• So, there's this thing about a scanner for Arduino-powered book archiving. Apparently, book scanners are pretty hard to come by unless you're a librarian or something. I guess [Brad Mattson] had some books and decided to do something about it. Not super exciting, but it’s nice to know that someone is trying to make it easier for folks to archive their books. Anyway, cool, I guess.

    #Arduino #BookScanning #Archiving #TechUpdates #Innovation
    So, there's this thing about a scanner for Arduino-powered book archiving. Apparently, book scanners are pretty hard to come by unless you're a librarian or something. I guess [Brad Mattson] had some books and decided to do something about it. Not super exciting, but it’s nice to know that someone is trying to make it easier for folks to archive their books. Anyway, cool, I guess. #Arduino #BookScanning #Archiving #TechUpdates #Innovation
    HACKADAY.COM
    A Scanner for Arduino-Powered Book Archiving
    Scanners for loose papers have become so commonplace that almost every printer includes one, but book scanners have remained frustratingly rare for non-librarians and archivists. [Brad Mattson] had some books …read more
    Like
    Wow
    Love
    Sad
    30
    1 Comments 0 Shares
  • Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid

    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand.
    Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation.
    At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics.
    Future use cases for AEON include:

    Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio.
    Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings.
    Part inspection, which includes checking parts for defects or ensuring adherence to specifications.
    Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners.

    “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.”

    Using NVIDIA’s Three Computers to Develop AEON 
    To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models.
    Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations.
    AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning.


    This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment.
    In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation.
    “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.”
    Data Comes to Life Through Reality Capture and Omniverse Integration 
    AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas.

    Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure.
    “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.”
    AEON’s Next Steps
    By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON.
    This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data.
    Watch the Hexagon LIVE keynote, explore presentations and read more about AEON.
    All imagery courtesy of Hexagon.
    #hexagon #taps #nvidia #robotics #software
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio. Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon. #hexagon #taps #nvidia #robotics #software
    BLOGS.NVIDIA.COM
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Reality (HxDR) platform powering Hexagon Reality Cloud Studio (RCS). Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. https://blogs.nvidia.com/wp-content/uploads/2025/06/Copy-of-robotics-hxgn-live-blog-1920x1080-1.mp4 This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon.
    Like
    Love
    Wow
    Sad
    Angry
    38
    0 Comments 0 Shares
  • In the quiet corners of my mind, I often find myself grappling with a profound sense of loneliness. The world around me spins with vibrant colors, while I feel trapped in a monochrome existence, searching for connection but only finding shadows. Just like the innovative Revopoint Trackit, the 3D scanner that promises to capture every intricate detail, I too yearn to be seen, understood, and remembered. Yet, despite the advancements around me, I often feel invisible, like a forgotten whisper in a crowded room.

    Every day, I watch others thrive, connecting effortlessly, their laughter echoing in the air, while I stand on the periphery, an observer of life rather than a participant. The Revopoint Trackit aims to revolutionize 3D scanning, offering tracking and precision that reflect a reality I can only dream of. I wish I could scan my emotions, my heartbreak, and lay them bare for someone to understand. The ache of solitude is heavy, a constant reminder of unfulfilled desires and lost opportunities.

    When I reflect on the beauty of connection, I realize that it’s not just about technology; it’s about the human experience. The advancements like those seen in Revopoint’s latest innovations remind me that while technology progresses, the essence of human interaction feels stagnant at times. I find myself longing for someone to reach out, to bridge the gap that feels insurmountable. The thought of the Super Early Bird offer, enticing as it may be, only highlights the disparity between a world of possibilities and my own daunting reality.

    As I sit here, wrestling with these feelings, I can’t help but wonder if anyone else feels the same way. Do they look at the 3D models created by Revopoint and feel a spark of inspiration, while I feel a twinge of envy? Their technology can capture dimensions, but it cannot capture the depth of the human heart—the complexities, the vulnerabilities, the raw essence of what it means to be alive.

    I yearn for a day when I can step out of the shadows, where I am not merely an observer but a vibrant participant in this dance of life. Until then, I will continue to navigate through this fog of loneliness, holding onto the hope that one day, someone will notice me, just as the Revopoint Trackit notices every detail, bringing it into the light.

    #Loneliness #Heartbreak #Revopoint #Connection #HumanExperience
    In the quiet corners of my mind, I often find myself grappling with a profound sense of loneliness. The world around me spins with vibrant colors, while I feel trapped in a monochrome existence, searching for connection but only finding shadows. Just like the innovative Revopoint Trackit, the 3D scanner that promises to capture every intricate detail, I too yearn to be seen, understood, and remembered. Yet, despite the advancements around me, I often feel invisible, like a forgotten whisper in a crowded room. Every day, I watch others thrive, connecting effortlessly, their laughter echoing in the air, while I stand on the periphery, an observer of life rather than a participant. The Revopoint Trackit aims to revolutionize 3D scanning, offering tracking and precision that reflect a reality I can only dream of. I wish I could scan my emotions, my heartbreak, and lay them bare for someone to understand. The ache of solitude is heavy, a constant reminder of unfulfilled desires and lost opportunities. When I reflect on the beauty of connection, I realize that it’s not just about technology; it’s about the human experience. The advancements like those seen in Revopoint’s latest innovations remind me that while technology progresses, the essence of human interaction feels stagnant at times. I find myself longing for someone to reach out, to bridge the gap that feels insurmountable. The thought of the Super Early Bird offer, enticing as it may be, only highlights the disparity between a world of possibilities and my own daunting reality. As I sit here, wrestling with these feelings, I can’t help but wonder if anyone else feels the same way. Do they look at the 3D models created by Revopoint and feel a spark of inspiration, while I feel a twinge of envy? Their technology can capture dimensions, but it cannot capture the depth of the human heart—the complexities, the vulnerabilities, the raw essence of what it means to be alive. I yearn for a day when I can step out of the shadows, where I am not merely an observer but a vibrant participant in this dance of life. Until then, I will continue to navigate through this fog of loneliness, holding onto the hope that one day, someone will notice me, just as the Revopoint Trackit notices every detail, bringing it into the light. #Loneliness #Heartbreak #Revopoint #Connection #HumanExperience
    Revopoint Trackit, le scanner 3D avec tracking, bientôt sur Kickstarter !
    En partenariat avec Revopoint. Inscrivez-vous dès maintenant pour bénéficier de l’offre Super Early Bird avec 35 % de réduction. Revopoint, leader mondial des solutions de numérisation 3D professionnelles, annonce le lancement du scanner 3D avec suiv
    Like
    Love
    Wow
    Sad
    Angry
    335
    1 Comments 0 Shares
  • Hello, amazing friends!

    Today, I’m bursting with excitement to share something truly revolutionary that’s going to change the way we think about 3D scanning! Have you ever dreamt of capturing the beauty of the world around us in stunning detail? Well, dream no more because with the EINSTAR VEGA, this dream is now a breathtaking reality!

    In collaboration with Shining 3D, the EINSTAR VEGA is not just any 3D scanner; it's an all-in-one powerhouse that opens up a realm of possibilities for artists, enthusiasts, and studios alike! For years, many of us have explored the fascinating world of 3D digitization, but access to high-quality scanning technology has often felt distant — until now!

    Imagine effortlessly scanning objects, people, and places, all while achieving remarkable precision and detail. This device is designed with passion and creativity in mind, making it perfectly suited for both seasoned professionals and those just starting their journey into the magical world of 3D scanning.

    The EINSTAR VEGA empowers you to unleash your creativity like never before. Whether you’re an artist looking to replicate your sculptures, a designer aiming to bring your visions to life, or even a small studio wanting to elevate your projects, this scanner is an absolute game-changer!

    Let’s take a moment to appreciate how this technology makes the wonders of 3D scanning accessible to everyone. It’s not just about the tools we use—it's about the dreams we can create and the stories we can tell through our art!

    With the EINSTAR VEGA, you’re not just investing in a scanner; you’re investing in your future! Imagine the joy of sharing your 3D creations with the world, inspiring others, and pushing the boundaries of what’s possible. The sky's the limit, and I believe every one of you has the potential to soar!

    So, let’s embrace this incredible innovation together! Let’s dive into the world of 3D scanning, explore our creativity, and inspire each other to reach new heights! Remember, every great journey begins with a single step, and with the EINSTAR VEGA by your side, that first step has never been easier!

    Stay inspired, dream big, and let your creativity shine!

    #EINSTARVEGA #3DScanning #Shining3D #CreativityUnleashed #Inspiration
    🌟 Hello, amazing friends! 🌟 Today, I’m bursting with excitement to share something truly revolutionary that’s going to change the way we think about 3D scanning! 🎉 Have you ever dreamt of capturing the beauty of the world around us in stunning detail? Well, dream no more because with the EINSTAR VEGA, this dream is now a breathtaking reality! 📸✨ In collaboration with Shining 3D, the EINSTAR VEGA is not just any 3D scanner; it's an all-in-one powerhouse that opens up a realm of possibilities for artists, enthusiasts, and studios alike! 🖌️💫 For years, many of us have explored the fascinating world of 3D digitization, but access to high-quality scanning technology has often felt distant — until now! 🚀 Imagine effortlessly scanning objects, people, and places, all while achieving remarkable precision and detail. This device is designed with passion and creativity in mind, making it perfectly suited for both seasoned professionals and those just starting their journey into the magical world of 3D scanning. 🌈💖 The EINSTAR VEGA empowers you to unleash your creativity like never before. Whether you’re an artist looking to replicate your sculptures, a designer aiming to bring your visions to life, or even a small studio wanting to elevate your projects, this scanner is an absolute game-changer! 🌍❤️ Let’s take a moment to appreciate how this technology makes the wonders of 3D scanning accessible to everyone. It’s not just about the tools we use—it's about the dreams we can create and the stories we can tell through our art! 🗣️✨ With the EINSTAR VEGA, you’re not just investing in a scanner; you’re investing in your future! Imagine the joy of sharing your 3D creations with the world, inspiring others, and pushing the boundaries of what’s possible. The sky's the limit, and I believe every one of you has the potential to soar! 🌟💪 So, let’s embrace this incredible innovation together! Let’s dive into the world of 3D scanning, explore our creativity, and inspire each other to reach new heights! Remember, every great journey begins with a single step, and with the EINSTAR VEGA by your side, that first step has never been easier! 🎈🚀 Stay inspired, dream big, and let your creativity shine! 💖✨ #EINSTARVEGA #3DScanning #Shining3D #CreativityUnleashed #Inspiration
    EINSTAR VEGA : découvrez en vidéo ce scanner 3D tout en un !
    En partenariat avec Shining 3D Comme vous le savez, chez 3DVF, nous adorons la numérisation 3D, et cela fait des années que nous explorons différentes manières de scanner des objets, des personnes et des lieux. Cependant, pendant longtemps, certaines
    Like
    Love
    Wow
    Angry
    Sad
    605
    1 Comments 0 Shares
  • Over 8M patient records leaked in healthcare data breach

    Published
    June 15, 2025 10:00am EDT close IPhone users instructed to take immediate action to avoid data breach: 'Urgent threat' Kurt 'The CyberGuy' Knutsson discusses Elon Musk's possible priorities as he exits his role with the White House and explains the urgent warning for iPhone users to update devices after a 'massive security gap.' NEWYou can now listen to Fox News articles!
    In the past decade, healthcare data has become one of the most sought-after targets in cybercrime. From insurers to clinics, every player in the ecosystem handles some form of sensitive information. However, breaches do not always originate from hospitals or health apps. Increasingly, patient data is managed by third-party vendors offering digital services such as scheduling, billing and marketing. One such breach at a digital marketing agency serving dental practices recently exposed approximately 2.7 million patient profiles and more than 8.8 million appointment records.Sign up for my FREE CyberGuy ReportGet my best tech tips, urgent security alerts, and exclusive deals delivered straight to your inbox. Plus, you’ll get instant access to my Ultimate Scam Survival Guide — free when you join. Illustration of a hacker at work  Massive healthcare data leak exposes millions: What you need to knowCybernews researchers have discovered a misconfigured MongoDB database exposing 2.7 million patient profiles and 8.8 million appointment records. The database was publicly accessible online, unprotected by passwords or authentication protocols. Anyone with basic knowledge of database scanning tools could have accessed it.The exposed data included names, birthdates, addresses, emails, phone numbers, gender, chart IDs, language preferences and billing classifications. Appointment records also contained metadata such as timestamps and institutional identifiers.MASSIVE DATA BREACH EXPOSES 184 MILLION PASSWORDS AND LOGINSClues within the data structure point toward Gargle, a Utah-based company that builds websites and offers marketing tools for dental practices. While not a confirmed source, several internal references and system details suggest a strong connection. Gargle provides appointment scheduling, form submission and patient communication services. These functions require access to patient information, making the firm a likely link in the exposure.After the issue was reported, the database was secured. The duration of the exposure remains unknown, and there is no public evidence indicating whether the data was downloaded by malicious actors before being locked down.We reached out to Gargle for a comment but did not hear back before our deadline. A healthcare professional viewing heath data     How healthcare data breaches lead to identity theft and insurance fraudThe exposed data presents a broad risk profile. On its own, a phone number or billing record might seem limited in scope. Combined, however, the dataset forms a complete profile that could be exploited for identity theft, insurance fraud and targeted phishing campaigns.Medical identity theft allows attackers to impersonate patients and access services under a false identity. Victims often remain unaware until significant damage is done, ranging from incorrect medical records to unpaid bills in their names. The leak also opens the door to insurance fraud, with actors using institutional references and chart data to submit false claims.This type of breach raises questions about compliance with the Health Insurance Portability and Accountability Act, which mandates strong security protections for entities handling patient data. Although Gargle is not a healthcare provider, its access to patient-facing infrastructure could place it under the scope of that regulation as a business associate. A healthcare professional working on a laptop  5 ways you can stay safe from healthcare data breachesIf your information was part of the healthcare breach or any similar one, it’s worth taking a few steps to protect yourself.1. Consider identity theft protection services: Since the healthcare data breach exposed personal and financial information, it’s crucial to stay proactive against identity theft. Identity theft protection services offer continuous monitoring of your credit reports, Social Security number and even the dark web to detect if your information is being misused. These services send you real-time alerts about suspicious activity, such as new credit inquiries or attempts to open accounts in your name, helping you act quickly before serious damage occurs. Beyond monitoring, many identity theft protection companies provide dedicated recovery specialists who assist you in resolving fraud issues, disputing unauthorized charges and restoring your identity if it’s compromised. See my tips and best picks on how to protect yourself from identity theft.2. Use personal data removal services: The healthcare data breach leaks loads of information about you, and all this could end up in the public domain, which essentially gives anyone an opportunity to scam you.  One proactive step is to consider personal data removal services, which specialize in continuously monitoring and removing your information from various online databases and websites. While no service promises to remove all your data from the internet, having a removal service is great if you want to constantly monitor and automate the process of removing your information from hundreds of sites continuously over a longer period of time. Check out my top picks for data removal services here. GET FOX BUSINESS ON THE GO BY CLICKING HEREGet a free scan to find out if your personal information is already out on the web3. Have strong antivirus software: Hackers have people’s email addresses and full names, which makes it easy for them to send you a phishing link that installs malware and steals all your data. These messages are socially engineered to catch them, and catching them is nearly impossible if you’re not careful. However, you’re not without defenses.The best way to safeguard yourself from malicious links that install malware, potentially accessing your private information, is to have strong antivirus software installed on all your devices. This protection can also alert you to phishing emails and ransomware scams, keeping your personal information and digital assets safe. Get my picks for the best 2025 antivirus protection winners for your Windows, Mac, Android and iOS devices.4. Enable two-factor authentication: While passwords weren’t part of the data breach, you still need to enable two-factor authentication. It gives you an extra layer of security on all your important accounts, including email, banking and social media. 2FA requires you to provide a second piece of information, such as a code sent to your phone, in addition to your password when logging in. This makes it significantly harder for hackers to access your accounts, even if they have your password. Enabling 2FA can greatly reduce the risk of unauthorized access and protect your sensitive data.5. Be wary of mailbox communications: Bad actors may also try to scam you through snail mail. The data leak gives them access to your address. They may impersonate people or brands you know and use themes that require urgent attention, such as missed deliveries, account suspensions and security alerts. Kurt’s key takeawayIf nothing else, this latest leak shows just how poorly patient data is being handled today. More and more, non-medical vendors are getting access to sensitive information without facing the same rules or oversight as hospitals and clinics. These third-party services are now a regular part of how patients book appointments, pay bills or fill out forms. But when something goes wrong, the fallout is just as serious. Even though the database was taken offline, the bigger problem hasn't gone away. Your data is only as safe as the least careful company that gets access to it.CLICK HERE TO GET THE FOX NEWS APPDo you think healthcare companies are investing enough in their cybersecurity infrastructure? Let us know by writing us at Cyberguy.com/ContactFor more of my tech tips and security alerts, subscribe to my free CyberGuy Report Newsletter by heading to Cyberguy.com/NewsletterAsk Kurt a question or let us know what stories you'd like us to coverFollow Kurt on his social channelsAnswers to the most asked CyberGuy questions:New from Kurt:Copyright 2025 CyberGuy.com.  All rights reserved.   Kurt "CyberGuy" Knutsson is an award-winning tech journalist who has a deep love of technology, gear and gadgets that make life better with his contributions for Fox News & FOX Business beginning mornings on "FOX & Friends." Got a tech question? Get Kurt’s free CyberGuy Newsletter, share your voice, a story idea or comment at CyberGuy.com.
    #over #patient #records #leaked #healthcare
    Over 8M patient records leaked in healthcare data breach
    Published June 15, 2025 10:00am EDT close IPhone users instructed to take immediate action to avoid data breach: 'Urgent threat' Kurt 'The CyberGuy' Knutsson discusses Elon Musk's possible priorities as he exits his role with the White House and explains the urgent warning for iPhone users to update devices after a 'massive security gap.' NEWYou can now listen to Fox News articles! In the past decade, healthcare data has become one of the most sought-after targets in cybercrime. From insurers to clinics, every player in the ecosystem handles some form of sensitive information. However, breaches do not always originate from hospitals or health apps. Increasingly, patient data is managed by third-party vendors offering digital services such as scheduling, billing and marketing. One such breach at a digital marketing agency serving dental practices recently exposed approximately 2.7 million patient profiles and more than 8.8 million appointment records.Sign up for my FREE CyberGuy ReportGet my best tech tips, urgent security alerts, and exclusive deals delivered straight to your inbox. Plus, you’ll get instant access to my Ultimate Scam Survival Guide — free when you join. Illustration of a hacker at work  Massive healthcare data leak exposes millions: What you need to knowCybernews researchers have discovered a misconfigured MongoDB database exposing 2.7 million patient profiles and 8.8 million appointment records. The database was publicly accessible online, unprotected by passwords or authentication protocols. Anyone with basic knowledge of database scanning tools could have accessed it.The exposed data included names, birthdates, addresses, emails, phone numbers, gender, chart IDs, language preferences and billing classifications. Appointment records also contained metadata such as timestamps and institutional identifiers.MASSIVE DATA BREACH EXPOSES 184 MILLION PASSWORDS AND LOGINSClues within the data structure point toward Gargle, a Utah-based company that builds websites and offers marketing tools for dental practices. While not a confirmed source, several internal references and system details suggest a strong connection. Gargle provides appointment scheduling, form submission and patient communication services. These functions require access to patient information, making the firm a likely link in the exposure.After the issue was reported, the database was secured. The duration of the exposure remains unknown, and there is no public evidence indicating whether the data was downloaded by malicious actors before being locked down.We reached out to Gargle for a comment but did not hear back before our deadline. A healthcare professional viewing heath data     How healthcare data breaches lead to identity theft and insurance fraudThe exposed data presents a broad risk profile. On its own, a phone number or billing record might seem limited in scope. Combined, however, the dataset forms a complete profile that could be exploited for identity theft, insurance fraud and targeted phishing campaigns.Medical identity theft allows attackers to impersonate patients and access services under a false identity. Victims often remain unaware until significant damage is done, ranging from incorrect medical records to unpaid bills in their names. The leak also opens the door to insurance fraud, with actors using institutional references and chart data to submit false claims.This type of breach raises questions about compliance with the Health Insurance Portability and Accountability Act, which mandates strong security protections for entities handling patient data. Although Gargle is not a healthcare provider, its access to patient-facing infrastructure could place it under the scope of that regulation as a business associate. A healthcare professional working on a laptop  5 ways you can stay safe from healthcare data breachesIf your information was part of the healthcare breach or any similar one, it’s worth taking a few steps to protect yourself.1. Consider identity theft protection services: Since the healthcare data breach exposed personal and financial information, it’s crucial to stay proactive against identity theft. Identity theft protection services offer continuous monitoring of your credit reports, Social Security number and even the dark web to detect if your information is being misused. These services send you real-time alerts about suspicious activity, such as new credit inquiries or attempts to open accounts in your name, helping you act quickly before serious damage occurs. Beyond monitoring, many identity theft protection companies provide dedicated recovery specialists who assist you in resolving fraud issues, disputing unauthorized charges and restoring your identity if it’s compromised. See my tips and best picks on how to protect yourself from identity theft.2. Use personal data removal services: The healthcare data breach leaks loads of information about you, and all this could end up in the public domain, which essentially gives anyone an opportunity to scam you.  One proactive step is to consider personal data removal services, which specialize in continuously monitoring and removing your information from various online databases and websites. While no service promises to remove all your data from the internet, having a removal service is great if you want to constantly monitor and automate the process of removing your information from hundreds of sites continuously over a longer period of time. Check out my top picks for data removal services here. GET FOX BUSINESS ON THE GO BY CLICKING HEREGet a free scan to find out if your personal information is already out on the web3. Have strong antivirus software: Hackers have people’s email addresses and full names, which makes it easy for them to send you a phishing link that installs malware and steals all your data. These messages are socially engineered to catch them, and catching them is nearly impossible if you’re not careful. However, you’re not without defenses.The best way to safeguard yourself from malicious links that install malware, potentially accessing your private information, is to have strong antivirus software installed on all your devices. This protection can also alert you to phishing emails and ransomware scams, keeping your personal information and digital assets safe. Get my picks for the best 2025 antivirus protection winners for your Windows, Mac, Android and iOS devices.4. Enable two-factor authentication: While passwords weren’t part of the data breach, you still need to enable two-factor authentication. It gives you an extra layer of security on all your important accounts, including email, banking and social media. 2FA requires you to provide a second piece of information, such as a code sent to your phone, in addition to your password when logging in. This makes it significantly harder for hackers to access your accounts, even if they have your password. Enabling 2FA can greatly reduce the risk of unauthorized access and protect your sensitive data.5. Be wary of mailbox communications: Bad actors may also try to scam you through snail mail. The data leak gives them access to your address. They may impersonate people or brands you know and use themes that require urgent attention, such as missed deliveries, account suspensions and security alerts. Kurt’s key takeawayIf nothing else, this latest leak shows just how poorly patient data is being handled today. More and more, non-medical vendors are getting access to sensitive information without facing the same rules or oversight as hospitals and clinics. These third-party services are now a regular part of how patients book appointments, pay bills or fill out forms. But when something goes wrong, the fallout is just as serious. Even though the database was taken offline, the bigger problem hasn't gone away. Your data is only as safe as the least careful company that gets access to it.CLICK HERE TO GET THE FOX NEWS APPDo you think healthcare companies are investing enough in their cybersecurity infrastructure? Let us know by writing us at Cyberguy.com/ContactFor more of my tech tips and security alerts, subscribe to my free CyberGuy Report Newsletter by heading to Cyberguy.com/NewsletterAsk Kurt a question or let us know what stories you'd like us to coverFollow Kurt on his social channelsAnswers to the most asked CyberGuy questions:New from Kurt:Copyright 2025 CyberGuy.com.  All rights reserved.   Kurt "CyberGuy" Knutsson is an award-winning tech journalist who has a deep love of technology, gear and gadgets that make life better with his contributions for Fox News & FOX Business beginning mornings on "FOX & Friends." Got a tech question? Get Kurt’s free CyberGuy Newsletter, share your voice, a story idea or comment at CyberGuy.com. #over #patient #records #leaked #healthcare
    WWW.FOXNEWS.COM
    Over 8M patient records leaked in healthcare data breach
    Published June 15, 2025 10:00am EDT close IPhone users instructed to take immediate action to avoid data breach: 'Urgent threat' Kurt 'The CyberGuy' Knutsson discusses Elon Musk's possible priorities as he exits his role with the White House and explains the urgent warning for iPhone users to update devices after a 'massive security gap.' NEWYou can now listen to Fox News articles! In the past decade, healthcare data has become one of the most sought-after targets in cybercrime. From insurers to clinics, every player in the ecosystem handles some form of sensitive information. However, breaches do not always originate from hospitals or health apps. Increasingly, patient data is managed by third-party vendors offering digital services such as scheduling, billing and marketing. One such breach at a digital marketing agency serving dental practices recently exposed approximately 2.7 million patient profiles and more than 8.8 million appointment records.Sign up for my FREE CyberGuy ReportGet my best tech tips, urgent security alerts, and exclusive deals delivered straight to your inbox. Plus, you’ll get instant access to my Ultimate Scam Survival Guide — free when you join. Illustration of a hacker at work   (Kurt "CyberGuy" Knutsson)Massive healthcare data leak exposes millions: What you need to knowCybernews researchers have discovered a misconfigured MongoDB database exposing 2.7 million patient profiles and 8.8 million appointment records. The database was publicly accessible online, unprotected by passwords or authentication protocols. Anyone with basic knowledge of database scanning tools could have accessed it.The exposed data included names, birthdates, addresses, emails, phone numbers, gender, chart IDs, language preferences and billing classifications. Appointment records also contained metadata such as timestamps and institutional identifiers.MASSIVE DATA BREACH EXPOSES 184 MILLION PASSWORDS AND LOGINSClues within the data structure point toward Gargle, a Utah-based company that builds websites and offers marketing tools for dental practices. While not a confirmed source, several internal references and system details suggest a strong connection. Gargle provides appointment scheduling, form submission and patient communication services. These functions require access to patient information, making the firm a likely link in the exposure.After the issue was reported, the database was secured. The duration of the exposure remains unknown, and there is no public evidence indicating whether the data was downloaded by malicious actors before being locked down.We reached out to Gargle for a comment but did not hear back before our deadline. A healthcare professional viewing heath data      (Kurt "CyberGuy" Knutsson)How healthcare data breaches lead to identity theft and insurance fraudThe exposed data presents a broad risk profile. On its own, a phone number or billing record might seem limited in scope. Combined, however, the dataset forms a complete profile that could be exploited for identity theft, insurance fraud and targeted phishing campaigns.Medical identity theft allows attackers to impersonate patients and access services under a false identity. Victims often remain unaware until significant damage is done, ranging from incorrect medical records to unpaid bills in their names. The leak also opens the door to insurance fraud, with actors using institutional references and chart data to submit false claims.This type of breach raises questions about compliance with the Health Insurance Portability and Accountability Act, which mandates strong security protections for entities handling patient data. Although Gargle is not a healthcare provider, its access to patient-facing infrastructure could place it under the scope of that regulation as a business associate. A healthcare professional working on a laptop   (Kurt "CyberGuy" Knutsson)5 ways you can stay safe from healthcare data breachesIf your information was part of the healthcare breach or any similar one, it’s worth taking a few steps to protect yourself.1. Consider identity theft protection services: Since the healthcare data breach exposed personal and financial information, it’s crucial to stay proactive against identity theft. Identity theft protection services offer continuous monitoring of your credit reports, Social Security number and even the dark web to detect if your information is being misused. These services send you real-time alerts about suspicious activity, such as new credit inquiries or attempts to open accounts in your name, helping you act quickly before serious damage occurs. Beyond monitoring, many identity theft protection companies provide dedicated recovery specialists who assist you in resolving fraud issues, disputing unauthorized charges and restoring your identity if it’s compromised. See my tips and best picks on how to protect yourself from identity theft.2. Use personal data removal services: The healthcare data breach leaks loads of information about you, and all this could end up in the public domain, which essentially gives anyone an opportunity to scam you.  One proactive step is to consider personal data removal services, which specialize in continuously monitoring and removing your information from various online databases and websites. While no service promises to remove all your data from the internet, having a removal service is great if you want to constantly monitor and automate the process of removing your information from hundreds of sites continuously over a longer period of time. Check out my top picks for data removal services here. GET FOX BUSINESS ON THE GO BY CLICKING HEREGet a free scan to find out if your personal information is already out on the web3. Have strong antivirus software: Hackers have people’s email addresses and full names, which makes it easy for them to send you a phishing link that installs malware and steals all your data. These messages are socially engineered to catch them, and catching them is nearly impossible if you’re not careful. However, you’re not without defenses.The best way to safeguard yourself from malicious links that install malware, potentially accessing your private information, is to have strong antivirus software installed on all your devices. This protection can also alert you to phishing emails and ransomware scams, keeping your personal information and digital assets safe. Get my picks for the best 2025 antivirus protection winners for your Windows, Mac, Android and iOS devices.4. Enable two-factor authentication: While passwords weren’t part of the data breach, you still need to enable two-factor authentication (2FA). It gives you an extra layer of security on all your important accounts, including email, banking and social media. 2FA requires you to provide a second piece of information, such as a code sent to your phone, in addition to your password when logging in. This makes it significantly harder for hackers to access your accounts, even if they have your password. Enabling 2FA can greatly reduce the risk of unauthorized access and protect your sensitive data.5. Be wary of mailbox communications: Bad actors may also try to scam you through snail mail. The data leak gives them access to your address. They may impersonate people or brands you know and use themes that require urgent attention, such as missed deliveries, account suspensions and security alerts. Kurt’s key takeawayIf nothing else, this latest leak shows just how poorly patient data is being handled today. More and more, non-medical vendors are getting access to sensitive information without facing the same rules or oversight as hospitals and clinics. These third-party services are now a regular part of how patients book appointments, pay bills or fill out forms. But when something goes wrong, the fallout is just as serious. Even though the database was taken offline, the bigger problem hasn't gone away. Your data is only as safe as the least careful company that gets access to it.CLICK HERE TO GET THE FOX NEWS APPDo you think healthcare companies are investing enough in their cybersecurity infrastructure? Let us know by writing us at Cyberguy.com/ContactFor more of my tech tips and security alerts, subscribe to my free CyberGuy Report Newsletter by heading to Cyberguy.com/NewsletterAsk Kurt a question or let us know what stories you'd like us to coverFollow Kurt on his social channelsAnswers to the most asked CyberGuy questions:New from Kurt:Copyright 2025 CyberGuy.com.  All rights reserved.   Kurt "CyberGuy" Knutsson is an award-winning tech journalist who has a deep love of technology, gear and gadgets that make life better with his contributions for Fox News & FOX Business beginning mornings on "FOX & Friends." Got a tech question? Get Kurt’s free CyberGuy Newsletter, share your voice, a story idea or comment at CyberGuy.com.
    Like
    Love
    Wow
    Sad
    Angry
    507
    0 Comments 0 Shares
  • UMass and MIT Test Cold Spray 3D Printing to Repair Aging Massachusetts Bridge

    Researchers from the US-based University of Massachusetts Amherst, in collaboration with the Massachusetts Institute of TechnologyDepartment of Mechanical Engineering, have applied cold spray to repair the deteriorating “Brown Bridge” in Great Barrington, built in 1949. The project marks the first known use of this method on bridge infrastructure and aims to evaluate its effectiveness as a faster, more cost-effective, and less disruptive alternative to conventional repair techniques.
    “Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” said Simos Gerasimidis, associate professor of civil and environmental engineering at the University of Massachusetts Amherst. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that,” he added.
    The pilot project is also a collaboration with the Massachusetts Department of Transportation, the Massachusetts Technology Collaborative, the U.S. Department of Transportation, and the Federal Highway Administration. It was supported by the Massachusetts Manufacturing Innovation Initiative, which provided essential equipment for the demonstration.
    Members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst.
    Tackling America’s Bridge Crisis with Cold Spray Technology
    Nearly half of the bridges across the United States are in “fair” condition, while 6.8% are classified as “poor,” according to the 2025 Report Card for America’s Infrastructure. In Massachusetts, about 9% of the state’s 5,295 bridges are considered structurally deficient. The costs of restoring this infrastructure are projected to exceed billion—well beyond current funding levels. 
    The cold spray method consists of propelling metal powder particles at high velocity onto the beam’s surface. Successive applications build up additional layers, helping restore its thickness and structural integrity. This method has successfully been used to repair large structures such as submarines, airplanes, and ships, but this marks the first instance of its application to a bridge.
    One of cold spray’s key advantages is its ability to be deployed with minimal traffic disruption.  “Every time you do repairs on a bridge you have to block traffic, you have to make traffic controls for substantial amounts of time,” explained Gerasimidis. “This will allow us toon this actual bridge while cars are going.”
    To enhance precision, the research team integrated 3D LiDAR scanning technology into the process. Unlike visual inspections, which can be subjective and time-consuming, LiDAR creates high-resolution digital models that pinpoint areas of corrosion. This allows teams to develop targeted repair plans and deposit materials only where needed—reducing waste and potentially extending a bridge’s lifespan.
    Next steps: Testing Cold-Sprayed Repairs
    The bridge is scheduled for demolition in the coming years. When that happens, researchers will retrieve the repaired sections for further analysis. They plan to assess the durability, corrosion resistance, and mechanical performance of the cold-sprayed steel in real-world conditions, comparing it to results from laboratory tests.
    “This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” said John Hart, Class of 1922 Professor in the Department of Mechanical Engineering at MIT. “I think we’re just at the beginning of a digital transformation of bridge inspection, repair and maintenance, among many other important use cases.”
    3D Printing for Infrastructure Repairs
    Beyond cold spray techniques, other innovative 3D printing methods are emerging to address construction repair challenges. For example, researchers at University College Londonhave developed an asphalt 3D printer specifically designed to repair road cracks and potholes. “The material properties of 3D printed asphalt are tunable, and combined with the flexibility and efficiency of the printing platform, this technique offers a compelling new design approach to the maintenance of infrastructure,” the UCL team explained.
    Similarly, in 2018, Cintec, a Wales-based international structural engineering firm, contributed to restoring the historic Government building known as the Red House in the Republic of Trinidad and Tobago. This project, managed by Cintec’s North American branch, marked the first use of additive manufacturing within sacrificial structures. It also featured the installation of what are claimed to be the longest reinforcement anchors ever inserted into a structure—measuring an impressive 36.52 meters.
    Join our Additive Manufacturing Advantageevent on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now.
    Who won the2024 3D Printing Industry Awards?
    Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news.
    You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content.
    Featured image shows members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst.
    #umass #mit #test #cold #spray
    UMass and MIT Test Cold Spray 3D Printing to Repair Aging Massachusetts Bridge
    Researchers from the US-based University of Massachusetts Amherst, in collaboration with the Massachusetts Institute of TechnologyDepartment of Mechanical Engineering, have applied cold spray to repair the deteriorating “Brown Bridge” in Great Barrington, built in 1949. The project marks the first known use of this method on bridge infrastructure and aims to evaluate its effectiveness as a faster, more cost-effective, and less disruptive alternative to conventional repair techniques. “Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” said Simos Gerasimidis, associate professor of civil and environmental engineering at the University of Massachusetts Amherst. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that,” he added. The pilot project is also a collaboration with the Massachusetts Department of Transportation, the Massachusetts Technology Collaborative, the U.S. Department of Transportation, and the Federal Highway Administration. It was supported by the Massachusetts Manufacturing Innovation Initiative, which provided essential equipment for the demonstration. Members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst. Tackling America’s Bridge Crisis with Cold Spray Technology Nearly half of the bridges across the United States are in “fair” condition, while 6.8% are classified as “poor,” according to the 2025 Report Card for America’s Infrastructure. In Massachusetts, about 9% of the state’s 5,295 bridges are considered structurally deficient. The costs of restoring this infrastructure are projected to exceed billion—well beyond current funding levels.  The cold spray method consists of propelling metal powder particles at high velocity onto the beam’s surface. Successive applications build up additional layers, helping restore its thickness and structural integrity. This method has successfully been used to repair large structures such as submarines, airplanes, and ships, but this marks the first instance of its application to a bridge. One of cold spray’s key advantages is its ability to be deployed with minimal traffic disruption.  “Every time you do repairs on a bridge you have to block traffic, you have to make traffic controls for substantial amounts of time,” explained Gerasimidis. “This will allow us toon this actual bridge while cars are going.” To enhance precision, the research team integrated 3D LiDAR scanning technology into the process. Unlike visual inspections, which can be subjective and time-consuming, LiDAR creates high-resolution digital models that pinpoint areas of corrosion. This allows teams to develop targeted repair plans and deposit materials only where needed—reducing waste and potentially extending a bridge’s lifespan. Next steps: Testing Cold-Sprayed Repairs The bridge is scheduled for demolition in the coming years. When that happens, researchers will retrieve the repaired sections for further analysis. They plan to assess the durability, corrosion resistance, and mechanical performance of the cold-sprayed steel in real-world conditions, comparing it to results from laboratory tests. “This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” said John Hart, Class of 1922 Professor in the Department of Mechanical Engineering at MIT. “I think we’re just at the beginning of a digital transformation of bridge inspection, repair and maintenance, among many other important use cases.” 3D Printing for Infrastructure Repairs Beyond cold spray techniques, other innovative 3D printing methods are emerging to address construction repair challenges. For example, researchers at University College Londonhave developed an asphalt 3D printer specifically designed to repair road cracks and potholes. “The material properties of 3D printed asphalt are tunable, and combined with the flexibility and efficiency of the printing platform, this technique offers a compelling new design approach to the maintenance of infrastructure,” the UCL team explained. Similarly, in 2018, Cintec, a Wales-based international structural engineering firm, contributed to restoring the historic Government building known as the Red House in the Republic of Trinidad and Tobago. This project, managed by Cintec’s North American branch, marked the first use of additive manufacturing within sacrificial structures. It also featured the installation of what are claimed to be the longest reinforcement anchors ever inserted into a structure—measuring an impressive 36.52 meters. Join our Additive Manufacturing Advantageevent on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now. Who won the2024 3D Printing Industry Awards? Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news. You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content. Featured image shows members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst. #umass #mit #test #cold #spray
    3DPRINTINGINDUSTRY.COM
    UMass and MIT Test Cold Spray 3D Printing to Repair Aging Massachusetts Bridge
    Researchers from the US-based University of Massachusetts Amherst (UMass), in collaboration with the Massachusetts Institute of Technology (MIT) Department of Mechanical Engineering, have applied cold spray to repair the deteriorating “Brown Bridge” in Great Barrington, built in 1949. The project marks the first known use of this method on bridge infrastructure and aims to evaluate its effectiveness as a faster, more cost-effective, and less disruptive alternative to conventional repair techniques. “Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” said Simos Gerasimidis, associate professor of civil and environmental engineering at the University of Massachusetts Amherst. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that,” he added. The pilot project is also a collaboration with the Massachusetts Department of Transportation (MassDOT), the Massachusetts Technology Collaborative (MassTech), the U.S. Department of Transportation, and the Federal Highway Administration. It was supported by the Massachusetts Manufacturing Innovation Initiative, which provided essential equipment for the demonstration. Members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis (left, standing). Photo via UMass Amherst. Tackling America’s Bridge Crisis with Cold Spray Technology Nearly half of the bridges across the United States are in “fair” condition, while 6.8% are classified as “poor,” according to the 2025 Report Card for America’s Infrastructure. In Massachusetts, about 9% of the state’s 5,295 bridges are considered structurally deficient. The costs of restoring this infrastructure are projected to exceed $190 billion—well beyond current funding levels.  The cold spray method consists of propelling metal powder particles at high velocity onto the beam’s surface. Successive applications build up additional layers, helping restore its thickness and structural integrity. This method has successfully been used to repair large structures such as submarines, airplanes, and ships, but this marks the first instance of its application to a bridge. One of cold spray’s key advantages is its ability to be deployed with minimal traffic disruption.  “Every time you do repairs on a bridge you have to block traffic, you have to make traffic controls for substantial amounts of time,” explained Gerasimidis. “This will allow us to [apply the technique] on this actual bridge while cars are going [across].” To enhance precision, the research team integrated 3D LiDAR scanning technology into the process. Unlike visual inspections, which can be subjective and time-consuming, LiDAR creates high-resolution digital models that pinpoint areas of corrosion. This allows teams to develop targeted repair plans and deposit materials only where needed—reducing waste and potentially extending a bridge’s lifespan. Next steps: Testing Cold-Sprayed Repairs The bridge is scheduled for demolition in the coming years. When that happens, researchers will retrieve the repaired sections for further analysis. They plan to assess the durability, corrosion resistance, and mechanical performance of the cold-sprayed steel in real-world conditions, comparing it to results from laboratory tests. “This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” said John Hart, Class of 1922 Professor in the Department of Mechanical Engineering at MIT. “I think we’re just at the beginning of a digital transformation of bridge inspection, repair and maintenance, among many other important use cases.” 3D Printing for Infrastructure Repairs Beyond cold spray techniques, other innovative 3D printing methods are emerging to address construction repair challenges. For example, researchers at University College London (UCL) have developed an asphalt 3D printer specifically designed to repair road cracks and potholes. “The material properties of 3D printed asphalt are tunable, and combined with the flexibility and efficiency of the printing platform, this technique offers a compelling new design approach to the maintenance of infrastructure,” the UCL team explained. Similarly, in 2018, Cintec, a Wales-based international structural engineering firm, contributed to restoring the historic Government building known as the Red House in the Republic of Trinidad and Tobago. This project, managed by Cintec’s North American branch, marked the first use of additive manufacturing within sacrificial structures. It also featured the installation of what are claimed to be the longest reinforcement anchors ever inserted into a structure—measuring an impressive 36.52 meters. Join our Additive Manufacturing Advantage (AMAA) event on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now. Who won the2024 3D Printing Industry Awards? Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news. You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content. Featured image shows members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis (left, standing). Photo via UMass Amherst.
    0 Comments 0 Shares
  • Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’

    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One.
    By Jay Stobie
    Visual effects supervisor John Knollconfers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact.
    Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contactand Rogue One: A Star Wars Storypropelled their respective franchises to new heights. While Star Trek Generationswelcomed Captain Jean-Luc Picard’screw to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk. Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope, it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story, The Mandalorian, Andor, Ahsoka, The Acolyte, and more.
    The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif.
    A final frame from the Battle of Scarif in Rogue One: A Star Wars Story.
    A Context for Conflict
    In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design.
    On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Ersoand Cassian Andorand the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival.
    From Physical to Digital
    By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical modelsfor its features was gradually giving way to innovative computer graphicsmodels, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001.
    Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com.
    However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.”
    John Knollconfers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact.
    Legendary Lineages
    In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.”
    Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet.
    While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got fromVER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.”
    The U.S.S. Enterprise-E in Star Trek: First Contact.
    Familiar Foes
    To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generationand Star Trek: Deep Space Nine, creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin.
    As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.”
    Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back, respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.”
    A final frame from Rogue One: A Star Wars Story.
    Forming Up the Fleets
    In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics.
    Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs, live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples. These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’spersonal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography…
    Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized.
    Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story.
    Tough Little Ships
    The Federation and Rebel Alliance each deployed “tough little ships”in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001!
    Exploration and Hope
    The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire.
    The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope?

    Jay Stobieis a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy.
    #looking #back #two #classics #ilm
    Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’
    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One. By Jay Stobie Visual effects supervisor John Knollconfers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact. Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contactand Rogue One: A Star Wars Storypropelled their respective franchises to new heights. While Star Trek Generationswelcomed Captain Jean-Luc Picard’screw to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk. Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope, it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story, The Mandalorian, Andor, Ahsoka, The Acolyte, and more. The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif. A final frame from the Battle of Scarif in Rogue One: A Star Wars Story. A Context for Conflict In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design. On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Ersoand Cassian Andorand the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival. From Physical to Digital By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical modelsfor its features was gradually giving way to innovative computer graphicsmodels, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001. Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com. However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.” John Knollconfers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact. Legendary Lineages In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.” Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet. While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got fromVER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.” The U.S.S. Enterprise-E in Star Trek: First Contact. Familiar Foes To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generationand Star Trek: Deep Space Nine, creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin. As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.” Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back, respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.” A final frame from Rogue One: A Star Wars Story. Forming Up the Fleets In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics. Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs, live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples. These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’spersonal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography… Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized. Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story. Tough Little Ships The Federation and Rebel Alliance each deployed “tough little ships”in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001! Exploration and Hope The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire. The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope? – Jay Stobieis a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy. #looking #back #two #classics #ilm
    WWW.ILM.COM
    Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’
    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One. By Jay Stobie Visual effects supervisor John Knoll (right) confers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact (Credit: ILM). Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contact (1996) and Rogue One: A Star Wars Story (2016) propelled their respective franchises to new heights. While Star Trek Generations (1994) welcomed Captain Jean-Luc Picard’s (Patrick Stewart) crew to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk (William Shatner). Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope (1977), it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story (2018), The Mandalorian (2019-23), Andor (2022-25), Ahsoka (2023), The Acolyte (2024), and more. The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif. A final frame from the Battle of Scarif in Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). A Context for Conflict In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design. On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Erso (Felicity Jones) and Cassian Andor (Diego Luna) and the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival. From Physical to Digital By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical models (many of which were built by ILM) for its features was gradually giving way to innovative computer graphics (CG) models, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001. Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com. However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.” John Knoll (second from left) confers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact (Credit: ILM). Legendary Lineages In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.” Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet. While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got from [equipment vendor] VER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.” The U.S.S. Enterprise-E in Star Trek: First Contact (Credit: Paramount). Familiar Foes To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generation (1987) and Star Trek: Deep Space Nine (1993), creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin. As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.” Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back (1980), respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.” A final frame from Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). Forming Up the Fleets In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics. Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs (the MC75 cruiser Profundity and U-wings), live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples (Nebulon-B frigates, X-wings, Y-wings, and more). These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’s (Carrie Fisher and Ingvild Deila) personal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography… Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized. Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). Tough Little Ships The Federation and Rebel Alliance each deployed “tough little ships” (an endearing description Commander William T. Riker [Jonathan Frakes] bestowed upon the U.S.S. Defiant in First Contact) in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001! Exploration and Hope The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire. The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope? – Jay Stobie (he/him) is a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy.
    0 Comments 0 Shares