• MrBeast Reverses Course on New Tool After Major Backlash

    YouTube star MrBeast has changed course on his recent AI thumbnail tool announcement after it received backlash online from other creators. While not all feedback on the YouTube creator's idea was negative, it appears it was enough for MrBeast to change direction with the idea.
    #mrbeast #reverses #course #new #tool
    MrBeast Reverses Course on New Tool After Major Backlash
    YouTube star MrBeast has changed course on his recent AI thumbnail tool announcement after it received backlash online from other creators. While not all feedback on the YouTube creator's idea was negative, it appears it was enough for MrBeast to change direction with the idea. #mrbeast #reverses #course #new #tool
    GAMERANT.COM
    MrBeast Reverses Course on New Tool After Major Backlash
    YouTube star MrBeast has changed course on his recent AI thumbnail tool announcement after it received backlash online from other creators. While not all feedback on the YouTube creator's idea was negative, it appears it was enough for MrBeast to change direction with the idea.
    Like
    Wow
    Love
    Angry
    46
    0 Комментарии 0 Поделились
  • NVIDIA Scores Consecutive Win for End-to-End Autonomous Driving Grand Challenge at CVPR

    NVIDIA was today named an Autonomous Grand Challenge winner at the Computer Vision and Pattern Recognitionconference, held this week in Nashville, Tennessee. The announcement was made at the Embodied Intelligence for Autonomous Systems on the Horizon Workshop.
    This marks the second consecutive year that NVIDIA’s topped the leaderboard in the End-to-End Driving at Scale category and the third year in a row winning an Autonomous Grand Challenge award at CVPR.
    The theme of this year’s challenge was “Towards Generalizable Embodied Systems” — based on NAVSIM v2, a data-driven, nonreactive autonomous vehiclesimulation framework.
    The challenge offered researchers the opportunity to explore ways to handle unexpected situations, beyond using only real-world human driving data, to accelerate the development of smarter, safer AVs.
    Generating Safe and Adaptive Driving Trajectories
    Participants of the challenge were tasked with generating driving trajectories from multi-sensor data in a semi-reactive simulation, where the ego vehicle’s plan is fixed at the start, but background traffic changes dynamically.
    Submissions were evaluated using the Extended Predictive Driver Model Score, which measures safety, comfort, compliance and generalization across real-world and synthetic scenarios — pushing the boundaries of robust and generalizable autonomous driving research.
    The NVIDIA AV Applied Research Team’s key innovation was the Generalized Trajectory Scoringmethod, which generates a variety of trajectories and progressively filters out the best one.
    GTRS model architecture showing a unified system for generating and scoring diverse driving trajectories using diffusion- and vocabulary-based trajectories.
    GTRS introduces a combination of coarse sets of trajectories covering a wide range of situations and fine-grained trajectories for safety-critical situations, created using a diffusion policy conditioned on the environment. GTRS then uses a transformer decoder distilled from perception-dependent metrics, focusing on safety, comfort and traffic rule compliance. This decoder progressively filters out the most promising trajectory candidates by capturing subtle but critical differences between similar trajectories.
    This system has proved to generalize well to a wide range of scenarios, achieving state-of-the-art results on challenging benchmarks and enabling robust, adaptive trajectory selection in diverse and challenging driving conditions.

    NVIDIA Automotive Research at CVPR 
    More than 60 NVIDIA papers were accepted for CVPR 2025, spanning automotive, healthcare, robotics and more.
    In automotive, NVIDIA researchers are advancing physical AI with innovation in perception, planning and data generation. This year, three NVIDIA papers were nominated for the Best Paper Award: FoundationStereo, Zero-Shot Monocular Scene Flow and Difix3D+.
    The NVIDIA papers listed below showcase breakthroughs in stereo depth estimation, monocular motion understanding, 3D reconstruction, closed-loop planning, vision-language modeling and generative simulation — all critical to building safer, more generalizable AVs:

    Diffusion Renderer: Neural Inverse and Forward Rendering With Video Diffusion ModelsFoundationStereo: Zero-Shot Stereo MatchingZero-Shot Monocular Scene Flow Estimation in the WildDifix3D+: Improving 3D Reconstructions With Single-Step Diffusion Models3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting
    Closed-Loop Supervised Fine-Tuning of Tokenized Traffic Models
    Zero-Shot 4D Lidar Panoptic Segmentation
    NVILA: Efficient Frontier Visual Language Models
    RADIO Amplified: Improved Baselines for Agglomerative Vision Foundation Models
    OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving With Counterfactual Reasoning

    Explore automotive workshops and tutorials at CVPR, including:

    Workshop on Data-Driven Autonomous Driving Simulation, featuring Marco Pavone, senior director of AV research at NVIDIA, and Sanja Fidler, vice president of AI research at NVIDIA
    Workshop on Autonomous Driving, featuring Laura Leal-Taixe, senior research manager at NVIDIA
    Workshop on Open-World 3D Scene Understanding with Foundation Models, featuring Leal-Taixe
    Safe Artificial Intelligence for All Domains, featuring Jose Alvarez, director of AV applied research at NVIDIA
    Workshop on Foundation Models for V2X-Based Cooperative Autonomous Driving, featuring Pavone and Leal-Taixe
    Workshop on Multi-Agent Embodied Intelligent Systems Meet Generative AI Era, featuring Pavone
    LatinX in CV Workshop, featuring Leal-Taixe
    Workshop on Exploring the Next Generation of Data, featuring Alvarez
    Full-Stack, GPU-Based Acceleration of Deep Learning and Foundation Models, led by NVIDIA
    Continuous Data Cycle via Foundation Models, led by NVIDIA
    Distillation of Foundation Models for Autonomous Driving, led by NVIDIA

    Explore the NVIDIA research papers to be presented at CVPR and watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang.
    Learn more about NVIDIA Research, a global team of hundreds of scientists and engineers focused on topics including AI, computer graphics, computer vision, self-driving cars and robotics.
    The featured image above shows how an autonomous vehicle adapts its trajectory to navigate an urban environment with dynamic traffic using the GTRS model.
    #nvidia #scores #consecutive #win #endtoend
    NVIDIA Scores Consecutive Win for End-to-End Autonomous Driving Grand Challenge at CVPR
    NVIDIA was today named an Autonomous Grand Challenge winner at the Computer Vision and Pattern Recognitionconference, held this week in Nashville, Tennessee. The announcement was made at the Embodied Intelligence for Autonomous Systems on the Horizon Workshop. This marks the second consecutive year that NVIDIA’s topped the leaderboard in the End-to-End Driving at Scale category and the third year in a row winning an Autonomous Grand Challenge award at CVPR. The theme of this year’s challenge was “Towards Generalizable Embodied Systems” — based on NAVSIM v2, a data-driven, nonreactive autonomous vehiclesimulation framework. The challenge offered researchers the opportunity to explore ways to handle unexpected situations, beyond using only real-world human driving data, to accelerate the development of smarter, safer AVs. Generating Safe and Adaptive Driving Trajectories Participants of the challenge were tasked with generating driving trajectories from multi-sensor data in a semi-reactive simulation, where the ego vehicle’s plan is fixed at the start, but background traffic changes dynamically. Submissions were evaluated using the Extended Predictive Driver Model Score, which measures safety, comfort, compliance and generalization across real-world and synthetic scenarios — pushing the boundaries of robust and generalizable autonomous driving research. The NVIDIA AV Applied Research Team’s key innovation was the Generalized Trajectory Scoringmethod, which generates a variety of trajectories and progressively filters out the best one. GTRS model architecture showing a unified system for generating and scoring diverse driving trajectories using diffusion- and vocabulary-based trajectories. GTRS introduces a combination of coarse sets of trajectories covering a wide range of situations and fine-grained trajectories for safety-critical situations, created using a diffusion policy conditioned on the environment. GTRS then uses a transformer decoder distilled from perception-dependent metrics, focusing on safety, comfort and traffic rule compliance. This decoder progressively filters out the most promising trajectory candidates by capturing subtle but critical differences between similar trajectories. This system has proved to generalize well to a wide range of scenarios, achieving state-of-the-art results on challenging benchmarks and enabling robust, adaptive trajectory selection in diverse and challenging driving conditions. NVIDIA Automotive Research at CVPR  More than 60 NVIDIA papers were accepted for CVPR 2025, spanning automotive, healthcare, robotics and more. In automotive, NVIDIA researchers are advancing physical AI with innovation in perception, planning and data generation. This year, three NVIDIA papers were nominated for the Best Paper Award: FoundationStereo, Zero-Shot Monocular Scene Flow and Difix3D+. The NVIDIA papers listed below showcase breakthroughs in stereo depth estimation, monocular motion understanding, 3D reconstruction, closed-loop planning, vision-language modeling and generative simulation — all critical to building safer, more generalizable AVs: Diffusion Renderer: Neural Inverse and Forward Rendering With Video Diffusion ModelsFoundationStereo: Zero-Shot Stereo MatchingZero-Shot Monocular Scene Flow Estimation in the WildDifix3D+: Improving 3D Reconstructions With Single-Step Diffusion Models3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting Closed-Loop Supervised Fine-Tuning of Tokenized Traffic Models Zero-Shot 4D Lidar Panoptic Segmentation NVILA: Efficient Frontier Visual Language Models RADIO Amplified: Improved Baselines for Agglomerative Vision Foundation Models OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving With Counterfactual Reasoning Explore automotive workshops and tutorials at CVPR, including: Workshop on Data-Driven Autonomous Driving Simulation, featuring Marco Pavone, senior director of AV research at NVIDIA, and Sanja Fidler, vice president of AI research at NVIDIA Workshop on Autonomous Driving, featuring Laura Leal-Taixe, senior research manager at NVIDIA Workshop on Open-World 3D Scene Understanding with Foundation Models, featuring Leal-Taixe Safe Artificial Intelligence for All Domains, featuring Jose Alvarez, director of AV applied research at NVIDIA Workshop on Foundation Models for V2X-Based Cooperative Autonomous Driving, featuring Pavone and Leal-Taixe Workshop on Multi-Agent Embodied Intelligent Systems Meet Generative AI Era, featuring Pavone LatinX in CV Workshop, featuring Leal-Taixe Workshop on Exploring the Next Generation of Data, featuring Alvarez Full-Stack, GPU-Based Acceleration of Deep Learning and Foundation Models, led by NVIDIA Continuous Data Cycle via Foundation Models, led by NVIDIA Distillation of Foundation Models for Autonomous Driving, led by NVIDIA Explore the NVIDIA research papers to be presented at CVPR and watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang. Learn more about NVIDIA Research, a global team of hundreds of scientists and engineers focused on topics including AI, computer graphics, computer vision, self-driving cars and robotics. The featured image above shows how an autonomous vehicle adapts its trajectory to navigate an urban environment with dynamic traffic using the GTRS model. #nvidia #scores #consecutive #win #endtoend
    BLOGS.NVIDIA.COM
    NVIDIA Scores Consecutive Win for End-to-End Autonomous Driving Grand Challenge at CVPR
    NVIDIA was today named an Autonomous Grand Challenge winner at the Computer Vision and Pattern Recognition (CVPR) conference, held this week in Nashville, Tennessee. The announcement was made at the Embodied Intelligence for Autonomous Systems on the Horizon Workshop. This marks the second consecutive year that NVIDIA’s topped the leaderboard in the End-to-End Driving at Scale category and the third year in a row winning an Autonomous Grand Challenge award at CVPR. The theme of this year’s challenge was “Towards Generalizable Embodied Systems” — based on NAVSIM v2, a data-driven, nonreactive autonomous vehicle (AV) simulation framework. The challenge offered researchers the opportunity to explore ways to handle unexpected situations, beyond using only real-world human driving data, to accelerate the development of smarter, safer AVs. Generating Safe and Adaptive Driving Trajectories Participants of the challenge were tasked with generating driving trajectories from multi-sensor data in a semi-reactive simulation, where the ego vehicle’s plan is fixed at the start, but background traffic changes dynamically. Submissions were evaluated using the Extended Predictive Driver Model Score, which measures safety, comfort, compliance and generalization across real-world and synthetic scenarios — pushing the boundaries of robust and generalizable autonomous driving research. The NVIDIA AV Applied Research Team’s key innovation was the Generalized Trajectory Scoring (GTRS) method, which generates a variety of trajectories and progressively filters out the best one. GTRS model architecture showing a unified system for generating and scoring diverse driving trajectories using diffusion- and vocabulary-based trajectories. GTRS introduces a combination of coarse sets of trajectories covering a wide range of situations and fine-grained trajectories for safety-critical situations, created using a diffusion policy conditioned on the environment. GTRS then uses a transformer decoder distilled from perception-dependent metrics, focusing on safety, comfort and traffic rule compliance. This decoder progressively filters out the most promising trajectory candidates by capturing subtle but critical differences between similar trajectories. This system has proved to generalize well to a wide range of scenarios, achieving state-of-the-art results on challenging benchmarks and enabling robust, adaptive trajectory selection in diverse and challenging driving conditions. NVIDIA Automotive Research at CVPR  More than 60 NVIDIA papers were accepted for CVPR 2025, spanning automotive, healthcare, robotics and more. In automotive, NVIDIA researchers are advancing physical AI with innovation in perception, planning and data generation. This year, three NVIDIA papers were nominated for the Best Paper Award: FoundationStereo, Zero-Shot Monocular Scene Flow and Difix3D+. The NVIDIA papers listed below showcase breakthroughs in stereo depth estimation, monocular motion understanding, 3D reconstruction, closed-loop planning, vision-language modeling and generative simulation — all critical to building safer, more generalizable AVs: Diffusion Renderer: Neural Inverse and Forward Rendering With Video Diffusion Models (Read more in this blog.) FoundationStereo: Zero-Shot Stereo Matching (Best Paper nominee) Zero-Shot Monocular Scene Flow Estimation in the Wild (Best Paper nominee) Difix3D+: Improving 3D Reconstructions With Single-Step Diffusion Models (Best Paper nominee) 3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting Closed-Loop Supervised Fine-Tuning of Tokenized Traffic Models Zero-Shot 4D Lidar Panoptic Segmentation NVILA: Efficient Frontier Visual Language Models RADIO Amplified: Improved Baselines for Agglomerative Vision Foundation Models OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving With Counterfactual Reasoning Explore automotive workshops and tutorials at CVPR, including: Workshop on Data-Driven Autonomous Driving Simulation, featuring Marco Pavone, senior director of AV research at NVIDIA, and Sanja Fidler, vice president of AI research at NVIDIA Workshop on Autonomous Driving, featuring Laura Leal-Taixe, senior research manager at NVIDIA Workshop on Open-World 3D Scene Understanding with Foundation Models, featuring Leal-Taixe Safe Artificial Intelligence for All Domains, featuring Jose Alvarez, director of AV applied research at NVIDIA Workshop on Foundation Models for V2X-Based Cooperative Autonomous Driving, featuring Pavone and Leal-Taixe Workshop on Multi-Agent Embodied Intelligent Systems Meet Generative AI Era, featuring Pavone LatinX in CV Workshop, featuring Leal-Taixe Workshop on Exploring the Next Generation of Data, featuring Alvarez Full-Stack, GPU-Based Acceleration of Deep Learning and Foundation Models, led by NVIDIA Continuous Data Cycle via Foundation Models, led by NVIDIA Distillation of Foundation Models for Autonomous Driving, led by NVIDIA Explore the NVIDIA research papers to be presented at CVPR and watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang. Learn more about NVIDIA Research, a global team of hundreds of scientists and engineers focused on topics including AI, computer graphics, computer vision, self-driving cars and robotics. The featured image above shows how an autonomous vehicle adapts its trajectory to navigate an urban environment with dynamic traffic using the GTRS model.
    Like
    Love
    Wow
    Angry
    27
    0 Комментарии 0 Поделились
  • European Robot Makers Adopt NVIDIA Isaac, Omniverse and Halos to Develop Safe, Physical AI-Driven Robot Fleets

    In the face of growing labor shortages and need for sustainability, European manufacturers are racing to reinvent their processes to become software-defined and AI-driven.
    To achieve this, robot developers and industrial digitalization solution providers are working with NVIDIA to build safe, AI-driven robots and industrial technologies to drive modern, sustainable manufacturing.
    At NVIDIA GTC Paris at VivaTech, Europe’s leading robotics companies including Agile Robots, Extend Robotics, Humanoid, idealworks, Neura Robotics, SICK, Universal Robots, Vorwerk and Wandelbots are showcasing their latest AI-driven robots and automation breakthroughs, all accelerated by NVIDIA technologies. In addition, NVIDIA is releasing new models and tools to support the entire robotics ecosystem.
    NVIDIA Releases Tools for Accelerating Robot Development and Safety
    NVIDIA Isaac GR00T N1.5, an open foundation model for humanoid robot reasoning and skills, is now available for download on Hugging Face. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. The NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 open-source robotics simulation and learning frameworks, optimized for NVIDIA RTX PRO 6000 workstations, are available on GitHub for developer preview.
    In addition, NVIDIA announced that NVIDIA Halos — a full-stack, comprehensive safety system that unifies hardware architecture, AI models, software, tools and services — now expands to robotics, promoting safety across the entire development lifecycle of AI-driven robots.
    The NVIDIA Halos AI Systems Inspection Lab has earned accreditation from the ANSI National Accreditation Boardto perform inspections across functional safety for robotics, in addition to automotive vehicles.
    “NVIDIA’s latest evaluation with ANAB verifies the demonstration of competence and compliance with internationally recognized standards, helping ensure that developers of autonomous machines — from automotive to robotics — can meet the highest benchmarks for functional safety,” said R. Douglas Leonard Jr., executive director of ANAB.
    Arcbest, Advantech, Bluewhite, Boston Dynamics, FORT, Inxpect, KION, NexCobot — a NEXCOM company, and Synapticon are among the first robotics companies to join the Halos Inspection Lab, ensuring their products meet NVIDIA safety and cybersecurity requirements.
    To support robotics leaders in strengthening safety across the entire development lifecycle of AI-driven robots, Halos will now provide:

    Safety extension packages for the NVIDIA IGX platform, enabling manufacturers to easily program safety functions into their robots, supported by TÜV Rheinland’s inspection of NVIDIA IGX.
    A robotic safety platform, which includes IGX and NVIDIA Holoscan Sensor Bridge for a unified approach to designing sensor-to-compute architecture with built-in AI safety.
    An outside-in safety AI inspector — an AI-powered agent for monitoring robot operations, helping improve worker safety.

    Europe’s Robotics Ecosystem Builds on NVIDIA’s Three Computers
    Europe’s leading robotics developers and solution providers are integrating the NVIDIA Isaac robotics platform to train, simulate and deploy robots across different embodiments.
    Agile Robots is post-training the GR00T N1 model in Isaac Lab to train its dual-arm manipulator robots, which run on NVIDIA Jetson hardware, to execute a variety of tasks in industrial environments.
    Meanwhile, idealworks has adopted the Mega NVIDIA Omniverse Blueprint for robotic fleet simulation to extend the blueprint’s capabilities to humanoids. Building on the VDA 5050 framework, idealworks contributes to the development of guidance that supports tasks uniquely enabled by humanoid robots, such as picking, moving and placing objects.
    Neura Robotics is integrating NVIDIA Isaac to further enhance its robot development workflows. The company is using GR00T-Mimic to post-train the Isaac GR00T N1 robot foundation model for its service robot MiPA. Neura is also collaborating with SAP and NVIDIA to integrate SAP’s Joule agents with its robots, using the Mega NVIDIA Omniverse Blueprint to simulate and refine robot behavior in complex, realistic operational scenarios before deployment.
    Vorwerk is using NVIDIA technologies to power its AI-driven collaborative robots. The company is post-training GR00T N1 models in Isaac Lab with its custom synthetic data pipeline, which is built on Isaac GR00T-Mimic and powered by the NVIDIA Omniverse platform. The enhanced models are then deployed on NVIDIA Jetson AGX, Jetson Orin or Jetson Thor modules for advanced, real-time home robotics.
    Humanoid is using NVIDIA’s full robotics stack, including Isaac Sim and Isaac Lab, to cut its prototyping time down by six weeks. The company is training its vision language action models on NVIDIA DGX B200 systems to boost the cognitive abilities of its robots, allowing them to operate autonomously in complex environments using Jetson Thor onboard computing.
    Universal Robots is introducing UR15, its fastest collaborative robot yet, to the European market. Using UR’s AI Accelerator — developed on NVIDIA Isaac’s CUDA-accelerated libraries and AI models, as well as NVIDIA Jetson AGX Orin — manufacturers can build AI applications to embed intelligence into the company’s new cobots.
    Wandelbots is showcasing its NOVA Operating System, now integrated with Omniverse, to simulate, validate and optimize robotic behaviors virtually before deploying them to physical robots. Wandelbots also announced a collaboration with EY and EDAG to offer manufacturers a scalable automation platform on Omniverse that speeds up the transition from proof of concept to full-scale deployment.
    Extend Robotics is using the Isaac GR00T platform to enable customers to control and train robots for industrial tasks like visual inspection and handling radioactive materials. The company’s Advanced Mechanics Assistance System lets users collect demonstration data and generate diverse synthetic datasets with NVIDIA GR00T-Mimic and GR00T-Gen to train the GR00T N1 foundation model.
    SICK is enhancing its autonomous perception solutions by integrating new certified sensor models — as well as 2D and 3D lidars, safety scanners and cameras — into NVIDIA Isaac Sim. This enables engineers to virtually design, test and validate machines using SICK’s sensing models within Omniverse, supporting processes spanning product development to large-scale robotic fleet management.
    Toyota Material Handling Europe is working with SoftServe to simulate its autonomous mobile robots working alongside human workers, using the Mega NVIDIA Omniverse Blueprint. Toyota Material Handling Europe is testing and simulating a multitude of traffic scenarios — allowing the company to refine its AI algorithms before real-world deployment.
    NVIDIA’s partner ecosystem is enabling European industries to tap into intelligent, AI-powered robotics. By harnessing advanced simulation, digital twins and generative AI, manufacturers are rapidly developing and deploying safe, adaptable robot fleets that address labor shortages, boost sustainability and drive operational efficiency.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    See notice regarding software product information.
    #european #robot #makers #adopt #nvidia
    European Robot Makers Adopt NVIDIA Isaac, Omniverse and Halos to Develop Safe, Physical AI-Driven Robot Fleets
    In the face of growing labor shortages and need for sustainability, European manufacturers are racing to reinvent their processes to become software-defined and AI-driven. To achieve this, robot developers and industrial digitalization solution providers are working with NVIDIA to build safe, AI-driven robots and industrial technologies to drive modern, sustainable manufacturing. At NVIDIA GTC Paris at VivaTech, Europe’s leading robotics companies including Agile Robots, Extend Robotics, Humanoid, idealworks, Neura Robotics, SICK, Universal Robots, Vorwerk and Wandelbots are showcasing their latest AI-driven robots and automation breakthroughs, all accelerated by NVIDIA technologies. In addition, NVIDIA is releasing new models and tools to support the entire robotics ecosystem. NVIDIA Releases Tools for Accelerating Robot Development and Safety NVIDIA Isaac GR00T N1.5, an open foundation model for humanoid robot reasoning and skills, is now available for download on Hugging Face. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. The NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 open-source robotics simulation and learning frameworks, optimized for NVIDIA RTX PRO 6000 workstations, are available on GitHub for developer preview. In addition, NVIDIA announced that NVIDIA Halos — a full-stack, comprehensive safety system that unifies hardware architecture, AI models, software, tools and services — now expands to robotics, promoting safety across the entire development lifecycle of AI-driven robots. The NVIDIA Halos AI Systems Inspection Lab has earned accreditation from the ANSI National Accreditation Boardto perform inspections across functional safety for robotics, in addition to automotive vehicles. “NVIDIA’s latest evaluation with ANAB verifies the demonstration of competence and compliance with internationally recognized standards, helping ensure that developers of autonomous machines — from automotive to robotics — can meet the highest benchmarks for functional safety,” said R. Douglas Leonard Jr., executive director of ANAB. Arcbest, Advantech, Bluewhite, Boston Dynamics, FORT, Inxpect, KION, NexCobot — a NEXCOM company, and Synapticon are among the first robotics companies to join the Halos Inspection Lab, ensuring their products meet NVIDIA safety and cybersecurity requirements. To support robotics leaders in strengthening safety across the entire development lifecycle of AI-driven robots, Halos will now provide: Safety extension packages for the NVIDIA IGX platform, enabling manufacturers to easily program safety functions into their robots, supported by TÜV Rheinland’s inspection of NVIDIA IGX. A robotic safety platform, which includes IGX and NVIDIA Holoscan Sensor Bridge for a unified approach to designing sensor-to-compute architecture with built-in AI safety. An outside-in safety AI inspector — an AI-powered agent for monitoring robot operations, helping improve worker safety. Europe’s Robotics Ecosystem Builds on NVIDIA’s Three Computers Europe’s leading robotics developers and solution providers are integrating the NVIDIA Isaac robotics platform to train, simulate and deploy robots across different embodiments. Agile Robots is post-training the GR00T N1 model in Isaac Lab to train its dual-arm manipulator robots, which run on NVIDIA Jetson hardware, to execute a variety of tasks in industrial environments. Meanwhile, idealworks has adopted the Mega NVIDIA Omniverse Blueprint for robotic fleet simulation to extend the blueprint’s capabilities to humanoids. Building on the VDA 5050 framework, idealworks contributes to the development of guidance that supports tasks uniquely enabled by humanoid robots, such as picking, moving and placing objects. Neura Robotics is integrating NVIDIA Isaac to further enhance its robot development workflows. The company is using GR00T-Mimic to post-train the Isaac GR00T N1 robot foundation model for its service robot MiPA. Neura is also collaborating with SAP and NVIDIA to integrate SAP’s Joule agents with its robots, using the Mega NVIDIA Omniverse Blueprint to simulate and refine robot behavior in complex, realistic operational scenarios before deployment. Vorwerk is using NVIDIA technologies to power its AI-driven collaborative robots. The company is post-training GR00T N1 models in Isaac Lab with its custom synthetic data pipeline, which is built on Isaac GR00T-Mimic and powered by the NVIDIA Omniverse platform. The enhanced models are then deployed on NVIDIA Jetson AGX, Jetson Orin or Jetson Thor modules for advanced, real-time home robotics. Humanoid is using NVIDIA’s full robotics stack, including Isaac Sim and Isaac Lab, to cut its prototyping time down by six weeks. The company is training its vision language action models on NVIDIA DGX B200 systems to boost the cognitive abilities of its robots, allowing them to operate autonomously in complex environments using Jetson Thor onboard computing. Universal Robots is introducing UR15, its fastest collaborative robot yet, to the European market. Using UR’s AI Accelerator — developed on NVIDIA Isaac’s CUDA-accelerated libraries and AI models, as well as NVIDIA Jetson AGX Orin — manufacturers can build AI applications to embed intelligence into the company’s new cobots. Wandelbots is showcasing its NOVA Operating System, now integrated with Omniverse, to simulate, validate and optimize robotic behaviors virtually before deploying them to physical robots. Wandelbots also announced a collaboration with EY and EDAG to offer manufacturers a scalable automation platform on Omniverse that speeds up the transition from proof of concept to full-scale deployment. Extend Robotics is using the Isaac GR00T platform to enable customers to control and train robots for industrial tasks like visual inspection and handling radioactive materials. The company’s Advanced Mechanics Assistance System lets users collect demonstration data and generate diverse synthetic datasets with NVIDIA GR00T-Mimic and GR00T-Gen to train the GR00T N1 foundation model. SICK is enhancing its autonomous perception solutions by integrating new certified sensor models — as well as 2D and 3D lidars, safety scanners and cameras — into NVIDIA Isaac Sim. This enables engineers to virtually design, test and validate machines using SICK’s sensing models within Omniverse, supporting processes spanning product development to large-scale robotic fleet management. Toyota Material Handling Europe is working with SoftServe to simulate its autonomous mobile robots working alongside human workers, using the Mega NVIDIA Omniverse Blueprint. Toyota Material Handling Europe is testing and simulating a multitude of traffic scenarios — allowing the company to refine its AI algorithms before real-world deployment. NVIDIA’s partner ecosystem is enabling European industries to tap into intelligent, AI-powered robotics. By harnessing advanced simulation, digital twins and generative AI, manufacturers are rapidly developing and deploying safe, adaptable robot fleets that address labor shortages, boost sustainability and drive operational efficiency. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. See notice regarding software product information. #european #robot #makers #adopt #nvidia
    BLOGS.NVIDIA.COM
    European Robot Makers Adopt NVIDIA Isaac, Omniverse and Halos to Develop Safe, Physical AI-Driven Robot Fleets
    In the face of growing labor shortages and need for sustainability, European manufacturers are racing to reinvent their processes to become software-defined and AI-driven. To achieve this, robot developers and industrial digitalization solution providers are working with NVIDIA to build safe, AI-driven robots and industrial technologies to drive modern, sustainable manufacturing. At NVIDIA GTC Paris at VivaTech, Europe’s leading robotics companies including Agile Robots, Extend Robotics, Humanoid, idealworks, Neura Robotics, SICK, Universal Robots, Vorwerk and Wandelbots are showcasing their latest AI-driven robots and automation breakthroughs, all accelerated by NVIDIA technologies. In addition, NVIDIA is releasing new models and tools to support the entire robotics ecosystem. NVIDIA Releases Tools for Accelerating Robot Development and Safety NVIDIA Isaac GR00T N1.5, an open foundation model for humanoid robot reasoning and skills, is now available for download on Hugging Face. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. The NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 open-source robotics simulation and learning frameworks, optimized for NVIDIA RTX PRO 6000 workstations, are available on GitHub for developer preview. In addition, NVIDIA announced that NVIDIA Halos — a full-stack, comprehensive safety system that unifies hardware architecture, AI models, software, tools and services — now expands to robotics, promoting safety across the entire development lifecycle of AI-driven robots. The NVIDIA Halos AI Systems Inspection Lab has earned accreditation from the ANSI National Accreditation Board (ANAB) to perform inspections across functional safety for robotics, in addition to automotive vehicles. “NVIDIA’s latest evaluation with ANAB verifies the demonstration of competence and compliance with internationally recognized standards, helping ensure that developers of autonomous machines — from automotive to robotics — can meet the highest benchmarks for functional safety,” said R. Douglas Leonard Jr., executive director of ANAB. Arcbest, Advantech, Bluewhite, Boston Dynamics, FORT, Inxpect, KION, NexCobot — a NEXCOM company, and Synapticon are among the first robotics companies to join the Halos Inspection Lab, ensuring their products meet NVIDIA safety and cybersecurity requirements. To support robotics leaders in strengthening safety across the entire development lifecycle of AI-driven robots, Halos will now provide: Safety extension packages for the NVIDIA IGX platform, enabling manufacturers to easily program safety functions into their robots, supported by TÜV Rheinland’s inspection of NVIDIA IGX. A robotic safety platform, which includes IGX and NVIDIA Holoscan Sensor Bridge for a unified approach to designing sensor-to-compute architecture with built-in AI safety. An outside-in safety AI inspector — an AI-powered agent for monitoring robot operations, helping improve worker safety. Europe’s Robotics Ecosystem Builds on NVIDIA’s Three Computers Europe’s leading robotics developers and solution providers are integrating the NVIDIA Isaac robotics platform to train, simulate and deploy robots across different embodiments. Agile Robots is post-training the GR00T N1 model in Isaac Lab to train its dual-arm manipulator robots, which run on NVIDIA Jetson hardware, to execute a variety of tasks in industrial environments. Meanwhile, idealworks has adopted the Mega NVIDIA Omniverse Blueprint for robotic fleet simulation to extend the blueprint’s capabilities to humanoids. Building on the VDA 5050 framework, idealworks contributes to the development of guidance that supports tasks uniquely enabled by humanoid robots, such as picking, moving and placing objects. Neura Robotics is integrating NVIDIA Isaac to further enhance its robot development workflows. The company is using GR00T-Mimic to post-train the Isaac GR00T N1 robot foundation model for its service robot MiPA. Neura is also collaborating with SAP and NVIDIA to integrate SAP’s Joule agents with its robots, using the Mega NVIDIA Omniverse Blueprint to simulate and refine robot behavior in complex, realistic operational scenarios before deployment. Vorwerk is using NVIDIA technologies to power its AI-driven collaborative robots. The company is post-training GR00T N1 models in Isaac Lab with its custom synthetic data pipeline, which is built on Isaac GR00T-Mimic and powered by the NVIDIA Omniverse platform. The enhanced models are then deployed on NVIDIA Jetson AGX, Jetson Orin or Jetson Thor modules for advanced, real-time home robotics. Humanoid is using NVIDIA’s full robotics stack, including Isaac Sim and Isaac Lab, to cut its prototyping time down by six weeks. The company is training its vision language action models on NVIDIA DGX B200 systems to boost the cognitive abilities of its robots, allowing them to operate autonomously in complex environments using Jetson Thor onboard computing. Universal Robots is introducing UR15, its fastest collaborative robot yet, to the European market. Using UR’s AI Accelerator — developed on NVIDIA Isaac’s CUDA-accelerated libraries and AI models, as well as NVIDIA Jetson AGX Orin — manufacturers can build AI applications to embed intelligence into the company’s new cobots. Wandelbots is showcasing its NOVA Operating System, now integrated with Omniverse, to simulate, validate and optimize robotic behaviors virtually before deploying them to physical robots. Wandelbots also announced a collaboration with EY and EDAG to offer manufacturers a scalable automation platform on Omniverse that speeds up the transition from proof of concept to full-scale deployment. Extend Robotics is using the Isaac GR00T platform to enable customers to control and train robots for industrial tasks like visual inspection and handling radioactive materials. The company’s Advanced Mechanics Assistance System lets users collect demonstration data and generate diverse synthetic datasets with NVIDIA GR00T-Mimic and GR00T-Gen to train the GR00T N1 foundation model. SICK is enhancing its autonomous perception solutions by integrating new certified sensor models — as well as 2D and 3D lidars, safety scanners and cameras — into NVIDIA Isaac Sim. This enables engineers to virtually design, test and validate machines using SICK’s sensing models within Omniverse, supporting processes spanning product development to large-scale robotic fleet management. Toyota Material Handling Europe is working with SoftServe to simulate its autonomous mobile robots working alongside human workers, using the Mega NVIDIA Omniverse Blueprint. Toyota Material Handling Europe is testing and simulating a multitude of traffic scenarios — allowing the company to refine its AI algorithms before real-world deployment. NVIDIA’s partner ecosystem is enabling European industries to tap into intelligent, AI-powered robotics. By harnessing advanced simulation, digital twins and generative AI, manufacturers are rapidly developing and deploying safe, adaptable robot fleets that address labor shortages, boost sustainability and drive operational efficiency. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. See notice regarding software product information.
    Like
    Love
    Wow
    Angry
    15
    0 Комментарии 0 Поделились
  • Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration

    Telecom companies last year spent nearly billion in capital expenditures and over trillion in operating expenditures.
    These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations.
    For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type.
    These factors directly affect network performance, user experience and energy consumption.
    To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration.
    At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos.
    Automate Network Configuration With the AI Blueprint
    NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices.
    The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI.
    This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures.
    Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies.
    The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input.
    Powered and Deployed by Industry Leaders
    Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience.
    With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes.
    Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond.
    “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.”
    Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies
    The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality.
    Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences.
    NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing.
    Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference.
    For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos.
    Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems.
    Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing.
    The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making.
    Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance, designed to accelerate telecom operators’ journeys toward fully autonomous network operations.
    ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy.
    Get started with the new blueprint today.
    Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA.
    #calling #llms #new #nvidia #blueprint
    Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration
    Telecom companies last year spent nearly billion in capital expenditures and over trillion in operating expenditures. These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations. For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type. These factors directly affect network performance, user experience and energy consumption. To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration. At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos. Automate Network Configuration With the AI Blueprint NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices. The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI. This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures. Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies. The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input. Powered and Deployed by Industry Leaders Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience. With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes. Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond. “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.” Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality. Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences. NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing. Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference. For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos. Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems. Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing. The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making. Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance, designed to accelerate telecom operators’ journeys toward fully autonomous network operations. ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy. Get started with the new blueprint today. Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA. #calling #llms #new #nvidia #blueprint
    BLOGS.NVIDIA.COM
    Calling on LLMs: New NVIDIA AI Blueprint Helps Automate Telco Network Configuration
    Telecom companies last year spent nearly $295 billion in capital expenditures and over $1 trillion in operating expenditures. These large expenses are due in part to laborious manual processes that telcos face when operating networks that require continuous optimizations. For example, telcos must constantly tune network parameters for tasks — such as transferring calls from one network to another or distributing network traffic across multiple servers — based on the time of day, user behavior, mobility and traffic type. These factors directly affect network performance, user experience and energy consumption. To automate these optimization processes and save costs for telcos across the globe, NVIDIA today unveiled at GTC Paris its first AI Blueprint for telco network configuration. At the blueprint’s core are customized large language models trained specifically on telco network data — as well as the full technical and operational architecture for turning the LLMs into an autonomous, goal-driven AI agent for telcos. Automate Network Configuration With the AI Blueprint NVIDIA AI Blueprints — available on build.nvidia.com — are customizable AI workflow examples. They include reference code, documentation and deployment tools that show enterprise developers how to deliver business value with NVIDIA NIM microservices. The AI Blueprint for telco network configuration — built with BubbleRAN 5G solutions and datasets — enables developers, network engineers and telecom providers to automatically optimize the configuration of network parameters using agentic AI. This can streamline operations, reduce costs and significantly improve service quality by embedding continuous learning and adaptability directly into network infrastructures. Traditionally, network configurations required manual intervention or followed rigid rules to adapt to dynamic network conditions. These approaches limited adaptability and increased operational complexities, costs and inefficiencies. The new blueprint helps shift telco operations from relying on static, rules-based systems to operations based on dynamic, AI-driven automation. It enables developers to build advanced, telco-specific AI agents that make real-time, intelligent decisions and autonomously balance trade-offs — such as network speed versus interference, or energy savings versus utilization — without human input. Powered and Deployed by Industry Leaders Trained on 5G data generated by BubbleRAN, and deployed on the BubbleRAN 5G O-RAN platform, the blueprint provides telcos with insight on how to set various parameters to reach performance goals, like achieving a certain bitrate while choosing an acceptable signal-to-noise ratio — a measure that impacts voice quality and thus user experience. With the new AI Blueprint, network engineers can confidently set initial parameter values and update them as demanded by continuous network changes. Norway-based Telenor Group, which serves over 200 million customers globally, is the first telco to integrate the AI Blueprint for telco network configuration as part of its initiative to deploy intelligent, autonomous networks that meet the performance and agility demands of 5G and beyond. “The blueprint is helping us address configuration challenges and enhance quality of service during network installation,” said Knut Fjellheim, chief technology innovation officer at Telenor Maritime. “Implementing it is part of our push toward network automation and follows the successful deployment of agentic AI for real-time network slicing in a private 5G maritime use case.” Industry Partners Deploy Other NVIDIA-Powered Autonomous Network Technologies The AI Blueprint for telco network configuration is just one of many announcements at NVIDIA GTC Paris showcasing how the telecom industry is using agentic AI to make autonomous networks a reality. Beyond the blueprint, leading telecom companies and solutions providers are tapping into NVIDIA accelerated computing, software and microservices to provide breakthrough innovations poised to vastly improve networks and communications services — accelerating the progress to autonomous networks and improving customer experiences. NTT DATA is powering its agentic platform for telcos with NVIDIA accelerated compute and the NVIDIA AI Enterprise software platform. Its first agentic use case is focused on network alarms management, where NVIDIA NIM microservices help automate and power observability, troubleshooting, anomaly detection and resolution with closed loop ticketing. Tata Consultancy Services is delivering agentic AI solutions for telcos built on NVIDIA DGX Cloud and using NVIDIA AI Enterprise to develop, fine-tune and integrate large telco models into AI agent workflows. These range from billing and revenue assurance, autonomous network management to hybrid edge-cloud distributed inference. For example, the company’s anomaly management agentic AI model includes real-time detection and resolution of network anomalies and service performance optimization. This increases business agility and improves operational efficiencies by up to 40% by eliminating human intensive toils, overheads and cross-departmental silos. Prodapt has introduced an autonomous operations workflow for networks, powered by NVIDIA AI Enterprise, that offers agentic AI capabilities to support autonomous telecom networks. AI agents can autonomously monitor networks, detect anomalies in real time, initiate diagnostics, analyze root causes of issues using historical data and correlation techniques, automatically execute corrective actions, and generate, enrich and assign incident tickets through integrated ticketing systems. Accenture announced its new portfolio of agentic AI solutions for telecommunications through its AI Refinery platform, built on NVIDIA AI Enterprise software and accelerated computing. The first available solution, the NOC Agentic App, boosts network operations center tasks by using a generative AI-driven, nonlinear agentic framework to automate processes such as incident and fault management, root cause analysis and configuration planning. Using the Llama 3.1 70B NVIDIA NIM microservice and the AI Refinery Distiller Framework, the NOC Agentic App orchestrates networks of intelligent agents for faster, more efficient decision-making. Infosys is announcing its agentic autonomous operations platform, called Infosys Smart Network Assurance (ISNA), designed to accelerate telecom operators’ journeys toward fully autonomous network operations. ISNA helps address long-standing operational challenges for telcos — such as limited automation and high average time to repair — with an integrated, AI-driven platform that reduces operational costs by up to 40% and shortens fault resolution times by up to 30%. NVIDIA NIM and NeMo microservices enhance the platform’s reasoning and hallucination-detection capabilities, reduce latency and increase accuracy. Get started with the new blueprint today. Learn more about the latest AI advancements for telecom and other industries at NVIDIA GTC Paris, running through Thursday, June 12, at VivaTech, including a keynote from NVIDIA founder and CEO Jensen Huang and a special address from Ronnie Vasishta, senior vice president of telecom at NVIDIA. Plus, hear from industry leaders in a panel session with Orange, Swisscom, Telenor and NVIDIA.
    Like
    Love
    Wow
    Sad
    Angry
    80
    0 Комментарии 0 Поделились
  • Audio Localization Gear Built On The Cheap

    Most humans with two ears have a pretty good sense of directional hearing. However, you can build equipment to localize audio sources, too. That’s precisely what [Sam], [Ezra], and [Ari] …read more
    Audio Localization Gear Built On The Cheap Most humans with two ears have a pretty good sense of directional hearing. However, you can build equipment to localize audio sources, too. That’s precisely what [Sam], [Ezra], and [Ari] …read more
    HACKADAY.COM
    Audio Localization Gear Built On The Cheap
    Most humans with two ears have a pretty good sense of directional hearing. However, you can build equipment to localize audio sources, too. That’s precisely what [Sam], [Ezra], and [Ari] …read more
    1 Комментарии 0 Поделились
  • NVIDIA CEO Drops the Blueprint for Europe’s AI Boom

    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it.
    “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris.
    From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future.

    A New Industrial Revolution
    At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing.
    “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance.
    At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware.
    There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers.
    Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue.
    NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth.
    Quantum Meets Classical
    Europe’s quantum ambitions just got a boost.
    The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems.
    Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction.
    “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.”
    Sovereign Models, Smarter Agents
    European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs.
    “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said.
    These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe.
    “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said.
    Huang explained how NVIDIA is helping countries across Europe build AI infrastructure.
    Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments.
    The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents.
    To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity.
    “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute.
    The Industrial Cloud Goes Live
    AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution.
    “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent.
    Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.”
    To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale.
    “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.”
    NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation.
    And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics.
    The Next Wave
    The next wave of AI has begun — and it’s exponential, Huang explained.
    “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.”
    This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said.
    To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.”
    Huang and Grek, as he explained how AI is driving advancements in robotics.
    These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence.
    “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.”
    With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe.
    Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions.
    #nvidia #ceo #drops #blueprint #europes
    NVIDIA CEO Drops the Blueprint for Europe’s AI Boom
    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it. “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris. From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future. A New Industrial Revolution At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing. “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance. At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware. There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers. Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue. NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth. Quantum Meets Classical Europe’s quantum ambitions just got a boost. The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems. Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction. “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.” Sovereign Models, Smarter Agents European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs. “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said. These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe. “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said. Huang explained how NVIDIA is helping countries across Europe build AI infrastructure. Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments. The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents. To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity. “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute. The Industrial Cloud Goes Live AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution. “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent. Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.” To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale. “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.” NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation. And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics. The Next Wave The next wave of AI has begun — and it’s exponential, Huang explained. “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.” This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said. To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.” Huang and Grek, as he explained how AI is driving advancements in robotics. These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence. “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.” With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe. Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions. #nvidia #ceo #drops #blueprint #europes
    BLOGS.NVIDIA.COM
    NVIDIA CEO Drops the Blueprint for Europe’s AI Boom
    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it. “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris. From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future. A New Industrial Revolution At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing. “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance. At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware. There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers. Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue. NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth. Quantum Meets Classical Europe’s quantum ambitions just got a boost. The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems. Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction. “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.” Sovereign Models, Smarter Agents European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs. “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said. These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe. “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said. Huang explained how NVIDIA is helping countries across Europe build AI infrastructure. Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments. The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents. To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity. “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute. The Industrial Cloud Goes Live AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution. “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent. Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.” To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale. “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.” NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation. And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics. The Next Wave The next wave of AI has begun — and it’s exponential, Huang explained. “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.” This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said. To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.” Huang and Grek, as he explained how AI is driving advancements in robotics. These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence. “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.” With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe. Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions.
    Like
    Love
    Sad
    23
    0 Комментарии 0 Поделились
  • Aston Martin has embarked on a new journey, and while some may say it waters down an iconic brand, I believe every change opens up new possibilities! Just like James Bond, we all have our preferences, but embracing evolution can lead to exciting adventures.

    Let’s keep our spirits high and look forward to what this iconic brand has in store! Remember, every transformation brings with it a chance to redefine greatness. So, let’s celebrate the bold moves and the new directions! Keep shining, everyone!

    #AstonMartin #IconicBrands #NewBeginnings #PositiveChange #EmbraceTheJourney
    Aston Martin has embarked on a new journey, and while some may say it waters down an iconic brand, I believe every change opens up new possibilities! 🌟 Just like James Bond, we all have our preferences, but embracing evolution can lead to exciting adventures. 🚗✨ Let’s keep our spirits high and look forward to what this iconic brand has in store! Remember, every transformation brings with it a chance to redefine greatness. So, let’s celebrate the bold moves and the new directions! Keep shining, everyone! 🌈💪 #AstonMartin #IconicBrands #NewBeginnings #PositiveChange #EmbraceTheJourney
    1 Комментарии 0 Поделились
  • Why Ready or Not feels so real– how Unreal Engine 5 is delivering next-level immersion


    Void's art director and lead designer reveal what it takes to improve on PC perfection.
    Why Ready or Not feels so real– how Unreal Engine 5 is delivering next-level immersion Void's art director and lead designer reveal what it takes to improve on PC perfection.
    WWW.CREATIVEBLOQ.COM
    Why Ready or Not feels so real– how Unreal Engine 5 is delivering next-level immersion
    Void's art director and lead designer reveal what it takes to improve on PC perfection.
    2 Комментарии 0 Поделились
  • Plug and Play: Build a G-Assist Plug-In Today

    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems.
    NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels.

    G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow.
    Below, find popular G-Assist plug-ins, hackathon details and tips to get started.
    Plug-In and Win
    Join the hackathon by registering and checking out the curated technical resources.
    G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation.
    For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins.
    To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code.
    Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action.
    Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16.
    Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in.
    Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit.
    Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver.
    Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows.

    Popular plug-ins include:

    Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay.
    Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay.
    IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device.
    Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists.
    Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more.

    Get G-Assist 
    Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff.
    the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session.
    Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities.
    Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process.
    NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #plug #play #build #gassist #plugin
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #plug #play #build #gassist #plugin
    BLOGS.NVIDIA.COM
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file (plugin.py), requirements.txt, manifest.json, config.json (if applicable), a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU (Intel Pentium G Series, Core i3, i5, i7 or higher; AMD FX, Ryzen 3, 5, 7, 9, Threadripper or higher), specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-In(spiration) Explore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist(ance)  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. Save the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    Like
    Wow
    Love
    Sad
    25
    0 Комментарии 0 Поделились
  • PlayStation PC Games Are Now On Xbox, Sort Of

    While there are some major Xbox releases coming to PS5 this year, the content sharing is largely still in one direction. Sony doesn't seem to be in a hurry to let its big franchise games play in the Xbox sandbox. But thanks to an update for the Xbox PC app, you'll be able to see some top PlayStation games... sort of.Microsoft has unveiled the new aggregated gaming library feature of the Xbox PC app, which allows users to see their games from all PC storefronts including Epic and Steam. As reported by the The Verge's Tom Warren, that means PlayStation games like Spider-Man: Miles Morales that were ported to PC can also show up in the Xbox app.PlayStation PC games on Xbox. Yup pic.twitter.com/WUQJzagdiS — Tom WarrenJune 26, 2025 This shouldn't be too surprising, since Microsoft already confirmed that the upcoming ROG Xbox Ally handheld devices will be able to play Sony's PlayStation titles that have been released on PC. But there won't be any Xbox achievements or any additional functionality for these PS ports.Continue Reading at GameSpot
    #playstation #games #are #now #xbox
    PlayStation PC Games Are Now On Xbox, Sort Of
    While there are some major Xbox releases coming to PS5 this year, the content sharing is largely still in one direction. Sony doesn't seem to be in a hurry to let its big franchise games play in the Xbox sandbox. But thanks to an update for the Xbox PC app, you'll be able to see some top PlayStation games... sort of.Microsoft has unveiled the new aggregated gaming library feature of the Xbox PC app, which allows users to see their games from all PC storefronts including Epic and Steam. As reported by the The Verge's Tom Warren, that means PlayStation games like Spider-Man: Miles Morales that were ported to PC can also show up in the Xbox app.PlayStation PC games on Xbox. Yup 👍 pic.twitter.com/WUQJzagdiS — Tom WarrenJune 26, 2025 This shouldn't be too surprising, since Microsoft already confirmed that the upcoming ROG Xbox Ally handheld devices will be able to play Sony's PlayStation titles that have been released on PC. But there won't be any Xbox achievements or any additional functionality for these PS ports.Continue Reading at GameSpot #playstation #games #are #now #xbox
    WWW.GAMESPOT.COM
    PlayStation PC Games Are Now On Xbox, Sort Of
    While there are some major Xbox releases coming to PS5 this year, the content sharing is largely still in one direction. Sony doesn't seem to be in a hurry to let its big franchise games play in the Xbox sandbox. But thanks to an update for the Xbox PC app, you'll be able to see some top PlayStation games... sort of.Microsoft has unveiled the new aggregated gaming library feature of the Xbox PC app, which allows users to see their games from all PC storefronts including Epic and Steam. As reported by the The Verge's Tom Warren, that means PlayStation games like Spider-Man: Miles Morales that were ported to PC can also show up in the Xbox app.PlayStation PC games on Xbox. Yup 👍 https://t.co/a4Y6iAxG84 pic.twitter.com/WUQJzagdiS — Tom Warren (@tomwarren) June 26, 2025 This shouldn't be too surprising, since Microsoft already confirmed that the upcoming ROG Xbox Ally handheld devices will be able to play Sony's PlayStation titles that have been released on PC. But there won't be any Xbox achievements or any additional functionality for these PS ports.Continue Reading at GameSpot
    0 Комментарии 0 Поделились
Расширенные страницы