openings. Apply
    Like
    Love
    Wow
    Sad
    Angry
    559
    0 Comentários 0 Compartilhamentos 0 Anterior
  • Air-Conditioning Can Help the Power Grid instead of Overloading It

    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article.
    #airconditioning #can #help #power #grid
    Air-Conditioning Can Help the Power Grid instead of Overloading It
    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article. #airconditioning #can #help #power #grid
    WWW.SCIENTIFICAMERICAN.COM
    Air-Conditioning Can Help the Power Grid instead of Overloading It
    June 13, 20256 min readAir-Conditioning Can Surprisingly Help the Power Grid during Extreme HeatSwitching on air-conditioning during extreme heat doesn’t have to make us feel guilty—it can actually boost power grid reliability and help bring more renewable energy onlineBy Johanna Mathieu & The Conversation US Imagedepotpro/Getty ImagesThe following essay is reprinted with permission from The Conversation, an online publication covering the latest research.As summer arrives, people are turning on air conditioners in most of the U.S. But if you’re like me, you always feel a little guilty about that. Past generations managed without air conditioning – do I really need it? And how bad is it to use all this electricity for cooling in a warming world?If I leave my air conditioner off, I get too hot. But if everyone turns on their air conditioner at the same time, electricity demand spikes, which can force power grid operators to activate some of the most expensive, and dirtiest, power plants. Sometimes those spikes can ask too much of the grid and lead to brownouts or blackouts.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Research I recently published with a team of scholars makes me feel a little better, though. We have found that it is possible to coordinate the operation of large numbers of home air-conditioning units, balancing supply and demand on the power grid – and without making people endure high temperatures inside their homes.Studies along these lines, using remote control of air conditioners to support the grid, have for many years explored theoretical possibilities like this. However, few approaches have been demonstrated in practice and never for such a high-value application and at this scale. The system we developed not only demonstrated the ability to balance the grid on timescales of seconds, but also proved it was possible to do so without affecting residents’ comfort.The benefits include increasing the reliability of the power grid, which makes it easier for the grid to accept more renewable energy. Our goal is to turn air conditioners from a challenge for the power grid into an asset, supporting a shift away from fossil fuels toward cleaner energy.Adjustable equipmentMy research focuses on batteries, solar panels and electric equipment – such as electric vehicles, water heaters, air conditioners and heat pumps – that can adjust itself to consume different amounts of energy at different times.Originally, the U.S. electric grid was built to transport electricity from large power plants to customers’ homes and businesses. And originally, power plants were large, centralized operations that burned coal or natural gas, or harvested energy from nuclear reactions. These plants were typically always available and could adjust how much power they generated in response to customer demand, so the grid would be balanced between power coming in from producers and being used by consumers.But the grid has changed. There are more renewable energy sources, from which power isn’t always available – like solar panels at night or wind turbines on calm days. And there are the devices and equipment I study. These newer options, called “distributed energy resources,” generate or store energy near where consumers need it – or adjust how much energy they’re using in real time.One aspect of the grid hasn’t changed, though: There’s not much storage built into the system. So every time you turn on a light, for a moment there’s not enough electricity to supply everything that wants it right then: The grid needs a power producer to generate a little more power. And when you turn off a light, there’s a little too much: A power producer needs to ramp down.The way power plants know what real-time power adjustments are needed is by closely monitoring the grid frequency. The goal is to provide electricity at a constant frequency – 60 hertz – at all times. If more power is needed than is being produced, the frequency drops and a power plant boosts output. If there’s too much power being produced, the frequency rises and a power plant slows production a little. These actions, a process called “frequency regulation,” happen in a matter of seconds to keep the grid balanced.This output flexibility, primarily from power plants, is key to keeping the lights on for everyone.Finding new optionsI’m interested in how distributed energy resources can improve flexibility in the grid. They can release more energy, or consume less, to respond to the changing supply or demand, and help balance the grid, ensuring the frequency remains near 60 hertz.Some people fear that doing so might be invasive, giving someone outside your home the ability to control your battery or air conditioner. Therefore, we wanted to see if we could help balance the grid with frequency regulation using home air-conditioning units rather than power plants – without affecting how residents use their appliances or how comfortable they are in their homes.From 2019 to 2023, my group at the University of Michigan tried this approach, in collaboration with researchers at Pecan Street Inc., Los Alamos National Laboratory and the University of California, Berkeley, with funding from the U.S. Department of Energy Advanced Research Projects Agency-Energy.We recruited 100 homeowners in Austin, Texas, to do a real-world test of our system. All the homes had whole-house forced-air cooling systems, which we connected to custom control boards and sensors the owners allowed us to install in their homes. This equipment let us send instructions to the air-conditioning units based on the frequency of the grid.Before I explain how the system worked, I first need to explain how thermostats work. When people set thermostats, they pick a temperature, and the thermostat switches the air-conditioning compressor on and off to maintain the air temperature within a small range around that set point. If the temperature is set at 68 degrees, the thermostat turns the AC on when the temperature is, say, 70, and turns it off when it’s cooled down to, say, 66.Every few seconds, our system slightly changed the timing of air-conditioning compressor switching for some of the 100 air conditioners, causing the units’ aggregate power consumption to change. In this way, our small group of home air conditioners reacted to grid changes the way a power plant would – using more or less energy to balance the grid and keep the frequency near 60 hertz.Moreover, our system was designed to keep home temperatures within the same small temperature range around the set point.Testing the approachWe ran our system in four tests, each lasting one hour. We found two encouraging results.First, the air conditioners were able to provide frequency regulation at least as accurately as a traditional power plant. Therefore, we showed that air conditioners could play a significant role in increasing grid flexibility. But perhaps more importantly – at least in terms of encouraging people to participate in these types of systems – we found that we were able to do so without affecting people’s comfort in their homes.We found that home temperatures did not deviate more than 1.6 Fahrenheit from their set point. Homeowners were allowed to override the controls if they got uncomfortable, but most didn’t. For most tests, we received zero override requests. In the worst case, we received override requests from two of the 100 homes in our test.In practice, this sort of technology could be added to commercially available internet-connected thermostats. In exchange for credits on their energy bills, users could choose to join a service run by the thermostat company, their utility provider or some other third party.Then people could turn on the air conditioning in the summer heat without that pang of guilt, knowing they were helping to make the grid more reliable and more capable of accommodating renewable energy sources – without sacrificing their own comfort in the process.This article was originally published on The Conversation. Read the original article.
    Like
    Love
    Wow
    Sad
    Angry
    602
    0 Comentários 0 Compartilhamentos 0 Anterior
  • Sienna Net-Zero Home / billionBricks

    Sienna Net-Zero Home / billionBricksSave this picture!© Ron Mendoza , Mark Twain C , BB teamHouses, Sustainability•Quezon City, Philippines

    Architects:
    billionBricks
    Area
    Area of this architecture project

    Area: 
    45 m²

    Year
    Completion year of this architecture project

    Year: 

    2024

    Photographs

    Photographs:Ron Mendoza , Mark Twain C , BB teamMore SpecsLess Specs
    this picture!
    Text description provided by the architects. Built to address homelessness and climate change, the Sienna Net-Zero Home is a self-sustaining, solar-powered, cost-efficient, and compact housing solution. This climate-responsive and affordable home, located in Quezon City, Philippines, represents a revolutionary vision for social housing through its integration of thoughtful design, sustainability, and energy self-sufficiency.this picture!this picture!this picture!Designed with the unique tropical climate of the Philippines in mind, the Sienna Home prioritizes natural ventilation, passive cooling, and rainwater management to enhance indoor comfort and reduce reliance on artificial cooling systems. The compact 4.5m x 5.1m floor plan has been meticulously optimized for functionality, offering a flexible layout that grows and adapts to the families living in them.this picture!this picture!this picture!A key architectural feature is BillionBricks' innovative Powershade technology - an advanced solar roofing system that serves multiple purposes. Beyond generating clean, renewable energy, it acts as a protective heat barrier, reducing indoor temperatures and improving thermal comfort. Unlike conventional solar panels, Powershade seamlessly integrates with the home's structure, providing reliable energy generation while doubling as a durable roof. This makes the Sienna Home energy-positive, meaning it produces more electricity than it consumes, lowering utility costs and promoting long-term energy independence. Excess power can also be stored or sold back to the grid, creating an additional financial benefit for homeowners.this picture!When multiple Sienna Homes are built together, the innovative PowerShade roofing solution transcends its role as an individual energy source and transforms into a utility-scale solar rooftop farm, capable of powering essential community facilities and generating additional income. This shared energy infrastructure fosters a sense of collective empowerment, enabling residents to actively participate in a sustainable and financially rewarding energy ecosystem.this picture!this picture!The Sienna Home is built using lightweight prefabricated components, allowing for rapid on-site assembly while maintaining durability and structural integrity. This modular approach enables scalability, making it an ideal prototype for large-scale, cost-effective housing developments. The design also allows for future expansions, giving homeowners the flexibility to adapt their living spaces over time.this picture!Adhering to BP 220 social housing regulations, the unit features a 3-meter front setback and a 2-meter rear setback, ensuring proper ventilation, safety, and community-friendly spaces. Additionally, corner units include a 1.5-meter offset, enhancing privacy and accessibility within neighborhood layouts. Beyond providing a single-family residence, the Sienna House is designed to function within a larger sustainable community model, integrating shared green spaces, pedestrian pathways, and decentralized utilities. By promoting energy independence and environmental resilience, the project sets a new precedent for affordable yet high-quality housing solutions in rapidly urbanizing regions.this picture!The Sienna Home in Quezon City serves as a blueprint for future developments, proving that low-cost housing can be both architecturally compelling and socially transformative. By rethinking traditional housing models, BillionBricks is pioneering a future where affordability and sustainability are seamlessly integrated.

    Project gallerySee allShow less
    About this officebillionBricksOffice•••
    Published on June 15, 2025Cite: "Sienna Net-Zero Home / billionBricks" 14 Jun 2025. ArchDaily. Accessed . < ISSN 0719-8884Save世界上最受欢迎的建筑网站现已推出你的母语版本!想浏览ArchDaily中国吗?是否
    You've started following your first account!Did you know?You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.Go to my stream
    #sienna #netzero #home #billionbricks
    Sienna Net-Zero Home / billionBricks
    Sienna Net-Zero Home / billionBricksSave this picture!© Ron Mendoza , Mark Twain C , BB teamHouses, Sustainability•Quezon City, Philippines Architects: billionBricks Area Area of this architecture project Area:  45 m² Year Completion year of this architecture project Year:  2024 Photographs Photographs:Ron Mendoza , Mark Twain C , BB teamMore SpecsLess Specs this picture! Text description provided by the architects. Built to address homelessness and climate change, the Sienna Net-Zero Home is a self-sustaining, solar-powered, cost-efficient, and compact housing solution. This climate-responsive and affordable home, located in Quezon City, Philippines, represents a revolutionary vision for social housing through its integration of thoughtful design, sustainability, and energy self-sufficiency.this picture!this picture!this picture!Designed with the unique tropical climate of the Philippines in mind, the Sienna Home prioritizes natural ventilation, passive cooling, and rainwater management to enhance indoor comfort and reduce reliance on artificial cooling systems. The compact 4.5m x 5.1m floor plan has been meticulously optimized for functionality, offering a flexible layout that grows and adapts to the families living in them.this picture!this picture!this picture!A key architectural feature is BillionBricks' innovative Powershade technology - an advanced solar roofing system that serves multiple purposes. Beyond generating clean, renewable energy, it acts as a protective heat barrier, reducing indoor temperatures and improving thermal comfort. Unlike conventional solar panels, Powershade seamlessly integrates with the home's structure, providing reliable energy generation while doubling as a durable roof. This makes the Sienna Home energy-positive, meaning it produces more electricity than it consumes, lowering utility costs and promoting long-term energy independence. Excess power can also be stored or sold back to the grid, creating an additional financial benefit for homeowners.this picture!When multiple Sienna Homes are built together, the innovative PowerShade roofing solution transcends its role as an individual energy source and transforms into a utility-scale solar rooftop farm, capable of powering essential community facilities and generating additional income. This shared energy infrastructure fosters a sense of collective empowerment, enabling residents to actively participate in a sustainable and financially rewarding energy ecosystem.this picture!this picture!The Sienna Home is built using lightweight prefabricated components, allowing for rapid on-site assembly while maintaining durability and structural integrity. This modular approach enables scalability, making it an ideal prototype for large-scale, cost-effective housing developments. The design also allows for future expansions, giving homeowners the flexibility to adapt their living spaces over time.this picture!Adhering to BP 220 social housing regulations, the unit features a 3-meter front setback and a 2-meter rear setback, ensuring proper ventilation, safety, and community-friendly spaces. Additionally, corner units include a 1.5-meter offset, enhancing privacy and accessibility within neighborhood layouts. Beyond providing a single-family residence, the Sienna House is designed to function within a larger sustainable community model, integrating shared green spaces, pedestrian pathways, and decentralized utilities. By promoting energy independence and environmental resilience, the project sets a new precedent for affordable yet high-quality housing solutions in rapidly urbanizing regions.this picture!The Sienna Home in Quezon City serves as a blueprint for future developments, proving that low-cost housing can be both architecturally compelling and socially transformative. By rethinking traditional housing models, BillionBricks is pioneering a future where affordability and sustainability are seamlessly integrated. Project gallerySee allShow less About this officebillionBricksOffice••• Published on June 15, 2025Cite: "Sienna Net-Zero Home / billionBricks" 14 Jun 2025. ArchDaily. Accessed . < ISSN 0719-8884Save世界上最受欢迎的建筑网站现已推出你的母语版本!想浏览ArchDaily中国吗?是否 You've started following your first account!Did you know?You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.Go to my stream #sienna #netzero #home #billionbricks
    WWW.ARCHDAILY.COM
    Sienna Net-Zero Home / billionBricks
    Sienna Net-Zero Home / billionBricksSave this picture!© Ron Mendoza , Mark Twain C , BB teamHouses, Sustainability•Quezon City, Philippines Architects: billionBricks Area Area of this architecture project Area:  45 m² Year Completion year of this architecture project Year:  2024 Photographs Photographs:Ron Mendoza , Mark Twain C , BB teamMore SpecsLess Specs Save this picture! Text description provided by the architects. Built to address homelessness and climate change, the Sienna Net-Zero Home is a self-sustaining, solar-powered, cost-efficient, and compact housing solution. This climate-responsive and affordable home, located in Quezon City, Philippines, represents a revolutionary vision for social housing through its integration of thoughtful design, sustainability, and energy self-sufficiency.Save this picture!Save this picture!Save this picture!Designed with the unique tropical climate of the Philippines in mind, the Sienna Home prioritizes natural ventilation, passive cooling, and rainwater management to enhance indoor comfort and reduce reliance on artificial cooling systems. The compact 4.5m x 5.1m floor plan has been meticulously optimized for functionality, offering a flexible layout that grows and adapts to the families living in them.Save this picture!Save this picture!Save this picture!A key architectural feature is BillionBricks' innovative Powershade technology - an advanced solar roofing system that serves multiple purposes. Beyond generating clean, renewable energy, it acts as a protective heat barrier, reducing indoor temperatures and improving thermal comfort. Unlike conventional solar panels, Powershade seamlessly integrates with the home's structure, providing reliable energy generation while doubling as a durable roof. This makes the Sienna Home energy-positive, meaning it produces more electricity than it consumes, lowering utility costs and promoting long-term energy independence. Excess power can also be stored or sold back to the grid, creating an additional financial benefit for homeowners.Save this picture!When multiple Sienna Homes are built together, the innovative PowerShade roofing solution transcends its role as an individual energy source and transforms into a utility-scale solar rooftop farm, capable of powering essential community facilities and generating additional income. This shared energy infrastructure fosters a sense of collective empowerment, enabling residents to actively participate in a sustainable and financially rewarding energy ecosystem.Save this picture!Save this picture!The Sienna Home is built using lightweight prefabricated components, allowing for rapid on-site assembly while maintaining durability and structural integrity. This modular approach enables scalability, making it an ideal prototype for large-scale, cost-effective housing developments. The design also allows for future expansions, giving homeowners the flexibility to adapt their living spaces over time.Save this picture!Adhering to BP 220 social housing regulations, the unit features a 3-meter front setback and a 2-meter rear setback, ensuring proper ventilation, safety, and community-friendly spaces. Additionally, corner units include a 1.5-meter offset, enhancing privacy and accessibility within neighborhood layouts. Beyond providing a single-family residence, the Sienna House is designed to function within a larger sustainable community model, integrating shared green spaces, pedestrian pathways, and decentralized utilities. By promoting energy independence and environmental resilience, the project sets a new precedent for affordable yet high-quality housing solutions in rapidly urbanizing regions.Save this picture!The Sienna Home in Quezon City serves as a blueprint for future developments, proving that low-cost housing can be both architecturally compelling and socially transformative. By rethinking traditional housing models, BillionBricks is pioneering a future where affordability and sustainability are seamlessly integrated. Project gallerySee allShow less About this officebillionBricksOffice••• Published on June 15, 2025Cite: "Sienna Net-Zero Home / billionBricks" 14 Jun 2025. ArchDaily. Accessed . <https://www.archdaily.com/1031072/sienna-billionbricks&gt ISSN 0719-8884Save世界上最受欢迎的建筑网站现已推出你的母语版本!想浏览ArchDaily中国吗?是否 You've started following your first account!Did you know?You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.Go to my stream
    0 Comentários 0 Compartilhamentos 0 Anterior
  • These 15 Dynamic Photos Will Make You Want to Dance

    These 15 Dynamic Photos Will Make You Want to Dance
    Get footloose with these Smithsonian Magazine Photo Contest dance scenes

    Photographs selected by Quentin Nardi

    Text by

    Tracy Scott Forson

    June 13, 2025

    In the 1500s, ballet roles for female characters were performed by men. Women entered the art form in the late 1600s and are now dominant in ballet.
    Libby Zhang, Texas, 2016

    Like many art forms, dance transcends cultures, countries and continents. Flamenco, breakdancing, ballet, tango and other well-known genres are all forms of movement performed all across the globe.
    While being a professional can take decades of dedication and training, one appeal of dance is that you don’t have to be an expert to participate in or enjoy it. Just visit any preschool for evidence of that. “The arts teach tolerance because there is no one way of doing anything,” said dance icon and Emmy winner Debbie Allen. While some forms of dance are more structured and formal than others, they’re all about using the body as a tool of expression. Take a look.

    In Istanbul, a customary trance-like dance, embodying spiritual devotion and the pursuit of unity with the divine, is performed as part of a Sufi ceremony.

    Uku Sööt, Turkey, 2024

    Passersby cheer and applaud energetic dancers in vibrant colors as they entertain a crowd at Fuzhou.

    Yi Yuan, China, 2024

    A young dance student’s elegant movements are complemented by the flow and motion of her beautiful garment.

    Felicia Tolbert, Michigan, 2024

    During a celebration in Tyrol, the locals perform a traditional dance called Schuhplattler, which is very demanding physically and requires the dancers to reach their shoes while jumping.

    Ory Schneor, Austria, 2024

    Young dancers strike poses for photos before participating in a performance at Brihadeeswara Temple.

    Ravikanth Kurma, India, 2019

    Members of Hush Crew, based in Boston, perform at public venues around the city—and all over social media—showing off their dance skills.

    Paul Karns, Massachusetts, 2024

    A flamenco dancer from Granada jumps to heights that could rival any NBA Hall of Famer.

    Javier Fergo, Spain, 2017

    Dancers of the Ho Chi Minh City Ballet nearly collide as they practice for a performance titled The Roof.

    Le Nguyen Huy Thuy, Vietnam, 2015

    Genres converge as two dancers fuse the movements and choreography of ballet and hip-hop.

    Tom Griscom, Tennessee, 2015

    A teenage dance student celebrates the first day of summer with an iconic ballet leap.

    Vicki Surges, Minnesota, 2010

    Dressed in elaborate, ornate garments, dancers celebrating Day of the Dead participate in a colorful parade.

    Michelle Atkinson, Texas, 2013

    With roots in Italy, ballet, like many forms of dance, is now common in countries and cultures around the world.

    Xiaoping Mao, China, 2023

    Bodies blur as they move to the music during a party to celebrate the festive week of Maslenitsa at the St. Petersburg State University.

    Anton Golyshev, Russia, 2011

    A wedding party celebrates new nuptials with a dance through the historic alleys of New Orleans’ French Quarter.

    Osman Sharif, Louisiana, 2021

    Get the latest Travel & Culture stories in your inbox.
    #these #dynamic #photos #will #make
    These 15 Dynamic Photos Will Make You Want to Dance
    These 15 Dynamic Photos Will Make You Want to Dance Get footloose with these Smithsonian Magazine Photo Contest dance scenes Photographs selected by Quentin Nardi Text by Tracy Scott Forson June 13, 2025 In the 1500s, ballet roles for female characters were performed by men. Women entered the art form in the late 1600s and are now dominant in ballet. Libby Zhang, Texas, 2016 Like many art forms, dance transcends cultures, countries and continents. Flamenco, breakdancing, ballet, tango and other well-known genres are all forms of movement performed all across the globe. While being a professional can take decades of dedication and training, one appeal of dance is that you don’t have to be an expert to participate in or enjoy it. Just visit any preschool for evidence of that. “The arts teach tolerance because there is no one way of doing anything,” said dance icon and Emmy winner Debbie Allen. While some forms of dance are more structured and formal than others, they’re all about using the body as a tool of expression. Take a look. In Istanbul, a customary trance-like dance, embodying spiritual devotion and the pursuit of unity with the divine, is performed as part of a Sufi ceremony. Uku Sööt, Turkey, 2024 Passersby cheer and applaud energetic dancers in vibrant colors as they entertain a crowd at Fuzhou. Yi Yuan, China, 2024 A young dance student’s elegant movements are complemented by the flow and motion of her beautiful garment. Felicia Tolbert, Michigan, 2024 During a celebration in Tyrol, the locals perform a traditional dance called Schuhplattler, which is very demanding physically and requires the dancers to reach their shoes while jumping. Ory Schneor, Austria, 2024 Young dancers strike poses for photos before participating in a performance at Brihadeeswara Temple. Ravikanth Kurma, India, 2019 Members of Hush Crew, based in Boston, perform at public venues around the city—and all over social media—showing off their dance skills. Paul Karns, Massachusetts, 2024 A flamenco dancer from Granada jumps to heights that could rival any NBA Hall of Famer. Javier Fergo, Spain, 2017 Dancers of the Ho Chi Minh City Ballet nearly collide as they practice for a performance titled The Roof. Le Nguyen Huy Thuy, Vietnam, 2015 Genres converge as two dancers fuse the movements and choreography of ballet and hip-hop. Tom Griscom, Tennessee, 2015 A teenage dance student celebrates the first day of summer with an iconic ballet leap. Vicki Surges, Minnesota, 2010 Dressed in elaborate, ornate garments, dancers celebrating Day of the Dead participate in a colorful parade. Michelle Atkinson, Texas, 2013 With roots in Italy, ballet, like many forms of dance, is now common in countries and cultures around the world. Xiaoping Mao, China, 2023 Bodies blur as they move to the music during a party to celebrate the festive week of Maslenitsa at the St. Petersburg State University. Anton Golyshev, Russia, 2011 A wedding party celebrates new nuptials with a dance through the historic alleys of New Orleans’ French Quarter. Osman Sharif, Louisiana, 2021 Get the latest Travel & Culture stories in your inbox. #these #dynamic #photos #will #make
    WWW.SMITHSONIANMAG.COM
    These 15 Dynamic Photos Will Make You Want to Dance
    These 15 Dynamic Photos Will Make You Want to Dance Get footloose with these Smithsonian Magazine Photo Contest dance scenes Photographs selected by Quentin Nardi Text by Tracy Scott Forson June 13, 2025 In the 1500s, ballet roles for female characters were performed by men. Women entered the art form in the late 1600s and are now dominant in ballet. Libby Zhang, Texas, 2016 Like many art forms, dance transcends cultures, countries and continents. Flamenco, breakdancing, ballet, tango and other well-known genres are all forms of movement performed all across the globe. While being a professional can take decades of dedication and training, one appeal of dance is that you don’t have to be an expert to participate in or enjoy it. Just visit any preschool for evidence of that. “The arts teach tolerance because there is no one way of doing anything,” said dance icon and Emmy winner Debbie Allen. While some forms of dance are more structured and formal than others, they’re all about using the body as a tool of expression. Take a look. In Istanbul, a customary trance-like dance, embodying spiritual devotion and the pursuit of unity with the divine, is performed as part of a Sufi ceremony. Uku Sööt, Turkey, 2024 Passersby cheer and applaud energetic dancers in vibrant colors as they entertain a crowd at Fuzhou. Yi Yuan, China, 2024 A young dance student’s elegant movements are complemented by the flow and motion of her beautiful garment. Felicia Tolbert, Michigan, 2024 During a celebration in Tyrol, the locals perform a traditional dance called Schuhplattler, which is very demanding physically and requires the dancers to reach their shoes while jumping. Ory Schneor, Austria, 2024 Young dancers strike poses for photos before participating in a performance at Brihadeeswara Temple. Ravikanth Kurma, India, 2019 Members of Hush Crew, based in Boston, perform at public venues around the city—and all over social media—showing off their dance skills. Paul Karns, Massachusetts, 2024 A flamenco dancer from Granada jumps to heights that could rival any NBA Hall of Famer. Javier Fergo, Spain, 2017 Dancers of the Ho Chi Minh City Ballet nearly collide as they practice for a performance titled The Roof. Le Nguyen Huy Thuy, Vietnam, 2015 Genres converge as two dancers fuse the movements and choreography of ballet and hip-hop. Tom Griscom, Tennessee, 2015 A teenage dance student celebrates the first day of summer with an iconic ballet leap. Vicki Surges, Minnesota, 2010 Dressed in elaborate, ornate garments, dancers celebrating Day of the Dead participate in a colorful parade. Michelle Atkinson, Texas, 2013 With roots in Italy, ballet, like many forms of dance, is now common in countries and cultures around the world. Xiaoping Mao, China, 2023 Bodies blur as they move to the music during a party to celebrate the festive week of Maslenitsa at the St. Petersburg State University. Anton Golyshev, Russia, 2011 A wedding party celebrates new nuptials with a dance through the historic alleys of New Orleans’ French Quarter. Osman Sharif, Louisiana, 2021 Get the latest Travel & Culture stories in your inbox.
    0 Comentários 0 Compartilhamentos 0 Anterior
CGShares https://cgshares.com