• Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA

    AI is packing and shipping efficiency for the retail and consumer packaged goodsindustries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs.
    Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online.
    At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees.
    3D Digital Twins and AI Transform Marketing, Advertising and Product Design
    The meeting of generative AI and 3D product digital twins results in unlimited creative potential.
    Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels.
    The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch.
    Image courtesy of Nestlé
    The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure.
    Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands.
    LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy.
    The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale.
    The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation.
    Image courtesy of Grip
    L’Oréal Gives Marketing and Online Shopping an AI Makeover
    Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI.
    L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines.
    “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.”
    CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences.
    The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates.

    Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products.
    Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare.
    “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.” 

    The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure.
    Rapid Innovation With the NVIDIA Partner Ecosystem
    NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI.
    Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference.
    AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need.
    The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale.
    Physical AI Brings Acceleration to Supply Chain and Logistics
    AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%.
    Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments.
    Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers.
    From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations.
    Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    #retail #reboot #major #global #brands
    Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA
    AI is packing and shipping efficiency for the retail and consumer packaged goodsindustries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs. Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online. At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees. 3D Digital Twins and AI Transform Marketing, Advertising and Product Design The meeting of generative AI and 3D product digital twins results in unlimited creative potential. Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels. The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch. Image courtesy of Nestlé The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure. Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands. LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy. The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale. The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation. Image courtesy of Grip L’Oréal Gives Marketing and Online Shopping an AI Makeover Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI. L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines. “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.” CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences. The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates. Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products. Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare. “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.”  The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure. Rapid Innovation With the NVIDIA Partner Ecosystem NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI. Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference. AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need. The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale. Physical AI Brings Acceleration to Supply Chain and Logistics AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%. Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments. Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers. From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations. Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. #retail #reboot #major #global #brands
    BLOGS.NVIDIA.COM
    Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA
    AI is packing and shipping efficiency for the retail and consumer packaged goods (CPG) industries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs. Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online. At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees. 3D Digital Twins and AI Transform Marketing, Advertising and Product Design The meeting of generative AI and 3D product digital twins results in unlimited creative potential. Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels. The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch. Image courtesy of Nestlé The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure. Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands. LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy. The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale. The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation. Image courtesy of Grip L’Oréal Gives Marketing and Online Shopping an AI Makeover Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI. L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines. “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.” CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences. The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates. Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products. Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare. “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.”  https://blogs.nvidia.com/wp-content/uploads/2025/06/Noli_Demo.mp4 The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure. Rapid Innovation With the NVIDIA Partner Ecosystem NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI. Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference. AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need. The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale. Physical AI Brings Acceleration to Supply Chain and Logistics AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%. Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments. Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers. From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations. Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    Like
    Love
    Sad
    Wow
    Angry
    23
    0 Comentários 0 Compartilhamentos
  • NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI

    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions.
    Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges.
    To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure.
    Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations.
    Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint.

    NVIDIA Omniverse Blueprint for Smart City AI 
    The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes:

    NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale.
    NVIDIA Cosmos to generate synthetic data at scale for post-training AI models.
    NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language modelsand large language models.
    NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization, helping process vast amounts of video data and provide critical insights to optimize business processes.

    The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint.
    NVIDIA Partner Ecosystem Powers Smart Cities Worldwide
    The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own.
    SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning.
    This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management.
    Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption.

    The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second.
    Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events.
    To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second.

    Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance.
    Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases.
    The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems.

    Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins.
    Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%.

    Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance.
    Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities.
    Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents.
    Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    #nvidia #brings #physical #european #cities
    NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI
    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions. Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges. To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure. Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations. Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint. NVIDIA Omniverse Blueprint for Smart City AI  The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes: NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale. NVIDIA Cosmos to generate synthetic data at scale for post-training AI models. NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language modelsand large language models. NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization, helping process vast amounts of video data and provide critical insights to optimize business processes. The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint. NVIDIA Partner Ecosystem Powers Smart Cities Worldwide The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own. SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning. This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management. Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption. The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second. Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events. To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second. Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance. Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases. The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems. Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins. Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%. Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance. Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities. Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents. Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. #nvidia #brings #physical #european #cities
    BLOGS.NVIDIA.COM
    NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI
    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions. Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges. To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure. Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations. Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint. NVIDIA Omniverse Blueprint for Smart City AI  The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes: NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale. NVIDIA Cosmos to generate synthetic data at scale for post-training AI models. NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language models (VLMs) and large language models. NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization (VSS), helping process vast amounts of video data and provide critical insights to optimize business processes. The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint. NVIDIA Partner Ecosystem Powers Smart Cities Worldwide The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own. SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning. This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management. Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption. https://blogs.nvidia.com/wp-content/uploads/2025/06/01-Monaco-Akila.mp4 The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second. Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events. To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second. https://blogs.nvidia.com/wp-content/uploads/2025/06/02-K2K-Polermo-1600x900-1.mp4 Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance. Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases. The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems. https://blogs.nvidia.com/wp-content/uploads/2025/06/03-Milestone.mp4 Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins. Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%. https://blogs.nvidia.com/wp-content/uploads/2025/06/02-Linker-Vision-1280x680-1.mp4 Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance. Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities. Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents. Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    Like
    Love
    Wow
    34
    0 Comentários 0 Compartilhamentos
  • Looker Studio, formerly known as Google Data Studio, is the magical place where data goes to become “insights” with just a few clicks. Because who needs extensive training or complex analysis when you can slap together a dashboard and call it a day? It’s the perfect tool for those who want to look busy while avoiding the actual work of interpreting data. Just throw in some colors, charts, and voilà! You’re a data wizard. The best part? It’s free! Which is ideal for all those who enjoy the thrill of getting something for nothing. So, jump on the Looker Studio bandwagon and let the world believe you’re a data genius—at least until they ask you to explain it.

    #LookerStudio #Data
    Looker Studio, formerly known as Google Data Studio, is the magical place where data goes to become “insights” with just a few clicks. Because who needs extensive training or complex analysis when you can slap together a dashboard and call it a day? It’s the perfect tool for those who want to look busy while avoiding the actual work of interpreting data. Just throw in some colors, charts, and voilà! You’re a data wizard. The best part? It’s free! Which is ideal for all those who enjoy the thrill of getting something for nothing. So, jump on the Looker Studio bandwagon and let the world believe you’re a data genius—at least until they ask you to explain it. #LookerStudio #Data
    ¿Qué es Looker Studio?
    En el mundo del análisis de datos, la visualización es clave para interpretar y comunicar insights de manera efectiva. Looker Studio, anteriormente conocido como Google Data Studio, es la respuesta de Google a esta necesidad, ofreciendo una plataform
    1 Comentários 0 Compartilhamentos
  • iPad, Apple, tablet, macOS, technology, innovation, user experience, software, design, devices

    ## Introduction

    In the ever-evolving world of technology, Apple has always stood at the forefront, captivating millions with its innovative devices. One product that has sparked considerable debate is the iPad. With the question, "Is Apple still trying to figure out what an iPad actually is?" echoing through the tech community, we delve into the company's insights on why the iPad should not run macOS...
    iPad, Apple, tablet, macOS, technology, innovation, user experience, software, design, devices ## Introduction In the ever-evolving world of technology, Apple has always stood at the forefront, captivating millions with its innovative devices. One product that has sparked considerable debate is the iPad. With the question, "Is Apple still trying to figure out what an iPad actually is?" echoing through the tech community, we delve into the company's insights on why the iPad should not run macOS...
    Is Apple Still Trying to Figure Out What an iPad Actually Is?
    iPad, Apple, tablet, macOS, technology, innovation, user experience, software, design, devices ## Introduction In the ever-evolving world of technology, Apple has always stood at the forefront, captivating millions with its innovative devices. One product that has sparked considerable debate is the iPad. With the question, "Is Apple still trying to figure out what an iPad actually is?"...
    Like
    Love
    Wow
    Sad
    Angry
    89
    1 Comentários 0 Compartilhamentos
  • Hello, amazing community!

    Today, I want to share a truly uplifting journey that we are on together, and it's all about our path toward B Corp certification! This isn't just a goal; it's a testament to our values and our commitment to making a positive impact in the world.

    Engagement, structuration, and community have been the pillars of our approach as we work towards (re)certification. What does this mean for us? Well, it means that we are not just focused on our business but are dedicated to building a thriving community that supports each other and the planet!

    As we reflect on our journey, we've learned that every step we take toward B Corp certification is not just about meeting standards; it’s about accelerating our impact and revealing the true essence of who we are! The challenges we faced have only strengthened our resolve, and every small victory has been a reminder of our collective power.

    In this pursuit, we have engaged with our stakeholders and listened to their insights, which has helped us structure our operations in a way that aligns with our mission. It’s all about collaboration and transparency! When we work together, we can achieve incredible things!

    Looking ahead, we are thrilled about our recertification in 2025! This is not just a date on the calendar; it’s a milestone that encourages us to push our limits, innovate, and continue to uplift our community and environment. We are excited to explore new ways to enhance our engagement with all of you, our beloved community!

    So let’s embrace this journey together! Let’s inspire one another, share our stories, and celebrate every achievement along the way. Remember, every effort counts, and together, we can create a brighter future for all!

    Stay tuned for more updates on our progress, and let’s keep the momentum going! Together, we can make a difference!

    #BCorp #CommunityEngagement #SustainableBusiness #PositiveImpact #TogetherWeCan
    🌟 Hello, amazing community! 🌟 Today, I want to share a truly uplifting journey that we are on together, and it's all about our path toward B Corp certification! 🚀✨ This isn't just a goal; it's a testament to our values and our commitment to making a positive impact in the world. 🌍💚 Engagement, structuration, and community have been the pillars of our approach as we work towards (re)certification. What does this mean for us? Well, it means that we are not just focused on our business but are dedicated to building a thriving community that supports each other and the planet! 🌱🤝 As we reflect on our journey, we've learned that every step we take toward B Corp certification is not just about meeting standards; it’s about accelerating our impact and revealing the true essence of who we are! 🌈✨ The challenges we faced have only strengthened our resolve, and every small victory has been a reminder of our collective power. 💪💖 In this pursuit, we have engaged with our stakeholders and listened to their insights, which has helped us structure our operations in a way that aligns with our mission. It’s all about collaboration and transparency! When we work together, we can achieve incredible things! 🤗🌟 Looking ahead, we are thrilled about our recertification in 2025! This is not just a date on the calendar; it’s a milestone that encourages us to push our limits, innovate, and continue to uplift our community and environment. 🌍💡 We are excited to explore new ways to enhance our engagement with all of you, our beloved community! So let’s embrace this journey together! Let’s inspire one another, share our stories, and celebrate every achievement along the way. Remember, every effort counts, and together, we can create a brighter future for all! 🌟💖 Stay tuned for more updates on our progress, and let’s keep the momentum going! Together, we can make a difference! 🎉💚 #BCorp #CommunityEngagement #SustainableBusiness #PositiveImpact #TogetherWeCan
    Engagement, structuration, communauté : notre cheminement vers la (re)certification B Corp
    Retour sur notre parcours vers la certification B Corp, un levier d’accélération autant qu’un révélateur, puis vers notre recertification en 2025 !
    Like
    Love
    Wow
    Sad
    Angry
    259
    1 Comentários 0 Compartilhamentos
  • Dive into the mesmerizing world of VFX with the epic drama series "Shōgun"!

    Have you ever wondered how stunning visual effects can transform a story and make history come alive? Well, the groundbreaking series "Shōgun," set in the enchanting Japan of the 1600s, is a perfect example that showcases the magic of storytelling through incredible visuals!

    I recently watched an inspiring interview with the talented team from Important Looking Pirates (ILP VFX) during SIGGRAPH Asia, and I can’t help but feel excited about the future of visual effects in the entertainment industry! Philip Engström and Niklas Jacobson shared their insights on how they brought the captivating scenes of "Shōgun" to life, blending artistry with technology to create breathtaking moments that enthrall audiences.

    What struck me the most was their passion for their craft! It’s a beautiful reminder that when we pour our hearts into what we love, we can create something extraordinary. Just like the intricate VFX in "Shōgun," our efforts can weave a tapestry of inspiration that uplifts others!

    So, whether you're an aspiring VFX artist, a storyteller, or simply someone with a dream, let this be a call to action! Don't hesitate to dive into your passions and explore the endless possibilities that lie ahead! Use your creativity to transform your visions into reality and inspire those around you. Remember, every masterpiece starts with a single step!

    Let’s celebrate the power of visual storytelling and the incredible work of studios like Important Looking Pirates! Together, we can elevate the art of VFX and inspire future generations to dream big and create boldly!

    Keep shining and let your creativity flow!

    #Shogun #VFX #ImportantLookingPirates #VisualEffects #Inspiration
    ✨🌟 Dive into the mesmerizing world of VFX with the epic drama series "Shōgun"! 🌟✨ Have you ever wondered how stunning visual effects can transform a story and make history come alive? 🌍💖 Well, the groundbreaking series "Shōgun," set in the enchanting Japan of the 1600s, is a perfect example that showcases the magic of storytelling through incredible visuals! 🎬✨ I recently watched an inspiring interview with the talented team from Important Looking Pirates (ILP VFX) during SIGGRAPH Asia, and I can’t help but feel excited about the future of visual effects in the entertainment industry! 🎉🙌 Philip Engström and Niklas Jacobson shared their insights on how they brought the captivating scenes of "Shōgun" to life, blending artistry with technology to create breathtaking moments that enthrall audiences. 🌈💡 What struck me the most was their passion for their craft! 💪💖 It’s a beautiful reminder that when we pour our hearts into what we love, we can create something extraordinary. Just like the intricate VFX in "Shōgun," our efforts can weave a tapestry of inspiration that uplifts others! 🌺✨ So, whether you're an aspiring VFX artist, a storyteller, or simply someone with a dream, let this be a call to action! Don't hesitate to dive into your passions and explore the endless possibilities that lie ahead! 🌊💫 Use your creativity to transform your visions into reality and inspire those around you. Remember, every masterpiece starts with a single step! 🚀🌟 Let’s celebrate the power of visual storytelling and the incredible work of studios like Important Looking Pirates! Together, we can elevate the art of VFX and inspire future generations to dream big and create boldly! 💖💪✨ Keep shining and let your creativity flow! 🌈💖 #Shogun #VFX #ImportantLookingPirates #VisualEffects #Inspiration
    Plongez dans VFX de Shōgun avec notre interview vidéo d’Important Looking Pirates !
    La série dramatique historique Shōgun, qui prend place dans le Japon de 1600, a marqué les esprits. Outre un scénario soigné, elle s’appuie sur des effets visuels réussis. A l’occasion du SIGGRAPH Asia, le studio VFX Important Looking Pir
    Like
    Love
    Wow
    Sad
    Angry
    548
    1 Comentários 0 Compartilhamentos
  • Hello, wonderful friends!

    Today, I’m bursting with excitement to share something that could elevate your Twitter (or X) game to the next level! Do you want to manage your profile like a pro without spending a dime? Well, you’re in the right place!

    In our latest article, we've uncovered **15 FREE tools** that will empower you to not only manage your Twitter presence but also analyze it like a champ! Imagine having the ability to understand your audience better, optimize your posts, and engage with your followers in a way that feels genuine and impactful. Isn’t that amazing?

    Whether you’re a budding entrepreneur, a social media enthusiast, or just someone who loves to connect with others, these tools are tailored for you! From basic functionalities to advanced features, we’ve got you covered.

    1. **Manage Your Time**: One of the best free tools can help you schedule your tweets ahead of time, allowing you to maintain a consistent presence without needing to be online 24/7.

    2. **Analyze Your Impact**: Want to know what resonates with your audience? There are fantastic options that provide insights into engagement metrics, helping you understand which posts are truly making a difference!

    3. **Engage Meaningfully**: Building a community is essential, and some tools can assist you in reaching out to followers, replying efficiently, and making everyone feel valued. After all, connection is key!

    And if you’re serious about taking it up a notch, we’ll even introduce you to some advanced paid tools that can provide even deeper insights.

    The best part? You won’t have to break the bank! All the recommendations in our article are either completely free or offer great value for a minimal cost. So, what are you waiting for? Dive into the world of Twitter tools and watch your engagement soar!

    Remember, every great journey begins with a single step. By utilizing these tools, you’re not just managing a profile; you’re building a brand, fostering relationships, and making your voice heard in this vast digital landscape!

    Let’s make our Twitter (or X) experience not just good, but extraordinary! Together, we can create a thriving community that inspires and uplifts! Are you ready to take that leap?

    #TwitterTools #SocialMediaSuccess #EngagementBoost #FreeTools #Inspiration
    🌟 Hello, wonderful friends! 🌟 Today, I’m bursting with excitement to share something that could elevate your Twitter (or X) game to the next level! 🚀 Do you want to manage your profile like a pro without spending a dime? Well, you’re in the right place! 🎉 In our latest article, we've uncovered **15 FREE tools** that will empower you to not only manage your Twitter presence but also analyze it like a champ! 💪✨ Imagine having the ability to understand your audience better, optimize your posts, and engage with your followers in a way that feels genuine and impactful. Isn’t that amazing? 😍 Whether you’re a budding entrepreneur, a social media enthusiast, or just someone who loves to connect with others, these tools are tailored for you! From basic functionalities to advanced features, we’ve got you covered. 💼💖 1. **Manage Your Time**: One of the best free tools can help you schedule your tweets ahead of time, allowing you to maintain a consistent presence without needing to be online 24/7. ⏰✨ 2. **Analyze Your Impact**: Want to know what resonates with your audience? There are fantastic options that provide insights into engagement metrics, helping you understand which posts are truly making a difference! 📈💥 3. **Engage Meaningfully**: Building a community is essential, and some tools can assist you in reaching out to followers, replying efficiently, and making everyone feel valued. After all, connection is key! 🤝❤️ And if you’re serious about taking it up a notch, we’ll even introduce you to some advanced paid tools that can provide even deeper insights. 👍💡 The best part? You won’t have to break the bank! 🎊 All the recommendations in our article are either completely free or offer great value for a minimal cost. So, what are you waiting for? Dive into the world of Twitter tools and watch your engagement soar! 🌈✨ Remember, every great journey begins with a single step. By utilizing these tools, you’re not just managing a profile; you’re building a brand, fostering relationships, and making your voice heard in this vast digital landscape! 🌍💖 Let’s make our Twitter (or X) experience not just good, but extraordinary! Together, we can create a thriving community that inspires and uplifts! Are you ready to take that leap? 🌠💪 #TwitterTools #SocialMediaSuccess #EngagementBoost #FreeTools #Inspiration
    15 Herramientas gratis para Twitter o X: básicas y avanzadas
    15 Herramientas gratis para Twitter o X: básicas y avanzadas En este artículo vamos a recomendarte las mejores herramientas para Twitter o X, con el objetivo de gestionar o analizar de manera profesional tu perfil. Lo mejor de todo, es que procurarem
    Like
    Love
    Wow
    Sad
    Angry
    632
    1 Comentários 0 Compartilhamentos
  • Hey there, fabulous friends!

    Are you ready to take your market research game to the next level? Today, I want to share with you something that can truly transform how you see competition! In this fast-paced world, every entrepreneur and marketer needs to be equipped with the right tools to uncover hidden gems in the market. And guess what? The answer lies in the **14 Best Competitive Intelligence Tools for Market Research**!

    Imagine having the power to peek behind the curtain of your competitors and discover their strategies and tactics! With these amazing tools, you can gather insights that will not only help you understand your market better but also give you the edge you need to soar higher than ever before!

    One standout tool that I absolutely adore is the **Semrush Traffic & Market Toolkit**. It’s like having a secret weapon in your back pocket! This toolkit provides invaluable data about traffic sources, keyword strategies, and much more! Say goodbye to guesswork and hello to informed decisions! Each piece of information you gather brings you one step closer to your goals.

    But that’s not all! Each of the 14 tools has its own unique features that cater to different aspects of competitive intelligence. Whether it's analyzing social media performance, tracking keywords, or monitoring brand mentions, there’s something for everyone! It’s time to embrace the power of knowledge and turn it into your competitive advantage!

    I know that diving into market research might seem daunting, but let me tell you, it’s a thrilling adventure! Every insight you uncover is like finding a treasure map leading you to success! So, don’t shy away from exploring these tools. Embrace them with open arms and watch your business flourish!

    Remember, the only limit to your success is the extent of your imagination and the determination to use the right resources. So gear up, equip yourself with these 14 best competitive intelligence tools, and let’s conquer the market together!

    Let’s lift each other up and share our discoveries! What tools are you excited to try? Drop your thoughts in the comments below! Let’s inspire one another to reach new heights!

    #MarketResearch #CompetitiveIntelligence #BusinessGrowth #Semrush #Inspiration
    🌟 Hey there, fabulous friends! 🌟 Are you ready to take your market research game to the next level? 🚀 Today, I want to share with you something that can truly transform how you see competition! In this fast-paced world, every entrepreneur and marketer needs to be equipped with the right tools to uncover hidden gems in the market. And guess what? The answer lies in the **14 Best Competitive Intelligence Tools for Market Research**! 🎉🎉 Imagine having the power to peek behind the curtain of your competitors and discover their strategies and tactics! With these amazing tools, you can gather insights that will not only help you understand your market better but also give you the edge you need to soar higher than ever before! 🌈✨ One standout tool that I absolutely adore is the **Semrush Traffic & Market Toolkit**. It’s like having a secret weapon in your back pocket! 🕵️‍♂️💼 This toolkit provides invaluable data about traffic sources, keyword strategies, and much more! Say goodbye to guesswork and hello to informed decisions! Each piece of information you gather brings you one step closer to your goals. 🌟 But that’s not all! Each of the 14 tools has its own unique features that cater to different aspects of competitive intelligence. Whether it's analyzing social media performance, tracking keywords, or monitoring brand mentions, there’s something for everyone! It’s time to embrace the power of knowledge and turn it into your competitive advantage! 💪🔥 I know that diving into market research might seem daunting, but let me tell you, it’s a thrilling adventure! Every insight you uncover is like finding a treasure map leading you to success! 🗺️💖 So, don’t shy away from exploring these tools. Embrace them with open arms and watch your business flourish! 🌺 Remember, the only limit to your success is the extent of your imagination and the determination to use the right resources. So gear up, equip yourself with these 14 best competitive intelligence tools, and let’s conquer the market together! 🌍💫 Let’s lift each other up and share our discoveries! What tools are you excited to try? Drop your thoughts in the comments below! 👇💬 Let’s inspire one another to reach new heights! #MarketResearch #CompetitiveIntelligence #BusinessGrowth #Semrush #Inspiration
    The 14 Best Competitive Intelligence Tools for Market Research
    Discover the competition and reveal strategies and tactics of any industry player with these top 14 competitive intelligence tools, including the Semrush Traffic & Market Toolkit.
    Like
    Love
    Wow
    Angry
    Sad
    567
    1 Comentários 0 Compartilhamentos
  • Ankur Kothari Q&A: Customer Engagement Book Interview

    Reading Time: 9 minutes
    In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns.
    But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic.
    This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results.
    Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.

     
    Ankur Kothari Q&A Interview
    1. What types of customer engagement data are most valuable for making strategic business decisions?
    Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns.
    Second would be demographic information: age, location, income, and other relevant personal characteristics.
    Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews.
    Fourth would be the customer journey data.

    We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data.

    2. How do you distinguish between data that is actionable versus data that is just noise?
    First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance.
    Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in.

    You also want to make sure that there is consistency across sources.
    Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory.
    Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy.

    By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions.

    3. How can customer engagement data be used to identify and prioritize new business opportunities?
    First, it helps us to uncover unmet needs.

    By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points.

    Second would be identifying emerging needs.
    Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly.
    Third would be segmentation analysis.
    Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies.
    Last is to build competitive differentiation.

    Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions.

    4. Can you share an example of where data insights directly influenced a critical decision?
    I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings.
    We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms.
    That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs.

    That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial.

    5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time?
    When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences.
    We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments.
    Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content.

    With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns.

    6. How are you doing the 1:1 personalization?
    We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer.
    So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer.
    That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience.

    We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers.

    7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service?
    Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved.
    The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments.

    Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention.

    So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization.

    8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights?
    I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights.

    Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement.

    Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant.
    As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively.
    So there’s a lack of understanding of marketing and sales as domains.
    It’s a huge effort and can take a lot of investment.

    Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing.

    9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data?
    If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge.
    Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side.

    Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important.

    10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before?
    First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do.
    And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations.
    The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it.

    Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one.

    11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations?
    We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI.
    We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals.

    We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization.

    12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data?
    I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points.
    Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us.
    We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels.
    Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms.

    Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps.

    13. How do you ensure data quality and consistency across multiple channels to make these informed decisions?
    We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies.
    While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing.
    We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats.

    On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically.

    14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years?
    The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices.
    Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities.
    We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases.
    As the world is collecting more data, privacy concerns and regulations come into play.
    I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies.
    And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture.

    So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.

     
    This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die.
    Download the PDF or request a physical copy of the book here.
    The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    #ankur #kothari #qampampa #customer #engagement
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage. #ankur #kothari #qampampa #customer #engagement
    WWW.MOENGAGE.COM
    Ankur Kothari Q&A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question (and many others), we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&A: Customer Engagement Book Interview appeared first on MoEngage.
    Like
    Love
    Wow
    Angry
    Sad
    478
    0 Comentários 0 Compartilhamentos