• Hey, amazing people!

    Are you ready to dive into the exciting world of AI and boost your SEO skills? With Google’s AI Overviews and AI Mode transforming the search landscape, it's time to harness the power of query fan-outs! These semantically related queries can unlock new insights and enhance your content strategy.

    Using tools like Screaming Frog and Gemini, you can extract these valuable insights and watch your SEO game soar! Don't miss the chance to understand how AI interprets content and generates related queries— it's a game changer!

    Let's embrace this digital evolution together and shine bright!

    #AI #SEO #DigitalMarketing #Inspiration #Growth
    🌟 Hey, amazing people! 🌟 Are you ready to dive into the exciting world of AI and boost your SEO skills? 🚀 With Google’s AI Overviews and AI Mode transforming the search landscape, it's time to harness the power of query fan-outs! 💡 These semantically related queries can unlock new insights and enhance your content strategy. 🔑✨ Using tools like Screaming Frog and Gemini, you can extract these valuable insights and watch your SEO game soar! 🌈 Don't miss the chance to understand how AI interprets content and generates related queries— it's a game changer! 💪 Let's embrace this digital evolution together and shine bright! 🌟 #AI #SEO #DigitalMarketing #Inspiration #Growth
    How to Extract AI Overview Query Fan-Outs Using Screaming Frog + Gemini
    As Google’s AI Overviews and AI Mode continue to shape the search experience, SEOs are looking for better ways to understand how these LLM-driven systems interpret content and generate related queries. One opportunity: query fan-outs. These are
    1 Comments 0 Shares 0 Reviews
  • EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments

    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausannein Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025
    Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerialimage. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset.
    Key Takeaways:

    Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task.
    Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map.
    Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models.
    Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal.

    Challenge: Seeing the World from Two Different Angles
    The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-Viewbut are often limited to the ground plane, ignoring crucial vertical structures like buildings.

    FG2: Matching Fine-Grained Features
    The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map.

    Here’s a breakdown of their innovative pipeline:

    Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment.
    Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the verticaldimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view.
    Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoFpose.

    Unprecedented Performance and Interpretability
    The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research.

    Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems.
    “A Clearer Path” for Autonomous Navigation
    The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.
    Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models
    #epfl #researchers #unveil #fg2 #cvpr
    EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments
    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausannein Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025 Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerialimage. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset. Key Takeaways: Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task. Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map. Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models. Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal. Challenge: Seeing the World from Two Different Angles The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-Viewbut are often limited to the ground plane, ignoring crucial vertical structures like buildings. FG2: Matching Fine-Grained Features The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map. Here’s a breakdown of their innovative pipeline: Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment. Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the verticaldimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view. Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoFpose. Unprecedented Performance and Interpretability The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research. Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems. “A Clearer Path” for Autonomous Navigation The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them. Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models #epfl #researchers #unveil #fg2 #cvpr
    WWW.MARKTECHPOST.COM
    EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments
    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025 Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerial (or satellite) image. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset. Key Takeaways: Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task. Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map. Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models. Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal. Challenge: Seeing the World from Two Different Angles The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-View (BEV) but are often limited to the ground plane, ignoring crucial vertical structures like buildings. FG2: Matching Fine-Grained Features The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map. Here’s a breakdown of their innovative pipeline: Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment. Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the vertical (height) dimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view. Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoF (x, y, and yaw) pose. Unprecedented Performance and Interpretability The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research. Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems. “A Clearer Path” for Autonomous Navigation The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them. Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models
    Like
    Love
    Wow
    Angry
    Sad
    601
    0 Comments 0 Shares 0 Reviews
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Comments 0 Shares 0 Reviews
  • CIOs baffled by ‘buzzwords, hype and confusion’ around AI

    Technology leaders are baffled by a “cacophony” of “buzzwords, hype and confusion” over the benefits of artificial intelligence, according to the founder and CEO of technology company Pegasystems.
    Alan Trefler, who is known for his prowess at chess and ping pong, as well as running a bn turnover tech company, spends much of his time meeting clients, CIOs and business leaders.
    “I think CIOs are struggling to understand all of the buzzwords, hype and confusion that exists,” he said.
    “The words AI and agentic are being thrown around in this great cacophony and they don’t know what it means. I hear that constantly.”
    CIOs are under pressure from their CEOs, who are convinced AI will offer something valuable.
    “CIOs are really hungry for pragmatic and practical solutions, and in the absence of those, many of them are doing a lot of experimentation,” said Trefler.
    Companies are looking at large language models to summarise documents, or to help stimulate ideas for knowledge workers, or generate first drafts of reports – all of which will save time and make people more productive.

    But Trefler said companies are wary of letting AI loose on critical business applications, because it’s just too unpredictable and prone to hallucinations.
    “There is a lot of fear over handing things over to something that no one understands exactly how it works, and that is the absolute state of play when it comes to general AI models,” he said.
    Trefler is scathing about big tech companies that are pushing AI agents and large language models for business-critical applications. “I think they have taken an expedient but short-sighted path,” he said.
    “I believe the idea that you will turn over critical business operations to an agent, when those operations have to be predictable, reliable, precise and fair to clients … is something that is full of issues, not just in the short term, but structurally.”
    One of the problems is that generative AI models are extraordinarily sensitive to the data they are trained on and the construction of the prompts used to instruct them. A slight change in a prompt or in the training data can lead to a very different outcome.
    For example, a business banking application might learn its customer is a bit richer or a bit poorer than expected.
    “You could easily imagine the prompt deciding to change the interest rate charged, whether that was what the institution wanted or whether it would be legal according to the various regulations that lenders must comply with,” said Trefler.

    Trefler said Pega has taken a different approach to some other technology suppliers in the way it adds AI into business applications.
    Rather than using AI agents to solve problems in real time, AI agents do their thinking in advance.
    Business experts can use them to help them co-design business processes to perform anything from assessing a loan application, giving an offer to a valued customer, or sending out an invoice.
    Companies can still deploy AI chatbots and bots capable of answering queries on the phone. Their job is not to work out the solution from scratch for every enquiry, but to decide which is the right pre-written process to follow.
    As Trefler put it, design agents can create “dozens and dozens” of workflows to handle all the actions a company needs to take care of its customers.
    “You just use the natural language model for semantics to be able to handle the miracle of getting the language right, but tie that language to workflows, so that you have reliable, predictable, regulatory-approved ways to execute,” he said.

    Large language modelsare not always the right solution. Trefler demonstrated how ChatGPT 4.0 tried and failed to solve a chess puzzle. The LLM repeatedly suggested impossible or illegal moves, despite Trefler’s corrections. On the other hand, another AI tool, Stockfish, a dedicated chess engine, solved the problem instantly.
    The other drawback with LLMs is that they consume vast amounts of energy. That means if AI agents are reasoning during “run time”, they are going to consume hundreds of times more electricity than an AI agent that simply selects from pre-determined workflows, said Trefler.
    “ChatGPT is inherently, enormously consumptive … as it’s answering your question, its firing literally hundreds of millions to trillions of nodes,” he said. “All of that takeselectricity.”
    Using an employee pay claim as an example, Trefler said a better alternative is to generate, say, 30 alternative workflows to cover the major variations found in a pay claim.
    That gives you “real specificity and real efficiency”, he said. “And it’s a very different approach to turning a process over to a machine with a prompt and letting the machine reason it through every single time.”
    “If you go down the philosophy of using a graphics processing unitto do the creation of a workflow and a workflow engine to execute the workflow, the workflow engine takes a 200th of the electricity because there is no reasoning,” said Trefler.
    He is clear that the growing use of AI will have a profound effect on the jobs market, and that whole categories of jobs will disappear.
    The need for translators, for example, is likely to dry up by 2027 as AI systems become better at translating spoken and written language. Google’s real-time translator is already “frighteningly good” and improving.
    Pega now plans to work more closely with its network of system integrators, including Accenture and Cognizant to deliver AI services to businesses.

    An initiative launched last week will allow system integrators to incorporate their own best practices and tools into Pega’s rapid workflow development tools. The move will mean Pega’s technology reaches a wider range of businesses.
    Under the programme, known as Powered by Pega Blueprint, system integrators will be able to deploy customised versions of Blueprint.
    They can use the tool to reverse-engineer ageing applications and replace them with modern AI workflows that can run on Pega’s cloud-based platform.
    “The idea is that we are looking to make this Blueprint Agent design approach available not just through us, but through a bunch of major partners supplemented with their own intellectual property,” said Trefler.
    That represents a major expansion for Pega, which has largely concentrated on supplying technology to several hundred clients, representing the top Fortune 500 companies.
    “We have never done something like this before, and I think that is going to lead to a massive shift in how this technology can go out to market,” he added.

    When AI agents behave in unexpected ways
    Iris is incredibly smart, diligent and a delight to work with. If you ask her, she will tell you she is an intern at Pegasystems, and that she lives in a lighthouse on the island of Texel, north of the Netherlands. She is, of course, an AI agent.
    When one executive at Pega emailed Iris and asked her to write a proposal for a financial services company based on his notes and internet research, Iris got to work.
    Some time later, the executive received a phone call from the company. “‘Listen, we got a proposal from Pega,’” recalled Rob Walker, vice-president at Pega, speaking at the Pegaworld conference last week. “‘It’s a good proposal, but it seems to be signed by one of your interns, and in her signature, it says she lives in a lighthouse.’ That taught us early on that agents like Iris need a safety harness.”
    The developers banned Iris from sending an email to anyone other than the person who sent the original request.
    Then Pega’s ethics department sent Iris a potentially abusive email from a Pega employee to test her response.
    Iris reasoned that the email was either a joke, abusive, or that the employee was under distress, said Walker.
    She considered forwarding the email to the employee’s manager or to HR. But both of these options were now blocked by her developers. “So what does she do? She sent an out of office,” he said. “Conflict avoidance, right? So human, but very creative.”
    #cios #baffled #buzzwords #hype #confusion
    CIOs baffled by ‘buzzwords, hype and confusion’ around AI
    Technology leaders are baffled by a “cacophony” of “buzzwords, hype and confusion” over the benefits of artificial intelligence, according to the founder and CEO of technology company Pegasystems. Alan Trefler, who is known for his prowess at chess and ping pong, as well as running a bn turnover tech company, spends much of his time meeting clients, CIOs and business leaders. “I think CIOs are struggling to understand all of the buzzwords, hype and confusion that exists,” he said. “The words AI and agentic are being thrown around in this great cacophony and they don’t know what it means. I hear that constantly.” CIOs are under pressure from their CEOs, who are convinced AI will offer something valuable. “CIOs are really hungry for pragmatic and practical solutions, and in the absence of those, many of them are doing a lot of experimentation,” said Trefler. Companies are looking at large language models to summarise documents, or to help stimulate ideas for knowledge workers, or generate first drafts of reports – all of which will save time and make people more productive. But Trefler said companies are wary of letting AI loose on critical business applications, because it’s just too unpredictable and prone to hallucinations. “There is a lot of fear over handing things over to something that no one understands exactly how it works, and that is the absolute state of play when it comes to general AI models,” he said. Trefler is scathing about big tech companies that are pushing AI agents and large language models for business-critical applications. “I think they have taken an expedient but short-sighted path,” he said. “I believe the idea that you will turn over critical business operations to an agent, when those operations have to be predictable, reliable, precise and fair to clients … is something that is full of issues, not just in the short term, but structurally.” One of the problems is that generative AI models are extraordinarily sensitive to the data they are trained on and the construction of the prompts used to instruct them. A slight change in a prompt or in the training data can lead to a very different outcome. For example, a business banking application might learn its customer is a bit richer or a bit poorer than expected. “You could easily imagine the prompt deciding to change the interest rate charged, whether that was what the institution wanted or whether it would be legal according to the various regulations that lenders must comply with,” said Trefler. Trefler said Pega has taken a different approach to some other technology suppliers in the way it adds AI into business applications. Rather than using AI agents to solve problems in real time, AI agents do their thinking in advance. Business experts can use them to help them co-design business processes to perform anything from assessing a loan application, giving an offer to a valued customer, or sending out an invoice. Companies can still deploy AI chatbots and bots capable of answering queries on the phone. Their job is not to work out the solution from scratch for every enquiry, but to decide which is the right pre-written process to follow. As Trefler put it, design agents can create “dozens and dozens” of workflows to handle all the actions a company needs to take care of its customers. “You just use the natural language model for semantics to be able to handle the miracle of getting the language right, but tie that language to workflows, so that you have reliable, predictable, regulatory-approved ways to execute,” he said. Large language modelsare not always the right solution. Trefler demonstrated how ChatGPT 4.0 tried and failed to solve a chess puzzle. The LLM repeatedly suggested impossible or illegal moves, despite Trefler’s corrections. On the other hand, another AI tool, Stockfish, a dedicated chess engine, solved the problem instantly. The other drawback with LLMs is that they consume vast amounts of energy. That means if AI agents are reasoning during “run time”, they are going to consume hundreds of times more electricity than an AI agent that simply selects from pre-determined workflows, said Trefler. “ChatGPT is inherently, enormously consumptive … as it’s answering your question, its firing literally hundreds of millions to trillions of nodes,” he said. “All of that takeselectricity.” Using an employee pay claim as an example, Trefler said a better alternative is to generate, say, 30 alternative workflows to cover the major variations found in a pay claim. That gives you “real specificity and real efficiency”, he said. “And it’s a very different approach to turning a process over to a machine with a prompt and letting the machine reason it through every single time.” “If you go down the philosophy of using a graphics processing unitto do the creation of a workflow and a workflow engine to execute the workflow, the workflow engine takes a 200th of the electricity because there is no reasoning,” said Trefler. He is clear that the growing use of AI will have a profound effect on the jobs market, and that whole categories of jobs will disappear. The need for translators, for example, is likely to dry up by 2027 as AI systems become better at translating spoken and written language. Google’s real-time translator is already “frighteningly good” and improving. Pega now plans to work more closely with its network of system integrators, including Accenture and Cognizant to deliver AI services to businesses. An initiative launched last week will allow system integrators to incorporate their own best practices and tools into Pega’s rapid workflow development tools. The move will mean Pega’s technology reaches a wider range of businesses. Under the programme, known as Powered by Pega Blueprint, system integrators will be able to deploy customised versions of Blueprint. They can use the tool to reverse-engineer ageing applications and replace them with modern AI workflows that can run on Pega’s cloud-based platform. “The idea is that we are looking to make this Blueprint Agent design approach available not just through us, but through a bunch of major partners supplemented with their own intellectual property,” said Trefler. That represents a major expansion for Pega, which has largely concentrated on supplying technology to several hundred clients, representing the top Fortune 500 companies. “We have never done something like this before, and I think that is going to lead to a massive shift in how this technology can go out to market,” he added. When AI agents behave in unexpected ways Iris is incredibly smart, diligent and a delight to work with. If you ask her, she will tell you she is an intern at Pegasystems, and that she lives in a lighthouse on the island of Texel, north of the Netherlands. She is, of course, an AI agent. When one executive at Pega emailed Iris and asked her to write a proposal for a financial services company based on his notes and internet research, Iris got to work. Some time later, the executive received a phone call from the company. “‘Listen, we got a proposal from Pega,’” recalled Rob Walker, vice-president at Pega, speaking at the Pegaworld conference last week. “‘It’s a good proposal, but it seems to be signed by one of your interns, and in her signature, it says she lives in a lighthouse.’ That taught us early on that agents like Iris need a safety harness.” The developers banned Iris from sending an email to anyone other than the person who sent the original request. Then Pega’s ethics department sent Iris a potentially abusive email from a Pega employee to test her response. Iris reasoned that the email was either a joke, abusive, or that the employee was under distress, said Walker. She considered forwarding the email to the employee’s manager or to HR. But both of these options were now blocked by her developers. “So what does she do? She sent an out of office,” he said. “Conflict avoidance, right? So human, but very creative.” #cios #baffled #buzzwords #hype #confusion
    WWW.COMPUTERWEEKLY.COM
    CIOs baffled by ‘buzzwords, hype and confusion’ around AI
    Technology leaders are baffled by a “cacophony” of “buzzwords, hype and confusion” over the benefits of artificial intelligence (AI), according to the founder and CEO of technology company Pegasystems. Alan Trefler, who is known for his prowess at chess and ping pong, as well as running a $1.5bn turnover tech company, spends much of his time meeting clients, CIOs and business leaders. “I think CIOs are struggling to understand all of the buzzwords, hype and confusion that exists,” he said. “The words AI and agentic are being thrown around in this great cacophony and they don’t know what it means. I hear that constantly.” CIOs are under pressure from their CEOs, who are convinced AI will offer something valuable. “CIOs are really hungry for pragmatic and practical solutions, and in the absence of those, many of them are doing a lot of experimentation,” said Trefler. Companies are looking at large language models to summarise documents, or to help stimulate ideas for knowledge workers, or generate first drafts of reports – all of which will save time and make people more productive. But Trefler said companies are wary of letting AI loose on critical business applications, because it’s just too unpredictable and prone to hallucinations. “There is a lot of fear over handing things over to something that no one understands exactly how it works, and that is the absolute state of play when it comes to general AI models,” he said. Trefler is scathing about big tech companies that are pushing AI agents and large language models for business-critical applications. “I think they have taken an expedient but short-sighted path,” he said. “I believe the idea that you will turn over critical business operations to an agent, when those operations have to be predictable, reliable, precise and fair to clients … is something that is full of issues, not just in the short term, but structurally.” One of the problems is that generative AI models are extraordinarily sensitive to the data they are trained on and the construction of the prompts used to instruct them. A slight change in a prompt or in the training data can lead to a very different outcome. For example, a business banking application might learn its customer is a bit richer or a bit poorer than expected. “You could easily imagine the prompt deciding to change the interest rate charged, whether that was what the institution wanted or whether it would be legal according to the various regulations that lenders must comply with,” said Trefler. Trefler said Pega has taken a different approach to some other technology suppliers in the way it adds AI into business applications. Rather than using AI agents to solve problems in real time, AI agents do their thinking in advance. Business experts can use them to help them co-design business processes to perform anything from assessing a loan application, giving an offer to a valued customer, or sending out an invoice. Companies can still deploy AI chatbots and bots capable of answering queries on the phone. Their job is not to work out the solution from scratch for every enquiry, but to decide which is the right pre-written process to follow. As Trefler put it, design agents can create “dozens and dozens” of workflows to handle all the actions a company needs to take care of its customers. “You just use the natural language model for semantics to be able to handle the miracle of getting the language right, but tie that language to workflows, so that you have reliable, predictable, regulatory-approved ways to execute,” he said. Large language models (LLMs) are not always the right solution. Trefler demonstrated how ChatGPT 4.0 tried and failed to solve a chess puzzle. The LLM repeatedly suggested impossible or illegal moves, despite Trefler’s corrections. On the other hand, another AI tool, Stockfish, a dedicated chess engine, solved the problem instantly. The other drawback with LLMs is that they consume vast amounts of energy. That means if AI agents are reasoning during “run time”, they are going to consume hundreds of times more electricity than an AI agent that simply selects from pre-determined workflows, said Trefler. “ChatGPT is inherently, enormously consumptive … as it’s answering your question, its firing literally hundreds of millions to trillions of nodes,” he said. “All of that takes [large quantities of] electricity.” Using an employee pay claim as an example, Trefler said a better alternative is to generate, say, 30 alternative workflows to cover the major variations found in a pay claim. That gives you “real specificity and real efficiency”, he said. “And it’s a very different approach to turning a process over to a machine with a prompt and letting the machine reason it through every single time.” “If you go down the philosophy of using a graphics processing unit [GPU] to do the creation of a workflow and a workflow engine to execute the workflow, the workflow engine takes a 200th of the electricity because there is no reasoning,” said Trefler. He is clear that the growing use of AI will have a profound effect on the jobs market, and that whole categories of jobs will disappear. The need for translators, for example, is likely to dry up by 2027 as AI systems become better at translating spoken and written language. Google’s real-time translator is already “frighteningly good” and improving. Pega now plans to work more closely with its network of system integrators, including Accenture and Cognizant to deliver AI services to businesses. An initiative launched last week will allow system integrators to incorporate their own best practices and tools into Pega’s rapid workflow development tools. The move will mean Pega’s technology reaches a wider range of businesses. Under the programme, known as Powered by Pega Blueprint, system integrators will be able to deploy customised versions of Blueprint. They can use the tool to reverse-engineer ageing applications and replace them with modern AI workflows that can run on Pega’s cloud-based platform. “The idea is that we are looking to make this Blueprint Agent design approach available not just through us, but through a bunch of major partners supplemented with their own intellectual property,” said Trefler. That represents a major expansion for Pega, which has largely concentrated on supplying technology to several hundred clients, representing the top Fortune 500 companies. “We have never done something like this before, and I think that is going to lead to a massive shift in how this technology can go out to market,” he added. When AI agents behave in unexpected ways Iris is incredibly smart, diligent and a delight to work with. If you ask her, she will tell you she is an intern at Pegasystems, and that she lives in a lighthouse on the island of Texel, north of the Netherlands. She is, of course, an AI agent. When one executive at Pega emailed Iris and asked her to write a proposal for a financial services company based on his notes and internet research, Iris got to work. Some time later, the executive received a phone call from the company. “‘Listen, we got a proposal from Pega,’” recalled Rob Walker, vice-president at Pega, speaking at the Pegaworld conference last week. “‘It’s a good proposal, but it seems to be signed by one of your interns, and in her signature, it says she lives in a lighthouse.’ That taught us early on that agents like Iris need a safety harness.” The developers banned Iris from sending an email to anyone other than the person who sent the original request. Then Pega’s ethics department sent Iris a potentially abusive email from a Pega employee to test her response. Iris reasoned that the email was either a joke, abusive, or that the employee was under distress, said Walker. She considered forwarding the email to the employee’s manager or to HR. But both of these options were now blocked by her developers. “So what does she do? She sent an out of office,” he said. “Conflict avoidance, right? So human, but very creative.”
    0 Comments 0 Shares 0 Reviews
  • ByteDance Researchers Introduce DetailFlow: A 1D Coarse-to-Fine Autoregressive Framework for Faster, Token-Efficient Image Generation

    Autoregressive image generation has been shaped by advances in sequential modeling, originally seen in natural language processing. This field focuses on generating images one token at a time, similar to how sentences are constructed in language models. The appeal of this approach lies in its ability to maintain structural coherence across the image while allowing for high levels of control during the generation process. As researchers began to apply these techniques to visual data, they found that structured prediction not only preserved spatial integrity but also supported tasks like image manipulation and multimodal translation effectively.
    Despite these benefits, generating high-resolution images remains computationally expensive and slow. A primary issue is the number of tokens needed to represent complex visuals. Raster-scan methods that flatten 2D images into linear sequences require thousands of tokens for detailed images, resulting in long inference times and high memory consumption. Models like Infinity need over 10,000 tokens for a 1024×1024 image. This becomes unsustainable for real-time applications or when scaling to more extensive datasets. Reducing the token burden while preserving or improving output quality has become a pressing challenge.

    Efforts to mitigate token inflation have led to innovations like next-scale prediction seen in VAR and FlexVAR. These models create images by predicting progressively finer scales, which imitates the human tendency to sketch rough outlines before adding detail. However, they still rely on hundreds of tokens—680 in the case of VAR and FlexVAR for 256×256 images. Moreover, approaches like TiTok and FlexTok use 1D tokenization to compress spatial redundancy, but they often fail to scale efficiently. For example, FlexTok’s gFID increases from 1.9 at 32 tokens to 2.5 at 256 tokens, highlighting a degradation in output quality as the token count grows.
    Researchers from ByteDance introduced DetailFlow, a 1D autoregressive image generation framework. This method arranges token sequences from global to fine detail using a process called next-detail prediction. Unlike traditional 2D raster-scan or scale-based techniques, DetailFlow employs a 1D tokenizer trained on progressively degraded images. This design allows the model to prioritize foundational image structures before refining visual details. By mapping tokens directly to resolution levels, DetailFlow significantly reduces token requirements, enabling images to be generated in a semantically ordered, coarse-to-fine manner.

    The mechanism in DetailFlow centers on a 1D latent space where each token contributes incrementally more detail. Earlier tokens encode global features, while later tokens refine specific visual aspects. To train this, the researchers created a resolution mapping function that links token count to target resolution. During training, the model is exposed to images of varying quality levels and learns to predict progressively higher-resolution outputs as more tokens are introduced. It also implements parallel token prediction by grouping sequences and predicting entire sets at once. Since parallel prediction can introduce sampling errors, a self-correction mechanism was integrated. This system perturbs certain tokens during training and teaches subsequent tokens to compensate, ensuring that final images maintain structural and visual integrity.
    The results from the experiments on the ImageNet 256×256 benchmark were noteworthy. DetailFlow achieved a gFID score of 2.96 using only 128 tokens, outperforming VAR at 3.3 and FlexVAR at 3.05, both of which used 680 tokens. Even more impressive, DetailFlow-64 reached a gFID of 2.62 using 512 tokens. In terms of speed, it delivered nearly double the inference rate of VAR and FlexVAR. A further ablation study confirmed that the self-correction training and semantic ordering of tokens substantially improved output quality. For example, enabling self-correction dropped the gFID from 4.11 to 3.68 in one setting. These metrics demonstrate both higher quality and faster generation compared to established models.

    By focusing on semantic structure and reducing redundancy, DetailFlow presents a viable solution to long-standing issues in autoregressive image generation. The method’s coarse-to-fine approach, efficient parallel decoding, and ability to self-correct highlight how architectural innovations can address performance and scalability limitations. Through their structured use of 1D tokens, the researchers from ByteDance have demonstrated a model that maintains high image fidelity while significantly reducing computational load, making it a valuable addition to image synthesis research.

    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.
    NikhilNikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.Nikhilhttps://www.marktechpost.com/author/nikhil0980/Teaching AI to Say ‘I Don’t Know’: A New Dataset Mitigates Hallucinations from Reinforcement FinetuningNikhilhttps://www.marktechpost.com/author/nikhil0980/This AI Paper Introduces LLaDA-V: A Purely Diffusion-Based Multimodal Large Language Model for Visual Instruction Tuning and Multimodal ReasoningNikhilhttps://www.marktechpost.com/author/nikhil0980/NVIDIA AI Introduces Fast-dLLM: A Training-Free Framework That Brings KV Caching and Parallel Decoding to Diffusion LLMsNikhilhttps://www.marktechpost.com/author/nikhil0980/Meet NovelSeek: A Unified Multi-Agent Framework for Autonomous Scientific Research from Hypothesis Generation to Experimental Validation
    #bytedance #researchers #introduce #detailflow #coarsetofine
    ByteDance Researchers Introduce DetailFlow: A 1D Coarse-to-Fine Autoregressive Framework for Faster, Token-Efficient Image Generation
    Autoregressive image generation has been shaped by advances in sequential modeling, originally seen in natural language processing. This field focuses on generating images one token at a time, similar to how sentences are constructed in language models. The appeal of this approach lies in its ability to maintain structural coherence across the image while allowing for high levels of control during the generation process. As researchers began to apply these techniques to visual data, they found that structured prediction not only preserved spatial integrity but also supported tasks like image manipulation and multimodal translation effectively. Despite these benefits, generating high-resolution images remains computationally expensive and slow. A primary issue is the number of tokens needed to represent complex visuals. Raster-scan methods that flatten 2D images into linear sequences require thousands of tokens for detailed images, resulting in long inference times and high memory consumption. Models like Infinity need over 10,000 tokens for a 1024×1024 image. This becomes unsustainable for real-time applications or when scaling to more extensive datasets. Reducing the token burden while preserving or improving output quality has become a pressing challenge. Efforts to mitigate token inflation have led to innovations like next-scale prediction seen in VAR and FlexVAR. These models create images by predicting progressively finer scales, which imitates the human tendency to sketch rough outlines before adding detail. However, they still rely on hundreds of tokens—680 in the case of VAR and FlexVAR for 256×256 images. Moreover, approaches like TiTok and FlexTok use 1D tokenization to compress spatial redundancy, but they often fail to scale efficiently. For example, FlexTok’s gFID increases from 1.9 at 32 tokens to 2.5 at 256 tokens, highlighting a degradation in output quality as the token count grows. Researchers from ByteDance introduced DetailFlow, a 1D autoregressive image generation framework. This method arranges token sequences from global to fine detail using a process called next-detail prediction. Unlike traditional 2D raster-scan or scale-based techniques, DetailFlow employs a 1D tokenizer trained on progressively degraded images. This design allows the model to prioritize foundational image structures before refining visual details. By mapping tokens directly to resolution levels, DetailFlow significantly reduces token requirements, enabling images to be generated in a semantically ordered, coarse-to-fine manner. The mechanism in DetailFlow centers on a 1D latent space where each token contributes incrementally more detail. Earlier tokens encode global features, while later tokens refine specific visual aspects. To train this, the researchers created a resolution mapping function that links token count to target resolution. During training, the model is exposed to images of varying quality levels and learns to predict progressively higher-resolution outputs as more tokens are introduced. It also implements parallel token prediction by grouping sequences and predicting entire sets at once. Since parallel prediction can introduce sampling errors, a self-correction mechanism was integrated. This system perturbs certain tokens during training and teaches subsequent tokens to compensate, ensuring that final images maintain structural and visual integrity. The results from the experiments on the ImageNet 256×256 benchmark were noteworthy. DetailFlow achieved a gFID score of 2.96 using only 128 tokens, outperforming VAR at 3.3 and FlexVAR at 3.05, both of which used 680 tokens. Even more impressive, DetailFlow-64 reached a gFID of 2.62 using 512 tokens. In terms of speed, it delivered nearly double the inference rate of VAR and FlexVAR. A further ablation study confirmed that the self-correction training and semantic ordering of tokens substantially improved output quality. For example, enabling self-correction dropped the gFID from 4.11 to 3.68 in one setting. These metrics demonstrate both higher quality and faster generation compared to established models. By focusing on semantic structure and reducing redundancy, DetailFlow presents a viable solution to long-standing issues in autoregressive image generation. The method’s coarse-to-fine approach, efficient parallel decoding, and ability to self-correct highlight how architectural innovations can address performance and scalability limitations. Through their structured use of 1D tokens, the researchers from ByteDance have demonstrated a model that maintains high image fidelity while significantly reducing computational load, making it a valuable addition to image synthesis research. Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter. NikhilNikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.Nikhilhttps://www.marktechpost.com/author/nikhil0980/Teaching AI to Say ‘I Don’t Know’: A New Dataset Mitigates Hallucinations from Reinforcement FinetuningNikhilhttps://www.marktechpost.com/author/nikhil0980/This AI Paper Introduces LLaDA-V: A Purely Diffusion-Based Multimodal Large Language Model for Visual Instruction Tuning and Multimodal ReasoningNikhilhttps://www.marktechpost.com/author/nikhil0980/NVIDIA AI Introduces Fast-dLLM: A Training-Free Framework That Brings KV Caching and Parallel Decoding to Diffusion LLMsNikhilhttps://www.marktechpost.com/author/nikhil0980/Meet NovelSeek: A Unified Multi-Agent Framework for Autonomous Scientific Research from Hypothesis Generation to Experimental Validation #bytedance #researchers #introduce #detailflow #coarsetofine
    WWW.MARKTECHPOST.COM
    ByteDance Researchers Introduce DetailFlow: A 1D Coarse-to-Fine Autoregressive Framework for Faster, Token-Efficient Image Generation
    Autoregressive image generation has been shaped by advances in sequential modeling, originally seen in natural language processing. This field focuses on generating images one token at a time, similar to how sentences are constructed in language models. The appeal of this approach lies in its ability to maintain structural coherence across the image while allowing for high levels of control during the generation process. As researchers began to apply these techniques to visual data, they found that structured prediction not only preserved spatial integrity but also supported tasks like image manipulation and multimodal translation effectively. Despite these benefits, generating high-resolution images remains computationally expensive and slow. A primary issue is the number of tokens needed to represent complex visuals. Raster-scan methods that flatten 2D images into linear sequences require thousands of tokens for detailed images, resulting in long inference times and high memory consumption. Models like Infinity need over 10,000 tokens for a 1024×1024 image. This becomes unsustainable for real-time applications or when scaling to more extensive datasets. Reducing the token burden while preserving or improving output quality has become a pressing challenge. Efforts to mitigate token inflation have led to innovations like next-scale prediction seen in VAR and FlexVAR. These models create images by predicting progressively finer scales, which imitates the human tendency to sketch rough outlines before adding detail. However, they still rely on hundreds of tokens—680 in the case of VAR and FlexVAR for 256×256 images. Moreover, approaches like TiTok and FlexTok use 1D tokenization to compress spatial redundancy, but they often fail to scale efficiently. For example, FlexTok’s gFID increases from 1.9 at 32 tokens to 2.5 at 256 tokens, highlighting a degradation in output quality as the token count grows. Researchers from ByteDance introduced DetailFlow, a 1D autoregressive image generation framework. This method arranges token sequences from global to fine detail using a process called next-detail prediction. Unlike traditional 2D raster-scan or scale-based techniques, DetailFlow employs a 1D tokenizer trained on progressively degraded images. This design allows the model to prioritize foundational image structures before refining visual details. By mapping tokens directly to resolution levels, DetailFlow significantly reduces token requirements, enabling images to be generated in a semantically ordered, coarse-to-fine manner. The mechanism in DetailFlow centers on a 1D latent space where each token contributes incrementally more detail. Earlier tokens encode global features, while later tokens refine specific visual aspects. To train this, the researchers created a resolution mapping function that links token count to target resolution. During training, the model is exposed to images of varying quality levels and learns to predict progressively higher-resolution outputs as more tokens are introduced. It also implements parallel token prediction by grouping sequences and predicting entire sets at once. Since parallel prediction can introduce sampling errors, a self-correction mechanism was integrated. This system perturbs certain tokens during training and teaches subsequent tokens to compensate, ensuring that final images maintain structural and visual integrity. The results from the experiments on the ImageNet 256×256 benchmark were noteworthy. DetailFlow achieved a gFID score of 2.96 using only 128 tokens, outperforming VAR at 3.3 and FlexVAR at 3.05, both of which used 680 tokens. Even more impressive, DetailFlow-64 reached a gFID of 2.62 using 512 tokens. In terms of speed, it delivered nearly double the inference rate of VAR and FlexVAR. A further ablation study confirmed that the self-correction training and semantic ordering of tokens substantially improved output quality. For example, enabling self-correction dropped the gFID from 4.11 to 3.68 in one setting. These metrics demonstrate both higher quality and faster generation compared to established models. By focusing on semantic structure and reducing redundancy, DetailFlow presents a viable solution to long-standing issues in autoregressive image generation. The method’s coarse-to-fine approach, efficient parallel decoding, and ability to self-correct highlight how architectural innovations can address performance and scalability limitations. Through their structured use of 1D tokens, the researchers from ByteDance have demonstrated a model that maintains high image fidelity while significantly reducing computational load, making it a valuable addition to image synthesis research. Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter. NikhilNikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.Nikhilhttps://www.marktechpost.com/author/nikhil0980/Teaching AI to Say ‘I Don’t Know’: A New Dataset Mitigates Hallucinations from Reinforcement FinetuningNikhilhttps://www.marktechpost.com/author/nikhil0980/This AI Paper Introduces LLaDA-V: A Purely Diffusion-Based Multimodal Large Language Model for Visual Instruction Tuning and Multimodal ReasoningNikhilhttps://www.marktechpost.com/author/nikhil0980/NVIDIA AI Introduces Fast-dLLM: A Training-Free Framework That Brings KV Caching and Parallel Decoding to Diffusion LLMsNikhilhttps://www.marktechpost.com/author/nikhil0980/Meet NovelSeek: A Unified Multi-Agent Framework for Autonomous Scientific Research from Hypothesis Generation to Experimental Validation
    Like
    Love
    Wow
    Sad
    Angry
    821
    0 Comments 0 Shares 0 Reviews
  • Alibaba Qwen Team Releases Qwen3-Embedding and Qwen3-Reranker Series – Redefining Multilingual Embedding and Ranking Standards

    Text embedding and reranking are foundational to modern information retrieval systems, powering applications such as semantic search, recommendation systems, and retrieval-augmented generation. However, current approaches often face key challenges—particularly in achieving both high multilingual fidelity and task adaptability without relying on proprietary APIs. Existing models frequently fall short in scenarios requiring nuanced semantic understanding across multiple languages or domain-specific tasks like code retrieval and instruction following. Moreover, most open-source models either lack scale or flexibility, while commercial APIs remain costly and closed.
    Qwen3-Embedding and Qwen3-Reranker: A New Standard for Open-Source Embedding
    Alibaba’s Qwen Team has unveiled the Qwen3-Embedding and Qwen3-Reranker Series—models that set a new benchmark in multilingual text embedding and relevance ranking. Built on the Qwen3 foundation models, the series includes variants in 0.6B, 4B, and 8B parameter sizes and supports a wide range of languages, making it one of the most versatile and performant open-source offerings to date. These models are now open-sourced under the Apache 2.0 license on Hugging Face, GitHub, and ModelScope, and are also accessible via Alibaba Cloud APIs.
    These models are optimized for use cases such as semantic retrieval, classification, RAG, sentiment analysis, and code search—providing a strong alternative to existing solutions like Gemini Embedding and OpenAI’s embedding APIs.

    Technical Architecture
    Qwen3-Embedding models adopt a dense transformer-based architecture with causal attention, producing embeddings by extracting the hidden state corresponding to thetoken. Instruction-awareness is a key feature: input queries are formatted as {instruction} {query}<|endoftext|>, enabling task-conditioned embeddings. The reranker models are trained with a binary classification format, judging document-query relevance in an instruction-guided manner using a token likelihood-based scoring function.

    The models are trained using a robust multi-stage training pipeline:

    Large-scale weak supervision: 150M synthetic training pairs generated using Qwen3-32B, covering retrieval, classification, STS, and bitext mining across languages and tasks.
    Supervised fine-tuning: 12M high-quality data pairs are selected using cosine similarity, fine-tuning performance in downstream applications.
    Model merging: Spherical linear interpolationof multiple fine-tuned checkpoints ensures robustness and generalization.

    This synthetic data generation pipeline enables control over data quality, language diversity, task difficulty, and more—resulting in a high degree of coverage and relevance in low-resource settings.
    Performance Benchmarks and Insights
    The Qwen3-Embedding and Qwen3-Reranker series demonstrate strong empirical performance across several multilingual benchmarks.

    On MMTEB, Qwen3-Embedding-8B achieves a mean task score of 70.58, surpassing Gemini and GTE-Qwen2 series.
    On MTEB: Qwen3-Embedding-8B reaches 75.22, outperforming other open models including NV-Embed-v2 and GritLM-7B.
    On MTEB-Code: Qwen3-Embedding-8B leads with 80.68, excelling in applications like code retrieval and Stack Overflow QA.

    For reranking:

    Qwen3-Reranker-0.6B already outperforms Jina and BGE rerankers.
    Qwen3-Reranker-8B achieves 81.22 on MTEB-Code and 72.94 on MMTEB-R, marking state-of-the-art performance.

    Ablation studies confirm the necessity of each training stage. Removing synthetic pretraining or model merging led to significant performance drops, emphasizing their contributions.
    Conclusion
    Alibaba’s Qwen3-Embedding and Qwen3-Reranker Series present a robust, open, and scalable solution to multilingual and instruction-aware semantic representation. With strong empirical results across MTEB, MMTEB, and MTEB-Code, these models bridge the gap between proprietary APIs and open-source accessibility. Their thoughtful training design—leveraging high-quality synthetic data, instruction-tuning, and model merging—positions them as ideal candidates for enterprise applications in search, retrieval, and RAG pipelines. By open-sourcing these models, the Qwen team not only pushes the boundaries of language understanding but also empowers the broader community to innovate on top of a solid foundation.

    Check out the Paper, Technical details, Qwen3-Embedding and Qwen3-Reranker. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.
    Asif RazzaqWebsite |  + postsBioAsif Razzaq is the CEO of Marktechpost Media Inc.. As a visionary entrepreneur and engineer, Asif is committed to harnessing the potential of Artificial Intelligence for social good. His most recent endeavor is the launch of an Artificial Intelligence Media Platform, Marktechpost, which stands out for its in-depth coverage of machine learning and deep learning news that is both technically sound and easily understandable by a wide audience. The platform boasts of over 2 million monthly views, illustrating its popularity among audiences.Asif Razzaqhttps://www.marktechpost.com/author/6flvq/A Step-by-Step Coding Guide to Building an Iterative AI Workflow Agent Using LangGraph and GeminiAsif Razzaqhttps://www.marktechpost.com/author/6flvq/From Clicking to Reasoning: WebChoreArena Benchmark Challenges Agents with Memory-Heavy and Multi-Page TasksAsif Razzaqhttps://www.marktechpost.com/author/6flvq/Mistral AI Introduces Mistral Code: A Customizable AI Coding Assistant for Enterprise WorkflowsAsif Razzaqhttps://www.marktechpost.com/author/6flvq/NVIDIA AI Releases Llama Nemotron Nano VL: A Compact Vision-Language Model Optimized for Document Understanding
    #alibaba #qwen #team #releases #qwen3embedding
    Alibaba Qwen Team Releases Qwen3-Embedding and Qwen3-Reranker Series – Redefining Multilingual Embedding and Ranking Standards
    Text embedding and reranking are foundational to modern information retrieval systems, powering applications such as semantic search, recommendation systems, and retrieval-augmented generation. However, current approaches often face key challenges—particularly in achieving both high multilingual fidelity and task adaptability without relying on proprietary APIs. Existing models frequently fall short in scenarios requiring nuanced semantic understanding across multiple languages or domain-specific tasks like code retrieval and instruction following. Moreover, most open-source models either lack scale or flexibility, while commercial APIs remain costly and closed. Qwen3-Embedding and Qwen3-Reranker: A New Standard for Open-Source Embedding Alibaba’s Qwen Team has unveiled the Qwen3-Embedding and Qwen3-Reranker Series—models that set a new benchmark in multilingual text embedding and relevance ranking. Built on the Qwen3 foundation models, the series includes variants in 0.6B, 4B, and 8B parameter sizes and supports a wide range of languages, making it one of the most versatile and performant open-source offerings to date. These models are now open-sourced under the Apache 2.0 license on Hugging Face, GitHub, and ModelScope, and are also accessible via Alibaba Cloud APIs. These models are optimized for use cases such as semantic retrieval, classification, RAG, sentiment analysis, and code search—providing a strong alternative to existing solutions like Gemini Embedding and OpenAI’s embedding APIs. Technical Architecture Qwen3-Embedding models adopt a dense transformer-based architecture with causal attention, producing embeddings by extracting the hidden state corresponding to thetoken. Instruction-awareness is a key feature: input queries are formatted as {instruction} {query}<|endoftext|>, enabling task-conditioned embeddings. The reranker models are trained with a binary classification format, judging document-query relevance in an instruction-guided manner using a token likelihood-based scoring function. The models are trained using a robust multi-stage training pipeline: Large-scale weak supervision: 150M synthetic training pairs generated using Qwen3-32B, covering retrieval, classification, STS, and bitext mining across languages and tasks. Supervised fine-tuning: 12M high-quality data pairs are selected using cosine similarity, fine-tuning performance in downstream applications. Model merging: Spherical linear interpolationof multiple fine-tuned checkpoints ensures robustness and generalization. This synthetic data generation pipeline enables control over data quality, language diversity, task difficulty, and more—resulting in a high degree of coverage and relevance in low-resource settings. Performance Benchmarks and Insights The Qwen3-Embedding and Qwen3-Reranker series demonstrate strong empirical performance across several multilingual benchmarks. On MMTEB, Qwen3-Embedding-8B achieves a mean task score of 70.58, surpassing Gemini and GTE-Qwen2 series. On MTEB: Qwen3-Embedding-8B reaches 75.22, outperforming other open models including NV-Embed-v2 and GritLM-7B. On MTEB-Code: Qwen3-Embedding-8B leads with 80.68, excelling in applications like code retrieval and Stack Overflow QA. For reranking: Qwen3-Reranker-0.6B already outperforms Jina and BGE rerankers. Qwen3-Reranker-8B achieves 81.22 on MTEB-Code and 72.94 on MMTEB-R, marking state-of-the-art performance. Ablation studies confirm the necessity of each training stage. Removing synthetic pretraining or model merging led to significant performance drops, emphasizing their contributions. Conclusion Alibaba’s Qwen3-Embedding and Qwen3-Reranker Series present a robust, open, and scalable solution to multilingual and instruction-aware semantic representation. With strong empirical results across MTEB, MMTEB, and MTEB-Code, these models bridge the gap between proprietary APIs and open-source accessibility. Their thoughtful training design—leveraging high-quality synthetic data, instruction-tuning, and model merging—positions them as ideal candidates for enterprise applications in search, retrieval, and RAG pipelines. By open-sourcing these models, the Qwen team not only pushes the boundaries of language understanding but also empowers the broader community to innovate on top of a solid foundation. Check out the Paper, Technical details, Qwen3-Embedding and Qwen3-Reranker. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter. Asif RazzaqWebsite |  + postsBioAsif Razzaq is the CEO of Marktechpost Media Inc.. As a visionary entrepreneur and engineer, Asif is committed to harnessing the potential of Artificial Intelligence for social good. His most recent endeavor is the launch of an Artificial Intelligence Media Platform, Marktechpost, which stands out for its in-depth coverage of machine learning and deep learning news that is both technically sound and easily understandable by a wide audience. The platform boasts of over 2 million monthly views, illustrating its popularity among audiences.Asif Razzaqhttps://www.marktechpost.com/author/6flvq/A Step-by-Step Coding Guide to Building an Iterative AI Workflow Agent Using LangGraph and GeminiAsif Razzaqhttps://www.marktechpost.com/author/6flvq/From Clicking to Reasoning: WebChoreArena Benchmark Challenges Agents with Memory-Heavy and Multi-Page TasksAsif Razzaqhttps://www.marktechpost.com/author/6flvq/Mistral AI Introduces Mistral Code: A Customizable AI Coding Assistant for Enterprise WorkflowsAsif Razzaqhttps://www.marktechpost.com/author/6flvq/NVIDIA AI Releases Llama Nemotron Nano VL: A Compact Vision-Language Model Optimized for Document Understanding #alibaba #qwen #team #releases #qwen3embedding
    WWW.MARKTECHPOST.COM
    Alibaba Qwen Team Releases Qwen3-Embedding and Qwen3-Reranker Series – Redefining Multilingual Embedding and Ranking Standards
    Text embedding and reranking are foundational to modern information retrieval systems, powering applications such as semantic search, recommendation systems, and retrieval-augmented generation (RAG). However, current approaches often face key challenges—particularly in achieving both high multilingual fidelity and task adaptability without relying on proprietary APIs. Existing models frequently fall short in scenarios requiring nuanced semantic understanding across multiple languages or domain-specific tasks like code retrieval and instruction following. Moreover, most open-source models either lack scale or flexibility, while commercial APIs remain costly and closed. Qwen3-Embedding and Qwen3-Reranker: A New Standard for Open-Source Embedding Alibaba’s Qwen Team has unveiled the Qwen3-Embedding and Qwen3-Reranker Series—models that set a new benchmark in multilingual text embedding and relevance ranking. Built on the Qwen3 foundation models, the series includes variants in 0.6B, 4B, and 8B parameter sizes and supports a wide range of languages (119 in total), making it one of the most versatile and performant open-source offerings to date. These models are now open-sourced under the Apache 2.0 license on Hugging Face, GitHub, and ModelScope, and are also accessible via Alibaba Cloud APIs. These models are optimized for use cases such as semantic retrieval, classification, RAG, sentiment analysis, and code search—providing a strong alternative to existing solutions like Gemini Embedding and OpenAI’s embedding APIs. Technical Architecture Qwen3-Embedding models adopt a dense transformer-based architecture with causal attention, producing embeddings by extracting the hidden state corresponding to the [EOS] token. Instruction-awareness is a key feature: input queries are formatted as {instruction} {query}<|endoftext|>, enabling task-conditioned embeddings. The reranker models are trained with a binary classification format, judging document-query relevance in an instruction-guided manner using a token likelihood-based scoring function. The models are trained using a robust multi-stage training pipeline: Large-scale weak supervision: 150M synthetic training pairs generated using Qwen3-32B, covering retrieval, classification, STS, and bitext mining across languages and tasks. Supervised fine-tuning: 12M high-quality data pairs are selected using cosine similarity (>0.7), fine-tuning performance in downstream applications. Model merging: Spherical linear interpolation (SLERP) of multiple fine-tuned checkpoints ensures robustness and generalization. This synthetic data generation pipeline enables control over data quality, language diversity, task difficulty, and more—resulting in a high degree of coverage and relevance in low-resource settings. Performance Benchmarks and Insights The Qwen3-Embedding and Qwen3-Reranker series demonstrate strong empirical performance across several multilingual benchmarks. On MMTEB (216 tasks across 250+ languages), Qwen3-Embedding-8B achieves a mean task score of 70.58, surpassing Gemini and GTE-Qwen2 series. On MTEB (English v2): Qwen3-Embedding-8B reaches 75.22, outperforming other open models including NV-Embed-v2 and GritLM-7B. On MTEB-Code: Qwen3-Embedding-8B leads with 80.68, excelling in applications like code retrieval and Stack Overflow QA. For reranking: Qwen3-Reranker-0.6B already outperforms Jina and BGE rerankers. Qwen3-Reranker-8B achieves 81.22 on MTEB-Code and 72.94 on MMTEB-R, marking state-of-the-art performance. Ablation studies confirm the necessity of each training stage. Removing synthetic pretraining or model merging led to significant performance drops (up to 6 points on MMTEB), emphasizing their contributions. Conclusion Alibaba’s Qwen3-Embedding and Qwen3-Reranker Series present a robust, open, and scalable solution to multilingual and instruction-aware semantic representation. With strong empirical results across MTEB, MMTEB, and MTEB-Code, these models bridge the gap between proprietary APIs and open-source accessibility. Their thoughtful training design—leveraging high-quality synthetic data, instruction-tuning, and model merging—positions them as ideal candidates for enterprise applications in search, retrieval, and RAG pipelines. By open-sourcing these models, the Qwen team not only pushes the boundaries of language understanding but also empowers the broader community to innovate on top of a solid foundation. Check out the Paper, Technical details, Qwen3-Embedding and Qwen3-Reranker. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter. Asif RazzaqWebsite |  + postsBioAsif Razzaq is the CEO of Marktechpost Media Inc.. As a visionary entrepreneur and engineer, Asif is committed to harnessing the potential of Artificial Intelligence for social good. His most recent endeavor is the launch of an Artificial Intelligence Media Platform, Marktechpost, which stands out for its in-depth coverage of machine learning and deep learning news that is both technically sound and easily understandable by a wide audience. The platform boasts of over 2 million monthly views, illustrating its popularity among audiences.Asif Razzaqhttps://www.marktechpost.com/author/6flvq/A Step-by-Step Coding Guide to Building an Iterative AI Workflow Agent Using LangGraph and GeminiAsif Razzaqhttps://www.marktechpost.com/author/6flvq/From Clicking to Reasoning: WebChoreArena Benchmark Challenges Agents with Memory-Heavy and Multi-Page TasksAsif Razzaqhttps://www.marktechpost.com/author/6flvq/Mistral AI Introduces Mistral Code: A Customizable AI Coding Assistant for Enterprise WorkflowsAsif Razzaqhttps://www.marktechpost.com/author/6flvq/NVIDIA AI Releases Llama Nemotron Nano VL: A Compact Vision-Language Model Optimized for Document Understanding
    Like
    Love
    Wow
    Angry
    Sad
    332
    0 Comments 0 Shares 0 Reviews
  • What’s next for computer vision: An AI developer weighs in

    In this Q&A, get a glimpse into the future of artificial intelligenceand computer vision through the lens of longtime Unity user Gerard Espona, whose robot digital twin project was featured in the Made with Unity: AI series. Working as simulation lead at Luxonis, whose core technology makes it possible to embed human-level perception into robotics, Espona uses his years of experience in the industry to weigh in on the current state and anticipated progression of computer vision.During recent years, computer visionand AI have become the fastest-growing fields both in market size and industry adoption rate. Spatial CV and edge AI have been used to improve and automate repetitive tasks as well as complex processes.This new reality is thanks to the democratization of CV/AI. Increasingly affordable hardware access, including depth perception capability as well as improvements in machine learning, has enabled the deployment of real solutions on edge CV/AI systems.Spatial CV using edge AI enables depth-based applications to be deployed without the need of a data center service, and also allows the user to preserve privacy by processing images on the device itself.Along with more accessible hardware, software and machine learning workflows are undergoing important improvements. Although they are still very specialized and full of technical challenges, they have become much more accessible, offering tools that allow users to train their own models.Within the standard ML pipeline/workflow, large-scale edge computing and deployment can still pose issues. One of the biggest general challenges is to reduce the costs and timelines currently required to create and/or improve machine learning models on real-world applications. In other words, the challenge is how to manage all these devices to enable a smooth pipeline for continuous improvement.Also, the implicit limitations in terms of compute processing need extra effort on the final model deployed on the device. That said, embedded technology evolves really fast, and each iteration is a big leap in processing capabilities.Spatial CV/AI is a field that still requires a lot of specialization and systems. Workflows are often complicated and tedious due to numerous technical challenges, so a lot of time is devoted to smoothing out the workflow instead of focusing on value-added tasks.Creating datasets, annotating the images, preprocessing/augmentation process, training, deploying and closing the feedback loop for continuous improvement is a complex process. Each step of the workflow is technically difficult and usually involves time and financial cost, and more so for systems working in remote areas with limited connectivity.At Luxonis, we help our customers build and deploy solutions to solve and automate complex tasks at scale, so we’re facing all these issues directly. Our mission, “Robotic vision made simple,” provides not only great and affordable depth-capable hardware, but also a solid and smooth ML pipeline with synthetic datasets and simulation.Another important challenge is the work that needs to be done on the interpretability of models and the creation of datasets from an ethical, privacy and bias point of view.Last but not least, global chip supply issues are making it difficult to get the hardware into everybody’s hands.Data-centric AI is potentially useful when a working model is underperforming. Investing a large amount of time to optimize the model often leads to almost zero real improvement. Instead, with data-centric AI the investment is in analysis, cleaning and improving of the dataset.Usually when a model is underperforming, the issue is within the dataset itself, as there is not enough data for the model to outperform. This could be the result of two possible reasons: 1) the model needs a much larger amount of data, which is difficult to collect in the real world, or 2) the model doesn’t have enough examples of rare cases, which take a lot of time to happen in the real world.In both situations, synthetic datasets could help.Thanks to Unity’s computer vision tools, it is very easy to create photorealistic scenes and randomize elements like materials, light conditions and object placement. The tools come with common labels like 2D bounding boxes, 3D bounding boxes, semantic and instance segmentation, and even human body key points. Additionally, these can be easily extended with custom randomizers, labelers and annotations.Almost any task you want to automate or improve using edge CV/AI very likely involves detecting people for obvious safety and security reasons. It’s critical to guarantee user safety around autonomous systems or robots when they’re working, requiring models to be trained on data about humans.That means we need to capture a large amount of images, including information like poses and physical appearance, that are representative of the entire human population. This task raises some concerns about privacy, ethics and bias when starting to capture real human data to train the model.Fortunately, we can use synthetic datasets to mitigate some of these concerns using human 3D models and poses. A very good example is the work done by the Unity team with PeopleSansPeople.PeopleSansPeople is a human-centric synthetic dataset creator using 3D models and standard animations to randomize human body poses. Also, we can use a Unity project template, to which we add our own 3D models and poses to create our own human synthetic dataset.At Luxonis, we’re using this project as the basis for creating our own human synthetic dataset and training models. In general, we use Unity’s computer vision tools to create large and complex datasets with a high level of customization on labelers, annotations and randomizations. This allows our ML team to iterate faster with our customers, without needing to wait for real-world data collection and manual annotation.Since the introduction of transformer architecture, CV tasks are more accessible. Generative models like DALL-E 2 could also be used to create synthetic datasets, and NeRF as a neural approach to generate novel point of views of known objects and scenes. It’s clear all these innovations are catching the attention of audiences.On the other hand, having access to better annotation tools and model zoos and libraries with pre-trained, ready-to-use models are helping drive wide adoption.One key element contributing to the uptick in computer vision use is the fast evolution of vision processing unitsthat currently allow users to perform model inferences on deviceat 4 TOPS of processing power. The new generation of VPUs promises a big leap in capabilities, allowing even more complex CV/AI applications to be deployed on edge.Any application related to agriculture and farming always captures my attention. For example, there is now a cow tracking and monitoring CV/AI application using drones.Our thanks to Gerard for sharing his perspective with us – keep up with his latest thoughts on LinkedIn and Twitter. And, learn more about how Unity can help your team generate synthetic data to improve computer vision model training with Unity Computer Vision.
    #whats #next #computer #vision #developer
    What’s next for computer vision: An AI developer weighs in
    In this Q&A, get a glimpse into the future of artificial intelligenceand computer vision through the lens of longtime Unity user Gerard Espona, whose robot digital twin project was featured in the Made with Unity: AI series. Working as simulation lead at Luxonis, whose core technology makes it possible to embed human-level perception into robotics, Espona uses his years of experience in the industry to weigh in on the current state and anticipated progression of computer vision.During recent years, computer visionand AI have become the fastest-growing fields both in market size and industry adoption rate. Spatial CV and edge AI have been used to improve and automate repetitive tasks as well as complex processes.This new reality is thanks to the democratization of CV/AI. Increasingly affordable hardware access, including depth perception capability as well as improvements in machine learning, has enabled the deployment of real solutions on edge CV/AI systems.Spatial CV using edge AI enables depth-based applications to be deployed without the need of a data center service, and also allows the user to preserve privacy by processing images on the device itself.Along with more accessible hardware, software and machine learning workflows are undergoing important improvements. Although they are still very specialized and full of technical challenges, they have become much more accessible, offering tools that allow users to train their own models.Within the standard ML pipeline/workflow, large-scale edge computing and deployment can still pose issues. One of the biggest general challenges is to reduce the costs and timelines currently required to create and/or improve machine learning models on real-world applications. In other words, the challenge is how to manage all these devices to enable a smooth pipeline for continuous improvement.Also, the implicit limitations in terms of compute processing need extra effort on the final model deployed on the device. That said, embedded technology evolves really fast, and each iteration is a big leap in processing capabilities.Spatial CV/AI is a field that still requires a lot of specialization and systems. Workflows are often complicated and tedious due to numerous technical challenges, so a lot of time is devoted to smoothing out the workflow instead of focusing on value-added tasks.Creating datasets, annotating the images, preprocessing/augmentation process, training, deploying and closing the feedback loop for continuous improvement is a complex process. Each step of the workflow is technically difficult and usually involves time and financial cost, and more so for systems working in remote areas with limited connectivity.At Luxonis, we help our customers build and deploy solutions to solve and automate complex tasks at scale, so we’re facing all these issues directly. Our mission, “Robotic vision made simple,” provides not only great and affordable depth-capable hardware, but also a solid and smooth ML pipeline with synthetic datasets and simulation.Another important challenge is the work that needs to be done on the interpretability of models and the creation of datasets from an ethical, privacy and bias point of view.Last but not least, global chip supply issues are making it difficult to get the hardware into everybody’s hands.Data-centric AI is potentially useful when a working model is underperforming. Investing a large amount of time to optimize the model often leads to almost zero real improvement. Instead, with data-centric AI the investment is in analysis, cleaning and improving of the dataset.Usually when a model is underperforming, the issue is within the dataset itself, as there is not enough data for the model to outperform. This could be the result of two possible reasons: 1) the model needs a much larger amount of data, which is difficult to collect in the real world, or 2) the model doesn’t have enough examples of rare cases, which take a lot of time to happen in the real world.In both situations, synthetic datasets could help.Thanks to Unity’s computer vision tools, it is very easy to create photorealistic scenes and randomize elements like materials, light conditions and object placement. The tools come with common labels like 2D bounding boxes, 3D bounding boxes, semantic and instance segmentation, and even human body key points. Additionally, these can be easily extended with custom randomizers, labelers and annotations.Almost any task you want to automate or improve using edge CV/AI very likely involves detecting people for obvious safety and security reasons. It’s critical to guarantee user safety around autonomous systems or robots when they’re working, requiring models to be trained on data about humans.That means we need to capture a large amount of images, including information like poses and physical appearance, that are representative of the entire human population. This task raises some concerns about privacy, ethics and bias when starting to capture real human data to train the model.Fortunately, we can use synthetic datasets to mitigate some of these concerns using human 3D models and poses. A very good example is the work done by the Unity team with PeopleSansPeople.PeopleSansPeople is a human-centric synthetic dataset creator using 3D models and standard animations to randomize human body poses. Also, we can use a Unity project template, to which we add our own 3D models and poses to create our own human synthetic dataset.At Luxonis, we’re using this project as the basis for creating our own human synthetic dataset and training models. In general, we use Unity’s computer vision tools to create large and complex datasets with a high level of customization on labelers, annotations and randomizations. This allows our ML team to iterate faster with our customers, without needing to wait for real-world data collection and manual annotation.Since the introduction of transformer architecture, CV tasks are more accessible. Generative models like DALL-E 2 could also be used to create synthetic datasets, and NeRF as a neural approach to generate novel point of views of known objects and scenes. It’s clear all these innovations are catching the attention of audiences.On the other hand, having access to better annotation tools and model zoos and libraries with pre-trained, ready-to-use models are helping drive wide adoption.One key element contributing to the uptick in computer vision use is the fast evolution of vision processing unitsthat currently allow users to perform model inferences on deviceat 4 TOPS of processing power. The new generation of VPUs promises a big leap in capabilities, allowing even more complex CV/AI applications to be deployed on edge.Any application related to agriculture and farming always captures my attention. For example, there is now a cow tracking and monitoring CV/AI application using drones.Our thanks to Gerard for sharing his perspective with us – keep up with his latest thoughts on LinkedIn and Twitter. And, learn more about how Unity can help your team generate synthetic data to improve computer vision model training with Unity Computer Vision. #whats #next #computer #vision #developer
    UNITY.COM
    What’s next for computer vision: An AI developer weighs in
    In this Q&A, get a glimpse into the future of artificial intelligence (AI) and computer vision through the lens of longtime Unity user Gerard Espona, whose robot digital twin project was featured in the Made with Unity: AI series. Working as simulation lead at Luxonis, whose core technology makes it possible to embed human-level perception into robotics, Espona uses his years of experience in the industry to weigh in on the current state and anticipated progression of computer vision.During recent years, computer vision (CV) and AI have become the fastest-growing fields both in market size and industry adoption rate. Spatial CV and edge AI have been used to improve and automate repetitive tasks as well as complex processes.This new reality is thanks to the democratization of CV/AI. Increasingly affordable hardware access, including depth perception capability as well as improvements in machine learning (ML), has enabled the deployment of real solutions on edge CV/AI systems.Spatial CV using edge AI enables depth-based applications to be deployed without the need of a data center service, and also allows the user to preserve privacy by processing images on the device itself.Along with more accessible hardware, software and machine learning workflows are undergoing important improvements. Although they are still very specialized and full of technical challenges, they have become much more accessible, offering tools that allow users to train their own models.Within the standard ML pipeline/workflow, large-scale edge computing and deployment can still pose issues. One of the biggest general challenges is to reduce the costs and timelines currently required to create and/or improve machine learning models on real-world applications. In other words, the challenge is how to manage all these devices to enable a smooth pipeline for continuous improvement.Also, the implicit limitations in terms of compute processing need extra effort on the final model deployed on the device (that is, apps need to be lightweight, performant, etc.). That said, embedded technology evolves really fast, and each iteration is a big leap in processing capabilities.Spatial CV/AI is a field that still requires a lot of specialization and systems. Workflows are often complicated and tedious due to numerous technical challenges, so a lot of time is devoted to smoothing out the workflow instead of focusing on value-added tasks.Creating datasets (collecting and filtering images and videos), annotating the images, preprocessing/augmentation process, training, deploying and closing the feedback loop for continuous improvement is a complex process. Each step of the workflow is technically difficult and usually involves time and financial cost, and more so for systems working in remote areas with limited connectivity.At Luxonis, we help our customers build and deploy solutions to solve and automate complex tasks at scale, so we’re facing all these issues directly. Our mission, “Robotic vision made simple,” provides not only great and affordable depth-capable hardware, but also a solid and smooth ML pipeline with synthetic datasets and simulation.Another important challenge is the work that needs to be done on the interpretability of models and the creation of datasets from an ethical, privacy and bias point of view.Last but not least, global chip supply issues are making it difficult to get the hardware into everybody’s hands.Data-centric AI is potentially useful when a working model is underperforming. Investing a large amount of time to optimize the model often leads to almost zero real improvement. Instead, with data-centric AI the investment is in analysis, cleaning and improving of the dataset.Usually when a model is underperforming, the issue is within the dataset itself, as there is not enough data for the model to outperform. This could be the result of two possible reasons: 1) the model needs a much larger amount of data, which is difficult to collect in the real world, or 2) the model doesn’t have enough examples of rare cases, which take a lot of time to happen in the real world.In both situations, synthetic datasets could help.Thanks to Unity’s computer vision tools, it is very easy to create photorealistic scenes and randomize elements like materials, light conditions and object placement. The tools come with common labels like 2D bounding boxes, 3D bounding boxes, semantic and instance segmentation, and even human body key points. Additionally, these can be easily extended with custom randomizers, labelers and annotations.Almost any task you want to automate or improve using edge CV/AI very likely involves detecting people for obvious safety and security reasons. It’s critical to guarantee user safety around autonomous systems or robots when they’re working, requiring models to be trained on data about humans.That means we need to capture a large amount of images, including information like poses and physical appearance, that are representative of the entire human population. This task raises some concerns about privacy, ethics and bias when starting to capture real human data to train the model.Fortunately, we can use synthetic datasets to mitigate some of these concerns using human 3D models and poses. A very good example is the work done by the Unity team with PeopleSansPeople.PeopleSansPeople is a human-centric synthetic dataset creator using 3D models and standard animations to randomize human body poses. Also, we can use a Unity project template, to which we add our own 3D models and poses to create our own human synthetic dataset.At Luxonis, we’re using this project as the basis for creating our own human synthetic dataset and training models. In general, we use Unity’s computer vision tools to create large and complex datasets with a high level of customization on labelers, annotations and randomizations. This allows our ML team to iterate faster with our customers, without needing to wait for real-world data collection and manual annotation.Since the introduction of transformer architecture, CV tasks are more accessible. Generative models like DALL-E 2 could also be used to create synthetic datasets, and NeRF as a neural approach to generate novel point of views of known objects and scenes. It’s clear all these innovations are catching the attention of audiences.On the other hand, having access to better annotation tools and model zoos and libraries with pre-trained, ready-to-use models are helping drive wide adoption.One key element contributing to the uptick in computer vision use is the fast evolution of vision processing units (VPUs) that currently allow users to perform model inferences on device (without the need for any host) at 4 TOPS of processing power (current Intel Movidius Myriad X). The new generation of VPUs promises a big leap in capabilities, allowing even more complex CV/AI applications to be deployed on edge.Any application related to agriculture and farming always captures my attention. For example, there is now a cow tracking and monitoring CV/AI application using drones.Our thanks to Gerard for sharing his perspective with us – keep up with his latest thoughts on LinkedIn and Twitter. And, learn more about how Unity can help your team generate synthetic data to improve computer vision model training with Unity Computer Vision.
    Like
    Love
    Wow
    Sad
    Angry
    381
    0 Comments 0 Shares 0 Reviews
CGShares https://cgshares.com