• European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters

    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Unionare working together to give the media industry access to high-quality and trusted cloud and AI technologies.
    Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape.
    The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values.
    Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs.
    “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.”

    Empowering Media Innovation in Europe
    To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations.
    Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facilityand Media eXchange Layerarchitecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem.
    The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies.
    As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI.
    In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development.
    Partnering With Public Service Media for Sovereign Cloud and AI
    Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI.
    By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI.
    This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations.
    “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.”
    Learn more about the EBU.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. 
    #european #broadcasting #union #nvidia #partner
    European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters
    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Unionare working together to give the media industry access to high-quality and trusted cloud and AI technologies. Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape. The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values. Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs. “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.” Empowering Media Innovation in Europe To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations. Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facilityand Media eXchange Layerarchitecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem. The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies. As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI. In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development. Partnering With Public Service Media for Sovereign Cloud and AI Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI. By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI. This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations. “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.” Learn more about the EBU. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.  #european #broadcasting #union #nvidia #partner
    BLOGS.NVIDIA.COM
    European Broadcasting Union and NVIDIA Partner on Sovereign AI to Support Public Broadcasters
    In a new effort to advance sovereign AI for European public service media, NVIDIA and the European Broadcasting Union (EBU) are working together to give the media industry access to high-quality and trusted cloud and AI technologies. Announced at NVIDIA GTC Paris at VivaTech, NVIDIA’s collaboration with the EBU — the world’s leading alliance of public service media with more than 110 member organizations in 50+ countries, reaching an audience of over 1 billion — focuses on helping build sovereign AI and cloud frameworks, driving workforce development and cultivating an AI ecosystem to create a more equitable, accessible and resilient European media landscape. The work will create better foundations for public service media to benefit from European cloud infrastructure and AI services that are exclusively governed by European policy, comply with European data protection and privacy rules, and embody European values. Sovereign AI ensures nations can develop and deploy artificial intelligence using local infrastructure, datasets and expertise. By investing in it, European countries can preserve their cultural identity, enhance public trust and support innovation specific to their needs. “We are proud to collaborate with NVIDIA to drive the development of sovereign AI and cloud services,” said Michael Eberhard, chief technology officer of public broadcaster ARD/SWR, and chair of the EBU Technical Committee. “By advancing these capabilities together, we’re helping ensure that powerful, compliant and accessible media services are made available to all EBU members — powering innovation, resilience and strategic autonomy across the board.” Empowering Media Innovation in Europe To support the development of sovereign AI technologies, NVIDIA and the EBU will establish frameworks that prioritize independence and public trust, helping ensure that AI serves the interests of Europeans while preserving the autonomy of media organizations. Through this collaboration, NVIDIA and the EBU will develop hybrid cloud architectures designed to meet the highest standards of European public service media. The EBU will contribute its Dynamic Media Facility (DMF) and Media eXchange Layer (MXL) architecture, aiming to enable interoperability and scalability for workflows, as well as cost- and energy-efficient AI training and inference. Following open-source principles, this work aims to create an accessible, dynamic technology ecosystem. The collaboration will also provide public service media companies with the tools to deliver personalized, contextually relevant services and content recommendation systems, with a focus on transparency, accountability and cultural identity. This will be realized through investment in sovereign cloud and AI infrastructure and software platforms such as NVIDIA AI Enterprise, custom foundation models, large language models trained with local data, and retrieval-augmented generation technologies. As part of the collaboration, NVIDIA is also making available resources from its Deep Learning Institute, offering European media organizations comprehensive training programs to create an AI-ready workforce. This will support the EBU’s efforts to help ensure news integrity in the age of AI. In addition, the EBU and its partners are investing in local data centers and cloud platforms that support sovereign technologies, such as NVIDIA GB200 Grace Blackwell Superchip, NVIDIA RTX PRO Servers, NVIDIA DGX Cloud and NVIDIA Holoscan for Media — helping members of the union achieve secure and cost- and energy-efficient AI training, while promoting AI research and development. Partnering With Public Service Media for Sovereign Cloud and AI Collaboration within the media sector is essential for the development and application of comprehensive standards and best practices that ensure the creation and deployment of sovereign European cloud and AI. By engaging with independent software vendors, data center providers, cloud service providers and original equipment manufacturers, NVIDIA and the EBU aim to create a unified approach to sovereign cloud and AI. This work will also facilitate discussions between the cloud and AI industry and European regulators, helping ensure the development of practical solutions that benefit both the general public and media organizations. “Building sovereign cloud and AI capabilities based on EBU’s Dynamic Media Facility and Media eXchange Layer architecture requires strong cross-industry collaboration,” said Antonio Arcidiacono, chief technology and innovation officer at the EBU. “By collaborating with NVIDIA, as well as a broad ecosystem of media technology partners, we are fostering a shared foundation for trust, innovation and resilience that supports the growth of European media.” Learn more about the EBU. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. 
    Like
    Love
    Wow
    Sad
    Angry
    35
    0 Комментарии 0 Поделились
  • Riot Will Allow Sports-Betting Sponsorships For League Of Legends Esports Teams

    Riot Games has announced that it will begin officially sanctioning sports-betting sponsorships for esports teams in its Tier 1 League of Legends and Valorant leagues. While the company states that it still won't allow advertisements in its official broadcasts, teams themselves will be able to take money from sports-betting companies for advertising through their own channels.In a blog post, President of Publishing and Esports John Needham writes that the move is designed to take advantage of the rapidly growing sports-betting industry and to make esports-related betting more regulated. Seemingly to address concerns and head off potential criticism, Needham explains that the company is authorizing sports-betting sponsorships under a "guardrails first" strategy.These "guardrails," Needham states, are essentially the rules by which any sponsorship must be executed. First, sports-betting companies need to be vetted and approved by Riot itself, although the company has not shared the criteria on which this vetting is done. Second, to ensure that sports-betting companies are on a level playing field, Riot is mandating that official partners all use GRID, the officially sanctioned data platform for League of Legends and Valorant. Third, esports teams must launch and maintain internal integrity programs to protect against violations of league rules due to the influence of sports betting. Fourth and last, Riot will use some of the revenue from these sponsorships to support its Tier 2esports leagues.Continue Reading at GameSpot
    #riot #will #allow #sportsbetting #sponsorships
    Riot Will Allow Sports-Betting Sponsorships For League Of Legends Esports Teams
    Riot Games has announced that it will begin officially sanctioning sports-betting sponsorships for esports teams in its Tier 1 League of Legends and Valorant leagues. While the company states that it still won't allow advertisements in its official broadcasts, teams themselves will be able to take money from sports-betting companies for advertising through their own channels.In a blog post, President of Publishing and Esports John Needham writes that the move is designed to take advantage of the rapidly growing sports-betting industry and to make esports-related betting more regulated. Seemingly to address concerns and head off potential criticism, Needham explains that the company is authorizing sports-betting sponsorships under a "guardrails first" strategy.These "guardrails," Needham states, are essentially the rules by which any sponsorship must be executed. First, sports-betting companies need to be vetted and approved by Riot itself, although the company has not shared the criteria on which this vetting is done. Second, to ensure that sports-betting companies are on a level playing field, Riot is mandating that official partners all use GRID, the officially sanctioned data platform for League of Legends and Valorant. Third, esports teams must launch and maintain internal integrity programs to protect against violations of league rules due to the influence of sports betting. Fourth and last, Riot will use some of the revenue from these sponsorships to support its Tier 2esports leagues.Continue Reading at GameSpot #riot #will #allow #sportsbetting #sponsorships
    WWW.GAMESPOT.COM
    Riot Will Allow Sports-Betting Sponsorships For League Of Legends Esports Teams
    Riot Games has announced that it will begin officially sanctioning sports-betting sponsorships for esports teams in its Tier 1 League of Legends and Valorant leagues. While the company states that it still won't allow advertisements in its official broadcasts, teams themselves will be able to take money from sports-betting companies for advertising through their own channels.In a blog post, President of Publishing and Esports John Needham writes that the move is designed to take advantage of the rapidly growing sports-betting industry and to make esports-related betting more regulated. Seemingly to address concerns and head off potential criticism, Needham explains that the company is authorizing sports-betting sponsorships under a "guardrails first" strategy.These "guardrails," Needham states, are essentially the rules by which any sponsorship must be executed. First, sports-betting companies need to be vetted and approved by Riot itself, although the company has not shared the criteria on which this vetting is done. Second, to ensure that sports-betting companies are on a level playing field, Riot is mandating that official partners all use GRID, the officially sanctioned data platform for League of Legends and Valorant. Third, esports teams must launch and maintain internal integrity programs to protect against violations of league rules due to the influence of sports betting. Fourth and last, Riot will use some of the revenue from these sponsorships to support its Tier 2 (lower division) esports leagues.Continue Reading at GameSpot
    0 Комментарии 0 Поделились
  • What Time Does Update 2 Come Out for MH Wilds?

    A few months after the first major patch for Monster Hunter Wilds, it is now time for Title Update 2 to arrive for the game from Capcom, bringing new monsters for players to hunt, items, and other gear to enhance character effectiveness. Additionally, the update will include gameplay improvements, support for new PC technologies, and seasonal events with exclusive rewards.
    #what #time #does #update #come
    What Time Does Update 2 Come Out for MH Wilds?
    A few months after the first major patch for Monster Hunter Wilds, it is now time for Title Update 2 to arrive for the game from Capcom, bringing new monsters for players to hunt, items, and other gear to enhance character effectiveness. Additionally, the update will include gameplay improvements, support for new PC technologies, and seasonal events with exclusive rewards. #what #time #does #update #come
    GAMERANT.COM
    What Time Does Update 2 Come Out for MH Wilds?
    A few months after the first major patch for Monster Hunter Wilds, it is now time for Title Update 2 to arrive for the game from Capcom, bringing new monsters for players to hunt, items, and other gear to enhance character effectiveness. Additionally, the update will include gameplay improvements, support for new PC technologies, and seasonal events with exclusive rewards.
    0 Комментарии 0 Поделились
  • Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid

    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand.
    Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation.
    At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics.
    Future use cases for AEON include:

    Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio.
    Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings.
    Part inspection, which includes checking parts for defects or ensuring adherence to specifications.
    Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners.

    “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.”

    Using NVIDIA’s Three Computers to Develop AEON 
    To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models.
    Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations.
    AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning.


    This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment.
    In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation.
    “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.”
    Data Comes to Life Through Reality Capture and Omniverse Integration 
    AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas.

    Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure.
    “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.”
    AEON’s Next Steps
    By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON.
    This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data.
    Watch the Hexagon LIVE keynote, explore presentations and read more about AEON.
    All imagery courtesy of Hexagon.
    #hexagon #taps #nvidia #robotics #software
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio. Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon. #hexagon #taps #nvidia #robotics #software
    BLOGS.NVIDIA.COM
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Reality (HxDR) platform powering Hexagon Reality Cloud Studio (RCS). Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. https://blogs.nvidia.com/wp-content/uploads/2025/06/Copy-of-robotics-hxgn-live-blog-1920x1080-1.mp4 This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon.
    Like
    Love
    Wow
    Sad
    Angry
    38
    0 Комментарии 0 Поделились
  • Plug and Play: Build a G-Assist Plug-In Today

    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems.
    NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels.

    G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow.
    Below, find popular G-Assist plug-ins, hackathon details and tips to get started.
    Plug-In and Win
    Join the hackathon by registering and checking out the curated technical resources.
    G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation.
    For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins.
    To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code.
    Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action.
    Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16.
    Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in.
    Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit.
    Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver.
    Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows.

    Popular plug-ins include:

    Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay.
    Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay.
    IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device.
    Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists.
    Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more.

    Get G-Assist 
    Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff.
    the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session.
    Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities.
    Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process.
    NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #plug #play #build #gassist #plugin
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #plug #play #build #gassist #plugin
    BLOGS.NVIDIA.COM
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file (plugin.py), requirements.txt, manifest.json, config.json (if applicable), a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU (Intel Pentium G Series, Core i3, i5, i7 or higher; AMD FX, Ryzen 3, 5, 7, 9, Threadripper or higher), specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-In(spiration) Explore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist(ance)  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. Save the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    Like
    Wow
    Love
    Sad
    25
    0 Комментарии 0 Поделились
  • Adventure Gamers, the once beloved site for point-and-click adventure gaming, has wiped its forums and relaunched as a gambling affiliate. It's just another cash-grab, really. What used to be a hub for enthusiasts now feels like a hollow echo of its former self. After years of supporting the adventure genre, it's sad to see it turn into something so... uninspiring. Not much else to say. Guess that's how it goes.

    #AdventureGamers #GamingNews #GamblingAffiliate #PointAndClick #SadChange
    Adventure Gamers, the once beloved site for point-and-click adventure gaming, has wiped its forums and relaunched as a gambling affiliate. It's just another cash-grab, really. What used to be a hub for enthusiasts now feels like a hollow echo of its former self. After years of supporting the adventure genre, it's sad to see it turn into something so... uninspiring. Not much else to say. Guess that's how it goes. #AdventureGamers #GamingNews #GamblingAffiliate #PointAndClick #SadChange
    KOTAKU.COM
    Beloved 27-Year-Old Gaming Site Wipes Forums, Relaunches As A Gambling Affiliate Cash-Grab
    In the last couple of weeks, Adventure Gamers—a beloved game site dedicated to point-and-click adventure gaming since 1998—has become a cruel pastiche of its former self. The site, primarily run by volunteers and enthusiasts, has fought for the much-
    1 Комментарии 0 Поделились
  • NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica

    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth.
    Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI.
    This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany.
    NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics.
    NVIDIA Technologies Boost Robotics Development 
    Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics.
    To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks.
    To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data.
    In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub.
    Image courtesy of Wandelbots.
    Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More 
    Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots.
    NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment.
    NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies.
    Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows.
    Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact.
    Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations.
    Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries.
    Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic.
    Image courtesy of Franka Robotics.
    Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support.
    Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies.
    SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario.
    Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation.

    Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications.
    Image courtesy of Vention.
    Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27. 
    #nvidia #partners #highlight #nextgeneration #robotics
    NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica
    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth. Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI. This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany. NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics. NVIDIA Technologies Boost Robotics Development  Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics. To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data. In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub. Image courtesy of Wandelbots. Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More  Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots. NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment. NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies. Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows. Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact. Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations. Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries. Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic. Image courtesy of Franka Robotics. Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies. SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario. Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation. Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications. Image courtesy of Vention. Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27.  #nvidia #partners #highlight #nextgeneration #robotics
    BLOGS.NVIDIA.COM
    NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica
    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth. Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a $200 billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI. This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany. NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics. NVIDIA Technologies Boost Robotics Development  Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics. To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data. In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub. Image courtesy of Wandelbots. Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More  Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots. NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment. NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies. Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows. Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact. Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations. Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries. Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3 (FR3) robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic. Image courtesy of Franka Robotics. Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies. SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario. Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation. Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications. Image courtesy of Vention. Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27. 
    Like
    Love
    Wow
    Sad
    Angry
    19
    0 Комментарии 0 Поделились
  • HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift

    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas.
    The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers, to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI.
    The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market.
    The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster.
    This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs.
    These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows.
    HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October.
    In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption.
    The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center.
    To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis.
    HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity.
    Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments.

    Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay.
    Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page.
    #hpe #nvidia #debut #factory #stack
    HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift
    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas. The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers, to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI. The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market. The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster. This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs. These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows. HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October. In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption. The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center. To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis. HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity. Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments. Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay. Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page. #hpe #nvidia #debut #factory #stack
    BLOGS.NVIDIA.COM
    HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift
    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas. The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers (HPE ProLiant Compute DL380a Gen12), to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI. The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market. The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster. This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs. These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows. HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October. In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption. The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center. To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis. HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity. Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments. Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay. Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page.
    0 Комментарии 0 Поделились
  • Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety

    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse.
    Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehiclesacross countless real-world and edge-case scenarios without the risks and costs of physical testing.
    These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models— neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation.
    To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools.
    Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale.
    Universal Scene Description, a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale.
    NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale.
    Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models.

    Foundations for Scalable, Realistic Simulation
    Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots.

    In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools.
    Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos.
    Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing.
    The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases.
    Driving the Future of AV Safety
    To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety.
    The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems.
    These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks.

    At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance.
    Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay:

    Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks.
    Get Plugged Into the World of OpenUSD
    Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote.
    Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14.
    Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute.
    Explore the Alliance for OpenUSD forum and the AOUSD website.
    Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X.
    #into #omniverse #world #foundation #models
    Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety
    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse. Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehiclesacross countless real-world and edge-case scenarios without the risks and costs of physical testing. These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models— neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation. To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools. Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale. Universal Scene Description, a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale. NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale. Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models. Foundations for Scalable, Realistic Simulation Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots. In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools. Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos. Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing. The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases. Driving the Future of AV Safety To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety. The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems. These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks. At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance. Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay: Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks. Get Plugged Into the World of OpenUSD Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote. Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14. Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute. Explore the Alliance for OpenUSD forum and the AOUSD website. Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X. #into #omniverse #world #foundation #models
    BLOGS.NVIDIA.COM
    Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety
    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse. Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehicles (AVs) across countless real-world and edge-case scenarios without the risks and costs of physical testing. These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models (WFMs) — neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation. To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools. Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale. Universal Scene Description (OpenUSD), a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale. NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale. Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models. Foundations for Scalable, Realistic Simulation Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots. In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools. Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos. Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing. The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases. Driving the Future of AV Safety To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety. The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems. These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks. At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance. Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay: Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks. Get Plugged Into the World of OpenUSD Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote. Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14. Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute. Explore the Alliance for OpenUSD forum and the AOUSD website. Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X.
    0 Комментарии 0 Поделились
  • Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler

    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production.
    Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below.
    Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder.
    In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session.
    From Concept to Completion
    To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms.
    For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI.
    ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated.
    Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY.
    NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU.
    ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images.
    Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost.
    LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY.
    “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY 

    Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models.
    Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch.
    To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x.
    Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started.
    Photorealistic renders. Image courtesy of FITY.
    Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time.
    Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY.
    “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY

    Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #startup #uses #nvidia #rtxpowered #generative
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #startup #uses #nvidia #rtxpowered #generative
    BLOGS.NVIDIA.COM
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. Read more about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from $999. GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. Save the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptation (LoRA) models — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    0 Комментарии 0 Поделились
Расширенные страницы