• How to set up a WhatsApp account without Facebook or Instagram

    There's no shortage of reasons to stay off the Meta ecosystem, which includes Facebook and Instagram, but there are some places where WhatsApp remains the main form of text-based communication. The app is a great alternative to SMS, since it offers end-to-end encryption and was one of the go-to methods to send uncompressed photos and videos between iPhone and Android users before Apple adopted RCS. Even though Facebook, which later rebranded to Meta, acquired WhatsApp in 2014, it doesn't require a Facebook or Instagram account to get on WhatsApp — just a working phone number.
    How to create a WhatsApp account without Facebook or Instagram
    To start, you need to download WhatsApp on your smartphone. Once you open the app, you can start the registration process by entering a working phone number. After entering your phone number, you'll receive a unique six-digit code that will complete the registration process. From there, you can sort through your contacts on your attached smartphone to build out your WhatsApp network, but you won't have to involve Facebook or Instagram at any point.
    Alternatively, you can request a voice call to deliver the code instead. Either way, once you complete the registration process, you have a WhatsApp account that's not tied to a Facebook or Instagram account.
    How to link WhatsApp to other Meta accounts 
    If you change your mind and want more crossover between your Meta apps, you can go into the app's Settings panel to change that. In Settings, you can find the Accounts Center option with the Meta badge on it. Once you hit it, you'll see options to "Add Facebook account" and "Add Instagram account." Linking these accounts means Meta can offer more personalized experiences across the platforms because of the personal data that's now interconnected.
    You can always remove your WhatsApp account from Meta's Account Center by going back into the same Settings panel. However, any previously combined info will stay combined, but Meta will stop combining any personal data after you remove the account.This article originally appeared on Engadget at
    #how #set #whatsapp #account #without
    How to set up a WhatsApp account without Facebook or Instagram
    There's no shortage of reasons to stay off the Meta ecosystem, which includes Facebook and Instagram, but there are some places where WhatsApp remains the main form of text-based communication. The app is a great alternative to SMS, since it offers end-to-end encryption and was one of the go-to methods to send uncompressed photos and videos between iPhone and Android users before Apple adopted RCS. Even though Facebook, which later rebranded to Meta, acquired WhatsApp in 2014, it doesn't require a Facebook or Instagram account to get on WhatsApp — just a working phone number. How to create a WhatsApp account without Facebook or Instagram To start, you need to download WhatsApp on your smartphone. Once you open the app, you can start the registration process by entering a working phone number. After entering your phone number, you'll receive a unique six-digit code that will complete the registration process. From there, you can sort through your contacts on your attached smartphone to build out your WhatsApp network, but you won't have to involve Facebook or Instagram at any point. Alternatively, you can request a voice call to deliver the code instead. Either way, once you complete the registration process, you have a WhatsApp account that's not tied to a Facebook or Instagram account. How to link WhatsApp to other Meta accounts  If you change your mind and want more crossover between your Meta apps, you can go into the app's Settings panel to change that. In Settings, you can find the Accounts Center option with the Meta badge on it. Once you hit it, you'll see options to "Add Facebook account" and "Add Instagram account." Linking these accounts means Meta can offer more personalized experiences across the platforms because of the personal data that's now interconnected. You can always remove your WhatsApp account from Meta's Account Center by going back into the same Settings panel. However, any previously combined info will stay combined, but Meta will stop combining any personal data after you remove the account.This article originally appeared on Engadget at #how #set #whatsapp #account #without
    WWW.ENGADGET.COM
    How to set up a WhatsApp account without Facebook or Instagram
    There's no shortage of reasons to stay off the Meta ecosystem, which includes Facebook and Instagram, but there are some places where WhatsApp remains the main form of text-based communication. The app is a great alternative to SMS, since it offers end-to-end encryption and was one of the go-to methods to send uncompressed photos and videos between iPhone and Android users before Apple adopted RCS. Even though Facebook, which later rebranded to Meta, acquired WhatsApp in 2014, it doesn't require a Facebook or Instagram account to get on WhatsApp — just a working phone number. How to create a WhatsApp account without Facebook or Instagram To start, you need to download WhatsApp on your smartphone. Once you open the app, you can start the registration process by entering a working phone number. After entering your phone number, you'll receive a unique six-digit code that will complete the registration process. From there, you can sort through your contacts on your attached smartphone to build out your WhatsApp network, but you won't have to involve Facebook or Instagram at any point. Alternatively, you can request a voice call to deliver the code instead. Either way, once you complete the registration process, you have a WhatsApp account that's not tied to a Facebook or Instagram account. How to link WhatsApp to other Meta accounts  If you change your mind and want more crossover between your Meta apps, you can go into the app's Settings panel to change that. In Settings, you can find the Accounts Center option with the Meta badge on it. Once you hit it, you'll see options to "Add Facebook account" and "Add Instagram account." Linking these accounts means Meta can offer more personalized experiences across the platforms because of the personal data that's now interconnected. You can always remove your WhatsApp account from Meta's Account Center by going back into the same Settings panel. However, any previously combined info will stay combined, but Meta will stop combining any personal data after you remove the account.This article originally appeared on Engadget at https://www.engadget.com/social-media/how-to-set-up-a-whatsapp-account-without-facebook-or-instagram-210024705.html?src=rss
    Like
    Love
    Wow
    Sad
    Angry
    421
    0 Reacties 0 aandelen
  • New Zealand’s Email Security Requirements for Government Organizations: What You Need to Know

    The Secure Government EmailCommon Implementation Framework
    New Zealand’s government is introducing a comprehensive email security framework designed to protect official communications from phishing and domain spoofing. This new framework, which will be mandatory for all government agencies by October 2025, establishes clear technical standards to enhance email security and retire the outdated SEEMail service. 
    Key Takeaways

    All NZ government agencies must comply with new email security requirements by October 2025.
    The new framework strengthens trust and security in government communications by preventing spoofing and phishing.
    The framework mandates TLS 1.2+, SPF, DKIM, DMARC with p=reject, MTA-STS, and DLP controls.
    EasyDMARC simplifies compliance with our guided setup, monitoring, and automated reporting.

    Start a Free Trial

    What is the Secure Government Email Common Implementation Framework?
    The Secure Government EmailCommon Implementation Framework is a new government-led initiative in New Zealand designed to standardize email security across all government agencies. Its main goal is to secure external email communication, reduce domain spoofing in phishing attacks, and replace the legacy SEEMail service.
    Why is New Zealand Implementing New Government Email Security Standards?
    The framework was developed by New Zealand’s Department of Internal Affairsas part of its role in managing ICT Common Capabilities. It leverages modern email security controls via the Domain Name Systemto enable the retirement of the legacy SEEMail service and provide:

    Encryption for transmission security
    Digital signing for message integrity
    Basic non-repudiationDomain spoofing protection

    These improvements apply to all emails, not just those routed through SEEMail, offering broader protection across agency communications.
    What Email Security Technologies Are Required by the New NZ SGE Framework?
    The SGE Framework outlines the following key technologies that agencies must implement:

    TLS 1.2 or higher with implicit TLS enforced
    TLS-RPTSPFDKIMDMARCwith reporting
    MTA-STSData Loss Prevention controls

    These technologies work together to ensure encrypted email transmission, validate sender identity, prevent unauthorized use of domains, and reduce the risk of sensitive data leaks.

    Get in touch

    When Do NZ Government Agencies Need to Comply with this Framework?
    All New Zealand government agencies are expected to fully implement the Secure Government EmailCommon Implementation Framework by October 2025. Agencies should begin their planning and deployment now to ensure full compliance by the deadline.
    The All of Government Secure Email Common Implementation Framework v1.0
    What are the Mandated Requirements for Domains?
    Below are the exact requirements for all email-enabled domains under the new framework.
    ControlExact RequirementTLSMinimum TLS 1.2. TLS 1.1, 1.0, SSL, or clear-text not permitted.TLS-RPTAll email-sending domains must have TLS reporting enabled.SPFMust exist and end with -all.DKIMAll outbound email from every sending service must be DKIM-signed at the final hop.DMARCPolicy of p=reject on all email-enabled domains. adkim=s is recommended when not bulk-sending.MTA-STSEnabled and set to enforce.Implicit TLSMust be configured and enforced for every connection.Data Loss PreventionEnforce in line with the New Zealand Information Security Manualand Protective Security Requirements.
    Compliance Monitoring and Reporting
    The All of Government Service Deliveryteam will be monitoring compliance with the framework. Monitoring will initially cover SPF, DMARC, and MTA-STS settings and will be expanded to include DKIM. Changes to these settings will be monitored, enabling reporting on email security compliance across all government agencies. Ongoing monitoring will highlight changes to domains, ensure new domains are set up with security in place, and monitor the implementation of future email security technologies. 
    Should compliance changes occur, such as an agency’s SPF record being changed from -all to ~all, this will be captured so that the AoGSD Security Team can investigate. They will then communicate directly with the agency to determine if an issue exists or if an error has occurred, reviewing each case individually.
    Deployment Checklist for NZ Government Compliance

    Enforce TLS 1.2 minimum, implicit TLS, MTA-STS & TLS-RPT
    SPF with -all
    DKIM on all outbound email
    DMARC p=reject 
    adkim=s where suitable
    For non-email/parked domains: SPF -all, empty DKIM, DMARC reject strict
    Compliance dashboard
    Inbound DMARC evaluation enforced
    DLP aligned with NZISM

    Start a Free Trial

    How EasyDMARC Can Help Government Agencies Comply
    EasyDMARC provides a comprehensive email security solution that simplifies the deployment and ongoing management of DNS-based email security protocols like SPF, DKIM, and DMARC with reporting. Our platform offers automated checks, real-time monitoring, and a guided setup to help government organizations quickly reach compliance.
    1. TLS-RPT / MTA-STS audit
    EasyDMARC enables you to enable the Managed MTA-STS and TLS-RPT option with a single click. We provide the required DNS records and continuously monitor them for issues, delivering reports on TLS negotiation problems. This helps agencies ensure secure email transmission and quickly detect delivery or encryption failures.

    Note: In this screenshot, you can see how to deploy MTA-STS and TLS Reporting by adding just three CNAME records provided by EasyDMARC. It’s recommended to start in “testing” mode, evaluate the TLS-RPT reports, and then gradually switch your MTA-STS policy to “enforce”. The process is simple and takes just a few clicks.

    As shown above, EasyDMARC parses incoming TLS reports into a centralized dashboard, giving you clear visibility into delivery and encryption issues across all sending sources.
    2. SPF with “-all”In the EasyDARC platform, you can run the SPF Record Generator to create a compliant record. Publish your v=spf1 record with “-all” to enforce a hard fail for unauthorized senders and prevent spoofed emails from passing SPF checks. This strengthens your domain’s protection against impersonation.

    Note: It is highly recommended to start adjusting your SPF record only after you begin receiving DMARC reports and identifying your legitimate email sources. As we’ll explain in more detail below, both SPF and DKIM should be adjusted after you gain visibility through reports.
    Making changes without proper visibility can lead to false positives, misconfigurations, and potential loss of legitimate emails. That’s why the first step should always be setting DMARC to p=none, receiving reports, analyzing them, and then gradually fixing any SPF or DKIM issues.
    3. DKIM on all outbound email
    DKIM must be configured for all email sources sending emails on behalf of your domain. This is critical, as DKIM plays a bigger role than SPF when it comes to building domain reputation, surviving auto-forwarding, mailing lists, and other edge cases.
    As mentioned above, DMARC reports provide visibility into your email sources, allowing you to implement DKIM accordingly. If you’re using third-party services like Google Workspace, Microsoft 365, or Mimecast, you’ll need to retrieve the public DKIM key from your provider’s admin interface.
    EasyDMARC maintains a backend directory of over 1,400 email sources. We also give you detailed guidance on how to configure SPF and DKIM correctly for major ESPs. 
    Note: At the end of this article, you’ll find configuration links for well-known ESPs like Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid – helping you avoid common misconfigurations and get aligned with SGE requirements.
    If you’re using a dedicated MTA, DKIM must be implemented manually. EasyDMARC’s DKIM Record Generator lets you generate both public and private keys for your server. The private key is stored on your MTA, while the public key must be published in your DNS.

    4. DMARC p=reject rollout
    As mentioned in previous points, DMARC reporting is the first and most important step on your DMARC enforcement journey. Always start with a p=none policy and configure RUA reports to be sent to EasyDMARC. Use the report insights to identify and fix SPF and DKIM alignment issues, then gradually move to p=quarantine and finally p=reject once all legitimate email sources have been authenticated. 
    This phased approach ensures full protection against domain spoofing without risking legitimate email delivery.

    5. adkim Strict Alignment Check
    This strict alignment check is not always applicable, especially if you’re using third-party bulk ESPs, such as Sendgrid, that require you to set DKIM on a subdomain level. You can set adkim=s in your DMARC TXT record, or simply enable strict mode in EasyDMARC’s Managed DMARC settings. This ensures that only emails with a DKIM signature that exactly match your domain pass alignment, adding an extra layer of protection against domain spoofing. But only do this if you are NOT a bulk sender.

    6. Securing Non-Email Enabled Domains
    The purpose of deploying email security to non-email-enabled domains, or parked domains, is to prevent messages being spoofed from that domain. This requirement remains even if the root-level domain has SP=reject set within its DMARC record.
    Under this new framework, you must bulk import and mark parked domains as “Parked.” Crucially, this requires adjusting SPF settings to an empty record, setting DMARC to p=reject, and ensuring an empty DKIM record is in place: • SPF record: “v=spf1 -all”.
    • Wildcard DKIM record with empty public key.• DMARC record: “v=DMARC1;p=reject;adkim=s;aspf=s;rua=mailto:…”.
    EasyDMARC allows you to add and label parked domains for free. This is important because it helps you monitor any activity from these domains and ensure they remain protected with a strict DMARC policy of p=reject.
    7. Compliance Dashboard
    Use EasyDMARC’s Domain Scanner to assess the security posture of each domain with a clear compliance score and risk level. The dashboard highlights configuration gaps and guides remediation steps, helping government agencies stay on track toward full compliance with the SGE Framework.

    8. Inbound DMARC Evaluation Enforced
    You don’t need to apply any changes if you’re using Google Workspace, Microsoft 365, or other major mailbox providers. Most of them already enforce DMARC evaluation on incoming emails.
    However, some legacy Microsoft 365 setups may still quarantine emails that fail DMARC checks, even when the sending domain has a p=reject policy, instead of rejecting them. This behavior can be adjusted directly from your Microsoft Defender portal. about this in our step-by-step guide on how to set up SPF, DKIM, and DMARC from Microsoft Defender.
    If you’re using a third-party mail provider that doesn’t enforce having a DMARC policy for incoming emails, which is rare, you’ll need to contact their support to request a configuration change.
    9. Data Loss Prevention Aligned with NZISM
    The New Zealand Information Security Manualis the New Zealand Government’s manual on information assurance and information systems security. It includes guidance on data loss prevention, which must be followed to be aligned with the SEG.
    Need Help Setting up SPF and DKIM for your Email Provider?
    Setting up SPF and DKIM for different ESPs often requires specific configurations. Some providers require you to publish SPF and DKIM on a subdomain, while others only require DKIM, or have different formatting rules. We’ve simplified all these steps to help you avoid misconfigurations that could delay your DMARC enforcement, or worse, block legitimate emails from reaching your recipients.
    Below you’ll find comprehensive setup guides for Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid. You can also explore our full blog section that covers setup instructions for many other well-known ESPs.
    Remember, all this information is reflected in your DMARC aggregate reports. These reports give you live visibility into your outgoing email ecosystem, helping you analyze and fix any issues specific to a given provider.
    Here are our step-by-step guides for the most common platforms:

    Google Workspace

    Microsoft 365

    These guides will help ensure your DNS records are configured correctly as part of the Secure Government EmailFramework rollout.
    Meet New Government Email Security Standards With EasyDMARC
    New Zealand’s SEG Framework sets a clear path for government agencies to enhance their email security by October 2025. With EasyDMARC, you can meet these technical requirements efficiently and with confidence. From protocol setup to continuous monitoring and compliance tracking, EasyDMARC streamlines the entire process, ensuring strong protection against spoofing, phishing, and data loss while simplifying your transition from SEEMail.
    #new #zealands #email #security #requirements
    New Zealand’s Email Security Requirements for Government Organizations: What You Need to Know
    The Secure Government EmailCommon Implementation Framework New Zealand’s government is introducing a comprehensive email security framework designed to protect official communications from phishing and domain spoofing. This new framework, which will be mandatory for all government agencies by October 2025, establishes clear technical standards to enhance email security and retire the outdated SEEMail service.  Key Takeaways All NZ government agencies must comply with new email security requirements by October 2025. The new framework strengthens trust and security in government communications by preventing spoofing and phishing. The framework mandates TLS 1.2+, SPF, DKIM, DMARC with p=reject, MTA-STS, and DLP controls. EasyDMARC simplifies compliance with our guided setup, monitoring, and automated reporting. Start a Free Trial What is the Secure Government Email Common Implementation Framework? The Secure Government EmailCommon Implementation Framework is a new government-led initiative in New Zealand designed to standardize email security across all government agencies. Its main goal is to secure external email communication, reduce domain spoofing in phishing attacks, and replace the legacy SEEMail service. Why is New Zealand Implementing New Government Email Security Standards? The framework was developed by New Zealand’s Department of Internal Affairsas part of its role in managing ICT Common Capabilities. It leverages modern email security controls via the Domain Name Systemto enable the retirement of the legacy SEEMail service and provide: Encryption for transmission security Digital signing for message integrity Basic non-repudiationDomain spoofing protection These improvements apply to all emails, not just those routed through SEEMail, offering broader protection across agency communications. What Email Security Technologies Are Required by the New NZ SGE Framework? The SGE Framework outlines the following key technologies that agencies must implement: TLS 1.2 or higher with implicit TLS enforced TLS-RPTSPFDKIMDMARCwith reporting MTA-STSData Loss Prevention controls These technologies work together to ensure encrypted email transmission, validate sender identity, prevent unauthorized use of domains, and reduce the risk of sensitive data leaks. Get in touch When Do NZ Government Agencies Need to Comply with this Framework? All New Zealand government agencies are expected to fully implement the Secure Government EmailCommon Implementation Framework by October 2025. Agencies should begin their planning and deployment now to ensure full compliance by the deadline. The All of Government Secure Email Common Implementation Framework v1.0 What are the Mandated Requirements for Domains? Below are the exact requirements for all email-enabled domains under the new framework. ControlExact RequirementTLSMinimum TLS 1.2. TLS 1.1, 1.0, SSL, or clear-text not permitted.TLS-RPTAll email-sending domains must have TLS reporting enabled.SPFMust exist and end with -all.DKIMAll outbound email from every sending service must be DKIM-signed at the final hop.DMARCPolicy of p=reject on all email-enabled domains. adkim=s is recommended when not bulk-sending.MTA-STSEnabled and set to enforce.Implicit TLSMust be configured and enforced for every connection.Data Loss PreventionEnforce in line with the New Zealand Information Security Manualand Protective Security Requirements. Compliance Monitoring and Reporting The All of Government Service Deliveryteam will be monitoring compliance with the framework. Monitoring will initially cover SPF, DMARC, and MTA-STS settings and will be expanded to include DKIM. Changes to these settings will be monitored, enabling reporting on email security compliance across all government agencies. Ongoing monitoring will highlight changes to domains, ensure new domains are set up with security in place, and monitor the implementation of future email security technologies.  Should compliance changes occur, such as an agency’s SPF record being changed from -all to ~all, this will be captured so that the AoGSD Security Team can investigate. They will then communicate directly with the agency to determine if an issue exists or if an error has occurred, reviewing each case individually. Deployment Checklist for NZ Government Compliance Enforce TLS 1.2 minimum, implicit TLS, MTA-STS & TLS-RPT SPF with -all DKIM on all outbound email DMARC p=reject  adkim=s where suitable For non-email/parked domains: SPF -all, empty DKIM, DMARC reject strict Compliance dashboard Inbound DMARC evaluation enforced DLP aligned with NZISM Start a Free Trial How EasyDMARC Can Help Government Agencies Comply EasyDMARC provides a comprehensive email security solution that simplifies the deployment and ongoing management of DNS-based email security protocols like SPF, DKIM, and DMARC with reporting. Our platform offers automated checks, real-time monitoring, and a guided setup to help government organizations quickly reach compliance. 1. TLS-RPT / MTA-STS audit EasyDMARC enables you to enable the Managed MTA-STS and TLS-RPT option with a single click. We provide the required DNS records and continuously monitor them for issues, delivering reports on TLS negotiation problems. This helps agencies ensure secure email transmission and quickly detect delivery or encryption failures. Note: In this screenshot, you can see how to deploy MTA-STS and TLS Reporting by adding just three CNAME records provided by EasyDMARC. It’s recommended to start in “testing” mode, evaluate the TLS-RPT reports, and then gradually switch your MTA-STS policy to “enforce”. The process is simple and takes just a few clicks. As shown above, EasyDMARC parses incoming TLS reports into a centralized dashboard, giving you clear visibility into delivery and encryption issues across all sending sources. 2. SPF with “-all”In the EasyDARC platform, you can run the SPF Record Generator to create a compliant record. Publish your v=spf1 record with “-all” to enforce a hard fail for unauthorized senders and prevent spoofed emails from passing SPF checks. This strengthens your domain’s protection against impersonation. Note: It is highly recommended to start adjusting your SPF record only after you begin receiving DMARC reports and identifying your legitimate email sources. As we’ll explain in more detail below, both SPF and DKIM should be adjusted after you gain visibility through reports. Making changes without proper visibility can lead to false positives, misconfigurations, and potential loss of legitimate emails. That’s why the first step should always be setting DMARC to p=none, receiving reports, analyzing them, and then gradually fixing any SPF or DKIM issues. 3. DKIM on all outbound email DKIM must be configured for all email sources sending emails on behalf of your domain. This is critical, as DKIM plays a bigger role than SPF when it comes to building domain reputation, surviving auto-forwarding, mailing lists, and other edge cases. As mentioned above, DMARC reports provide visibility into your email sources, allowing you to implement DKIM accordingly. If you’re using third-party services like Google Workspace, Microsoft 365, or Mimecast, you’ll need to retrieve the public DKIM key from your provider’s admin interface. EasyDMARC maintains a backend directory of over 1,400 email sources. We also give you detailed guidance on how to configure SPF and DKIM correctly for major ESPs.  Note: At the end of this article, you’ll find configuration links for well-known ESPs like Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid – helping you avoid common misconfigurations and get aligned with SGE requirements. If you’re using a dedicated MTA, DKIM must be implemented manually. EasyDMARC’s DKIM Record Generator lets you generate both public and private keys for your server. The private key is stored on your MTA, while the public key must be published in your DNS. 4. DMARC p=reject rollout As mentioned in previous points, DMARC reporting is the first and most important step on your DMARC enforcement journey. Always start with a p=none policy and configure RUA reports to be sent to EasyDMARC. Use the report insights to identify and fix SPF and DKIM alignment issues, then gradually move to p=quarantine and finally p=reject once all legitimate email sources have been authenticated.  This phased approach ensures full protection against domain spoofing without risking legitimate email delivery. 5. adkim Strict Alignment Check This strict alignment check is not always applicable, especially if you’re using third-party bulk ESPs, such as Sendgrid, that require you to set DKIM on a subdomain level. You can set adkim=s in your DMARC TXT record, or simply enable strict mode in EasyDMARC’s Managed DMARC settings. This ensures that only emails with a DKIM signature that exactly match your domain pass alignment, adding an extra layer of protection against domain spoofing. But only do this if you are NOT a bulk sender. 6. Securing Non-Email Enabled Domains The purpose of deploying email security to non-email-enabled domains, or parked domains, is to prevent messages being spoofed from that domain. This requirement remains even if the root-level domain has SP=reject set within its DMARC record. Under this new framework, you must bulk import and mark parked domains as “Parked.” Crucially, this requires adjusting SPF settings to an empty record, setting DMARC to p=reject, and ensuring an empty DKIM record is in place: • SPF record: “v=spf1 -all”. • Wildcard DKIM record with empty public key.• DMARC record: “v=DMARC1;p=reject;adkim=s;aspf=s;rua=mailto:…”. EasyDMARC allows you to add and label parked domains for free. This is important because it helps you monitor any activity from these domains and ensure they remain protected with a strict DMARC policy of p=reject. 7. Compliance Dashboard Use EasyDMARC’s Domain Scanner to assess the security posture of each domain with a clear compliance score and risk level. The dashboard highlights configuration gaps and guides remediation steps, helping government agencies stay on track toward full compliance with the SGE Framework. 8. Inbound DMARC Evaluation Enforced You don’t need to apply any changes if you’re using Google Workspace, Microsoft 365, or other major mailbox providers. Most of them already enforce DMARC evaluation on incoming emails. However, some legacy Microsoft 365 setups may still quarantine emails that fail DMARC checks, even when the sending domain has a p=reject policy, instead of rejecting them. This behavior can be adjusted directly from your Microsoft Defender portal. about this in our step-by-step guide on how to set up SPF, DKIM, and DMARC from Microsoft Defender. If you’re using a third-party mail provider that doesn’t enforce having a DMARC policy for incoming emails, which is rare, you’ll need to contact their support to request a configuration change. 9. Data Loss Prevention Aligned with NZISM The New Zealand Information Security Manualis the New Zealand Government’s manual on information assurance and information systems security. It includes guidance on data loss prevention, which must be followed to be aligned with the SEG. Need Help Setting up SPF and DKIM for your Email Provider? Setting up SPF and DKIM for different ESPs often requires specific configurations. Some providers require you to publish SPF and DKIM on a subdomain, while others only require DKIM, or have different formatting rules. We’ve simplified all these steps to help you avoid misconfigurations that could delay your DMARC enforcement, or worse, block legitimate emails from reaching your recipients. Below you’ll find comprehensive setup guides for Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid. You can also explore our full blog section that covers setup instructions for many other well-known ESPs. Remember, all this information is reflected in your DMARC aggregate reports. These reports give you live visibility into your outgoing email ecosystem, helping you analyze and fix any issues specific to a given provider. Here are our step-by-step guides for the most common platforms: Google Workspace Microsoft 365 These guides will help ensure your DNS records are configured correctly as part of the Secure Government EmailFramework rollout. Meet New Government Email Security Standards With EasyDMARC New Zealand’s SEG Framework sets a clear path for government agencies to enhance their email security by October 2025. With EasyDMARC, you can meet these technical requirements efficiently and with confidence. From protocol setup to continuous monitoring and compliance tracking, EasyDMARC streamlines the entire process, ensuring strong protection against spoofing, phishing, and data loss while simplifying your transition from SEEMail. #new #zealands #email #security #requirements
    EASYDMARC.COM
    New Zealand’s Email Security Requirements for Government Organizations: What You Need to Know
    The Secure Government Email (SGE) Common Implementation Framework New Zealand’s government is introducing a comprehensive email security framework designed to protect official communications from phishing and domain spoofing. This new framework, which will be mandatory for all government agencies by October 2025, establishes clear technical standards to enhance email security and retire the outdated SEEMail service.  Key Takeaways All NZ government agencies must comply with new email security requirements by October 2025. The new framework strengthens trust and security in government communications by preventing spoofing and phishing. The framework mandates TLS 1.2+, SPF, DKIM, DMARC with p=reject, MTA-STS, and DLP controls. EasyDMARC simplifies compliance with our guided setup, monitoring, and automated reporting. Start a Free Trial What is the Secure Government Email Common Implementation Framework? The Secure Government Email (SGE) Common Implementation Framework is a new government-led initiative in New Zealand designed to standardize email security across all government agencies. Its main goal is to secure external email communication, reduce domain spoofing in phishing attacks, and replace the legacy SEEMail service. Why is New Zealand Implementing New Government Email Security Standards? The framework was developed by New Zealand’s Department of Internal Affairs (DIA) as part of its role in managing ICT Common Capabilities. It leverages modern email security controls via the Domain Name System (DNS) to enable the retirement of the legacy SEEMail service and provide: Encryption for transmission security Digital signing for message integrity Basic non-repudiation (by allowing only authorized senders) Domain spoofing protection These improvements apply to all emails, not just those routed through SEEMail, offering broader protection across agency communications. What Email Security Technologies Are Required by the New NZ SGE Framework? The SGE Framework outlines the following key technologies that agencies must implement: TLS 1.2 or higher with implicit TLS enforced TLS-RPT (TLS Reporting) SPF (Sender Policy Framework) DKIM (DomainKeys Identified Mail) DMARC (Domain-based Message Authentication, Reporting, and Conformance) with reporting MTA-STS (Mail Transfer Agent Strict Transport Security) Data Loss Prevention controls These technologies work together to ensure encrypted email transmission, validate sender identity, prevent unauthorized use of domains, and reduce the risk of sensitive data leaks. Get in touch When Do NZ Government Agencies Need to Comply with this Framework? All New Zealand government agencies are expected to fully implement the Secure Government Email (SGE) Common Implementation Framework by October 2025. Agencies should begin their planning and deployment now to ensure full compliance by the deadline. The All of Government Secure Email Common Implementation Framework v1.0 What are the Mandated Requirements for Domains? Below are the exact requirements for all email-enabled domains under the new framework. ControlExact RequirementTLSMinimum TLS 1.2. TLS 1.1, 1.0, SSL, or clear-text not permitted.TLS-RPTAll email-sending domains must have TLS reporting enabled.SPFMust exist and end with -all.DKIMAll outbound email from every sending service must be DKIM-signed at the final hop.DMARCPolicy of p=reject on all email-enabled domains. adkim=s is recommended when not bulk-sending.MTA-STSEnabled and set to enforce.Implicit TLSMust be configured and enforced for every connection.Data Loss PreventionEnforce in line with the New Zealand Information Security Manual (NZISM) and Protective Security Requirements (PSR). Compliance Monitoring and Reporting The All of Government Service Delivery (AoGSD) team will be monitoring compliance with the framework. Monitoring will initially cover SPF, DMARC, and MTA-STS settings and will be expanded to include DKIM. Changes to these settings will be monitored, enabling reporting on email security compliance across all government agencies. Ongoing monitoring will highlight changes to domains, ensure new domains are set up with security in place, and monitor the implementation of future email security technologies.  Should compliance changes occur, such as an agency’s SPF record being changed from -all to ~all, this will be captured so that the AoGSD Security Team can investigate. They will then communicate directly with the agency to determine if an issue exists or if an error has occurred, reviewing each case individually. Deployment Checklist for NZ Government Compliance Enforce TLS 1.2 minimum, implicit TLS, MTA-STS & TLS-RPT SPF with -all DKIM on all outbound email DMARC p=reject  adkim=s where suitable For non-email/parked domains: SPF -all, empty DKIM, DMARC reject strict Compliance dashboard Inbound DMARC evaluation enforced DLP aligned with NZISM Start a Free Trial How EasyDMARC Can Help Government Agencies Comply EasyDMARC provides a comprehensive email security solution that simplifies the deployment and ongoing management of DNS-based email security protocols like SPF, DKIM, and DMARC with reporting. Our platform offers automated checks, real-time monitoring, and a guided setup to help government organizations quickly reach compliance. 1. TLS-RPT / MTA-STS audit EasyDMARC enables you to enable the Managed MTA-STS and TLS-RPT option with a single click. We provide the required DNS records and continuously monitor them for issues, delivering reports on TLS negotiation problems. This helps agencies ensure secure email transmission and quickly detect delivery or encryption failures. Note: In this screenshot, you can see how to deploy MTA-STS and TLS Reporting by adding just three CNAME records provided by EasyDMARC. It’s recommended to start in “testing” mode, evaluate the TLS-RPT reports, and then gradually switch your MTA-STS policy to “enforce”. The process is simple and takes just a few clicks. As shown above, EasyDMARC parses incoming TLS reports into a centralized dashboard, giving you clear visibility into delivery and encryption issues across all sending sources. 2. SPF with “-all”In the EasyDARC platform, you can run the SPF Record Generator to create a compliant record. Publish your v=spf1 record with “-all” to enforce a hard fail for unauthorized senders and prevent spoofed emails from passing SPF checks. This strengthens your domain’s protection against impersonation. Note: It is highly recommended to start adjusting your SPF record only after you begin receiving DMARC reports and identifying your legitimate email sources. As we’ll explain in more detail below, both SPF and DKIM should be adjusted after you gain visibility through reports. Making changes without proper visibility can lead to false positives, misconfigurations, and potential loss of legitimate emails. That’s why the first step should always be setting DMARC to p=none, receiving reports, analyzing them, and then gradually fixing any SPF or DKIM issues. 3. DKIM on all outbound email DKIM must be configured for all email sources sending emails on behalf of your domain. This is critical, as DKIM plays a bigger role than SPF when it comes to building domain reputation, surviving auto-forwarding, mailing lists, and other edge cases. As mentioned above, DMARC reports provide visibility into your email sources, allowing you to implement DKIM accordingly (see first screenshot). If you’re using third-party services like Google Workspace, Microsoft 365, or Mimecast, you’ll need to retrieve the public DKIM key from your provider’s admin interface (see second screenshot). EasyDMARC maintains a backend directory of over 1,400 email sources. We also give you detailed guidance on how to configure SPF and DKIM correctly for major ESPs.  Note: At the end of this article, you’ll find configuration links for well-known ESPs like Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid – helping you avoid common misconfigurations and get aligned with SGE requirements. If you’re using a dedicated MTA (e.g., Postfix), DKIM must be implemented manually. EasyDMARC’s DKIM Record Generator lets you generate both public and private keys for your server. The private key is stored on your MTA, while the public key must be published in your DNS (see third and fourth screenshots). 4. DMARC p=reject rollout As mentioned in previous points, DMARC reporting is the first and most important step on your DMARC enforcement journey. Always start with a p=none policy and configure RUA reports to be sent to EasyDMARC. Use the report insights to identify and fix SPF and DKIM alignment issues, then gradually move to p=quarantine and finally p=reject once all legitimate email sources have been authenticated.  This phased approach ensures full protection against domain spoofing without risking legitimate email delivery. 5. adkim Strict Alignment Check This strict alignment check is not always applicable, especially if you’re using third-party bulk ESPs, such as Sendgrid, that require you to set DKIM on a subdomain level. You can set adkim=s in your DMARC TXT record, or simply enable strict mode in EasyDMARC’s Managed DMARC settings. This ensures that only emails with a DKIM signature that exactly match your domain pass alignment, adding an extra layer of protection against domain spoofing. But only do this if you are NOT a bulk sender. 6. Securing Non-Email Enabled Domains The purpose of deploying email security to non-email-enabled domains, or parked domains, is to prevent messages being spoofed from that domain. This requirement remains even if the root-level domain has SP=reject set within its DMARC record. Under this new framework, you must bulk import and mark parked domains as “Parked.” Crucially, this requires adjusting SPF settings to an empty record, setting DMARC to p=reject, and ensuring an empty DKIM record is in place: • SPF record: “v=spf1 -all”. • Wildcard DKIM record with empty public key.• DMARC record: “v=DMARC1;p=reject;adkim=s;aspf=s;rua=mailto:…”. EasyDMARC allows you to add and label parked domains for free. This is important because it helps you monitor any activity from these domains and ensure they remain protected with a strict DMARC policy of p=reject. 7. Compliance Dashboard Use EasyDMARC’s Domain Scanner to assess the security posture of each domain with a clear compliance score and risk level. The dashboard highlights configuration gaps and guides remediation steps, helping government agencies stay on track toward full compliance with the SGE Framework. 8. Inbound DMARC Evaluation Enforced You don’t need to apply any changes if you’re using Google Workspace, Microsoft 365, or other major mailbox providers. Most of them already enforce DMARC evaluation on incoming emails. However, some legacy Microsoft 365 setups may still quarantine emails that fail DMARC checks, even when the sending domain has a p=reject policy, instead of rejecting them. This behavior can be adjusted directly from your Microsoft Defender portal. Read more about this in our step-by-step guide on how to set up SPF, DKIM, and DMARC from Microsoft Defender. If you’re using a third-party mail provider that doesn’t enforce having a DMARC policy for incoming emails, which is rare, you’ll need to contact their support to request a configuration change. 9. Data Loss Prevention Aligned with NZISM The New Zealand Information Security Manual (NZISM) is the New Zealand Government’s manual on information assurance and information systems security. It includes guidance on data loss prevention (DLP), which must be followed to be aligned with the SEG. Need Help Setting up SPF and DKIM for your Email Provider? Setting up SPF and DKIM for different ESPs often requires specific configurations. Some providers require you to publish SPF and DKIM on a subdomain, while others only require DKIM, or have different formatting rules. We’ve simplified all these steps to help you avoid misconfigurations that could delay your DMARC enforcement, or worse, block legitimate emails from reaching your recipients. Below you’ll find comprehensive setup guides for Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid. You can also explore our full blog section that covers setup instructions for many other well-known ESPs. Remember, all this information is reflected in your DMARC aggregate reports. These reports give you live visibility into your outgoing email ecosystem, helping you analyze and fix any issues specific to a given provider. Here are our step-by-step guides for the most common platforms: Google Workspace Microsoft 365 These guides will help ensure your DNS records are configured correctly as part of the Secure Government Email (SGE) Framework rollout. Meet New Government Email Security Standards With EasyDMARC New Zealand’s SEG Framework sets a clear path for government agencies to enhance their email security by October 2025. With EasyDMARC, you can meet these technical requirements efficiently and with confidence. From protocol setup to continuous monitoring and compliance tracking, EasyDMARC streamlines the entire process, ensuring strong protection against spoofing, phishing, and data loss while simplifying your transition from SEEMail.
    0 Reacties 0 aandelen
  • IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029

    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029

    By John P. Mello Jr.
    June 11, 2025 5:00 AM PT

    IBM unveiled its plan to build IBM Quantum Starling, shown in this rendering. Starling is expected to be the first large-scale, fault-tolerant quantum system.ADVERTISEMENT
    Enterprise IT Lead Generation Services
    Fuel Your Pipeline. Close More Deals. Our full-service marketing programs deliver sales-ready leads. 100% Satisfaction Guarantee! Learn more.

    IBM revealed Tuesday its roadmap for bringing a large-scale, fault-tolerant quantum computer, IBM Quantum Starling, online by 2029, which is significantly earlier than many technologists thought possible.
    The company predicts that when its new Starling computer is up and running, it will be capable of performing 20,000 times more operations than today’s quantum computers — a computational state so vast it would require the memory of more than a quindecillionof the world’s most powerful supercomputers to represent.
    “IBM is charting the next frontier in quantum computing,” Big Blue CEO Arvind Krishna said in a statement. “Our expertise across mathematics, physics, and engineering is paving the way for a large-scale, fault-tolerant quantum computer — one that will solve real-world challenges and unlock immense possibilities for business.”
    IBM’s plan to deliver a fault-tolerant quantum system by 2029 is ambitious but not implausible, especially given the rapid pace of its quantum roadmap and past milestones, observed Ensar Seker, CISO at SOCRadar, a threat intelligence company in Newark, Del.
    “They’ve consistently met or exceeded their qubit scaling goals, and their emphasis on modularity and error correction indicates they’re tackling the right challenges,” he told TechNewsWorld. “However, moving from thousands to millions of physical qubits with sufficient fidelity remains a steep climb.”
    A qubit is the fundamental unit of information in quantum computing, capable of representing a zero, a one, or both simultaneously due to quantum superposition. In practice, fault-tolerant quantum computers use clusters of physical qubits working together to form a logical qubit — a more stable unit designed to store quantum information and correct errors in real time.
    Realistic Roadmap
    Luke Yang, an equity analyst with Morningstar Research Services in Chicago, believes IBM’s roadmap is realistic. “The exact scale and error correction performance might still change between now and 2029, but overall, the goal is reasonable,” he told TechNewsWorld.
    “Given its reliability and professionalism, IBM’s bold claim should be taken seriously,” said Enrique Solano, co-CEO and co-founder of Kipu Quantum, a quantum algorithm company with offices in Berlin and Karlsruhe, Germany.
    “Of course, it may also fail, especially when considering the unpredictability of hardware complexities involved,” he told TechNewsWorld, “but companies like IBM exist for such challenges, and we should all be positively impressed by its current achievements and promised technological roadmap.”
    Tim Hollebeek, vice president of industry standards at DigiCert, a global digital security company, added: “IBM is a leader in this area, and not normally a company that hypes their news. This is a fast-moving industry, and success is certainly possible.”
    “IBM is attempting to do something that no one has ever done before and will almost certainly run into challenges,” he told TechNewsWorld, “but at this point, it is largely an engineering scaling exercise, not a research project.”
    “IBM has demonstrated consistent progress, has committed billion over five years to quantum computing, and the timeline is within the realm of technical feasibility,” noted John Young, COO of Quantum eMotion, a developer of quantum random number generator technology, in Saint-Laurent, Quebec, Canada.
    “That said,” he told TechNewsWorld, “fault-tolerant in a practical, industrial sense is a very high bar.”
    Solving the Quantum Error Correction Puzzle
    To make a quantum computer fault-tolerant, errors need to be corrected so large workloads can be run without faults. In a quantum computer, errors are reduced by clustering physical qubits to form logical qubits, which have lower error rates than the underlying physical qubits.
    “Error correction is a challenge,” Young said. “Logical qubits require thousands of physical qubits to function reliably. That’s a massive scaling issue.”
    IBM explained in its announcement that creating increasing numbers of logical qubits capable of executing quantum circuits with as few physical qubits as possible is critical to quantum computing at scale. Until today, a clear path to building such a fault-tolerant system without unrealistic engineering overhead has not been published.

    Alternative and previous gold-standard, error-correcting codes present fundamental engineering challenges, IBM continued. To scale, they would require an unfeasible number of physical qubits to create enough logical qubits to perform complex operations — necessitating impractical amounts of infrastructure and control electronics. This renders them unlikely to be implemented beyond small-scale experiments and devices.
    In two research papers released with its roadmap, IBM detailed how it will overcome the challenges of building the large-scale, fault-tolerant architecture needed for a quantum computer.
    One paper outlines the use of quantum low-density parity checkcodes to reduce physical qubit overhead. The other describes methods for decoding errors in real time using conventional computing.
    According to IBM, a practical fault-tolerant quantum architecture must:

    Suppress enough errors for useful algorithms to succeed
    Prepare and measure logical qubits during computation
    Apply universal instructions to logical qubits
    Decode measurements from logical qubits in real time and guide subsequent operations
    Scale modularly across hundreds or thousands of logical qubits
    Be efficient enough to run meaningful algorithms using realistic energy and infrastructure resources

    Aside from the technological challenges that quantum computer makers are facing, there may also be some market challenges. “Locating suitable use cases for quantum computers could be the biggest challenge,” Morningstar’s Yang maintained.
    “Only certain computing workloads, such as random circuit sampling, can fully unleash the computing power of quantum computers and show their advantage over the traditional supercomputers we have now,” he said. “However, workloads like RCS are not very commercially useful, and we believe commercial relevance is one of the key factors that determine the total market size for quantum computers.”
    Q-Day Approaching Faster Than Expected
    For years now, organizations have been told they need to prepare for “Q-Day” — the day a quantum computer will be able to crack all the encryption they use to keep their data secure. This IBM announcement suggests the window for action to protect data may be closing faster than many anticipated.
    “This absolutely adds urgency and credibility to the security expert guidance on post-quantum encryption being factored into their planning now,” said Dave Krauthamer, field CTO of QuSecure, maker of quantum-safe security solutions, in San Mateo, Calif.
    “IBM’s move to create a large-scale fault-tolerant quantum computer by 2029 is indicative of the timeline collapsing,” he told TechNewsWorld. “A fault-tolerant quantum computer of this magnitude could be well on the path to crack asymmetric ciphers sooner than anyone thinks.”

    “Security leaders need to take everything connected to post-quantum encryption as a serious measure and work it into their security plans now — not later,” he said.
    Roger Grimes, a defense evangelist with KnowBe4, a security awareness training provider in Clearwater, Fla., pointed out that IBM is just the latest in a surge of quantum companies announcing quickly forthcoming computational breakthroughs within a few years.
    “It leads to the question of whether the U.S. government’s original PQCpreparation date of 2030 is still a safe date,” he told TechNewsWorld.
    “It’s starting to feel a lot more risky for any company to wait until 2030 to be prepared against quantum attacks. It also flies in the face of the latest cybersecurity EOthat relaxed PQC preparation rules as compared to Biden’s last EO PQC standard order, which told U.S. agencies to transition to PQC ASAP.”
    “Most US companies are doing zero to prepare for Q-Day attacks,” he declared. “The latest executive order seems to tell U.S. agencies — and indirectly, all U.S. businesses — that they have more time to prepare. It’s going to cause even more agencies and businesses to be less prepared during a time when it seems multiple quantum computing companies are making significant progress.”
    “It definitely feels that something is going to give soon,” he said, “and if I were a betting man, and I am, I would bet that most U.S. companies are going to be unprepared for Q-Day on the day Q-Day becomes a reality.”

    John P. Mello Jr. has been an ECT News Network reporter since 2003. His areas of focus include cybersecurity, IT issues, privacy, e-commerce, social media, artificial intelligence, big data and consumer electronics. He has written and edited for numerous publications, including the Boston Business Journal, the Boston Phoenix, Megapixel.Net and Government Security News. Email John.

    Leave a Comment

    Click here to cancel reply.
    Please sign in to post or reply to a comment. New users create a free account.

    Related Stories

    More by John P. Mello Jr.

    view all

    More in Emerging Tech
    #ibm #plans #largescale #faulttolerant #quantum
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029 By John P. Mello Jr. June 11, 2025 5:00 AM PT IBM unveiled its plan to build IBM Quantum Starling, shown in this rendering. Starling is expected to be the first large-scale, fault-tolerant quantum system.ADVERTISEMENT Enterprise IT Lead Generation Services Fuel Your Pipeline. Close More Deals. Our full-service marketing programs deliver sales-ready leads. 100% Satisfaction Guarantee! Learn more. IBM revealed Tuesday its roadmap for bringing a large-scale, fault-tolerant quantum computer, IBM Quantum Starling, online by 2029, which is significantly earlier than many technologists thought possible. The company predicts that when its new Starling computer is up and running, it will be capable of performing 20,000 times more operations than today’s quantum computers — a computational state so vast it would require the memory of more than a quindecillionof the world’s most powerful supercomputers to represent. “IBM is charting the next frontier in quantum computing,” Big Blue CEO Arvind Krishna said in a statement. “Our expertise across mathematics, physics, and engineering is paving the way for a large-scale, fault-tolerant quantum computer — one that will solve real-world challenges and unlock immense possibilities for business.” IBM’s plan to deliver a fault-tolerant quantum system by 2029 is ambitious but not implausible, especially given the rapid pace of its quantum roadmap and past milestones, observed Ensar Seker, CISO at SOCRadar, a threat intelligence company in Newark, Del. “They’ve consistently met or exceeded their qubit scaling goals, and their emphasis on modularity and error correction indicates they’re tackling the right challenges,” he told TechNewsWorld. “However, moving from thousands to millions of physical qubits with sufficient fidelity remains a steep climb.” A qubit is the fundamental unit of information in quantum computing, capable of representing a zero, a one, or both simultaneously due to quantum superposition. In practice, fault-tolerant quantum computers use clusters of physical qubits working together to form a logical qubit — a more stable unit designed to store quantum information and correct errors in real time. Realistic Roadmap Luke Yang, an equity analyst with Morningstar Research Services in Chicago, believes IBM’s roadmap is realistic. “The exact scale and error correction performance might still change between now and 2029, but overall, the goal is reasonable,” he told TechNewsWorld. “Given its reliability and professionalism, IBM’s bold claim should be taken seriously,” said Enrique Solano, co-CEO and co-founder of Kipu Quantum, a quantum algorithm company with offices in Berlin and Karlsruhe, Germany. “Of course, it may also fail, especially when considering the unpredictability of hardware complexities involved,” he told TechNewsWorld, “but companies like IBM exist for such challenges, and we should all be positively impressed by its current achievements and promised technological roadmap.” Tim Hollebeek, vice president of industry standards at DigiCert, a global digital security company, added: “IBM is a leader in this area, and not normally a company that hypes their news. This is a fast-moving industry, and success is certainly possible.” “IBM is attempting to do something that no one has ever done before and will almost certainly run into challenges,” he told TechNewsWorld, “but at this point, it is largely an engineering scaling exercise, not a research project.” “IBM has demonstrated consistent progress, has committed billion over five years to quantum computing, and the timeline is within the realm of technical feasibility,” noted John Young, COO of Quantum eMotion, a developer of quantum random number generator technology, in Saint-Laurent, Quebec, Canada. “That said,” he told TechNewsWorld, “fault-tolerant in a practical, industrial sense is a very high bar.” Solving the Quantum Error Correction Puzzle To make a quantum computer fault-tolerant, errors need to be corrected so large workloads can be run without faults. In a quantum computer, errors are reduced by clustering physical qubits to form logical qubits, which have lower error rates than the underlying physical qubits. “Error correction is a challenge,” Young said. “Logical qubits require thousands of physical qubits to function reliably. That’s a massive scaling issue.” IBM explained in its announcement that creating increasing numbers of logical qubits capable of executing quantum circuits with as few physical qubits as possible is critical to quantum computing at scale. Until today, a clear path to building such a fault-tolerant system without unrealistic engineering overhead has not been published. Alternative and previous gold-standard, error-correcting codes present fundamental engineering challenges, IBM continued. To scale, they would require an unfeasible number of physical qubits to create enough logical qubits to perform complex operations — necessitating impractical amounts of infrastructure and control electronics. This renders them unlikely to be implemented beyond small-scale experiments and devices. In two research papers released with its roadmap, IBM detailed how it will overcome the challenges of building the large-scale, fault-tolerant architecture needed for a quantum computer. One paper outlines the use of quantum low-density parity checkcodes to reduce physical qubit overhead. The other describes methods for decoding errors in real time using conventional computing. According to IBM, a practical fault-tolerant quantum architecture must: Suppress enough errors for useful algorithms to succeed Prepare and measure logical qubits during computation Apply universal instructions to logical qubits Decode measurements from logical qubits in real time and guide subsequent operations Scale modularly across hundreds or thousands of logical qubits Be efficient enough to run meaningful algorithms using realistic energy and infrastructure resources Aside from the technological challenges that quantum computer makers are facing, there may also be some market challenges. “Locating suitable use cases for quantum computers could be the biggest challenge,” Morningstar’s Yang maintained. “Only certain computing workloads, such as random circuit sampling, can fully unleash the computing power of quantum computers and show their advantage over the traditional supercomputers we have now,” he said. “However, workloads like RCS are not very commercially useful, and we believe commercial relevance is one of the key factors that determine the total market size for quantum computers.” Q-Day Approaching Faster Than Expected For years now, organizations have been told they need to prepare for “Q-Day” — the day a quantum computer will be able to crack all the encryption they use to keep their data secure. This IBM announcement suggests the window for action to protect data may be closing faster than many anticipated. “This absolutely adds urgency and credibility to the security expert guidance on post-quantum encryption being factored into their planning now,” said Dave Krauthamer, field CTO of QuSecure, maker of quantum-safe security solutions, in San Mateo, Calif. “IBM’s move to create a large-scale fault-tolerant quantum computer by 2029 is indicative of the timeline collapsing,” he told TechNewsWorld. “A fault-tolerant quantum computer of this magnitude could be well on the path to crack asymmetric ciphers sooner than anyone thinks.” “Security leaders need to take everything connected to post-quantum encryption as a serious measure and work it into their security plans now — not later,” he said. Roger Grimes, a defense evangelist with KnowBe4, a security awareness training provider in Clearwater, Fla., pointed out that IBM is just the latest in a surge of quantum companies announcing quickly forthcoming computational breakthroughs within a few years. “It leads to the question of whether the U.S. government’s original PQCpreparation date of 2030 is still a safe date,” he told TechNewsWorld. “It’s starting to feel a lot more risky for any company to wait until 2030 to be prepared against quantum attacks. It also flies in the face of the latest cybersecurity EOthat relaxed PQC preparation rules as compared to Biden’s last EO PQC standard order, which told U.S. agencies to transition to PQC ASAP.” “Most US companies are doing zero to prepare for Q-Day attacks,” he declared. “The latest executive order seems to tell U.S. agencies — and indirectly, all U.S. businesses — that they have more time to prepare. It’s going to cause even more agencies and businesses to be less prepared during a time when it seems multiple quantum computing companies are making significant progress.” “It definitely feels that something is going to give soon,” he said, “and if I were a betting man, and I am, I would bet that most U.S. companies are going to be unprepared for Q-Day on the day Q-Day becomes a reality.” John P. Mello Jr. has been an ECT News Network reporter since 2003. His areas of focus include cybersecurity, IT issues, privacy, e-commerce, social media, artificial intelligence, big data and consumer electronics. He has written and edited for numerous publications, including the Boston Business Journal, the Boston Phoenix, Megapixel.Net and Government Security News. Email John. Leave a Comment Click here to cancel reply. Please sign in to post or reply to a comment. New users create a free account. Related Stories More by John P. Mello Jr. view all More in Emerging Tech #ibm #plans #largescale #faulttolerant #quantum
    WWW.TECHNEWSWORLD.COM
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029 By John P. Mello Jr. June 11, 2025 5:00 AM PT IBM unveiled its plan to build IBM Quantum Starling, shown in this rendering. Starling is expected to be the first large-scale, fault-tolerant quantum system. (Image Credit: IBM) ADVERTISEMENT Enterprise IT Lead Generation Services Fuel Your Pipeline. Close More Deals. Our full-service marketing programs deliver sales-ready leads. 100% Satisfaction Guarantee! Learn more. IBM revealed Tuesday its roadmap for bringing a large-scale, fault-tolerant quantum computer, IBM Quantum Starling, online by 2029, which is significantly earlier than many technologists thought possible. The company predicts that when its new Starling computer is up and running, it will be capable of performing 20,000 times more operations than today’s quantum computers — a computational state so vast it would require the memory of more than a quindecillion (10⁴⁸) of the world’s most powerful supercomputers to represent. “IBM is charting the next frontier in quantum computing,” Big Blue CEO Arvind Krishna said in a statement. “Our expertise across mathematics, physics, and engineering is paving the way for a large-scale, fault-tolerant quantum computer — one that will solve real-world challenges and unlock immense possibilities for business.” IBM’s plan to deliver a fault-tolerant quantum system by 2029 is ambitious but not implausible, especially given the rapid pace of its quantum roadmap and past milestones, observed Ensar Seker, CISO at SOCRadar, a threat intelligence company in Newark, Del. “They’ve consistently met or exceeded their qubit scaling goals, and their emphasis on modularity and error correction indicates they’re tackling the right challenges,” he told TechNewsWorld. “However, moving from thousands to millions of physical qubits with sufficient fidelity remains a steep climb.” A qubit is the fundamental unit of information in quantum computing, capable of representing a zero, a one, or both simultaneously due to quantum superposition. In practice, fault-tolerant quantum computers use clusters of physical qubits working together to form a logical qubit — a more stable unit designed to store quantum information and correct errors in real time. Realistic Roadmap Luke Yang, an equity analyst with Morningstar Research Services in Chicago, believes IBM’s roadmap is realistic. “The exact scale and error correction performance might still change between now and 2029, but overall, the goal is reasonable,” he told TechNewsWorld. “Given its reliability and professionalism, IBM’s bold claim should be taken seriously,” said Enrique Solano, co-CEO and co-founder of Kipu Quantum, a quantum algorithm company with offices in Berlin and Karlsruhe, Germany. “Of course, it may also fail, especially when considering the unpredictability of hardware complexities involved,” he told TechNewsWorld, “but companies like IBM exist for such challenges, and we should all be positively impressed by its current achievements and promised technological roadmap.” Tim Hollebeek, vice president of industry standards at DigiCert, a global digital security company, added: “IBM is a leader in this area, and not normally a company that hypes their news. This is a fast-moving industry, and success is certainly possible.” “IBM is attempting to do something that no one has ever done before and will almost certainly run into challenges,” he told TechNewsWorld, “but at this point, it is largely an engineering scaling exercise, not a research project.” “IBM has demonstrated consistent progress, has committed $30 billion over five years to quantum computing, and the timeline is within the realm of technical feasibility,” noted John Young, COO of Quantum eMotion, a developer of quantum random number generator technology, in Saint-Laurent, Quebec, Canada. “That said,” he told TechNewsWorld, “fault-tolerant in a practical, industrial sense is a very high bar.” Solving the Quantum Error Correction Puzzle To make a quantum computer fault-tolerant, errors need to be corrected so large workloads can be run without faults. In a quantum computer, errors are reduced by clustering physical qubits to form logical qubits, which have lower error rates than the underlying physical qubits. “Error correction is a challenge,” Young said. “Logical qubits require thousands of physical qubits to function reliably. That’s a massive scaling issue.” IBM explained in its announcement that creating increasing numbers of logical qubits capable of executing quantum circuits with as few physical qubits as possible is critical to quantum computing at scale. Until today, a clear path to building such a fault-tolerant system without unrealistic engineering overhead has not been published. Alternative and previous gold-standard, error-correcting codes present fundamental engineering challenges, IBM continued. To scale, they would require an unfeasible number of physical qubits to create enough logical qubits to perform complex operations — necessitating impractical amounts of infrastructure and control electronics. This renders them unlikely to be implemented beyond small-scale experiments and devices. In two research papers released with its roadmap, IBM detailed how it will overcome the challenges of building the large-scale, fault-tolerant architecture needed for a quantum computer. One paper outlines the use of quantum low-density parity check (qLDPC) codes to reduce physical qubit overhead. The other describes methods for decoding errors in real time using conventional computing. According to IBM, a practical fault-tolerant quantum architecture must: Suppress enough errors for useful algorithms to succeed Prepare and measure logical qubits during computation Apply universal instructions to logical qubits Decode measurements from logical qubits in real time and guide subsequent operations Scale modularly across hundreds or thousands of logical qubits Be efficient enough to run meaningful algorithms using realistic energy and infrastructure resources Aside from the technological challenges that quantum computer makers are facing, there may also be some market challenges. “Locating suitable use cases for quantum computers could be the biggest challenge,” Morningstar’s Yang maintained. “Only certain computing workloads, such as random circuit sampling [RCS], can fully unleash the computing power of quantum computers and show their advantage over the traditional supercomputers we have now,” he said. “However, workloads like RCS are not very commercially useful, and we believe commercial relevance is one of the key factors that determine the total market size for quantum computers.” Q-Day Approaching Faster Than Expected For years now, organizations have been told they need to prepare for “Q-Day” — the day a quantum computer will be able to crack all the encryption they use to keep their data secure. This IBM announcement suggests the window for action to protect data may be closing faster than many anticipated. “This absolutely adds urgency and credibility to the security expert guidance on post-quantum encryption being factored into their planning now,” said Dave Krauthamer, field CTO of QuSecure, maker of quantum-safe security solutions, in San Mateo, Calif. “IBM’s move to create a large-scale fault-tolerant quantum computer by 2029 is indicative of the timeline collapsing,” he told TechNewsWorld. “A fault-tolerant quantum computer of this magnitude could be well on the path to crack asymmetric ciphers sooner than anyone thinks.” “Security leaders need to take everything connected to post-quantum encryption as a serious measure and work it into their security plans now — not later,” he said. Roger Grimes, a defense evangelist with KnowBe4, a security awareness training provider in Clearwater, Fla., pointed out that IBM is just the latest in a surge of quantum companies announcing quickly forthcoming computational breakthroughs within a few years. “It leads to the question of whether the U.S. government’s original PQC [post-quantum cryptography] preparation date of 2030 is still a safe date,” he told TechNewsWorld. “It’s starting to feel a lot more risky for any company to wait until 2030 to be prepared against quantum attacks. It also flies in the face of the latest cybersecurity EO [Executive Order] that relaxed PQC preparation rules as compared to Biden’s last EO PQC standard order, which told U.S. agencies to transition to PQC ASAP.” “Most US companies are doing zero to prepare for Q-Day attacks,” he declared. “The latest executive order seems to tell U.S. agencies — and indirectly, all U.S. businesses — that they have more time to prepare. It’s going to cause even more agencies and businesses to be less prepared during a time when it seems multiple quantum computing companies are making significant progress.” “It definitely feels that something is going to give soon,” he said, “and if I were a betting man, and I am, I would bet that most U.S. companies are going to be unprepared for Q-Day on the day Q-Day becomes a reality.” John P. Mello Jr. has been an ECT News Network reporter since 2003. His areas of focus include cybersecurity, IT issues, privacy, e-commerce, social media, artificial intelligence, big data and consumer electronics. He has written and edited for numerous publications, including the Boston Business Journal, the Boston Phoenix, Megapixel.Net and Government Security News. Email John. Leave a Comment Click here to cancel reply. Please sign in to post or reply to a comment. New users create a free account. Related Stories More by John P. Mello Jr. view all More in Emerging Tech
    0 Reacties 0 aandelen
  • The “online monkey torture video” arrests just keep coming

    monkey abuse

    The “online monkey torture video” arrests just keep coming

    Authorities continue the slow crackdown.

    Nate Anderson



    Jun 14, 2025 7:00 am

    |

    34

    Credit:

    Getty Images

    Credit:

    Getty Images

    Story text

    Size

    Small
    Standard
    Large

    Width
    *

    Standard
    Wide

    Links

    Standard
    Orange

    * Subscribers only
      Learn more

    Today's monkey torture videos are the products of a digitally connected world. People who enjoy watching baby animals probed, snipped, and mutilated in horrible ways often have difficulty finding local collaborators, but online communities like "million tears"—now thankfully shuttered—can help them forge connections.
    Once they do meet other like-minded souls, communication takes place through chat apps like Telegram and Signal, often using encryption.
    Money is pooled through various phone apps, then sent to videographers in countries where wages are low and monkeys are plentiful.There, monkeys are tortured by a local subcontractor—sometimes a child—working to Western specs. Smartphone video of the torture is sent back to the commissioning sadists, who share it with more viewers using the same online communities in which they met.
    The unfortunate pattern was again on display this week in an indictment the US government unsealed against several more Americans said to have commissioned these videos. The accused used online handles like "Bitchy" and "DemonSwordSoulCrusher," and they hail from all over: Tennessee, North Carolina, Ohio, Pennsylvania, and Massachusetts.
    They relied on an Indonesian videographer to create the content, which was surprisingly affordable—it cost a mere to commission video of a "burning hot screwdriver" being shoved into a baby monkey's orifice. After the money was transferred, the requested video was shot and shared through a "phone-based messaging program," but the Americans were deeply disappointed in its quality. Instead of full-on impalement, the videographer had heated a screwdriver on a burner and merely touched it against the monkey a few times.
    "So lame," one of the Americans allegedly complained to another. "Live and learn," was the response.

    So the group tried again. "Million tears" had been booted by its host, but the group reconstituted on another platform and renamed itself "the trail of trillion tears." They reached out to another Indonesian videographer and asked for a more graphic version of the same video. But this version, more sadistic than the last, still didn't satisfy. As one of the Americans allegedly said to another, "honey that's not what you asked for. Thats the village idiot version. But I'm talking with someone about getting a good voto do it."
    Arrests continue
    In 2021, someone leaked communications from the "million tears" group to animals rights organizations like Lady Freethinker and Action for Primates, which handed it over to authorities. Still, it took several years to arrest and prosecute the torture group's leaders.
    In 2024, one of these leaders—Ronald Bedra of Ohio—pled guilty to commissioning the videos and to mailing "a thumb drive containing 64 videos of monkey torture to a co-conspirator in Wisconsin." His mother, in a sentencing letter to the judge, said that her son must "have been undergoing some mental crisis when he decided to create the website." As a boy, he had loved all of the family pets, she said, even providing a funeral for a fish.
    Bedra was sentenced late last year to 54 months in prison. According to letters from family members, he has also lost his job, his wife, and his kids.
    In April 2025, two more alleged co-conspirators were indicted and subsequently arrested; their cases were unsealed only this week. Two other co-conspirators from this group still appear to be uncharged.
    In May 2025, 11 other Americans were indicted for their participation in monkey torture groups, though they appear to come from a different network. This group allegedly "paid a minor in Indonesia to commit the requested acts on camera."
    As for the Indonesian side of this equation, arrests have been happening there, too. Following complaints from animal rights groups, police in Indonesia have arrested multiple videographers over the last two years.

    Nate Anderson
    Deputy Editor

    Nate Anderson
    Deputy Editor

    Nate is the deputy editor at Ars Technica. His most recent book is In Emergency, Break Glass: What Nietzsche Can Teach Us About Joyful Living in a Tech-Saturated World, which is much funnier than it sounds.

    34 Comments
    #online #monkey #torture #video #arrests
    The “online monkey torture video” arrests just keep coming
    monkey abuse The “online monkey torture video” arrests just keep coming Authorities continue the slow crackdown. Nate Anderson – Jun 14, 2025 7:00 am | 34 Credit: Getty Images Credit: Getty Images Story text Size Small Standard Large Width * Standard Wide Links Standard Orange * Subscribers only   Learn more Today's monkey torture videos are the products of a digitally connected world. People who enjoy watching baby animals probed, snipped, and mutilated in horrible ways often have difficulty finding local collaborators, but online communities like "million tears"—now thankfully shuttered—can help them forge connections. Once they do meet other like-minded souls, communication takes place through chat apps like Telegram and Signal, often using encryption. Money is pooled through various phone apps, then sent to videographers in countries where wages are low and monkeys are plentiful.There, monkeys are tortured by a local subcontractor—sometimes a child—working to Western specs. Smartphone video of the torture is sent back to the commissioning sadists, who share it with more viewers using the same online communities in which they met. The unfortunate pattern was again on display this week in an indictment the US government unsealed against several more Americans said to have commissioned these videos. The accused used online handles like "Bitchy" and "DemonSwordSoulCrusher," and they hail from all over: Tennessee, North Carolina, Ohio, Pennsylvania, and Massachusetts. They relied on an Indonesian videographer to create the content, which was surprisingly affordable—it cost a mere to commission video of a "burning hot screwdriver" being shoved into a baby monkey's orifice. After the money was transferred, the requested video was shot and shared through a "phone-based messaging program," but the Americans were deeply disappointed in its quality. Instead of full-on impalement, the videographer had heated a screwdriver on a burner and merely touched it against the monkey a few times. "So lame," one of the Americans allegedly complained to another. "Live and learn," was the response. So the group tried again. "Million tears" had been booted by its host, but the group reconstituted on another platform and renamed itself "the trail of trillion tears." They reached out to another Indonesian videographer and asked for a more graphic version of the same video. But this version, more sadistic than the last, still didn't satisfy. As one of the Americans allegedly said to another, "honey that's not what you asked for. Thats the village idiot version. But I'm talking with someone about getting a good voto do it." Arrests continue In 2021, someone leaked communications from the "million tears" group to animals rights organizations like Lady Freethinker and Action for Primates, which handed it over to authorities. Still, it took several years to arrest and prosecute the torture group's leaders. In 2024, one of these leaders—Ronald Bedra of Ohio—pled guilty to commissioning the videos and to mailing "a thumb drive containing 64 videos of monkey torture to a co-conspirator in Wisconsin." His mother, in a sentencing letter to the judge, said that her son must "have been undergoing some mental crisis when he decided to create the website." As a boy, he had loved all of the family pets, she said, even providing a funeral for a fish. Bedra was sentenced late last year to 54 months in prison. According to letters from family members, he has also lost his job, his wife, and his kids. In April 2025, two more alleged co-conspirators were indicted and subsequently arrested; their cases were unsealed only this week. Two other co-conspirators from this group still appear to be uncharged. In May 2025, 11 other Americans were indicted for their participation in monkey torture groups, though they appear to come from a different network. This group allegedly "paid a minor in Indonesia to commit the requested acts on camera." As for the Indonesian side of this equation, arrests have been happening there, too. Following complaints from animal rights groups, police in Indonesia have arrested multiple videographers over the last two years. Nate Anderson Deputy Editor Nate Anderson Deputy Editor Nate is the deputy editor at Ars Technica. His most recent book is In Emergency, Break Glass: What Nietzsche Can Teach Us About Joyful Living in a Tech-Saturated World, which is much funnier than it sounds. 34 Comments #online #monkey #torture #video #arrests
    ARSTECHNICA.COM
    The “online monkey torture video” arrests just keep coming
    monkey abuse The “online monkey torture video” arrests just keep coming Authorities continue the slow crackdown. Nate Anderson – Jun 14, 2025 7:00 am | 34 Credit: Getty Images Credit: Getty Images Story text Size Small Standard Large Width * Standard Wide Links Standard Orange * Subscribers only   Learn more Today's monkey torture videos are the products of a digitally connected world. People who enjoy watching baby animals probed, snipped, and mutilated in horrible ways often have difficulty finding local collaborators, but online communities like "million tears"—now thankfully shuttered—can help them forge connections. Once they do meet other like-minded souls, communication takes place through chat apps like Telegram and Signal, often using encryption. Money is pooled through various phone apps, then sent to videographers in countries where wages are low and monkeys are plentiful. (The cases I have seen usually involve Indonesia; read my feature from last year to learn more about how these groups work.) There, monkeys are tortured by a local subcontractor—sometimes a child—working to Western specs. Smartphone video of the torture is sent back to the commissioning sadists, who share it with more viewers using the same online communities in which they met. The unfortunate pattern was again on display this week in an indictment the US government unsealed against several more Americans said to have commissioned these videos. The accused used online handles like "Bitchy" and "DemonSwordSoulCrusher," and they hail from all over: Tennessee, North Carolina, Ohio, Pennsylvania, and Massachusetts. They relied on an Indonesian videographer to create the content, which was surprisingly affordable—it cost a mere $40 to commission video of a "burning hot screwdriver" being shoved into a baby monkey's orifice. After the money was transferred, the requested video was shot and shared through a "phone-based messaging program," but the Americans were deeply disappointed in its quality. Instead of full-on impalement, the videographer had heated a screwdriver on a burner and merely touched it against the monkey a few times. "So lame," one of the Americans allegedly complained to another. "Live and learn," was the response. So the group tried again. "Million tears" had been booted by its host, but the group reconstituted on another platform and renamed itself "the trail of trillion tears." They reached out to another Indonesian videographer and asked for a more graphic version of the same video. But this version, more sadistic than the last, still didn't satisfy. As one of the Americans allegedly said to another, "honey that's not what you asked for. Thats the village idiot version. But I'm talking with someone about getting a good vo [videographer] to do it." Arrests continue In 2021, someone leaked communications from the "million tears" group to animals rights organizations like Lady Freethinker and Action for Primates, which handed it over to authorities. Still, it took several years to arrest and prosecute the torture group's leaders. In 2024, one of these leaders—Ronald Bedra of Ohio—pled guilty to commissioning the videos and to mailing "a thumb drive containing 64 videos of monkey torture to a co-conspirator in Wisconsin." His mother, in a sentencing letter to the judge, said that her son must "have been undergoing some mental crisis when he decided to create the website." As a boy, he had loved all of the family pets, she said, even providing a funeral for a fish. Bedra was sentenced late last year to 54 months in prison. According to letters from family members, he has also lost his job, his wife, and his kids. In April 2025, two more alleged co-conspirators were indicted and subsequently arrested; their cases were unsealed only this week. Two other co-conspirators from this group still appear to be uncharged. In May 2025, 11 other Americans were indicted for their participation in monkey torture groups, though they appear to come from a different network. This group allegedly "paid a minor in Indonesia to commit the requested acts on camera." As for the Indonesian side of this equation, arrests have been happening there, too. Following complaints from animal rights groups, police in Indonesia have arrested multiple videographers over the last two years. Nate Anderson Deputy Editor Nate Anderson Deputy Editor Nate is the deputy editor at Ars Technica. His most recent book is In Emergency, Break Glass: What Nietzsche Can Teach Us About Joyful Living in a Tech-Saturated World, which is much funnier than it sounds. 34 Comments
    0 Reacties 0 aandelen
  • Discord Invite Link Hijacking Delivers AsyncRAT and Skuld Stealer Targeting Crypto Wallets

    Jun 14, 2025Ravie LakshmananMalware / Threat Intelligence

    A new malware campaign is exploiting a weakness in Discord's invitation system to deliver an information stealer called Skuld and the AsyncRAT remote access trojan.
    "Attackers hijacked the links through vanity link registration, allowing them to silently redirect users from trusted sources to malicious servers," Check Point said in a technical report. "The attackers combined the ClickFix phishing technique, multi-stage loaders, and time-based evasions to stealthily deliver AsyncRAT, and a customized Skuld Stealer targeting crypto wallets."
    The issue with Discord's invite mechanism is that it allows attackers to hijack expired or deleted invite links and secretly redirect unsuspecting users to malicious servers under their control. This also means that a Discord invite link that was once trusted and shared on forums or social media platforms could unwittingly lead users to malicious sites.

    Details of the campaign come a little over a month after the cybersecurity company revealed another sophisticated phishing campaign that hijacked expired vanity invite links to entice users into joining a Discord server and instruct them to visit a phishing site to verify ownership, only to have their digital assets drained upon connecting their wallets.
    While users can create temporary, permanent, or custominvite links on Discord, the platform prevents other legitimate servers from reclaiming a previously expired or deleted invite. However, Check Point found that creating custom invite links allows the reuse of expired invite codes and even deleted permanent invite codes in some cases.

    This ability to reuse Discord expired or deleted codes when creating custom vanity invite links opens the door to abuse, allowing attackers to claim it for their malicious server.
    "This creates a serious risk: Users who follow previously trusted invite linkscan unknowingly be redirected to fake Discord servers created by threat actors," Check Point said.
    The Discord invite-link hijacking, in a nutshell, involves taking control of invite links originally shared by legitimate communities and then using them to redirect users to the malicious server. Users who fall prey to the scheme and join the server are asked to complete a verification step in order to gain full server access by authorizing a bot, which then leads them to a fake website with a prominent "Verify" button.
    This is where the attackers take the attack to the next level by incorporating the infamous ClickFix social engineering tactic to trick users into infecting their systems under the pretext of verification.

    Specifically, clicking the "Verify" button surreptitiously executes JavaScript that copies a PowerShell command to the machine's clipboard, after which the users are urged to launch the Windows Run dialog, paste the already copied "verification string", and press Enter to authenticate their accounts.
    But in reality, performing these steps triggers the download of a PowerShell script hosted on Pastebin that subsequently retrieves and executes a first-stage downloader, which is ultimately used to drop AsyncRAT and Skuld Stealer from a remote server and execute them.
    At the heart of this attack lies a meticulously engineered, multi-stage infection process designed for both precision and stealth, while also taking steps to subvert security protections through sandbox security checks.
    AsyncRAT, which offers comprehensive remote control capabilities over infected systems, has been found to employ a technique called dead drop resolver to access the actual command-and-controlserver by reading a Pastebin file.
    The other payload is a Golang information stealer that's downloaded from Bitbucket. It's equipped to steal sensitive user data from Discord, various browsers, crypto wallets, and gaming platforms.
    Skuld is also capable of harvesting crypto wallet seed phrases and passwords from the Exodus and Atomic crypto wallets. It accomplishes this using an approach called wallet injection that replaces legitimate application files with trojanized versions downloaded from GitHub. It's worth noting that a similar technique was recently put to use by a rogue npm package named pdf-to-office.
    The attack also employs a custom version of an open-source tool known as ChromeKatz to bypass Chrome's app-bound encryption protections. The collected data is exfiltrated to the miscreants via a Discord webhook.
    The fact that payload delivery and data exfiltration occur via trusted cloud services such as GitHub, Bitbucket, Pastebin, and Discord allows the threat actors to blend in with normal traffic and fly under the radar. Discord has since disabled the malicious bot, effectively breaking the attack chain.

    Check Point said it also identified another campaign mounted by the same threat actor that distributes the loader as a modified version of a hacktool for unlocking pirated games. The malicious program, also hosted on Bitbucket, has been downloaded 350 times.
    It has been assessed that the victims of these campaigns are primarily located in the United States, Vietnam, France, Germany, Slovakia, Austria, the Netherlands, and the United Kingdom.
    The findings represent the latest example of how cybercriminals are targeting the popular social platform, which has had its content delivery networkabused to host malware in the past.
    "This campaign illustrates how a subtle feature of Discord's invite system, the ability to reuse expired or deleted invite codes in vanity invite links, can be exploited as a powerful attack vector," the researchers said. "By hijacking legitimate invite links, threat actors silently redirect unsuspecting users to malicious Discord servers."
    "The choice of payloads, including a powerful stealer specifically targeting cryptocurrency wallets, suggests that the attackers are primarily focused on crypto users and motivated by financial gain."

    Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post.

    SHARE




    #discord #invite #link #hijacking #delivers
    Discord Invite Link Hijacking Delivers AsyncRAT and Skuld Stealer Targeting Crypto Wallets
    Jun 14, 2025Ravie LakshmananMalware / Threat Intelligence A new malware campaign is exploiting a weakness in Discord's invitation system to deliver an information stealer called Skuld and the AsyncRAT remote access trojan. "Attackers hijacked the links through vanity link registration, allowing them to silently redirect users from trusted sources to malicious servers," Check Point said in a technical report. "The attackers combined the ClickFix phishing technique, multi-stage loaders, and time-based evasions to stealthily deliver AsyncRAT, and a customized Skuld Stealer targeting crypto wallets." The issue with Discord's invite mechanism is that it allows attackers to hijack expired or deleted invite links and secretly redirect unsuspecting users to malicious servers under their control. This also means that a Discord invite link that was once trusted and shared on forums or social media platforms could unwittingly lead users to malicious sites. Details of the campaign come a little over a month after the cybersecurity company revealed another sophisticated phishing campaign that hijacked expired vanity invite links to entice users into joining a Discord server and instruct them to visit a phishing site to verify ownership, only to have their digital assets drained upon connecting their wallets. While users can create temporary, permanent, or custominvite links on Discord, the platform prevents other legitimate servers from reclaiming a previously expired or deleted invite. However, Check Point found that creating custom invite links allows the reuse of expired invite codes and even deleted permanent invite codes in some cases. This ability to reuse Discord expired or deleted codes when creating custom vanity invite links opens the door to abuse, allowing attackers to claim it for their malicious server. "This creates a serious risk: Users who follow previously trusted invite linkscan unknowingly be redirected to fake Discord servers created by threat actors," Check Point said. The Discord invite-link hijacking, in a nutshell, involves taking control of invite links originally shared by legitimate communities and then using them to redirect users to the malicious server. Users who fall prey to the scheme and join the server are asked to complete a verification step in order to gain full server access by authorizing a bot, which then leads them to a fake website with a prominent "Verify" button. This is where the attackers take the attack to the next level by incorporating the infamous ClickFix social engineering tactic to trick users into infecting their systems under the pretext of verification. Specifically, clicking the "Verify" button surreptitiously executes JavaScript that copies a PowerShell command to the machine's clipboard, after which the users are urged to launch the Windows Run dialog, paste the already copied "verification string", and press Enter to authenticate their accounts. But in reality, performing these steps triggers the download of a PowerShell script hosted on Pastebin that subsequently retrieves and executes a first-stage downloader, which is ultimately used to drop AsyncRAT and Skuld Stealer from a remote server and execute them. At the heart of this attack lies a meticulously engineered, multi-stage infection process designed for both precision and stealth, while also taking steps to subvert security protections through sandbox security checks. AsyncRAT, which offers comprehensive remote control capabilities over infected systems, has been found to employ a technique called dead drop resolver to access the actual command-and-controlserver by reading a Pastebin file. The other payload is a Golang information stealer that's downloaded from Bitbucket. It's equipped to steal sensitive user data from Discord, various browsers, crypto wallets, and gaming platforms. Skuld is also capable of harvesting crypto wallet seed phrases and passwords from the Exodus and Atomic crypto wallets. It accomplishes this using an approach called wallet injection that replaces legitimate application files with trojanized versions downloaded from GitHub. It's worth noting that a similar technique was recently put to use by a rogue npm package named pdf-to-office. The attack also employs a custom version of an open-source tool known as ChromeKatz to bypass Chrome's app-bound encryption protections. The collected data is exfiltrated to the miscreants via a Discord webhook. The fact that payload delivery and data exfiltration occur via trusted cloud services such as GitHub, Bitbucket, Pastebin, and Discord allows the threat actors to blend in with normal traffic and fly under the radar. Discord has since disabled the malicious bot, effectively breaking the attack chain. Check Point said it also identified another campaign mounted by the same threat actor that distributes the loader as a modified version of a hacktool for unlocking pirated games. The malicious program, also hosted on Bitbucket, has been downloaded 350 times. It has been assessed that the victims of these campaigns are primarily located in the United States, Vietnam, France, Germany, Slovakia, Austria, the Netherlands, and the United Kingdom. The findings represent the latest example of how cybercriminals are targeting the popular social platform, which has had its content delivery networkabused to host malware in the past. "This campaign illustrates how a subtle feature of Discord's invite system, the ability to reuse expired or deleted invite codes in vanity invite links, can be exploited as a powerful attack vector," the researchers said. "By hijacking legitimate invite links, threat actors silently redirect unsuspecting users to malicious Discord servers." "The choice of payloads, including a powerful stealer specifically targeting cryptocurrency wallets, suggests that the attackers are primarily focused on crypto users and motivated by financial gain." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE     #discord #invite #link #hijacking #delivers
    THEHACKERNEWS.COM
    Discord Invite Link Hijacking Delivers AsyncRAT and Skuld Stealer Targeting Crypto Wallets
    Jun 14, 2025Ravie LakshmananMalware / Threat Intelligence A new malware campaign is exploiting a weakness in Discord's invitation system to deliver an information stealer called Skuld and the AsyncRAT remote access trojan. "Attackers hijacked the links through vanity link registration, allowing them to silently redirect users from trusted sources to malicious servers," Check Point said in a technical report. "The attackers combined the ClickFix phishing technique, multi-stage loaders, and time-based evasions to stealthily deliver AsyncRAT, and a customized Skuld Stealer targeting crypto wallets." The issue with Discord's invite mechanism is that it allows attackers to hijack expired or deleted invite links and secretly redirect unsuspecting users to malicious servers under their control. This also means that a Discord invite link that was once trusted and shared on forums or social media platforms could unwittingly lead users to malicious sites. Details of the campaign come a little over a month after the cybersecurity company revealed another sophisticated phishing campaign that hijacked expired vanity invite links to entice users into joining a Discord server and instruct them to visit a phishing site to verify ownership, only to have their digital assets drained upon connecting their wallets. While users can create temporary, permanent, or custom (vanity) invite links on Discord, the platform prevents other legitimate servers from reclaiming a previously expired or deleted invite. However, Check Point found that creating custom invite links allows the reuse of expired invite codes and even deleted permanent invite codes in some cases. This ability to reuse Discord expired or deleted codes when creating custom vanity invite links opens the door to abuse, allowing attackers to claim it for their malicious server. "This creates a serious risk: Users who follow previously trusted invite links (e.g., on websites, blogs, or forums) can unknowingly be redirected to fake Discord servers created by threat actors," Check Point said. The Discord invite-link hijacking, in a nutshell, involves taking control of invite links originally shared by legitimate communities and then using them to redirect users to the malicious server. Users who fall prey to the scheme and join the server are asked to complete a verification step in order to gain full server access by authorizing a bot, which then leads them to a fake website with a prominent "Verify" button. This is where the attackers take the attack to the next level by incorporating the infamous ClickFix social engineering tactic to trick users into infecting their systems under the pretext of verification. Specifically, clicking the "Verify" button surreptitiously executes JavaScript that copies a PowerShell command to the machine's clipboard, after which the users are urged to launch the Windows Run dialog, paste the already copied "verification string" (i.e., the PowerShell command), and press Enter to authenticate their accounts. But in reality, performing these steps triggers the download of a PowerShell script hosted on Pastebin that subsequently retrieves and executes a first-stage downloader, which is ultimately used to drop AsyncRAT and Skuld Stealer from a remote server and execute them. At the heart of this attack lies a meticulously engineered, multi-stage infection process designed for both precision and stealth, while also taking steps to subvert security protections through sandbox security checks. AsyncRAT, which offers comprehensive remote control capabilities over infected systems, has been found to employ a technique called dead drop resolver to access the actual command-and-control (C2) server by reading a Pastebin file. The other payload is a Golang information stealer that's downloaded from Bitbucket. It's equipped to steal sensitive user data from Discord, various browsers, crypto wallets, and gaming platforms. Skuld is also capable of harvesting crypto wallet seed phrases and passwords from the Exodus and Atomic crypto wallets. It accomplishes this using an approach called wallet injection that replaces legitimate application files with trojanized versions downloaded from GitHub. It's worth noting that a similar technique was recently put to use by a rogue npm package named pdf-to-office. The attack also employs a custom version of an open-source tool known as ChromeKatz to bypass Chrome's app-bound encryption protections. The collected data is exfiltrated to the miscreants via a Discord webhook. The fact that payload delivery and data exfiltration occur via trusted cloud services such as GitHub, Bitbucket, Pastebin, and Discord allows the threat actors to blend in with normal traffic and fly under the radar. Discord has since disabled the malicious bot, effectively breaking the attack chain. Check Point said it also identified another campaign mounted by the same threat actor that distributes the loader as a modified version of a hacktool for unlocking pirated games. The malicious program, also hosted on Bitbucket, has been downloaded 350 times. It has been assessed that the victims of these campaigns are primarily located in the United States, Vietnam, France, Germany, Slovakia, Austria, the Netherlands, and the United Kingdom. The findings represent the latest example of how cybercriminals are targeting the popular social platform, which has had its content delivery network (CDN) abused to host malware in the past. "This campaign illustrates how a subtle feature of Discord's invite system, the ability to reuse expired or deleted invite codes in vanity invite links, can be exploited as a powerful attack vector," the researchers said. "By hijacking legitimate invite links, threat actors silently redirect unsuspecting users to malicious Discord servers." "The choice of payloads, including a powerful stealer specifically targeting cryptocurrency wallets, suggests that the attackers are primarily focused on crypto users and motivated by financial gain." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE    
    0 Reacties 0 aandelen
  • Cheaper than iCloud, this 2TB cloud storage also lasts for life

    Macworld

    iCloud doesn’t seem expensive until you start doing the math. If you want 2TB with iCloud, you’ll have to pay a month. That’s a little under every year. If you want a cheaper alternative to get the same amount of cloud storage, FileJump has a 2TB Cloud Storage Lifetime Subscription that’s on sale for.

    The biggest difference between iCloud and FileJump is that the latter won’t seamlessly integrate with your iOS devices. But with extra in your pocket every month… does it really matter? It’s still practically seamless to upload images, videos, and files under 15GB in size using the simple drag-and-drop, and they’re stored safely for life with AES encryption.

    Unlike other lifetime cloud storage plans, FileJump even has mobile and desktop apps to complete the experience. Conveniently see file previews for images, videos, and spreadsheets.

    Don’t miss your chance to replace a monthly subscription with something you can actually own.

    Get a FileJump 2TB Cloud Storage Lifetime Subscription for FileJump 2TB Cloud Storage: Lifetime SubscriptionSee Deal

    StackSocial prices subject to change.
    #cheaper #than #icloud #this #2tb
    Cheaper than iCloud, this 2TB cloud storage also lasts for life
    Macworld iCloud doesn’t seem expensive until you start doing the math. If you want 2TB with iCloud, you’ll have to pay a month. That’s a little under every year. If you want a cheaper alternative to get the same amount of cloud storage, FileJump has a 2TB Cloud Storage Lifetime Subscription that’s on sale for. The biggest difference between iCloud and FileJump is that the latter won’t seamlessly integrate with your iOS devices. But with extra in your pocket every month… does it really matter? It’s still practically seamless to upload images, videos, and files under 15GB in size using the simple drag-and-drop, and they’re stored safely for life with AES encryption. Unlike other lifetime cloud storage plans, FileJump even has mobile and desktop apps to complete the experience. Conveniently see file previews for images, videos, and spreadsheets. Don’t miss your chance to replace a monthly subscription with something you can actually own. Get a FileJump 2TB Cloud Storage Lifetime Subscription for FileJump 2TB Cloud Storage: Lifetime SubscriptionSee Deal StackSocial prices subject to change. #cheaper #than #icloud #this #2tb
    WWW.MACWORLD.COM
    Cheaper than iCloud, this 2TB cloud storage also lasts for life
    Macworld iCloud doesn’t seem expensive until you start doing the math. If you want 2TB with iCloud, you’ll have to pay $9.99 a month. That’s a little under $120 every year. If you want a cheaper alternative to get the same amount of cloud storage, FileJump has a 2TB Cloud Storage Lifetime Subscription that’s on sale for $69.97 (reg. $467). The biggest difference between iCloud and FileJump is that the latter won’t seamlessly integrate with your iOS devices. But with $10 extra in your pocket every month… does it really matter? It’s still practically seamless to upload images, videos, and files under 15GB in size using the simple drag-and-drop, and they’re stored safely for life with AES encryption. Unlike other lifetime cloud storage plans, FileJump even has mobile and desktop apps to complete the experience. Conveniently see file previews for images, videos, and spreadsheets. Don’t miss your chance to replace a monthly subscription with something you can actually own. Get a FileJump 2TB Cloud Storage Lifetime Subscription for $69.97. FileJump 2TB Cloud Storage: Lifetime SubscriptionSee Deal StackSocial prices subject to change.
    0 Reacties 0 aandelen