• NVIDIA CEO Drops the Blueprint for Europe’s AI Boom

    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it.
    “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris.
    From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future.

    A New Industrial Revolution
    At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing.
    “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance.
    At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware.
    There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers.
    Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue.
    NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth.
    Quantum Meets Classical
    Europe’s quantum ambitions just got a boost.
    The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems.
    Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction.
    “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.”
    Sovereign Models, Smarter Agents
    European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs.
    “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said.
    These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe.
    “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said.
    Huang explained how NVIDIA is helping countries across Europe build AI infrastructure.
    Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments.
    The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents.
    To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity.
    “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute.
    The Industrial Cloud Goes Live
    AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution.
    “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent.
    Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.”
    To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale.
    “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.”
    NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation.
    And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics.
    The Next Wave
    The next wave of AI has begun — and it’s exponential, Huang explained.
    “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.”
    This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said.
    To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.”
    Huang and Grek, as he explained how AI is driving advancements in robotics.
    These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence.
    “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.”
    With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe.
    Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions.
    #nvidia #ceo #drops #blueprint #europes
    NVIDIA CEO Drops the Blueprint for Europe’s AI Boom
    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it. “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris. From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future. A New Industrial Revolution At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing. “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance. At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware. There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers. Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue. NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth. Quantum Meets Classical Europe’s quantum ambitions just got a boost. The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems. Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction. “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.” Sovereign Models, Smarter Agents European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs. “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said. These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe. “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said. Huang explained how NVIDIA is helping countries across Europe build AI infrastructure. Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments. The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents. To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity. “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute. The Industrial Cloud Goes Live AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution. “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent. Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.” To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale. “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.” NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation. And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics. The Next Wave The next wave of AI has begun — and it’s exponential, Huang explained. “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.” This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said. To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.” Huang and Grek, as he explained how AI is driving advancements in robotics. These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence. “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.” With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe. Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions. #nvidia #ceo #drops #blueprint #europes
    BLOGS.NVIDIA.COM
    NVIDIA CEO Drops the Blueprint for Europe’s AI Boom
    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it. “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris. From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future. A New Industrial Revolution At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing. “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance. At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware. There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers. Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue. NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth. Quantum Meets Classical Europe’s quantum ambitions just got a boost. The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems. Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction. “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.” Sovereign Models, Smarter Agents European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs. “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said. These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe. “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said. Huang explained how NVIDIA is helping countries across Europe build AI infrastructure. Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments. The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents. To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity. “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute. The Industrial Cloud Goes Live AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution. “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent. Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.” To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale. “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.” NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation. And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics. The Next Wave The next wave of AI has begun — and it’s exponential, Huang explained. “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.” This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said. To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.” Huang and Grek, as he explained how AI is driving advancements in robotics. These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence. “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.” With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe. Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions.
    Like
    Love
    Sad
    23
    0 التعليقات 0 المشاركات
  • Plug and Play: Build a G-Assist Plug-In Today

    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems.
    NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels.

    G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow.
    Below, find popular G-Assist plug-ins, hackathon details and tips to get started.
    Plug-In and Win
    Join the hackathon by registering and checking out the curated technical resources.
    G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation.
    For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins.
    To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code.
    Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action.
    Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16.
    Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in.
    Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit.
    Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver.
    Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows.

    Popular plug-ins include:

    Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay.
    Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay.
    IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device.
    Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists.
    Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more.

    Get G-Assist 
    Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff.
    the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session.
    Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities.
    Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process.
    NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #plug #play #build #gassist #plugin
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file, requirements.txt, manifest.json, config.json, a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU, specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-InExplore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #plug #play #build #gassist #plugin
    BLOGS.NVIDIA.COM
    Plug and Play: Build a G-Assist Plug-In Today
    Project G-Assist — available through the NVIDIA App — is an experimental AI assistant that helps tune, control and optimize NVIDIA GeForce RTX systems. NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites the community to explore AI and build custom G-Assist plug-ins for a chance to win prizes and be featured on NVIDIA social media channels. G-Assist allows users to control their RTX GPU and other system settings using natural language, thanks to a small language model that runs on device. It can be used from the NVIDIA Overlay in the NVIDIA App without needing to tab out or switch programs. Users can expand its capabilities via plug-ins and even connect it to agentic frameworks such as Langflow. Below, find popular G-Assist plug-ins, hackathon details and tips to get started. Plug-In and Win Join the hackathon by registering and checking out the curated technical resources. G-Assist plug-ins can be built in several ways, including with Python for rapid development, with C++ for performance-critical apps and with custom system interactions for hardware and operating system automation. For those that prefer vibe coding, the G-Assist Plug-In Builder — a ChatGPT-based app that allows no-code or low-code development with natural language commands — makes it easy for enthusiasts to start creating plug-ins. To submit an entry, participants must provide a GitHub repository, including source code file (plugin.py), requirements.txt, manifest.json, config.json (if applicable), a plug-in executable file and READme code. Then, submit a video — between 30 seconds and two minutes — showcasing the plug-in in action. Finally, hackathoners must promote their plug-in using #AIonRTXHackathon on a social media channel: Instagram, TikTok or X. Submit projects via this form by Wednesday, July 16. Judges will assess plug-ins based on three main criteria: 1) innovation and creativity, 2) technical execution and integration, reviewing technical depth, G-Assist integration and scalability, and 3) usability and community impact, aka how easy it is to use the plug-in. Winners will be selected on Wednesday, Aug. 20. First place will receive a GeForce RTX 5090 laptop, second place a GeForce RTX 5080 GPU and third a GeForce RTX 5070 GPU. These top three will also be featured on NVIDIA’s social media channels, get the opportunity to meet the NVIDIA G-Assist team and earn an NVIDIA Deep Learning Institute self-paced course credit. Project G-Assist requires a GeForce RTX 50, 40 or 30 Series Desktop GPU with at least 12GB of VRAM, Windows 11 or 10 operating system, a compatible CPU (Intel Pentium G Series, Core i3, i5, i7 or higher; AMD FX, Ryzen 3, 5, 7, 9, Threadripper or higher), specific disk space requirements and a recent GeForce Game Ready Driver or NVIDIA Studio Driver. Plug-In(spiration) Explore open-source plug-in samples available on GitHub, which showcase the diverse ways on-device AI can enhance PC and gaming workflows. Popular plug-ins include: Google Gemini: Enables search-based queries using Google Search integration and large language model-based queries using Gemini capabilities in real time without needing to switch programs from the convenience of the NVIDIA App Overlay. Discord: Enables users to easily share game highlights or messages directly to Discord servers without disrupting gameplay. IFTTT: Lets users create automations across hundreds of compatible endpoints to trigger IoT routines — such as adjusting room lights and smart shades, or pushing the latest gaming news to a mobile device. Spotify: Lets users control Spotify using simple voice commands or the G-Assist interface to play favorite tracks and manage playlists. Twitch: Checks if any Twitch streamer is currently live and can access detailed stream information such as titles, games, view counts and more. Get G-Assist(ance)  Join the NVIDIA Developer Discord channel to collaborate, share creations and gain support from fellow AI enthusiasts and NVIDIA staff. Save the date for NVIDIA’s How to Build a G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities, discover the fundamentals of building, testing and deploying Project G-Assist plug-ins, and participate in a live Q&A session. Explore NVIDIA’s GitHub repository, which provides everything needed to get started developing with G-Assist, including sample plug-ins, step-by-step instructions and documentation for building custom functionalities. Learn more about the ChatGPT Plug-In Builder to transform ideas into functional G-Assist plug-ins with minimal coding. The tool uses OpenAI’s custom GPT builder to generate plug-in code and streamline the development process. NVIDIA’s technical blog walks through the architecture of a G-Assist plug-in, using a Twitch integration as an example. Discover how plug-ins work, how they communicate with G-Assist and how to build them from scratch. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    Like
    Wow
    Love
    Sad
    25
    0 التعليقات 0 المشاركات
  • NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica

    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth.
    Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI.
    This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany.
    NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics.
    NVIDIA Technologies Boost Robotics Development 
    Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics.
    To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks.
    To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data.
    In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub.
    Image courtesy of Wandelbots.
    Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More 
    Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots.
    NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment.
    NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies.
    Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows.
    Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact.
    Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations.
    Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries.
    Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic.
    Image courtesy of Franka Robotics.
    Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support.
    Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies.
    SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario.
    Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation.

    Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications.
    Image courtesy of Vention.
    Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27. 
    #nvidia #partners #highlight #nextgeneration #robotics
    NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica
    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth. Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI. This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany. NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics. NVIDIA Technologies Boost Robotics Development  Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics. To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data. In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub. Image courtesy of Wandelbots. Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More  Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots. NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment. NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies. Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows. Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact. Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations. Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries. Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic. Image courtesy of Franka Robotics. Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies. SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario. Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation. Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications. Image courtesy of Vention. Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27.  #nvidia #partners #highlight #nextgeneration #robotics
    BLOGS.NVIDIA.COM
    NVIDIA and Partners Highlight Next-Generation Robotics, Automation and AI Technologies at Automatica
    From the heart of Germany’s automotive sector to manufacturing hubs across France and Italy, Europe is embracing industrial AI and advanced AI-powered robotics to address labor shortages, boost productivity and fuel sustainable economic growth. Robotics companies are developing humanoid robots and collaborative systems that integrate AI into real-world manufacturing applications. Supported by a $200 billion investment initiative and coordinated efforts from the European Commission, Europe is positioning itself at the forefront of the next wave of industrial automation, powered by AI. This momentum is on full display at Automatica — Europe’s premier conference on advancements in robotics, machine vision and intelligent manufacturing — taking place this week in Munich, Germany. NVIDIA and its ecosystem of partners and customers are showcasing next-generation robots, automation and AI technologies designed to accelerate the continent’s leadership in smart manufacturing and logistics. NVIDIA Technologies Boost Robotics Development  Central to advancing robotics development is Europe’s first industrial AI cloud, announced at NVIDIA GTC Paris at VivaTech earlier this month. The Germany-based AI factory, featuring 10,000 NVIDIA GPUs, provides European manufacturers with secure, sovereign and centralized AI infrastructure for industrial workloads. It will support applications ranging from design and engineering to factory digital twins and robotics. To help accelerate humanoid development, NVIDIA released NVIDIA Isaac GR00T N1.5 — an open foundation model for humanoid robot reasoning and skills. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. To help post-train GR00T N1.5, NVIDIA has also released the Isaac GR00T-Dreams blueprint — a reference workflow for generating vast amounts of synthetic trajectory data from a small number of human demonstrations — enabling robots to generalize across behaviors and adapt to new environments with minimal human demonstration data. In addition, early developer previews of NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 — open-source robot simulation and learning frameworks optimized for NVIDIA RTX PRO 6000 workstations — are now available on GitHub. Image courtesy of Wandelbots. Robotics Leaders Tap NVIDIA Simulation Technology to Develop and Deploy Humanoids and More  Robotics developers and solutions providers across the globe are integrating NVIDIA’s three computers to train, simulate and deploy robots. NEURA Robotics, a German robotics company and pioneer for cognitive robots, unveiled the third generation of its humanoid, 4NE1, designed to assist humans in domestic and professional environments through advanced cognitive capabilities and humanlike interaction. 4NE1 is powered by GR00T N1 and was trained in Isaac Sim and Isaac Lab before real-world deployment. NEURA Robotics is also presenting Neuraverse, a digital twin and interconnected ecosystem for robot training, skills and applications, fully compatible with NVIDIA Omniverse technologies. Delta Electronics, a global leader in power management and smart green solutions, is debuting two next-generation collaborative robots: D-Bot Mar and D-Bot 2 in 1 — both trained using Omniverse and Isaac Sim technologies and libraries. These cobots are engineered to transform intralogistics and optimize production flows. Wandelbots, the creator of the Wandelbots NOVA software platform for industrial robotics, is partnering with SoftServe, a global IT consulting and digital services provider, to scale simulation-first automating using NVIDIA Isaac Sim, enabling virtual validation and real-world deployment with maximum impact. Cyngn, a pioneer in autonomous mobile robotics, is integrating its DriveMod technology into Isaac Sim to enable large-scale, high fidelity virtual testing of advanced autonomous operation. Purpose-built for industrial applications, DriveMod is already deployed on vehicles such as the Motrec MT-160 Tugger and BYD Forklift, delivering sophisticated automation to material handling operations. Doosan Robotics, a company specializing in AI robotic solutions, will showcase its “sim to real” solution, using NVIDIA Isaac Sim and cuRobo. Doosan will be showcasing how to seamlessly transfer tasks from simulation to real robots across a wide range of applications — from manufacturing to service industries. Franka Robotics has integrated Isaac GR00T N1.5 into a dual-arm Franka Research 3 (FR3) robot for robotic control. The integration of GR00T N1.5 allows the system to interpret visual input, understand task context and autonomously perform complex manipulation — without the need for task-specific programming or hardcoded logic. Image courtesy of Franka Robotics. Hexagon, the global leader in measurement technologies, launched its new humanoid, dubbed AEON. With its unique locomotion system and multimodal sensor fusion, and powered by NVIDIA’s three-computer solution, AEON is engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Intrinsic, a software and AI robotics company, is integrating Intrinsic Flowstate with  Omniverse and OpenUSD for advanced visualization and digital twins that can be used in many industrial use cases. The company is also using NVIDIA foundation models to enhance robot capabilities like grasp planning through AI and simulation technologies. SCHUNK, a global leader in gripping systems and automation technology, is showcasing its innovative grasping kit powered by the NVIDIA Jetson AGX Orin module. The kit intelligently detects objects and calculates optimal grasping points. Schunk is also demonstrating seamless simulation-to-reality transfer using IGS Virtuous software — built on Omniverse technologies — to control a real robot through simulation in a pick-and-place scenario. Universal Robots is showcasing UR15, its fastest cobot yet. Powered by the UR AI Accelerator — developed with NVIDIA and running on Jetson AGX Orin using CUDA-accelerated Isaac libraries — UR15 helps set a new standard for industrial automation. Vention, a full-stack software and hardware automation company, launched its Machine Motion AI, built on CUDA-accelerated Isaac libraries and powered by Jetson. Vention is also expanding its lineup of robotic offerings by adding the FR3 robot from Franka Robotics to its ecosystem, enhancing its solutions for academic and research applications. Image courtesy of Vention. Learn more about the latest robotics advancements by joining NVIDIA at Automatica, running through Friday, June 27. 
    Like
    Love
    Wow
    Sad
    Angry
    19
    0 التعليقات 0 المشاركات
  • HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift

    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas.
    The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers, to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI.
    The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market.
    The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster.
    This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs.
    These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows.
    HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October.
    In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption.
    The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center.
    To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis.
    HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity.
    Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments.

    Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay.
    Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page.
    #hpe #nvidia #debut #factory #stack
    HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift
    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas. The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers, to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI. The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market. The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster. This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs. These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows. HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October. In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption. The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center. To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis. HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity. Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments. Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay. Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page. #hpe #nvidia #debut #factory #stack
    BLOGS.NVIDIA.COM
    HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift
    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas. The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers (HPE ProLiant Compute DL380a Gen12), to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI. The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market. The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster. This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs. These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows. HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October. In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption. The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center. To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis. HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity. Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments. Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay. Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page.
    0 التعليقات 0 المشاركات
  • Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler

    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production.
    Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below.
    Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder.
    In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session.
    From Concept to Completion
    To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms.
    For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI.
    ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated.
    Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY.
    NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU.
    ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images.
    Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost.
    LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY.
    “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY 

    Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models.
    Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch.
    To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x.
    Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started.
    Photorealistic renders. Image courtesy of FITY.
    Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time.
    Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY.
    “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY

    Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #startup #uses #nvidia #rtxpowered #generative
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #startup #uses #nvidia #rtxpowered #generative
    BLOGS.NVIDIA.COM
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. Read more about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from $999. GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. Save the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptation (LoRA) models — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    0 التعليقات 0 المشاركات
  • Maxon has released Redshift 2025.5, and honestly, it's about time! But let's not sugarcoat it; the hype around new features like USDZ file rendering and point cloud support in Blender feels like a desperate attempt to keep up with competitors. Why does every release come with the same old promises? Users are tired of half-baked updates that don't address the real issues plaguing GPU rendering. Instead of flashy features, how about focusing on stability and performance? It’s infuriating to see companies chase trends while neglecting the core functionalities that truly matter. Enough with the marketing gimmicks—deliver real improvements or don’t bother at all!

    #Maxon #Redshift2025 #GPURendering #Blender #Tech
    Maxon has released Redshift 2025.5, and honestly, it's about time! But let's not sugarcoat it; the hype around new features like USDZ file rendering and point cloud support in Blender feels like a desperate attempt to keep up with competitors. Why does every release come with the same old promises? Users are tired of half-baked updates that don't address the real issues plaguing GPU rendering. Instead of flashy features, how about focusing on stability and performance? It’s infuriating to see companies chase trends while neglecting the core functionalities that truly matter. Enough with the marketing gimmicks—deliver real improvements or don’t bother at all! #Maxon #Redshift2025 #GPURendering #Blender #Tech
    Maxon releases Redshift 2025.5
    Check out the new features in the GPU renderer, including support for rendering USDZ files, and support for point clouds in Blender.
    1 التعليقات 0 المشاركات
  • AMD, GPU, carte graphique, gaming, budget, performance, Radeon RX 9060 XT, valeur, critique

    ## Introduction

    Dans un monde où le jeu vidéo est devenu un passe-temps incontournable, il est inacceptable que les joueurs soient constamment à la recherche de la meilleure carte graphique sans se ruiner. Alors, pourquoi diable devrions-nous nous contenter de moins quand nous avons le *Gigabyte Radeon RX 9060 XT* à notre disposition ? Cette carte graphique est présentée comme le meilleur rapport qualit...
    AMD, GPU, carte graphique, gaming, budget, performance, Radeon RX 9060 XT, valeur, critique ## Introduction Dans un monde où le jeu vidéo est devenu un passe-temps incontournable, il est inacceptable que les joueurs soient constamment à la recherche de la meilleure carte graphique sans se ruiner. Alors, pourquoi diable devrions-nous nous contenter de moins quand nous avons le *Gigabyte Radeon RX 9060 XT* à notre disposition ? Cette carte graphique est présentée comme le meilleur rapport qualit...
    Gigabyte Radeon RX 9060 XT : Un Rapport Qualité-Prix Imbattable
    AMD, GPU, carte graphique, gaming, budget, performance, Radeon RX 9060 XT, valeur, critique ## Introduction Dans un monde où le jeu vidéo est devenu un passe-temps incontournable, il est inacceptable que les joueurs soient constamment à la recherche de la meilleure carte graphique sans se ruiner. Alors, pourquoi diable devrions-nous nous contenter de moins quand nous avons le *Gigabyte Radeon...
    Like
    Love
    Wow
    Angry
    Sad
    121
    1 التعليقات 0 المشاركات
  • In the vast expanse of creativity, I often find myself alone, surrounded by shadows of unfulfilled dreams. The vibrant colors of my imagination fade into a dull gray, as I watch my visions slip away like sand through my fingers. I had hoped to bring them to life with OctaneRender, to see them dance in the light, but here I am, caught in a cycle of despair and doubt.

    Each time I sit down to create, the weight of my solitude presses heavily on my chest. The render times stretch endlessly, echoing the silence in my heart. I yearn for connection, for a space where my ideas can soar, yet I feel trapped in a void, unable to reach the heights I once envisioned. The powerful capabilities of iRender promise to transform my work, but the thought of waiting, of watching others thrive while I remain stagnant, fills me with a profound sense of loss.

    I scroll through my feeds, witnessing the success of others, and I can’t help but wonder: why can’t I find that same spark? The affordable GPU rendering solutions offered by iRender seem like a lifeline, yet the doubt lingers like a shadow, whispering that I am not meant for this world of creativity. I see the beauty in others' work, and it crushes me to think that I may never experience that joy.

    Every failed attempt feels like a dagger, piercing through the fragile veil of hope I’ve woven for myself. I long to create, to render my dreams into reality, but the fear of inadequacy holds me back. What if I take the leap and still fall short? The thought paralyzes me, leaving me in an endless loop of hesitation.

    It’s as if the universe conspires to remind me of my solitude, of the walls I’ve built around my heart. Even with the promise of advanced technology and a supportive render farm, I find myself questioning if I am worthy of the journey. Each day, I wake up with the same yearning, the same ache for connection and creativity. Yet, the fear of failure looms larger than my desire to create.

    I write these words in the hope that someone, somewhere, will understand this pain—the ache of being an artist in a world that feels so vast and empty. I cling to the possibility that one day, I will find solace in my creations, that iRender might just be the bridge between my dreams and reality. Until then, I remain in this silence, battling the loneliness that creeps in like an unwelcome guest.

    #ArtistryInIsolation
    #LonelyCreativity
    #iRenderHope
    #OctaneRenderStruggles
    #SilentDreams
    In the vast expanse of creativity, I often find myself alone, surrounded by shadows of unfulfilled dreams. The vibrant colors of my imagination fade into a dull gray, as I watch my visions slip away like sand through my fingers. I had hoped to bring them to life with OctaneRender, to see them dance in the light, but here I am, caught in a cycle of despair and doubt. Each time I sit down to create, the weight of my solitude presses heavily on my chest. The render times stretch endlessly, echoing the silence in my heart. I yearn for connection, for a space where my ideas can soar, yet I feel trapped in a void, unable to reach the heights I once envisioned. The powerful capabilities of iRender promise to transform my work, but the thought of waiting, of watching others thrive while I remain stagnant, fills me with a profound sense of loss. I scroll through my feeds, witnessing the success of others, and I can’t help but wonder: why can’t I find that same spark? The affordable GPU rendering solutions offered by iRender seem like a lifeline, yet the doubt lingers like a shadow, whispering that I am not meant for this world of creativity. I see the beauty in others' work, and it crushes me to think that I may never experience that joy. Every failed attempt feels like a dagger, piercing through the fragile veil of hope I’ve woven for myself. I long to create, to render my dreams into reality, but the fear of inadequacy holds me back. What if I take the leap and still fall short? The thought paralyzes me, leaving me in an endless loop of hesitation. It’s as if the universe conspires to remind me of my solitude, of the walls I’ve built around my heart. Even with the promise of advanced technology and a supportive render farm, I find myself questioning if I am worthy of the journey. Each day, I wake up with the same yearning, the same ache for connection and creativity. Yet, the fear of failure looms larger than my desire to create. I write these words in the hope that someone, somewhere, will understand this pain—the ache of being an artist in a world that feels so vast and empty. I cling to the possibility that one day, I will find solace in my creations, that iRender might just be the bridge between my dreams and reality. Until then, I remain in this silence, battling the loneliness that creeps in like an unwelcome guest. #ArtistryInIsolation #LonelyCreativity #iRenderHope #OctaneRenderStruggles #SilentDreams
    iRender: the next-gen render farm for OctaneRender
    [Sponsored] Online render farm iRender explains why its powerful, affordable GPU rendering solutions are a must for OctaneRender users.
    Like
    Love
    Wow
    Sad
    Angry
    616
    1 التعليقات 0 المشاركات
  • Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging

    Menu

    Home
    News

    Hardware

    Gaming

    Mobile

    Finance
    Deals
    Reviews
    How To

    Wccftech

    Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging

    Omar Sohail •
    Jun 16, 2025 at 02:00am EDT

    TSMC might have started accepting orders for its 2nm wafers, but the first chipsets fabricated on this cutting-edge lithography are not expected to arrive until late next year. As the majority of you are well aware, Apple likely pounced on the opportunity to be the first recipient of this technology, with its A20 rumored to be mass produced on the 2nm process. However, the same rumor claims that the Cupertino firm will employ the foundry giant’s WMCMpackaging, bringing in more benefits, but customers can only experience these if they intend on making the iPhone 18 Pro, iPhone 18 Pro Max, or Apple’s upcoming foldable flagship their daily driver.
    The latest rumor also claims that Apple will not be upping the RAM count on any iPhone model that will ship with the A20
    The efforts to bring WMCM packaging to the A20 will be highly beneficial for Apple because it will allow the latter to maintain the chipset’s footprint while having immense flexibility in combining different components. In short, multiple dies such as the CPU, GPU, memory, and other parts can be integrated at a wafer level, before being sliced into individual chips. This approach will help Apple to mass manufacture smaller chipsets that are considerably power-efficient, but also powerful at the same time, leading to an incredible ‘performance per watt’ metric.
    China Times reports that this A20 upgrade will arrive for the iPhone 18 Pro, the iPhone 18 Pro Max, and Apple’s foldable flagship, which the rumor refers to as the iPhone 18 Fold. TSMC’s production line specifically for WMCM chipsets will be located in Chiayi AP7, with an estimated monthly production capacity of 50,000 pieces by the end of 2026. Interestingly, the RAM count will not change from this year, with Apple said to retain the 12GB limit. We have reported about the iPhone 18 series shifting to TSMC’s WMCM packaging before, while also talking about a separate rumor claiming that the A20 will be 15 percent faster than the A19 at the same power draw.
    The rumor does not mention whether the less expensive iPhone 18 models will be treated to chipsets featuring WMCM packaging, or if Apple intends to save on design and production costs by sticking with the older Integrated Fan-Outpackaging. All of these answers will be provided in the fourth quarter of 2026, when the iPhone 18 family goes official, so stay tuned.
    News Source: China Times

    Subscribe to get an everyday digest of the latest technology news in your inbox

    Follow us on

    Topics

    Sections

    Company

    Some posts on wccftech.com may contain affiliate links. We are a participant in the Amazon Services LLC
    Associates Program, an affiliate advertising program designed to provide a means for sites to earn
    advertising fees by advertising and linking to amazon.com
    © 2025 WCCF TECH INC. 700 - 401 West Georgia Street, Vancouver, BC, Canada
    #apples #a20 #rumored #exclusive #iphone
    Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging
    Menu Home News Hardware Gaming Mobile Finance Deals Reviews How To Wccftech Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging Omar Sohail • Jun 16, 2025 at 02:00am EDT TSMC might have started accepting orders for its 2nm wafers, but the first chipsets fabricated on this cutting-edge lithography are not expected to arrive until late next year. As the majority of you are well aware, Apple likely pounced on the opportunity to be the first recipient of this technology, with its A20 rumored to be mass produced on the 2nm process. However, the same rumor claims that the Cupertino firm will employ the foundry giant’s WMCMpackaging, bringing in more benefits, but customers can only experience these if they intend on making the iPhone 18 Pro, iPhone 18 Pro Max, or Apple’s upcoming foldable flagship their daily driver. The latest rumor also claims that Apple will not be upping the RAM count on any iPhone model that will ship with the A20 The efforts to bring WMCM packaging to the A20 will be highly beneficial for Apple because it will allow the latter to maintain the chipset’s footprint while having immense flexibility in combining different components. In short, multiple dies such as the CPU, GPU, memory, and other parts can be integrated at a wafer level, before being sliced into individual chips. This approach will help Apple to mass manufacture smaller chipsets that are considerably power-efficient, but also powerful at the same time, leading to an incredible ‘performance per watt’ metric. China Times reports that this A20 upgrade will arrive for the iPhone 18 Pro, the iPhone 18 Pro Max, and Apple’s foldable flagship, which the rumor refers to as the iPhone 18 Fold. TSMC’s production line specifically for WMCM chipsets will be located in Chiayi AP7, with an estimated monthly production capacity of 50,000 pieces by the end of 2026. Interestingly, the RAM count will not change from this year, with Apple said to retain the 12GB limit. We have reported about the iPhone 18 series shifting to TSMC’s WMCM packaging before, while also talking about a separate rumor claiming that the A20 will be 15 percent faster than the A19 at the same power draw. The rumor does not mention whether the less expensive iPhone 18 models will be treated to chipsets featuring WMCM packaging, or if Apple intends to save on design and production costs by sticking with the older Integrated Fan-Outpackaging. All of these answers will be provided in the fourth quarter of 2026, when the iPhone 18 family goes official, so stay tuned. News Source: China Times Subscribe to get an everyday digest of the latest technology news in your inbox Follow us on Topics Sections Company Some posts on wccftech.com may contain affiliate links. We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to amazon.com © 2025 WCCF TECH INC. 700 - 401 West Georgia Street, Vancouver, BC, Canada #apples #a20 #rumored #exclusive #iphone
    WCCFTECH.COM
    Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging
    Menu Home News Hardware Gaming Mobile Finance Deals Reviews How To Wccftech Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging Omar Sohail • Jun 16, 2025 at 02:00am EDT TSMC might have started accepting orders for its 2nm wafers, but the first chipsets fabricated on this cutting-edge lithography are not expected to arrive until late next year. As the majority of you are well aware, Apple likely pounced on the opportunity to be the first recipient of this technology, with its A20 rumored to be mass produced on the 2nm process. However, the same rumor claims that the Cupertino firm will employ the foundry giant’s WMCM (Wafer-Level Multi-Chip Module) packaging, bringing in more benefits, but customers can only experience these if they intend on making the iPhone 18 Pro, iPhone 18 Pro Max, or Apple’s upcoming foldable flagship their daily driver. The latest rumor also claims that Apple will not be upping the RAM count on any iPhone model that will ship with the A20 The efforts to bring WMCM packaging to the A20 will be highly beneficial for Apple because it will allow the latter to maintain the chipset’s footprint while having immense flexibility in combining different components. In short, multiple dies such as the CPU, GPU, memory, and other parts can be integrated at a wafer level, before being sliced into individual chips. This approach will help Apple to mass manufacture smaller chipsets that are considerably power-efficient, but also powerful at the same time, leading to an incredible ‘performance per watt’ metric. China Times reports that this A20 upgrade will arrive for the iPhone 18 Pro, the iPhone 18 Pro Max, and Apple’s foldable flagship, which the rumor refers to as the iPhone 18 Fold. TSMC’s production line specifically for WMCM chipsets will be located in Chiayi AP7, with an estimated monthly production capacity of 50,000 pieces by the end of 2026. Interestingly, the RAM count will not change from this year, with Apple said to retain the 12GB limit. We have reported about the iPhone 18 series shifting to TSMC’s WMCM packaging before, while also talking about a separate rumor claiming that the A20 will be 15 percent faster than the A19 at the same power draw. The rumor does not mention whether the less expensive iPhone 18 models will be treated to chipsets featuring WMCM packaging, or if Apple intends to save on design and production costs by sticking with the older Integrated Fan-Out (InFo) packaging. All of these answers will be provided in the fourth quarter of 2026, when the iPhone 18 family goes official, so stay tuned. News Source: China Times Subscribe to get an everyday digest of the latest technology news in your inbox Follow us on Topics Sections Company Some posts on wccftech.com may contain affiliate links. We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to amazon.com © 2025 WCCF TECH INC. 700 - 401 West Georgia Street, Vancouver, BC, Canada
    Like
    Love
    Wow
    Angry
    Sad
    470
    2 التعليقات 0 المشاركات
  • Animate the Smart Way in Blender (Procedural Animation Tutorial) #b3d

    In this video, Louis du Montshows how to animate objects using Geometry Node, unlocking quick control and variation which scales.
    ⇨ Robotic Planet:
    ⇨ Project Files:

    CHAPTERS
    00:00 - Intro
    00:33 - Joining Objects
    04:01 - Ambient Ship Motion
    09:04 - Ambient Laser Motion
    11:06 - Disc Rotation
    12:26 - Using Group Inputs
    15:02 - Outro

    MY SYSTEM
    CPU: Ryzen 5900x
    GPU: GeForce RTX 3090
    RAM: 96 GB

    FOLLOW CG BOOST
    ⇨ X:
    ⇨ Instagram: /
    ⇨ Web: /
    #animate #smart #way #blender #procedural
    Animate the Smart Way in Blender (Procedural Animation Tutorial) #b3d
    In this video, Louis du Montshows how to animate objects using Geometry Node, unlocking quick control and variation which scales. ⇨ Robotic Planet: ⇨ Project Files: CHAPTERS 00:00 - Intro 00:33 - Joining Objects 04:01 - Ambient Ship Motion 09:04 - Ambient Laser Motion 11:06 - Disc Rotation 12:26 - Using Group Inputs 15:02 - Outro MY SYSTEM CPU: Ryzen 5900x GPU: GeForce RTX 3090 RAM: 96 GB FOLLOW CG BOOST ⇨ X: ⇨ Instagram: / ⇨ Web: / #animate #smart #way #blender #procedural
    WWW.YOUTUBE.COM
    Animate the Smart Way in Blender (Procedural Animation Tutorial) #b3d
    In this video, Louis du Mont (@ldm) shows how to animate objects using Geometry Node, unlocking quick control and variation which scales. ⇨ Robotic Planet: https://cgboost.link/robotic-planet-449836 ⇨ Project Files: https://www.cgboost.com/resources CHAPTERS 00:00 - Intro 00:33 - Joining Objects 04:01 - Ambient Ship Motion 09:04 - Ambient Laser Motion 11:06 - Disc Rotation 12:26 - Using Group Inputs 15:02 - Outro MY SYSTEM CPU: Ryzen 5900x GPU: GeForce RTX 3090 RAM: 96 GB FOLLOW CG BOOST ⇨ X: https://twitter.com/cgboost ⇨ Instagram: https://www.instagram.com/cg_boost/ ⇨ Web: https://cgboost.com/
    Like
    Love
    Wow
    Sad
    Angry
    525
    0 التعليقات 0 المشاركات
الصفحات المعززة