• Ah, *Dune Awakening*! Just when you thought you could escape from the endless grind of “find the spice, fight the sandworms, repeat,” here comes another chance to dive into the vast, sprawling landscape that is as immersive as a sandstorm in your eyes. This title promises to elevate the lore to a whole new level, and by “elevate,” I mean serving it to us like a gourmet dish with just a sprinkle of seasoning. Because, let’s face it, who needs a rich narrative when you can have a beautiful desert to stare at while you click buttons?

    In the grand tradition of Funcom, where Conan Exiles taught us that lore is merely a side dish to the main course of survival, *Dune Awakening* boldly asserts that the story will have a “high seat at the table.” This is great news for those of us who enjoy complex narratives mixed with our pixelated battles. Just remember, that high seat doesn’t mean it’s the main course; it’s more like the fancy napkin folded into a swan shape that no one really cares about.

    As we gear up for this epic adventure, let’s ponder the critical question: "How long until you hit the endgame?" For those experienced in the ways of online gaming, this is a question that requires a strong cup of spice-infused coffee and a hearty laugh. Because let’s be real: “endgame” is just a euphemism for the moment you realize you’ve spent countless hours collecting virtual sand and have learned more about the spice economy than your own.

    Picture this: you’re in the middle of an epic quest, and suddenly, the allure of the endgame starts to sparkle like a mirage in the desert. Will it be worth the grind? Or will we all just end up like Paul Atreides, wondering if all this spice was really worth the trouble? Remember, the lore is the garnish on the plate, and no one ever leaves a restaurant raving about the parsley.

    So, here’s to *Dune Awakening*! May it provide us endless hours of wandering through vast dunes, fighting off sandworms, and contemplating the meaning of life while keeping an eye on our spice levels. And let’s not forget the thrill of finding out that the real endgame is the friends we made along the way—who also happen to have spent just as many hours as we have staring blankly at their screens, wondering what on earth we’re doing with our lives.

    After all, as we embark on this journey, one thing is for sure: whether we reach the endgame or not, we’ll all be united in our shared confusion and love for a game that promises to give us everything and nothing at all. So grab your stillsuit and get ready for the ride; it’s going to be a long, sandy road!

    #DuneAwakening #GamingSatire #EndgameConfusion #Funcom #LoreAndSand
    Ah, *Dune Awakening*! Just when you thought you could escape from the endless grind of “find the spice, fight the sandworms, repeat,” here comes another chance to dive into the vast, sprawling landscape that is as immersive as a sandstorm in your eyes. This title promises to elevate the lore to a whole new level, and by “elevate,” I mean serving it to us like a gourmet dish with just a sprinkle of seasoning. Because, let’s face it, who needs a rich narrative when you can have a beautiful desert to stare at while you click buttons? In the grand tradition of Funcom, where Conan Exiles taught us that lore is merely a side dish to the main course of survival, *Dune Awakening* boldly asserts that the story will have a “high seat at the table.” This is great news for those of us who enjoy complex narratives mixed with our pixelated battles. Just remember, that high seat doesn’t mean it’s the main course; it’s more like the fancy napkin folded into a swan shape that no one really cares about. As we gear up for this epic adventure, let’s ponder the critical question: "How long until you hit the endgame?" For those experienced in the ways of online gaming, this is a question that requires a strong cup of spice-infused coffee and a hearty laugh. Because let’s be real: “endgame” is just a euphemism for the moment you realize you’ve spent countless hours collecting virtual sand and have learned more about the spice economy than your own. Picture this: you’re in the middle of an epic quest, and suddenly, the allure of the endgame starts to sparkle like a mirage in the desert. Will it be worth the grind? Or will we all just end up like Paul Atreides, wondering if all this spice was really worth the trouble? Remember, the lore is the garnish on the plate, and no one ever leaves a restaurant raving about the parsley. So, here’s to *Dune Awakening*! May it provide us endless hours of wandering through vast dunes, fighting off sandworms, and contemplating the meaning of life while keeping an eye on our spice levels. And let’s not forget the thrill of finding out that the real endgame is the friends we made along the way—who also happen to have spent just as many hours as we have staring blankly at their screens, wondering what on earth we’re doing with our lives. After all, as we embark on this journey, one thing is for sure: whether we reach the endgame or not, we’ll all be united in our shared confusion and love for a game that promises to give us everything and nothing at all. So grab your stillsuit and get ready for the ride; it’s going to be a long, sandy road! #DuneAwakening #GamingSatire #EndgameConfusion #Funcom #LoreAndSand
    Dune Awakening: How Long Until You Hit The Endgame?
    If you’re a fan of previous Funcom titles, such as Conan Exiles, then you know the lore, while interesting in small doses, isn’t the focal point. It’s just the flavoring helping you immerse yourself in the sprawling landscape. In Dune Awakening, the
    Like
    Love
    Wow
    Sad
    Angry
    20
    1 Commentaires 0 Parts
  • In a world where AI is revolutionizing everything from coffee-making to car-driving, it was only a matter of time before our digital mischief-makers decided to hop on the bandwagon. Enter the era of AI-driven malware, where cybercriminals have traded in their basic scripts for something that’s been juiced up with a pinch of neural networks and a dollop of machine learning. Who knew that the future of cibercrimen would be so... sophisticated?

    Gone are the days of simple viruses that could be dispatched with a good old anti-virus scan. Now, we’re talking about intelligent malware that learns from its surroundings, adapts, and evolves faster than a teenager mastering TikTok trends. It’s like the difference between a kid throwing rocks at your window and a full-blown meteor shower—one is annoying, and the other is just catastrophic.

    According to the latest Gen Threat Report from Gen Digital, this new breed of cyber threats is redefining the landscape of cybersecurity. Oh, joy! Just what we needed—cybercriminals with PhDs in deviousness. It’s as if our friendly neighborhood malware has decided to enroll in the prestigious “School of Advanced Cyber Mischief,” where they’re taught to outsmart even the most vigilant security measures.

    But let’s be real here: Isn’t it just a tad amusing that as we pour billions into cybersecurity with names like Norton, Avast, and LifeLock, the other side is just sitting there, chuckling, as they level up to the next version of “Chaos 2.0”? You have to admire their resourcefulness. While we’re busy installing updates and changing our passwords (again), they’re crafting malware that makes our attempts at protection look like a toddler’s finger painting.

    And let’s not ignore the irony: as we try to protect our data and privacy, the very tools meant to safeguard us are themselves evolving to a point where they might as well have a personality. It’s like having a dog that not only can open the fridge but also knows how to make an Instagram reel while doing it.

    So, what can we do in the face of this digital dilemma? Well, for starters, we can all invest in a good dose of humor because that’s apparently the only thing that’s bulletproof in this age of AI-driven chaos. Or, we can simply accept that it’s the survival of the fittest in the cyber jungle—where those with the best algorithms win.

    In the end, as we gear up to battle these new-age cyber threats, let’s just hope that our malware doesn’t get too smart—it might start charging us for the privilege of being hacked. After all, who doesn’t love a little subscription model in their life?

    #Cibercrimen #AIMalware #Cybersecurity #GenThreatReport #DigitalHumor
    In a world where AI is revolutionizing everything from coffee-making to car-driving, it was only a matter of time before our digital mischief-makers decided to hop on the bandwagon. Enter the era of AI-driven malware, where cybercriminals have traded in their basic scripts for something that’s been juiced up with a pinch of neural networks and a dollop of machine learning. Who knew that the future of cibercrimen would be so... sophisticated? Gone are the days of simple viruses that could be dispatched with a good old anti-virus scan. Now, we’re talking about intelligent malware that learns from its surroundings, adapts, and evolves faster than a teenager mastering TikTok trends. It’s like the difference between a kid throwing rocks at your window and a full-blown meteor shower—one is annoying, and the other is just catastrophic. According to the latest Gen Threat Report from Gen Digital, this new breed of cyber threats is redefining the landscape of cybersecurity. Oh, joy! Just what we needed—cybercriminals with PhDs in deviousness. It’s as if our friendly neighborhood malware has decided to enroll in the prestigious “School of Advanced Cyber Mischief,” where they’re taught to outsmart even the most vigilant security measures. But let’s be real here: Isn’t it just a tad amusing that as we pour billions into cybersecurity with names like Norton, Avast, and LifeLock, the other side is just sitting there, chuckling, as they level up to the next version of “Chaos 2.0”? You have to admire their resourcefulness. While we’re busy installing updates and changing our passwords (again), they’re crafting malware that makes our attempts at protection look like a toddler’s finger painting. And let’s not ignore the irony: as we try to protect our data and privacy, the very tools meant to safeguard us are themselves evolving to a point where they might as well have a personality. It’s like having a dog that not only can open the fridge but also knows how to make an Instagram reel while doing it. So, what can we do in the face of this digital dilemma? Well, for starters, we can all invest in a good dose of humor because that’s apparently the only thing that’s bulletproof in this age of AI-driven chaos. Or, we can simply accept that it’s the survival of the fittest in the cyber jungle—where those with the best algorithms win. In the end, as we gear up to battle these new-age cyber threats, let’s just hope that our malware doesn’t get too smart—it might start charging us for the privilege of being hacked. After all, who doesn’t love a little subscription model in their life? #Cibercrimen #AIMalware #Cybersecurity #GenThreatReport #DigitalHumor
    El malware por IA está redefiniendo el cibercrimen
    Gen Digital, el grupo especializado en ciberseguridad con marcas como Norton, Avast, LifeLock, Avira, AVG, ReputationDefender y CCleaner, ha publicado su informe Gen Threat Report correspondiente al primer trimestre de 2025, mostrando los cambios má
    Like
    Love
    Wow
    Angry
    Sad
    606
    1 Commentaires 0 Parts
  • Why Designers Get Stuck In The Details And How To Stop

    You’ve drawn fifty versions of the same screen — and you still hate every one of them. Begrudgingly, you pick three, show them to your product manager, and hear: “Looks cool, but the idea doesn’t work.” Sound familiar?
    In this article, I’ll unpack why designers fall into detail work at the wrong moment, examining both process pitfalls and the underlying psychological reasons, as understanding these traps is the first step to overcoming them. I’ll also share tactics I use to climb out of that trap.
    Reason #1 You’re Afraid To Show Rough Work
    We designers worship detail. We’re taught that true craft equals razor‑sharp typography, perfect grids, and pixel precision. So the minute a task arrives, we pop open Figma and start polishing long before polish is needed.
    I’ve skipped the sketch phase more times than I care to admit. I told myself it would be faster, yet I always ended up spending hours producing a tidy mock‑up when a scribbled thumbnail would have sparked a five‑minute chat with my product manager. Rough sketches felt “unprofessional,” so I hid them.
    The cost? Lost time, wasted energy — and, by the third redo, teammates were quietly wondering if I even understood the brief.
    The real problem here is the habit: we open Figma and start perfecting the UI before we’ve even solved the problem.
    So why do we hide these rough sketches? It’s not just a bad habit or plain silly. There are solid psychological reasons behind it. We often just call it perfectionism, but it’s deeper than wanting things neat. Digging into the psychologyshows there are a couple of flavors driving this:

    Socially prescribed perfectionismIt’s that nagging feeling that everyone else expects perfect work from you, which makes showing anything rough feel like walking into the lion’s den.
    Self-oriented perfectionismWhere you’re the one setting impossibly high standards for yourself, leading to brutal self-criticism if anything looks slightly off.

    Either way, the result’s the same: showing unfinished work feels wrong, and you miss out on that vital early feedback.
    Back to the design side, remember that clients rarely see architects’ first pencil sketches, but these sketches still exist; they guide structural choices before the 3D render. Treat your thumbnails the same way — artifacts meant to collapse uncertainty, not portfolio pieces. Once stakeholders see the upside, roughness becomes a badge of speed, not sloppiness. So, the key is to consciously make that shift:
    Treat early sketches as disposable tools for thinking and actively share them to get feedback faster.

    Reason #2: You Fix The Symptom, Not The Cause
    Before tackling any task, we need to understand what business outcome we’re aiming for. Product managers might come to us asking to enlarge the payment button in the shopping cart because users aren’t noticing it. The suggested solution itself isn’t necessarily bad, but before redesigning the button, we should ask, “What data suggests they aren’t noticing it?” Don’t get me wrong, I’m not saying you shouldn’t trust your product manager. On the contrary, these questions help ensure you’re on the same page and working with the same data.
    From my experience, here are several reasons why users might not be clicking that coveted button:

    Users don’t understand that this step is for payment.
    They understand it’s about payment but expect order confirmation first.
    Due to incorrect translation, users don’t understand what the button means.
    Lack of trust signals.
    Unexpected additional coststhat appear at this stage.
    Technical issues.

    Now, imagine you simply did what the manager suggested. Would you have solved the problem? Hardly.
    Moreover, the responsibility for the unresolved issue would fall on you, as the interface solution lies within the design domain. The product manager actually did their job correctly by identifying a problem: suspiciously, few users are clicking the button.
    Psychologically, taking on this bigger role isn’t easy. It means overcoming the fear of making mistakes and the discomfort of exploring unclear problems rather than just doing tasks. This shift means seeing ourselves as partners who create value — even if it means fighting a hesitation to question product managers— and understanding that using our product logic expertise proactively is crucial for modern designers.
    There’s another critical reason why we, designers, need to be a bit like product managers: the rise of AI. I deliberately used a simple example about enlarging a button, but I’m confident that in the near future, AI will easily handle routine design tasks. This worries me, but at the same time, I’m already gladly stepping into the product manager’s territory: understanding product and business metrics, formulating hypotheses, conducting research, and so on. It might sound like I’m taking work away from PMs, but believe me, they undoubtedly have enough on their plates and are usually more than happy to delegate some responsibilities to designers.
    Reason #3: You’re Solving The Wrong Problem
    Before solving anything, ask whether the problem even deserves your attention.
    During a major home‑screen redesign, our goal was to drive more users into paid services. The initial hypothesis — making service buttons bigger and brighter might help returning users — seemed reasonable enough to test. However, even when A/B testsshowed minimal impact, we continued to tweak those buttons.
    Only later did it click: the home screen isn’t the place to sell; visitors open the app to start, not to buy. We removed that promo block, and nothing broke. Contextual entry points deeper into the journey performed brilliantly. Lesson learned:
    Without the right context, any visual tweak is lipstick on a pig.

    Why did we get stuck polishing buttons instead of stopping sooner? It’s easy to get tunnel vision. Psychologically, it’s likely the good old sunk cost fallacy kicking in: we’d already invested time in the buttons, so stopping felt like wasting that effort, even though the data wasn’t promising.
    It’s just easier to keep fiddling with something familiar than to admit we need a new plan. Perhaps the simple question I should have asked myself when results stalled was: “Are we optimizing the right thing or just polishing something that fundamentally doesn’t fit the user’s primary goal here?” That alone might have saved hours.
    Reason #4: You’re Drowning In Unactionable Feedback
    We all discuss our work with colleagues. But here’s a crucial point: what kind of question do you pose to kick off that discussion? If your go-to is “What do you think?” well, that question might lead you down a rabbit hole of personal opinions rather than actionable insights. While experienced colleagues will cut through the noise, others, unsure what to evaluate, might comment on anything and everything — fonts, button colors, even when you desperately need to discuss a user flow.
    What matters here are two things:

    The question you ask,
    The context you give.

    That means clearly stating the problem, what you’ve learned, and how your idea aims to fix it.
    For instance:
    “The problem is our payment conversion rate has dropped by X%. I’ve interviewed users and found they abandon payment because they don’t understand how the total amount is calculated. My solution is to show a detailed cost breakdown. Do you think this actually solves the problem for them?”

    Here, you’ve stated the problem, shared your insight, explained your solution, and asked a direct question. It’s even better if you prepare a list of specific sub-questions. For instance: “Are all items in the cost breakdown clear?” or “Does the placement of this breakdown feel intuitive within the payment flow?”
    Another good habit is to keep your rough sketches and previous iterations handy. Some of your colleagues’ suggestions might be things you’ve already tried. It’s great if you can discuss them immediately to either revisit those ideas or definitively set them aside.
    I’m not a psychologist, but experience tells me that, psychologically, the reluctance to be this specific often stems from a fear of our solution being rejected. We tend to internalize feedback: a seemingly innocent comment like, “Have you considered other ways to organize this section?” or “Perhaps explore a different structure for this part?” can instantly morph in our minds into “You completely messed up the structure. You’re a bad designer.” Imposter syndrome, in all its glory.
    So, to wrap up this point, here are two recommendations:

    Prepare for every design discussion.A couple of focused questions will yield far more valuable input than a vague “So, what do you think?”.
    Actively work on separating feedback on your design from your self-worth.If a mistake is pointed out, acknowledge it, learn from it, and you’ll be less likely to repeat it. This is often easier said than done. For me, it took years of working with a psychotherapist. If you struggle with this, I sincerely wish you strength in overcoming it.

    Reason #5 You’re Just Tired
    Sometimes, the issue isn’t strategic at all — it’s fatigue. Fussing over icon corners can feel like a cozy bunker when your brain is fried. There’s a name for this: decision fatigue. Basically, your brain’s battery for hard thinking is low, so it hides out in the easy, comfy zone of pixel-pushing.
    A striking example comes from a New York Times article titled “Do You Suffer From Decision Fatigue?.” It described how judges deciding on release requests were far more likely to grant release early in the daycompared to late in the daysimply because their decision-making energy was depleted. Luckily, designers rarely hold someone’s freedom in their hands, but the example dramatically shows how fatigue can impact our judgment and productivity.
    What helps here:

    Swap tasks.Trade tickets with another designer; novelty resets your focus.
    Talk to another designer.If NDA permits, ask peers outside the team for a sanity check.
    Step away.Even a ten‑minute walk can do more than a double‑shot espresso.

    By the way, I came up with these ideas while walking around my office. I was lucky to work near a river, and those short walks quickly turned into a helpful habit.

    And one more trick that helps me snap out of detail mode early: if I catch myself making around 20 little tweaks — changing font weight, color, border radius — I just stop. Over time, it turned into a habit. I have a similar one with Instagram: by the third reel, my brain quietly asks, “Wait, weren’t we working?” Funny how that kind of nudge saves a ton of time.
    Four Steps I Use to Avoid Drowning In Detail
    Knowing these potential traps, here’s the practical process I use to stay on track:
    1. Define the Core Problem & Business Goal
    Before anything, dig deep: what’s the actual problem we’re solving, not just the requested task or a surface-level symptom? Ask ‘why’ repeatedly. What user pain or business need are we addressing? Then, state the clear business goal: “What metric am I moving, and do we have data to prove this is the right lever?” If retention is the goal, decide whether push reminders, gamification, or personalised content is the best route. The wrong lever, or tackling a symptom instead of the cause, dooms everything downstream.
    2. Choose the MechanicOnce the core problem and goal are clear, lock the solution principle or ‘mechanic’ first. Going with a game layer? Decide if it’s leaderboards, streaks, or badges. Write it down. Then move on. No UI yet. This keeps the focus high-level before diving into pixels.
    3. Wireframe the Flow & Get Focused Feedback
    Now open Figma. Map screens, layout, and transitions. Boxes and arrows are enough. Keep the fidelity low so the discussion stays on the flow, not colour. Crucially, when you share these early wires, ask specific questions and provide clear contextto get actionable feedback, not just vague opinions.
    4. Polish the VisualsI only let myself tweak grids, type scales, and shadows after the flow is validated. If progress stalls, or before a major polish effort, I surface the work in a design critique — again using targeted questions and clear context — instead of hiding in version 47. This ensures detailing serves the now-validated solution.
    Even for something as small as a single button, running these four checkpoints takes about ten minutes and saves hours of decorative dithering.
    Wrapping Up
    Next time you feel the pull to vanish into mock‑ups before the problem is nailed down, pause and ask what you might be avoiding. Yes, that can expose an uncomfortable truth. But pausing to ask what you might be avoiding — maybe the fuzzy core problem, or just asking for tough feedback — gives you the power to face the real issue head-on. It keeps the project focused on solving the right problem, not just perfecting a flawed solution.
    Attention to detail is a superpower when used at the right moment. Obsessing over pixels too soon, though, is a bad habit and a warning light telling us the process needs a rethink.
    #why #designers #get #stuck #details
    Why Designers Get Stuck In The Details And How To Stop
    You’ve drawn fifty versions of the same screen — and you still hate every one of them. Begrudgingly, you pick three, show them to your product manager, and hear: “Looks cool, but the idea doesn’t work.” Sound familiar? In this article, I’ll unpack why designers fall into detail work at the wrong moment, examining both process pitfalls and the underlying psychological reasons, as understanding these traps is the first step to overcoming them. I’ll also share tactics I use to climb out of that trap. Reason #1 You’re Afraid To Show Rough Work We designers worship detail. We’re taught that true craft equals razor‑sharp typography, perfect grids, and pixel precision. So the minute a task arrives, we pop open Figma and start polishing long before polish is needed. I’ve skipped the sketch phase more times than I care to admit. I told myself it would be faster, yet I always ended up spending hours producing a tidy mock‑up when a scribbled thumbnail would have sparked a five‑minute chat with my product manager. Rough sketches felt “unprofessional,” so I hid them. The cost? Lost time, wasted energy — and, by the third redo, teammates were quietly wondering if I even understood the brief. The real problem here is the habit: we open Figma and start perfecting the UI before we’ve even solved the problem. So why do we hide these rough sketches? It’s not just a bad habit or plain silly. There are solid psychological reasons behind it. We often just call it perfectionism, but it’s deeper than wanting things neat. Digging into the psychologyshows there are a couple of flavors driving this: Socially prescribed perfectionismIt’s that nagging feeling that everyone else expects perfect work from you, which makes showing anything rough feel like walking into the lion’s den. Self-oriented perfectionismWhere you’re the one setting impossibly high standards for yourself, leading to brutal self-criticism if anything looks slightly off. Either way, the result’s the same: showing unfinished work feels wrong, and you miss out on that vital early feedback. Back to the design side, remember that clients rarely see architects’ first pencil sketches, but these sketches still exist; they guide structural choices before the 3D render. Treat your thumbnails the same way — artifacts meant to collapse uncertainty, not portfolio pieces. Once stakeholders see the upside, roughness becomes a badge of speed, not sloppiness. So, the key is to consciously make that shift: Treat early sketches as disposable tools for thinking and actively share them to get feedback faster. Reason #2: You Fix The Symptom, Not The Cause Before tackling any task, we need to understand what business outcome we’re aiming for. Product managers might come to us asking to enlarge the payment button in the shopping cart because users aren’t noticing it. The suggested solution itself isn’t necessarily bad, but before redesigning the button, we should ask, “What data suggests they aren’t noticing it?” Don’t get me wrong, I’m not saying you shouldn’t trust your product manager. On the contrary, these questions help ensure you’re on the same page and working with the same data. From my experience, here are several reasons why users might not be clicking that coveted button: Users don’t understand that this step is for payment. They understand it’s about payment but expect order confirmation first. Due to incorrect translation, users don’t understand what the button means. Lack of trust signals. Unexpected additional coststhat appear at this stage. Technical issues. Now, imagine you simply did what the manager suggested. Would you have solved the problem? Hardly. Moreover, the responsibility for the unresolved issue would fall on you, as the interface solution lies within the design domain. The product manager actually did their job correctly by identifying a problem: suspiciously, few users are clicking the button. Psychologically, taking on this bigger role isn’t easy. It means overcoming the fear of making mistakes and the discomfort of exploring unclear problems rather than just doing tasks. This shift means seeing ourselves as partners who create value — even if it means fighting a hesitation to question product managers— and understanding that using our product logic expertise proactively is crucial for modern designers. There’s another critical reason why we, designers, need to be a bit like product managers: the rise of AI. I deliberately used a simple example about enlarging a button, but I’m confident that in the near future, AI will easily handle routine design tasks. This worries me, but at the same time, I’m already gladly stepping into the product manager’s territory: understanding product and business metrics, formulating hypotheses, conducting research, and so on. It might sound like I’m taking work away from PMs, but believe me, they undoubtedly have enough on their plates and are usually more than happy to delegate some responsibilities to designers. Reason #3: You’re Solving The Wrong Problem Before solving anything, ask whether the problem even deserves your attention. During a major home‑screen redesign, our goal was to drive more users into paid services. The initial hypothesis — making service buttons bigger and brighter might help returning users — seemed reasonable enough to test. However, even when A/B testsshowed minimal impact, we continued to tweak those buttons. Only later did it click: the home screen isn’t the place to sell; visitors open the app to start, not to buy. We removed that promo block, and nothing broke. Contextual entry points deeper into the journey performed brilliantly. Lesson learned: Without the right context, any visual tweak is lipstick on a pig. Why did we get stuck polishing buttons instead of stopping sooner? It’s easy to get tunnel vision. Psychologically, it’s likely the good old sunk cost fallacy kicking in: we’d already invested time in the buttons, so stopping felt like wasting that effort, even though the data wasn’t promising. It’s just easier to keep fiddling with something familiar than to admit we need a new plan. Perhaps the simple question I should have asked myself when results stalled was: “Are we optimizing the right thing or just polishing something that fundamentally doesn’t fit the user’s primary goal here?” That alone might have saved hours. Reason #4: You’re Drowning In Unactionable Feedback We all discuss our work with colleagues. But here’s a crucial point: what kind of question do you pose to kick off that discussion? If your go-to is “What do you think?” well, that question might lead you down a rabbit hole of personal opinions rather than actionable insights. While experienced colleagues will cut through the noise, others, unsure what to evaluate, might comment on anything and everything — fonts, button colors, even when you desperately need to discuss a user flow. What matters here are two things: The question you ask, The context you give. That means clearly stating the problem, what you’ve learned, and how your idea aims to fix it. For instance: “The problem is our payment conversion rate has dropped by X%. I’ve interviewed users and found they abandon payment because they don’t understand how the total amount is calculated. My solution is to show a detailed cost breakdown. Do you think this actually solves the problem for them?” Here, you’ve stated the problem, shared your insight, explained your solution, and asked a direct question. It’s even better if you prepare a list of specific sub-questions. For instance: “Are all items in the cost breakdown clear?” or “Does the placement of this breakdown feel intuitive within the payment flow?” Another good habit is to keep your rough sketches and previous iterations handy. Some of your colleagues’ suggestions might be things you’ve already tried. It’s great if you can discuss them immediately to either revisit those ideas or definitively set them aside. I’m not a psychologist, but experience tells me that, psychologically, the reluctance to be this specific often stems from a fear of our solution being rejected. We tend to internalize feedback: a seemingly innocent comment like, “Have you considered other ways to organize this section?” or “Perhaps explore a different structure for this part?” can instantly morph in our minds into “You completely messed up the structure. You’re a bad designer.” Imposter syndrome, in all its glory. So, to wrap up this point, here are two recommendations: Prepare for every design discussion.A couple of focused questions will yield far more valuable input than a vague “So, what do you think?”. Actively work on separating feedback on your design from your self-worth.If a mistake is pointed out, acknowledge it, learn from it, and you’ll be less likely to repeat it. This is often easier said than done. For me, it took years of working with a psychotherapist. If you struggle with this, I sincerely wish you strength in overcoming it. Reason #5 You’re Just Tired Sometimes, the issue isn’t strategic at all — it’s fatigue. Fussing over icon corners can feel like a cozy bunker when your brain is fried. There’s a name for this: decision fatigue. Basically, your brain’s battery for hard thinking is low, so it hides out in the easy, comfy zone of pixel-pushing. A striking example comes from a New York Times article titled “Do You Suffer From Decision Fatigue?.” It described how judges deciding on release requests were far more likely to grant release early in the daycompared to late in the daysimply because their decision-making energy was depleted. Luckily, designers rarely hold someone’s freedom in their hands, but the example dramatically shows how fatigue can impact our judgment and productivity. What helps here: Swap tasks.Trade tickets with another designer; novelty resets your focus. Talk to another designer.If NDA permits, ask peers outside the team for a sanity check. Step away.Even a ten‑minute walk can do more than a double‑shot espresso. By the way, I came up with these ideas while walking around my office. I was lucky to work near a river, and those short walks quickly turned into a helpful habit. And one more trick that helps me snap out of detail mode early: if I catch myself making around 20 little tweaks — changing font weight, color, border radius — I just stop. Over time, it turned into a habit. I have a similar one with Instagram: by the third reel, my brain quietly asks, “Wait, weren’t we working?” Funny how that kind of nudge saves a ton of time. Four Steps I Use to Avoid Drowning In Detail Knowing these potential traps, here’s the practical process I use to stay on track: 1. Define the Core Problem & Business Goal Before anything, dig deep: what’s the actual problem we’re solving, not just the requested task or a surface-level symptom? Ask ‘why’ repeatedly. What user pain or business need are we addressing? Then, state the clear business goal: “What metric am I moving, and do we have data to prove this is the right lever?” If retention is the goal, decide whether push reminders, gamification, or personalised content is the best route. The wrong lever, or tackling a symptom instead of the cause, dooms everything downstream. 2. Choose the MechanicOnce the core problem and goal are clear, lock the solution principle or ‘mechanic’ first. Going with a game layer? Decide if it’s leaderboards, streaks, or badges. Write it down. Then move on. No UI yet. This keeps the focus high-level before diving into pixels. 3. Wireframe the Flow & Get Focused Feedback Now open Figma. Map screens, layout, and transitions. Boxes and arrows are enough. Keep the fidelity low so the discussion stays on the flow, not colour. Crucially, when you share these early wires, ask specific questions and provide clear contextto get actionable feedback, not just vague opinions. 4. Polish the VisualsI only let myself tweak grids, type scales, and shadows after the flow is validated. If progress stalls, or before a major polish effort, I surface the work in a design critique — again using targeted questions and clear context — instead of hiding in version 47. This ensures detailing serves the now-validated solution. Even for something as small as a single button, running these four checkpoints takes about ten minutes and saves hours of decorative dithering. Wrapping Up Next time you feel the pull to vanish into mock‑ups before the problem is nailed down, pause and ask what you might be avoiding. Yes, that can expose an uncomfortable truth. But pausing to ask what you might be avoiding — maybe the fuzzy core problem, or just asking for tough feedback — gives you the power to face the real issue head-on. It keeps the project focused on solving the right problem, not just perfecting a flawed solution. Attention to detail is a superpower when used at the right moment. Obsessing over pixels too soon, though, is a bad habit and a warning light telling us the process needs a rethink. #why #designers #get #stuck #details
    SMASHINGMAGAZINE.COM
    Why Designers Get Stuck In The Details And How To Stop
    You’ve drawn fifty versions of the same screen — and you still hate every one of them. Begrudgingly, you pick three, show them to your product manager, and hear: “Looks cool, but the idea doesn’t work.” Sound familiar? In this article, I’ll unpack why designers fall into detail work at the wrong moment, examining both process pitfalls and the underlying psychological reasons, as understanding these traps is the first step to overcoming them. I’ll also share tactics I use to climb out of that trap. Reason #1 You’re Afraid To Show Rough Work We designers worship detail. We’re taught that true craft equals razor‑sharp typography, perfect grids, and pixel precision. So the minute a task arrives, we pop open Figma and start polishing long before polish is needed. I’ve skipped the sketch phase more times than I care to admit. I told myself it would be faster, yet I always ended up spending hours producing a tidy mock‑up when a scribbled thumbnail would have sparked a five‑minute chat with my product manager. Rough sketches felt “unprofessional,” so I hid them. The cost? Lost time, wasted energy — and, by the third redo, teammates were quietly wondering if I even understood the brief. The real problem here is the habit: we open Figma and start perfecting the UI before we’ve even solved the problem. So why do we hide these rough sketches? It’s not just a bad habit or plain silly. There are solid psychological reasons behind it. We often just call it perfectionism, but it’s deeper than wanting things neat. Digging into the psychology (like the research by Hewitt and Flett) shows there are a couple of flavors driving this: Socially prescribed perfectionismIt’s that nagging feeling that everyone else expects perfect work from you, which makes showing anything rough feel like walking into the lion’s den. Self-oriented perfectionismWhere you’re the one setting impossibly high standards for yourself, leading to brutal self-criticism if anything looks slightly off. Either way, the result’s the same: showing unfinished work feels wrong, and you miss out on that vital early feedback. Back to the design side, remember that clients rarely see architects’ first pencil sketches, but these sketches still exist; they guide structural choices before the 3D render. Treat your thumbnails the same way — artifacts meant to collapse uncertainty, not portfolio pieces. Once stakeholders see the upside, roughness becomes a badge of speed, not sloppiness. So, the key is to consciously make that shift: Treat early sketches as disposable tools for thinking and actively share them to get feedback faster. Reason #2: You Fix The Symptom, Not The Cause Before tackling any task, we need to understand what business outcome we’re aiming for. Product managers might come to us asking to enlarge the payment button in the shopping cart because users aren’t noticing it. The suggested solution itself isn’t necessarily bad, but before redesigning the button, we should ask, “What data suggests they aren’t noticing it?” Don’t get me wrong, I’m not saying you shouldn’t trust your product manager. On the contrary, these questions help ensure you’re on the same page and working with the same data. From my experience, here are several reasons why users might not be clicking that coveted button: Users don’t understand that this step is for payment. They understand it’s about payment but expect order confirmation first. Due to incorrect translation, users don’t understand what the button means. Lack of trust signals (no security icons, unclear seller information). Unexpected additional costs (hidden fees, shipping) that appear at this stage. Technical issues (inactive button, page freezing). Now, imagine you simply did what the manager suggested. Would you have solved the problem? Hardly. Moreover, the responsibility for the unresolved issue would fall on you, as the interface solution lies within the design domain. The product manager actually did their job correctly by identifying a problem: suspiciously, few users are clicking the button. Psychologically, taking on this bigger role isn’t easy. It means overcoming the fear of making mistakes and the discomfort of exploring unclear problems rather than just doing tasks. This shift means seeing ourselves as partners who create value — even if it means fighting a hesitation to question product managers (which might come from a fear of speaking up or a desire to avoid challenging authority) — and understanding that using our product logic expertise proactively is crucial for modern designers. There’s another critical reason why we, designers, need to be a bit like product managers: the rise of AI. I deliberately used a simple example about enlarging a button, but I’m confident that in the near future, AI will easily handle routine design tasks. This worries me, but at the same time, I’m already gladly stepping into the product manager’s territory: understanding product and business metrics, formulating hypotheses, conducting research, and so on. It might sound like I’m taking work away from PMs, but believe me, they undoubtedly have enough on their plates and are usually more than happy to delegate some responsibilities to designers. Reason #3: You’re Solving The Wrong Problem Before solving anything, ask whether the problem even deserves your attention. During a major home‑screen redesign, our goal was to drive more users into paid services. The initial hypothesis — making service buttons bigger and brighter might help returning users — seemed reasonable enough to test. However, even when A/B tests (a method of comparing two versions of a design to determine which performs better) showed minimal impact, we continued to tweak those buttons. Only later did it click: the home screen isn’t the place to sell; visitors open the app to start, not to buy. We removed that promo block, and nothing broke. Contextual entry points deeper into the journey performed brilliantly. Lesson learned: Without the right context, any visual tweak is lipstick on a pig. Why did we get stuck polishing buttons instead of stopping sooner? It’s easy to get tunnel vision. Psychologically, it’s likely the good old sunk cost fallacy kicking in: we’d already invested time in the buttons, so stopping felt like wasting that effort, even though the data wasn’t promising. It’s just easier to keep fiddling with something familiar than to admit we need a new plan. Perhaps the simple question I should have asked myself when results stalled was: “Are we optimizing the right thing or just polishing something that fundamentally doesn’t fit the user’s primary goal here?” That alone might have saved hours. Reason #4: You’re Drowning In Unactionable Feedback We all discuss our work with colleagues. But here’s a crucial point: what kind of question do you pose to kick off that discussion? If your go-to is “What do you think?” well, that question might lead you down a rabbit hole of personal opinions rather than actionable insights. While experienced colleagues will cut through the noise, others, unsure what to evaluate, might comment on anything and everything — fonts, button colors, even when you desperately need to discuss a user flow. What matters here are two things: The question you ask, The context you give. That means clearly stating the problem, what you’ve learned, and how your idea aims to fix it. For instance: “The problem is our payment conversion rate has dropped by X%. I’ve interviewed users and found they abandon payment because they don’t understand how the total amount is calculated. My solution is to show a detailed cost breakdown. Do you think this actually solves the problem for them?” Here, you’ve stated the problem (conversion drop), shared your insight (user confusion), explained your solution (cost breakdown), and asked a direct question. It’s even better if you prepare a list of specific sub-questions. For instance: “Are all items in the cost breakdown clear?” or “Does the placement of this breakdown feel intuitive within the payment flow?” Another good habit is to keep your rough sketches and previous iterations handy. Some of your colleagues’ suggestions might be things you’ve already tried. It’s great if you can discuss them immediately to either revisit those ideas or definitively set them aside. I’m not a psychologist, but experience tells me that, psychologically, the reluctance to be this specific often stems from a fear of our solution being rejected. We tend to internalize feedback: a seemingly innocent comment like, “Have you considered other ways to organize this section?” or “Perhaps explore a different structure for this part?” can instantly morph in our minds into “You completely messed up the structure. You’re a bad designer.” Imposter syndrome, in all its glory. So, to wrap up this point, here are two recommendations: Prepare for every design discussion.A couple of focused questions will yield far more valuable input than a vague “So, what do you think?”. Actively work on separating feedback on your design from your self-worth.If a mistake is pointed out, acknowledge it, learn from it, and you’ll be less likely to repeat it. This is often easier said than done. For me, it took years of working with a psychotherapist. If you struggle with this, I sincerely wish you strength in overcoming it. Reason #5 You’re Just Tired Sometimes, the issue isn’t strategic at all — it’s fatigue. Fussing over icon corners can feel like a cozy bunker when your brain is fried. There’s a name for this: decision fatigue. Basically, your brain’s battery for hard thinking is low, so it hides out in the easy, comfy zone of pixel-pushing. A striking example comes from a New York Times article titled “Do You Suffer From Decision Fatigue?.” It described how judges deciding on release requests were far more likely to grant release early in the day (about 70% of cases) compared to late in the day (less than 10%) simply because their decision-making energy was depleted. Luckily, designers rarely hold someone’s freedom in their hands, but the example dramatically shows how fatigue can impact our judgment and productivity. What helps here: Swap tasks.Trade tickets with another designer; novelty resets your focus. Talk to another designer.If NDA permits, ask peers outside the team for a sanity check. Step away.Even a ten‑minute walk can do more than a double‑shot espresso. By the way, I came up with these ideas while walking around my office. I was lucky to work near a river, and those short walks quickly turned into a helpful habit. And one more trick that helps me snap out of detail mode early: if I catch myself making around 20 little tweaks — changing font weight, color, border radius — I just stop. Over time, it turned into a habit. I have a similar one with Instagram: by the third reel, my brain quietly asks, “Wait, weren’t we working?” Funny how that kind of nudge saves a ton of time. Four Steps I Use to Avoid Drowning In Detail Knowing these potential traps, here’s the practical process I use to stay on track: 1. Define the Core Problem & Business Goal Before anything, dig deep: what’s the actual problem we’re solving, not just the requested task or a surface-level symptom? Ask ‘why’ repeatedly. What user pain or business need are we addressing? Then, state the clear business goal: “What metric am I moving, and do we have data to prove this is the right lever?” If retention is the goal, decide whether push reminders, gamification, or personalised content is the best route. The wrong lever, or tackling a symptom instead of the cause, dooms everything downstream. 2. Choose the Mechanic (Solution Principle) Once the core problem and goal are clear, lock the solution principle or ‘mechanic’ first. Going with a game layer? Decide if it’s leaderboards, streaks, or badges. Write it down. Then move on. No UI yet. This keeps the focus high-level before diving into pixels. 3. Wireframe the Flow & Get Focused Feedback Now open Figma. Map screens, layout, and transitions. Boxes and arrows are enough. Keep the fidelity low so the discussion stays on the flow, not colour. Crucially, when you share these early wires, ask specific questions and provide clear context (as discussed in ‘Reason #4’) to get actionable feedback, not just vague opinions. 4. Polish the Visuals (Mindfully) I only let myself tweak grids, type scales, and shadows after the flow is validated. If progress stalls, or before a major polish effort, I surface the work in a design critique — again using targeted questions and clear context — instead of hiding in version 47. This ensures detailing serves the now-validated solution. Even for something as small as a single button, running these four checkpoints takes about ten minutes and saves hours of decorative dithering. Wrapping Up Next time you feel the pull to vanish into mock‑ups before the problem is nailed down, pause and ask what you might be avoiding. Yes, that can expose an uncomfortable truth. But pausing to ask what you might be avoiding — maybe the fuzzy core problem, or just asking for tough feedback — gives you the power to face the real issue head-on. It keeps the project focused on solving the right problem, not just perfecting a flawed solution. Attention to detail is a superpower when used at the right moment. Obsessing over pixels too soon, though, is a bad habit and a warning light telling us the process needs a rethink.
    Like
    Love
    Wow
    Angry
    Sad
    596
    0 Commentaires 0 Parts
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Commentaires 0 Parts
  • Trump’s military parade is a warning

    Donald Trump’s military parade in Washington this weekend — a show of force in the capital that just happens to take place on the president’s birthday — smacks of authoritarian Dear Leader-style politics.Yet as disconcerting as the imagery of tanks rolling down Constitution Avenue will be, it’s not even close to Trump’s most insidious assault on the US military’s historic and democratically essential nonpartisan ethos.In fact, it’s not even the most worrying thing he’s done this week.On Tuesday, the president gave a speech at Fort Bragg, an Army base home to Special Operations Command. While presidential speeches to soldiers are not uncommon — rows of uniformed troops make a great backdrop for a foreign policy speech — they generally avoid overt partisan attacks and campaign-style rhetoric. The soldiers, for their part, are expected to be studiously neutral, laughing at jokes and such, but remaining fully impassive during any policy conversation.That’s not what happened at Fort Bragg. Trump’s speech was a partisan tirade that targeted “radical left” opponents ranging from Joe Biden to Los Angeles Mayor Karen Bass. He celebrated his deployment of Marines to Los Angeles, proposed jailing people for burning the American flag, and called on soldiers to be “aggressive” toward the protesters they encountered.The soldiers, for their part, cheered Trump and booed his enemies — as they were seemingly expected to. Reporters at Military.com, a military news service, uncovered internal communications from 82nd Airborne leadership suggesting that the crowd was screened for their political opinions.“If soldiers have political views that are in opposition to the current administration and they don’t want to be in the audience then they need to speak with their leadership and get swapped out,” one note read.To call this unusual is an understatement. I spoke with four different experts on civil-military relations, two of whom teach at the Naval War College, about the speech and its implications. To a person, they said it was a step towards politicizing the military with no real precedent in modern American history.“That is, I think, a really big red flag because it means the military’s professional ethic is breaking down internally,” says Risa Brooks, a professor at Marquette University. “Its capacity to maintain that firewall against civilian politicization may be faltering.”This may sound alarmist — like an overreading of a one-off incident — but it’s part of a bigger pattern. The totality of Trump administration policies, ranging from the parade in Washington to the LA troop deployment to Secretary of Defense Pete Hegseth’s firing of high-ranking women and officers of color, suggests a concerted effort to erode the military’s professional ethos and turn it into an institution subservient to the Trump administration’s whims. This is a signal policy aim of would-be dictators, who wish to head off the risk of a coup and ensure the armed forces’ political reliability if they are needed to repress dissent in a crisis.Steve Saideman, a professor at Carleton University, put together a list of eight different signs that a military is being politicized in this fashion. The Trump administration has exhibited six out of the eight.“The biggest theme is that we are seeing a number of checks on the executive fail at the same time — and that’s what’s making individual events seem more alarming than they might otherwise,” says Jessica Blankshain, a professor at the Naval War College.That Trump is trying to politicize the military does not mean he has succeeded. There are several signs, including Trump’s handpicked chair of the Joint Chiefs repudiating the president’s claims of a migrant invasion during congressional testimony, that the US military is resisting Trump’s politicization.But the events in Fort Bragg and Washington suggest that we are in the midst of a quiet crisis in civil-military relations in the United States — one whose implications for American democracy’s future could well be profound.The Trump crisis in civil-military relations, explainedA military is, by sheer fact of its existence, a threat to any civilian government. If you have an institution that controls the overwhelming bulk of weaponry in a society, it always has the physical capacity to seize control of the government at gunpoint. A key question for any government is how to convince the armed forces that they cannot or should not take power for themselves.Democracies typically do this through a process called “professionalization.” Soldiers are rigorously taught to think of themselves as a class of public servants, people trained to perform a specific job within defined parameters. Their ultimate loyalty is not to their generals or even individual presidents, but rather to the people and the constitutional order.Samuel Huntington, the late Harvard political scientist, is the canonical theorist of a professional military. In his book The Soldier and the State, he described optimal professionalization as a system of “objective control”: one in which the military retains autonomy in how they fight and plan for wars while deferring to politicians on whether and why to fight in the first place. In effect, they stay out of the politicians’ affairs while the politicians stay out of theirs.The idea of such a system is to emphasize to the military that they are professionals: Their responsibility isn’t deciding when to use force, but only to conduct operations as effectively as possible once ordered to engage in them. There is thus a strict firewall between military affairs, on the one hand, and policy-political affairs on the other.Typically, the chief worry is that the military breaches this bargain: that, for example, a general starts speaking out against elected officials’ policies in ways that undermine civilian control. This is not a hypothetical fear in the United States, with the most famous such example being Gen. Douglas MacArthur’s insubordination during the Korean War. Thankfully, not even MacArthur attempted the worst-case version of military overstep — a coup.But in backsliding democracies like the modern United States, where the chief executive is attempting an anti-democratic power grab, the military poses a very different kind of threat to democracy — in fact, something akin to the exact opposite of the typical scenario.In such cases, the issue isn’t the military inserting itself into politics but rather the civilians dragging them into it in ways that upset the democratic political order. The worst-case scenario is that the military acts on presidential directives to use force against domestic dissenters, destroying democracy not by ignoring civilian orders, but by following them.There are two ways to arrive at such a worst-case scenario, both of which are in evidence in the early days of Trump 2.0.First is politicization: an intentional attack on the constraints against partisan activity inside the professional ranks.Many of Pete Hegseth’s major moves as secretary of defense fit this bill, including his decisions to fire nonwhite and female generals seen as politically unreliable and his effort to undermine the independence of the military’s lawyers. The breaches in protocol at Fort Bragg are both consequences and causes of politicization: They could only happen in an environment of loosened constraint, and they might encourage more overt political action if gone unpunished.The second pathway to breakdown is the weaponization of professionalism against itself. Here, Trump exploits the military’s deference to politicians by ordering it to engage in undemocraticactivities. In practice, this looks a lot like the LA deployments, and, more specifically, the lack of any visible military pushback. While the military readily agreeing to deployments is normally a good sign — that civilian control is holding — these aren’t normal times. And this isn’t a normal deployment, but rather one that comes uncomfortably close to the military being ordered to assist in repressing overwhelmingly peaceful demonstrations against executive abuses of power.“It’s really been pretty uncommon to use the military for law enforcement,” says David Burbach, another Naval War College professor. “This is really bringing the military into frontline law enforcement when. … these are really not huge disturbances.”This, then, is the crisis: an incremental and slow-rolling effort by the Trump administration to erode the norms and procedures designed to prevent the military from being used as a tool of domestic repression. Is it time to panic?Among the experts I spoke with, there was consensus that the military’s professional and nonpartisan ethos was weakening. This isn’t just because of Trump, but his terms — the first to a degree, and now the second acutely — are major stressors.Yet there was no consensus on just how much military nonpartisanship has eroded — that is, how close we are to a moment when the US military might be willing to follow obviously authoritarian orders.For all its faults, the US military’s professional ethos is a really important part of its identity and self-conception. While few soldiers may actually read Sam Huntington or similar scholars, the general idea that they serve the people and the republic is a bedrock principle among the ranks. There is a reason why the United States has never, in over 250 years of governance, experienced a military coup — or even come particularly close to one.In theory, this ethos should also galvanize resistance to Trump’s efforts at politicization. Soldiers are not unthinking automatons: While they are trained to follow commands, they are explicitly obligated to refuse illegal orders, even coming from the president. The more aggressive Trump’s efforts to use the military as a tool of repression gets, the more likely there is to be resistance.Or, at least theoretically.The truth is that we don’t really know how the US military will respond to a situation like this. Like so many of Trump’s second-term policies, their efforts to bend the military to their will are unprecedented — actions with no real parallel in the modern history of the American military. Experts can only make informed guesses, based on their sense of US military culture as well as comparisons to historical and foreign cases.For this reason, there are probably only two things we can say with confidence.First, what we’ve seen so far is not yet sufficient evidence to declare that the military is in Trump’s thrall. The signs of decay are too limited to ground any conclusions that the longstanding professional norm is entirely gone.“We have seen a few things that are potentially alarming about erosion of the military’s non-partisan norm. But not in a way that’s definitive at this point,” Blankshain says.Second, the stressors on this tradition are going to keep piling on. Trump’s record makes it exceptionally clear that he wants the military to serve him personally — and that he, and Hegseth, will keep working to make it so. This means we really are in the midst of a quiet crisis, and will likely remain so for the foreseeable future.“The fact that he’s getting the troops to cheer for booing Democratic leaders at a time when there’s actuallya blue city and a blue state…he is ordering the troops to take a side,” Saideman says. “There may not be a coherent plan behind this. But there are a lot of things going on that are all in the same direction.”See More: Politics
    #trumpampamp8217s #military #parade #warning
    Trump’s military parade is a warning
    Donald Trump’s military parade in Washington this weekend — a show of force in the capital that just happens to take place on the president’s birthday — smacks of authoritarian Dear Leader-style politics.Yet as disconcerting as the imagery of tanks rolling down Constitution Avenue will be, it’s not even close to Trump’s most insidious assault on the US military’s historic and democratically essential nonpartisan ethos.In fact, it’s not even the most worrying thing he’s done this week.On Tuesday, the president gave a speech at Fort Bragg, an Army base home to Special Operations Command. While presidential speeches to soldiers are not uncommon — rows of uniformed troops make a great backdrop for a foreign policy speech — they generally avoid overt partisan attacks and campaign-style rhetoric. The soldiers, for their part, are expected to be studiously neutral, laughing at jokes and such, but remaining fully impassive during any policy conversation.That’s not what happened at Fort Bragg. Trump’s speech was a partisan tirade that targeted “radical left” opponents ranging from Joe Biden to Los Angeles Mayor Karen Bass. He celebrated his deployment of Marines to Los Angeles, proposed jailing people for burning the American flag, and called on soldiers to be “aggressive” toward the protesters they encountered.The soldiers, for their part, cheered Trump and booed his enemies — as they were seemingly expected to. Reporters at Military.com, a military news service, uncovered internal communications from 82nd Airborne leadership suggesting that the crowd was screened for their political opinions.“If soldiers have political views that are in opposition to the current administration and they don’t want to be in the audience then they need to speak with their leadership and get swapped out,” one note read.To call this unusual is an understatement. I spoke with four different experts on civil-military relations, two of whom teach at the Naval War College, about the speech and its implications. To a person, they said it was a step towards politicizing the military with no real precedent in modern American history.“That is, I think, a really big red flag because it means the military’s professional ethic is breaking down internally,” says Risa Brooks, a professor at Marquette University. “Its capacity to maintain that firewall against civilian politicization may be faltering.”This may sound alarmist — like an overreading of a one-off incident — but it’s part of a bigger pattern. The totality of Trump administration policies, ranging from the parade in Washington to the LA troop deployment to Secretary of Defense Pete Hegseth’s firing of high-ranking women and officers of color, suggests a concerted effort to erode the military’s professional ethos and turn it into an institution subservient to the Trump administration’s whims. This is a signal policy aim of would-be dictators, who wish to head off the risk of a coup and ensure the armed forces’ political reliability if they are needed to repress dissent in a crisis.Steve Saideman, a professor at Carleton University, put together a list of eight different signs that a military is being politicized in this fashion. The Trump administration has exhibited six out of the eight.“The biggest theme is that we are seeing a number of checks on the executive fail at the same time — and that’s what’s making individual events seem more alarming than they might otherwise,” says Jessica Blankshain, a professor at the Naval War College.That Trump is trying to politicize the military does not mean he has succeeded. There are several signs, including Trump’s handpicked chair of the Joint Chiefs repudiating the president’s claims of a migrant invasion during congressional testimony, that the US military is resisting Trump’s politicization.But the events in Fort Bragg and Washington suggest that we are in the midst of a quiet crisis in civil-military relations in the United States — one whose implications for American democracy’s future could well be profound.The Trump crisis in civil-military relations, explainedA military is, by sheer fact of its existence, a threat to any civilian government. If you have an institution that controls the overwhelming bulk of weaponry in a society, it always has the physical capacity to seize control of the government at gunpoint. A key question for any government is how to convince the armed forces that they cannot or should not take power for themselves.Democracies typically do this through a process called “professionalization.” Soldiers are rigorously taught to think of themselves as a class of public servants, people trained to perform a specific job within defined parameters. Their ultimate loyalty is not to their generals or even individual presidents, but rather to the people and the constitutional order.Samuel Huntington, the late Harvard political scientist, is the canonical theorist of a professional military. In his book The Soldier and the State, he described optimal professionalization as a system of “objective control”: one in which the military retains autonomy in how they fight and plan for wars while deferring to politicians on whether and why to fight in the first place. In effect, they stay out of the politicians’ affairs while the politicians stay out of theirs.The idea of such a system is to emphasize to the military that they are professionals: Their responsibility isn’t deciding when to use force, but only to conduct operations as effectively as possible once ordered to engage in them. There is thus a strict firewall between military affairs, on the one hand, and policy-political affairs on the other.Typically, the chief worry is that the military breaches this bargain: that, for example, a general starts speaking out against elected officials’ policies in ways that undermine civilian control. This is not a hypothetical fear in the United States, with the most famous such example being Gen. Douglas MacArthur’s insubordination during the Korean War. Thankfully, not even MacArthur attempted the worst-case version of military overstep — a coup.But in backsliding democracies like the modern United States, where the chief executive is attempting an anti-democratic power grab, the military poses a very different kind of threat to democracy — in fact, something akin to the exact opposite of the typical scenario.In such cases, the issue isn’t the military inserting itself into politics but rather the civilians dragging them into it in ways that upset the democratic political order. The worst-case scenario is that the military acts on presidential directives to use force against domestic dissenters, destroying democracy not by ignoring civilian orders, but by following them.There are two ways to arrive at such a worst-case scenario, both of which are in evidence in the early days of Trump 2.0.First is politicization: an intentional attack on the constraints against partisan activity inside the professional ranks.Many of Pete Hegseth’s major moves as secretary of defense fit this bill, including his decisions to fire nonwhite and female generals seen as politically unreliable and his effort to undermine the independence of the military’s lawyers. The breaches in protocol at Fort Bragg are both consequences and causes of politicization: They could only happen in an environment of loosened constraint, and they might encourage more overt political action if gone unpunished.The second pathway to breakdown is the weaponization of professionalism against itself. Here, Trump exploits the military’s deference to politicians by ordering it to engage in undemocraticactivities. In practice, this looks a lot like the LA deployments, and, more specifically, the lack of any visible military pushback. While the military readily agreeing to deployments is normally a good sign — that civilian control is holding — these aren’t normal times. And this isn’t a normal deployment, but rather one that comes uncomfortably close to the military being ordered to assist in repressing overwhelmingly peaceful demonstrations against executive abuses of power.“It’s really been pretty uncommon to use the military for law enforcement,” says David Burbach, another Naval War College professor. “This is really bringing the military into frontline law enforcement when. … these are really not huge disturbances.”This, then, is the crisis: an incremental and slow-rolling effort by the Trump administration to erode the norms and procedures designed to prevent the military from being used as a tool of domestic repression. Is it time to panic?Among the experts I spoke with, there was consensus that the military’s professional and nonpartisan ethos was weakening. This isn’t just because of Trump, but his terms — the first to a degree, and now the second acutely — are major stressors.Yet there was no consensus on just how much military nonpartisanship has eroded — that is, how close we are to a moment when the US military might be willing to follow obviously authoritarian orders.For all its faults, the US military’s professional ethos is a really important part of its identity and self-conception. While few soldiers may actually read Sam Huntington or similar scholars, the general idea that they serve the people and the republic is a bedrock principle among the ranks. There is a reason why the United States has never, in over 250 years of governance, experienced a military coup — or even come particularly close to one.In theory, this ethos should also galvanize resistance to Trump’s efforts at politicization. Soldiers are not unthinking automatons: While they are trained to follow commands, they are explicitly obligated to refuse illegal orders, even coming from the president. The more aggressive Trump’s efforts to use the military as a tool of repression gets, the more likely there is to be resistance.Or, at least theoretically.The truth is that we don’t really know how the US military will respond to a situation like this. Like so many of Trump’s second-term policies, their efforts to bend the military to their will are unprecedented — actions with no real parallel in the modern history of the American military. Experts can only make informed guesses, based on their sense of US military culture as well as comparisons to historical and foreign cases.For this reason, there are probably only two things we can say with confidence.First, what we’ve seen so far is not yet sufficient evidence to declare that the military is in Trump’s thrall. The signs of decay are too limited to ground any conclusions that the longstanding professional norm is entirely gone.“We have seen a few things that are potentially alarming about erosion of the military’s non-partisan norm. But not in a way that’s definitive at this point,” Blankshain says.Second, the stressors on this tradition are going to keep piling on. Trump’s record makes it exceptionally clear that he wants the military to serve him personally — and that he, and Hegseth, will keep working to make it so. This means we really are in the midst of a quiet crisis, and will likely remain so for the foreseeable future.“The fact that he’s getting the troops to cheer for booing Democratic leaders at a time when there’s actuallya blue city and a blue state…he is ordering the troops to take a side,” Saideman says. “There may not be a coherent plan behind this. But there are a lot of things going on that are all in the same direction.”See More: Politics #trumpampamp8217s #military #parade #warning
    WWW.VOX.COM
    Trump’s military parade is a warning
    Donald Trump’s military parade in Washington this weekend — a show of force in the capital that just happens to take place on the president’s birthday — smacks of authoritarian Dear Leader-style politics (even though Trump actually got the idea after attending the 2017 Bastille Day parade in Paris).Yet as disconcerting as the imagery of tanks rolling down Constitution Avenue will be, it’s not even close to Trump’s most insidious assault on the US military’s historic and democratically essential nonpartisan ethos.In fact, it’s not even the most worrying thing he’s done this week.On Tuesday, the president gave a speech at Fort Bragg, an Army base home to Special Operations Command. While presidential speeches to soldiers are not uncommon — rows of uniformed troops make a great backdrop for a foreign policy speech — they generally avoid overt partisan attacks and campaign-style rhetoric. The soldiers, for their part, are expected to be studiously neutral, laughing at jokes and such, but remaining fully impassive during any policy conversation.That’s not what happened at Fort Bragg. Trump’s speech was a partisan tirade that targeted “radical left” opponents ranging from Joe Biden to Los Angeles Mayor Karen Bass. He celebrated his deployment of Marines to Los Angeles, proposed jailing people for burning the American flag, and called on soldiers to be “aggressive” toward the protesters they encountered.The soldiers, for their part, cheered Trump and booed his enemies — as they were seemingly expected to. Reporters at Military.com, a military news service, uncovered internal communications from 82nd Airborne leadership suggesting that the crowd was screened for their political opinions.“If soldiers have political views that are in opposition to the current administration and they don’t want to be in the audience then they need to speak with their leadership and get swapped out,” one note read.To call this unusual is an understatement. I spoke with four different experts on civil-military relations, two of whom teach at the Naval War College, about the speech and its implications. To a person, they said it was a step towards politicizing the military with no real precedent in modern American history.“That is, I think, a really big red flag because it means the military’s professional ethic is breaking down internally,” says Risa Brooks, a professor at Marquette University. “Its capacity to maintain that firewall against civilian politicization may be faltering.”This may sound alarmist — like an overreading of a one-off incident — but it’s part of a bigger pattern. The totality of Trump administration policies, ranging from the parade in Washington to the LA troop deployment to Secretary of Defense Pete Hegseth’s firing of high-ranking women and officers of color, suggests a concerted effort to erode the military’s professional ethos and turn it into an institution subservient to the Trump administration’s whims. This is a signal policy aim of would-be dictators, who wish to head off the risk of a coup and ensure the armed forces’ political reliability if they are needed to repress dissent in a crisis.Steve Saideman, a professor at Carleton University, put together a list of eight different signs that a military is being politicized in this fashion. The Trump administration has exhibited six out of the eight.“The biggest theme is that we are seeing a number of checks on the executive fail at the same time — and that’s what’s making individual events seem more alarming than they might otherwise,” says Jessica Blankshain, a professor at the Naval War College (speaking not for the military but in a personal capacity).That Trump is trying to politicize the military does not mean he has succeeded. There are several signs, including Trump’s handpicked chair of the Joint Chiefs repudiating the president’s claims of a migrant invasion during congressional testimony, that the US military is resisting Trump’s politicization.But the events in Fort Bragg and Washington suggest that we are in the midst of a quiet crisis in civil-military relations in the United States — one whose implications for American democracy’s future could well be profound.The Trump crisis in civil-military relations, explainedA military is, by sheer fact of its existence, a threat to any civilian government. If you have an institution that controls the overwhelming bulk of weaponry in a society, it always has the physical capacity to seize control of the government at gunpoint. A key question for any government is how to convince the armed forces that they cannot or should not take power for themselves.Democracies typically do this through a process called “professionalization.” Soldiers are rigorously taught to think of themselves as a class of public servants, people trained to perform a specific job within defined parameters. Their ultimate loyalty is not to their generals or even individual presidents, but rather to the people and the constitutional order.Samuel Huntington, the late Harvard political scientist, is the canonical theorist of a professional military. In his book The Soldier and the State, he described optimal professionalization as a system of “objective control”: one in which the military retains autonomy in how they fight and plan for wars while deferring to politicians on whether and why to fight in the first place. In effect, they stay out of the politicians’ affairs while the politicians stay out of theirs.The idea of such a system is to emphasize to the military that they are professionals: Their responsibility isn’t deciding when to use force, but only to conduct operations as effectively as possible once ordered to engage in them. There is thus a strict firewall between military affairs, on the one hand, and policy-political affairs on the other.Typically, the chief worry is that the military breaches this bargain: that, for example, a general starts speaking out against elected officials’ policies in ways that undermine civilian control. This is not a hypothetical fear in the United States, with the most famous such example being Gen. Douglas MacArthur’s insubordination during the Korean War. Thankfully, not even MacArthur attempted the worst-case version of military overstep — a coup.But in backsliding democracies like the modern United States, where the chief executive is attempting an anti-democratic power grab, the military poses a very different kind of threat to democracy — in fact, something akin to the exact opposite of the typical scenario.In such cases, the issue isn’t the military inserting itself into politics but rather the civilians dragging them into it in ways that upset the democratic political order. The worst-case scenario is that the military acts on presidential directives to use force against domestic dissenters, destroying democracy not by ignoring civilian orders, but by following them.There are two ways to arrive at such a worst-case scenario, both of which are in evidence in the early days of Trump 2.0.First is politicization: an intentional attack on the constraints against partisan activity inside the professional ranks.Many of Pete Hegseth’s major moves as secretary of defense fit this bill, including his decisions to fire nonwhite and female generals seen as politically unreliable and his effort to undermine the independence of the military’s lawyers. The breaches in protocol at Fort Bragg are both consequences and causes of politicization: They could only happen in an environment of loosened constraint, and they might encourage more overt political action if gone unpunished.The second pathway to breakdown is the weaponization of professionalism against itself. Here, Trump exploits the military’s deference to politicians by ordering it to engage in undemocratic (and even questionably legal) activities. In practice, this looks a lot like the LA deployments, and, more specifically, the lack of any visible military pushback. While the military readily agreeing to deployments is normally a good sign — that civilian control is holding — these aren’t normal times. And this isn’t a normal deployment, but rather one that comes uncomfortably close to the military being ordered to assist in repressing overwhelmingly peaceful demonstrations against executive abuses of power.“It’s really been pretty uncommon to use the military for law enforcement,” says David Burbach, another Naval War College professor (also speaking personally). “This is really bringing the military into frontline law enforcement when. … these are really not huge disturbances.”This, then, is the crisis: an incremental and slow-rolling effort by the Trump administration to erode the norms and procedures designed to prevent the military from being used as a tool of domestic repression. Is it time to panic?Among the experts I spoke with, there was consensus that the military’s professional and nonpartisan ethos was weakening. This isn’t just because of Trump, but his terms — the first to a degree, and now the second acutely — are major stressors.Yet there was no consensus on just how much military nonpartisanship has eroded — that is, how close we are to a moment when the US military might be willing to follow obviously authoritarian orders.For all its faults, the US military’s professional ethos is a really important part of its identity and self-conception. While few soldiers may actually read Sam Huntington or similar scholars, the general idea that they serve the people and the republic is a bedrock principle among the ranks. There is a reason why the United States has never, in over 250 years of governance, experienced a military coup — or even come particularly close to one.In theory, this ethos should also galvanize resistance to Trump’s efforts at politicization. Soldiers are not unthinking automatons: While they are trained to follow commands, they are explicitly obligated to refuse illegal orders, even coming from the president. The more aggressive Trump’s efforts to use the military as a tool of repression gets, the more likely there is to be resistance.Or, at least theoretically.The truth is that we don’t really know how the US military will respond to a situation like this. Like so many of Trump’s second-term policies, their efforts to bend the military to their will are unprecedented — actions with no real parallel in the modern history of the American military. Experts can only make informed guesses, based on their sense of US military culture as well as comparisons to historical and foreign cases.For this reason, there are probably only two things we can say with confidence.First, what we’ve seen so far is not yet sufficient evidence to declare that the military is in Trump’s thrall. The signs of decay are too limited to ground any conclusions that the longstanding professional norm is entirely gone.“We have seen a few things that are potentially alarming about erosion of the military’s non-partisan norm. But not in a way that’s definitive at this point,” Blankshain says.Second, the stressors on this tradition are going to keep piling on. Trump’s record makes it exceptionally clear that he wants the military to serve him personally — and that he, and Hegseth, will keep working to make it so. This means we really are in the midst of a quiet crisis, and will likely remain so for the foreseeable future.“The fact that he’s getting the troops to cheer for booing Democratic leaders at a time when there’s actually [a deployment to] a blue city and a blue state…he is ordering the troops to take a side,” Saideman says. “There may not be a coherent plan behind this. But there are a lot of things going on that are all in the same direction.”See More: Politics
    0 Commentaires 0 Parts
  • CIOs baffled by ‘buzzwords, hype and confusion’ around AI

    Technology leaders are baffled by a “cacophony” of “buzzwords, hype and confusion” over the benefits of artificial intelligence, according to the founder and CEO of technology company Pegasystems.
    Alan Trefler, who is known for his prowess at chess and ping pong, as well as running a bn turnover tech company, spends much of his time meeting clients, CIOs and business leaders.
    “I think CIOs are struggling to understand all of the buzzwords, hype and confusion that exists,” he said.
    “The words AI and agentic are being thrown around in this great cacophony and they don’t know what it means. I hear that constantly.”
    CIOs are under pressure from their CEOs, who are convinced AI will offer something valuable.
    “CIOs are really hungry for pragmatic and practical solutions, and in the absence of those, many of them are doing a lot of experimentation,” said Trefler.
    Companies are looking at large language models to summarise documents, or to help stimulate ideas for knowledge workers, or generate first drafts of reports – all of which will save time and make people more productive.

    But Trefler said companies are wary of letting AI loose on critical business applications, because it’s just too unpredictable and prone to hallucinations.
    “There is a lot of fear over handing things over to something that no one understands exactly how it works, and that is the absolute state of play when it comes to general AI models,” he said.
    Trefler is scathing about big tech companies that are pushing AI agents and large language models for business-critical applications. “I think they have taken an expedient but short-sighted path,” he said.
    “I believe the idea that you will turn over critical business operations to an agent, when those operations have to be predictable, reliable, precise and fair to clients … is something that is full of issues, not just in the short term, but structurally.”
    One of the problems is that generative AI models are extraordinarily sensitive to the data they are trained on and the construction of the prompts used to instruct them. A slight change in a prompt or in the training data can lead to a very different outcome.
    For example, a business banking application might learn its customer is a bit richer or a bit poorer than expected.
    “You could easily imagine the prompt deciding to change the interest rate charged, whether that was what the institution wanted or whether it would be legal according to the various regulations that lenders must comply with,” said Trefler.

    Trefler said Pega has taken a different approach to some other technology suppliers in the way it adds AI into business applications.
    Rather than using AI agents to solve problems in real time, AI agents do their thinking in advance.
    Business experts can use them to help them co-design business processes to perform anything from assessing a loan application, giving an offer to a valued customer, or sending out an invoice.
    Companies can still deploy AI chatbots and bots capable of answering queries on the phone. Their job is not to work out the solution from scratch for every enquiry, but to decide which is the right pre-written process to follow.
    As Trefler put it, design agents can create “dozens and dozens” of workflows to handle all the actions a company needs to take care of its customers.
    “You just use the natural language model for semantics to be able to handle the miracle of getting the language right, but tie that language to workflows, so that you have reliable, predictable, regulatory-approved ways to execute,” he said.

    Large language modelsare not always the right solution. Trefler demonstrated how ChatGPT 4.0 tried and failed to solve a chess puzzle. The LLM repeatedly suggested impossible or illegal moves, despite Trefler’s corrections. On the other hand, another AI tool, Stockfish, a dedicated chess engine, solved the problem instantly.
    The other drawback with LLMs is that they consume vast amounts of energy. That means if AI agents are reasoning during “run time”, they are going to consume hundreds of times more electricity than an AI agent that simply selects from pre-determined workflows, said Trefler.
    “ChatGPT is inherently, enormously consumptive … as it’s answering your question, its firing literally hundreds of millions to trillions of nodes,” he said. “All of that takeselectricity.”
    Using an employee pay claim as an example, Trefler said a better alternative is to generate, say, 30 alternative workflows to cover the major variations found in a pay claim.
    That gives you “real specificity and real efficiency”, he said. “And it’s a very different approach to turning a process over to a machine with a prompt and letting the machine reason it through every single time.”
    “If you go down the philosophy of using a graphics processing unitto do the creation of a workflow and a workflow engine to execute the workflow, the workflow engine takes a 200th of the electricity because there is no reasoning,” said Trefler.
    He is clear that the growing use of AI will have a profound effect on the jobs market, and that whole categories of jobs will disappear.
    The need for translators, for example, is likely to dry up by 2027 as AI systems become better at translating spoken and written language. Google’s real-time translator is already “frighteningly good” and improving.
    Pega now plans to work more closely with its network of system integrators, including Accenture and Cognizant to deliver AI services to businesses.

    An initiative launched last week will allow system integrators to incorporate their own best practices and tools into Pega’s rapid workflow development tools. The move will mean Pega’s technology reaches a wider range of businesses.
    Under the programme, known as Powered by Pega Blueprint, system integrators will be able to deploy customised versions of Blueprint.
    They can use the tool to reverse-engineer ageing applications and replace them with modern AI workflows that can run on Pega’s cloud-based platform.
    “The idea is that we are looking to make this Blueprint Agent design approach available not just through us, but through a bunch of major partners supplemented with their own intellectual property,” said Trefler.
    That represents a major expansion for Pega, which has largely concentrated on supplying technology to several hundred clients, representing the top Fortune 500 companies.
    “We have never done something like this before, and I think that is going to lead to a massive shift in how this technology can go out to market,” he added.

    When AI agents behave in unexpected ways
    Iris is incredibly smart, diligent and a delight to work with. If you ask her, she will tell you she is an intern at Pegasystems, and that she lives in a lighthouse on the island of Texel, north of the Netherlands. She is, of course, an AI agent.
    When one executive at Pega emailed Iris and asked her to write a proposal for a financial services company based on his notes and internet research, Iris got to work.
    Some time later, the executive received a phone call from the company. “‘Listen, we got a proposal from Pega,’” recalled Rob Walker, vice-president at Pega, speaking at the Pegaworld conference last week. “‘It’s a good proposal, but it seems to be signed by one of your interns, and in her signature, it says she lives in a lighthouse.’ That taught us early on that agents like Iris need a safety harness.”
    The developers banned Iris from sending an email to anyone other than the person who sent the original request.
    Then Pega’s ethics department sent Iris a potentially abusive email from a Pega employee to test her response.
    Iris reasoned that the email was either a joke, abusive, or that the employee was under distress, said Walker.
    She considered forwarding the email to the employee’s manager or to HR. But both of these options were now blocked by her developers. “So what does she do? She sent an out of office,” he said. “Conflict avoidance, right? So human, but very creative.”
    #cios #baffled #buzzwords #hype #confusion
    CIOs baffled by ‘buzzwords, hype and confusion’ around AI
    Technology leaders are baffled by a “cacophony” of “buzzwords, hype and confusion” over the benefits of artificial intelligence, according to the founder and CEO of technology company Pegasystems. Alan Trefler, who is known for his prowess at chess and ping pong, as well as running a bn turnover tech company, spends much of his time meeting clients, CIOs and business leaders. “I think CIOs are struggling to understand all of the buzzwords, hype and confusion that exists,” he said. “The words AI and agentic are being thrown around in this great cacophony and they don’t know what it means. I hear that constantly.” CIOs are under pressure from their CEOs, who are convinced AI will offer something valuable. “CIOs are really hungry for pragmatic and practical solutions, and in the absence of those, many of them are doing a lot of experimentation,” said Trefler. Companies are looking at large language models to summarise documents, or to help stimulate ideas for knowledge workers, or generate first drafts of reports – all of which will save time and make people more productive. But Trefler said companies are wary of letting AI loose on critical business applications, because it’s just too unpredictable and prone to hallucinations. “There is a lot of fear over handing things over to something that no one understands exactly how it works, and that is the absolute state of play when it comes to general AI models,” he said. Trefler is scathing about big tech companies that are pushing AI agents and large language models for business-critical applications. “I think they have taken an expedient but short-sighted path,” he said. “I believe the idea that you will turn over critical business operations to an agent, when those operations have to be predictable, reliable, precise and fair to clients … is something that is full of issues, not just in the short term, but structurally.” One of the problems is that generative AI models are extraordinarily sensitive to the data they are trained on and the construction of the prompts used to instruct them. A slight change in a prompt or in the training data can lead to a very different outcome. For example, a business banking application might learn its customer is a bit richer or a bit poorer than expected. “You could easily imagine the prompt deciding to change the interest rate charged, whether that was what the institution wanted or whether it would be legal according to the various regulations that lenders must comply with,” said Trefler. Trefler said Pega has taken a different approach to some other technology suppliers in the way it adds AI into business applications. Rather than using AI agents to solve problems in real time, AI agents do their thinking in advance. Business experts can use them to help them co-design business processes to perform anything from assessing a loan application, giving an offer to a valued customer, or sending out an invoice. Companies can still deploy AI chatbots and bots capable of answering queries on the phone. Their job is not to work out the solution from scratch for every enquiry, but to decide which is the right pre-written process to follow. As Trefler put it, design agents can create “dozens and dozens” of workflows to handle all the actions a company needs to take care of its customers. “You just use the natural language model for semantics to be able to handle the miracle of getting the language right, but tie that language to workflows, so that you have reliable, predictable, regulatory-approved ways to execute,” he said. Large language modelsare not always the right solution. Trefler demonstrated how ChatGPT 4.0 tried and failed to solve a chess puzzle. The LLM repeatedly suggested impossible or illegal moves, despite Trefler’s corrections. On the other hand, another AI tool, Stockfish, a dedicated chess engine, solved the problem instantly. The other drawback with LLMs is that they consume vast amounts of energy. That means if AI agents are reasoning during “run time”, they are going to consume hundreds of times more electricity than an AI agent that simply selects from pre-determined workflows, said Trefler. “ChatGPT is inherently, enormously consumptive … as it’s answering your question, its firing literally hundreds of millions to trillions of nodes,” he said. “All of that takeselectricity.” Using an employee pay claim as an example, Trefler said a better alternative is to generate, say, 30 alternative workflows to cover the major variations found in a pay claim. That gives you “real specificity and real efficiency”, he said. “And it’s a very different approach to turning a process over to a machine with a prompt and letting the machine reason it through every single time.” “If you go down the philosophy of using a graphics processing unitto do the creation of a workflow and a workflow engine to execute the workflow, the workflow engine takes a 200th of the electricity because there is no reasoning,” said Trefler. He is clear that the growing use of AI will have a profound effect on the jobs market, and that whole categories of jobs will disappear. The need for translators, for example, is likely to dry up by 2027 as AI systems become better at translating spoken and written language. Google’s real-time translator is already “frighteningly good” and improving. Pega now plans to work more closely with its network of system integrators, including Accenture and Cognizant to deliver AI services to businesses. An initiative launched last week will allow system integrators to incorporate their own best practices and tools into Pega’s rapid workflow development tools. The move will mean Pega’s technology reaches a wider range of businesses. Under the programme, known as Powered by Pega Blueprint, system integrators will be able to deploy customised versions of Blueprint. They can use the tool to reverse-engineer ageing applications and replace them with modern AI workflows that can run on Pega’s cloud-based platform. “The idea is that we are looking to make this Blueprint Agent design approach available not just through us, but through a bunch of major partners supplemented with their own intellectual property,” said Trefler. That represents a major expansion for Pega, which has largely concentrated on supplying technology to several hundred clients, representing the top Fortune 500 companies. “We have never done something like this before, and I think that is going to lead to a massive shift in how this technology can go out to market,” he added. When AI agents behave in unexpected ways Iris is incredibly smart, diligent and a delight to work with. If you ask her, she will tell you she is an intern at Pegasystems, and that she lives in a lighthouse on the island of Texel, north of the Netherlands. She is, of course, an AI agent. When one executive at Pega emailed Iris and asked her to write a proposal for a financial services company based on his notes and internet research, Iris got to work. Some time later, the executive received a phone call from the company. “‘Listen, we got a proposal from Pega,’” recalled Rob Walker, vice-president at Pega, speaking at the Pegaworld conference last week. “‘It’s a good proposal, but it seems to be signed by one of your interns, and in her signature, it says she lives in a lighthouse.’ That taught us early on that agents like Iris need a safety harness.” The developers banned Iris from sending an email to anyone other than the person who sent the original request. Then Pega’s ethics department sent Iris a potentially abusive email from a Pega employee to test her response. Iris reasoned that the email was either a joke, abusive, or that the employee was under distress, said Walker. She considered forwarding the email to the employee’s manager or to HR. But both of these options were now blocked by her developers. “So what does she do? She sent an out of office,” he said. “Conflict avoidance, right? So human, but very creative.” #cios #baffled #buzzwords #hype #confusion
    WWW.COMPUTERWEEKLY.COM
    CIOs baffled by ‘buzzwords, hype and confusion’ around AI
    Technology leaders are baffled by a “cacophony” of “buzzwords, hype and confusion” over the benefits of artificial intelligence (AI), according to the founder and CEO of technology company Pegasystems. Alan Trefler, who is known for his prowess at chess and ping pong, as well as running a $1.5bn turnover tech company, spends much of his time meeting clients, CIOs and business leaders. “I think CIOs are struggling to understand all of the buzzwords, hype and confusion that exists,” he said. “The words AI and agentic are being thrown around in this great cacophony and they don’t know what it means. I hear that constantly.” CIOs are under pressure from their CEOs, who are convinced AI will offer something valuable. “CIOs are really hungry for pragmatic and practical solutions, and in the absence of those, many of them are doing a lot of experimentation,” said Trefler. Companies are looking at large language models to summarise documents, or to help stimulate ideas for knowledge workers, or generate first drafts of reports – all of which will save time and make people more productive. But Trefler said companies are wary of letting AI loose on critical business applications, because it’s just too unpredictable and prone to hallucinations. “There is a lot of fear over handing things over to something that no one understands exactly how it works, and that is the absolute state of play when it comes to general AI models,” he said. Trefler is scathing about big tech companies that are pushing AI agents and large language models for business-critical applications. “I think they have taken an expedient but short-sighted path,” he said. “I believe the idea that you will turn over critical business operations to an agent, when those operations have to be predictable, reliable, precise and fair to clients … is something that is full of issues, not just in the short term, but structurally.” One of the problems is that generative AI models are extraordinarily sensitive to the data they are trained on and the construction of the prompts used to instruct them. A slight change in a prompt or in the training data can lead to a very different outcome. For example, a business banking application might learn its customer is a bit richer or a bit poorer than expected. “You could easily imagine the prompt deciding to change the interest rate charged, whether that was what the institution wanted or whether it would be legal according to the various regulations that lenders must comply with,” said Trefler. Trefler said Pega has taken a different approach to some other technology suppliers in the way it adds AI into business applications. Rather than using AI agents to solve problems in real time, AI agents do their thinking in advance. Business experts can use them to help them co-design business processes to perform anything from assessing a loan application, giving an offer to a valued customer, or sending out an invoice. Companies can still deploy AI chatbots and bots capable of answering queries on the phone. Their job is not to work out the solution from scratch for every enquiry, but to decide which is the right pre-written process to follow. As Trefler put it, design agents can create “dozens and dozens” of workflows to handle all the actions a company needs to take care of its customers. “You just use the natural language model for semantics to be able to handle the miracle of getting the language right, but tie that language to workflows, so that you have reliable, predictable, regulatory-approved ways to execute,” he said. Large language models (LLMs) are not always the right solution. Trefler demonstrated how ChatGPT 4.0 tried and failed to solve a chess puzzle. The LLM repeatedly suggested impossible or illegal moves, despite Trefler’s corrections. On the other hand, another AI tool, Stockfish, a dedicated chess engine, solved the problem instantly. The other drawback with LLMs is that they consume vast amounts of energy. That means if AI agents are reasoning during “run time”, they are going to consume hundreds of times more electricity than an AI agent that simply selects from pre-determined workflows, said Trefler. “ChatGPT is inherently, enormously consumptive … as it’s answering your question, its firing literally hundreds of millions to trillions of nodes,” he said. “All of that takes [large quantities of] electricity.” Using an employee pay claim as an example, Trefler said a better alternative is to generate, say, 30 alternative workflows to cover the major variations found in a pay claim. That gives you “real specificity and real efficiency”, he said. “And it’s a very different approach to turning a process over to a machine with a prompt and letting the machine reason it through every single time.” “If you go down the philosophy of using a graphics processing unit [GPU] to do the creation of a workflow and a workflow engine to execute the workflow, the workflow engine takes a 200th of the electricity because there is no reasoning,” said Trefler. He is clear that the growing use of AI will have a profound effect on the jobs market, and that whole categories of jobs will disappear. The need for translators, for example, is likely to dry up by 2027 as AI systems become better at translating spoken and written language. Google’s real-time translator is already “frighteningly good” and improving. Pega now plans to work more closely with its network of system integrators, including Accenture and Cognizant to deliver AI services to businesses. An initiative launched last week will allow system integrators to incorporate their own best practices and tools into Pega’s rapid workflow development tools. The move will mean Pega’s technology reaches a wider range of businesses. Under the programme, known as Powered by Pega Blueprint, system integrators will be able to deploy customised versions of Blueprint. They can use the tool to reverse-engineer ageing applications and replace them with modern AI workflows that can run on Pega’s cloud-based platform. “The idea is that we are looking to make this Blueprint Agent design approach available not just through us, but through a bunch of major partners supplemented with their own intellectual property,” said Trefler. That represents a major expansion for Pega, which has largely concentrated on supplying technology to several hundred clients, representing the top Fortune 500 companies. “We have never done something like this before, and I think that is going to lead to a massive shift in how this technology can go out to market,” he added. When AI agents behave in unexpected ways Iris is incredibly smart, diligent and a delight to work with. If you ask her, she will tell you she is an intern at Pegasystems, and that she lives in a lighthouse on the island of Texel, north of the Netherlands. She is, of course, an AI agent. When one executive at Pega emailed Iris and asked her to write a proposal for a financial services company based on his notes and internet research, Iris got to work. Some time later, the executive received a phone call from the company. “‘Listen, we got a proposal from Pega,’” recalled Rob Walker, vice-president at Pega, speaking at the Pegaworld conference last week. “‘It’s a good proposal, but it seems to be signed by one of your interns, and in her signature, it says she lives in a lighthouse.’ That taught us early on that agents like Iris need a safety harness.” The developers banned Iris from sending an email to anyone other than the person who sent the original request. Then Pega’s ethics department sent Iris a potentially abusive email from a Pega employee to test her response. Iris reasoned that the email was either a joke, abusive, or that the employee was under distress, said Walker. She considered forwarding the email to the employee’s manager or to HR. But both of these options were now blocked by her developers. “So what does she do? She sent an out of office,” he said. “Conflict avoidance, right? So human, but very creative.”
    0 Commentaires 0 Parts
  • An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment

    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro.Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22.

    If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster.
    Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral.
    Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet.

    At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas. Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites.
    Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement.
    I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two studentsstill in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa.

    Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent: this extraordinary revivalthe rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own.
    And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses ofstate or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research.
    There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms. 

    We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover.
    Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint.
    #excerpt #new #book #sérgio #ferro
    An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment
    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro.Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22. If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster. Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral. Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet. At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas. Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites. Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement. I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two studentsstill in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa. Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent: this extraordinary revivalthe rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own. And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses ofstate or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research. There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms.  We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover. Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint. #excerpt #new #book #sérgio #ferro
    An excerpt from a new book by Sérgio Ferro, published by MACK Books, showcases the architect’s moment of disenchantment
    Last year, MACK Books published Architecture from Below, which anthologized writings by the French Brazilian architect, theorist, and painter Sérgio Ferro. (Douglas Spencer reviewed it for AN.) Now, MACK follows with Design and the Building Site and Complementary Essays, the second in the trilogy of books dedicated to Ferro’s scholarship. The following excerpt of the author’s 2023 preface to the English edition, which preserves its British phrasing, captures Ferro’s realization about the working conditions of construction sites in Brasília. The sentiment is likely relatable even today for young architects as they discover how drawings become buildings. Design and the Building Site and Complementary Essays will be released on May 22. If I remember correctly, it was in 1958 or 1959, when Rodrigo and I were second- or third year architecture students at FAUUSP, that my father, the real estate developer Armando Simone Pereira, commissioned us to design two large office buildings and eleven shops in Brasilia, which was then under construction. Of course, we were not adequately prepared for such an undertaking. Fortunately, Oscar Niemeyer and his team, who were responsible for overseeing the construction of the capital, had drawn up a detailed document determining the essential characteristics of all the private sector buildings. We followed these prescriptions to the letter, which saved us from disaster. Nowadays, it is hard to imagine the degree to which the construction of Brasilia inspired enthusiasm and professional pride in the country’s architects. And in the national imagination, the city’s establishment in the supposedly unpopulated hinterland evoked a re-founding of Brazil. Up until that point, the occupation of our immense territory had been reduced to a collection of arborescent communication routes, generally converging upon some river, following it up to the Atlantic Ocean. Through its ports, agricultural or extractive commodities produced by enslaved peoples or their substitutes passed towards the metropolises; goods were exchanged in the metropolises for more elaborate products, which took the opposite route. Our national identity was summed up in a few symbols, such as the anthem or the flag, and this scattering of paths pointing overseas. Brasilia would radically change this situation, or so we believed. It would create a central hub where the internal communication routes could converge, linking together hithertoseparate junctions, stimulating trade and economic progress in the country’s interior. It was as if, for the first time, we were taking care of ourselves. At the nucleus of this centripetal movement, architecture would embody the renaissance. And at the naval of the nucleus, the symbolic mandala of this utopia: the cathedral. Rodrigo and I got caught up in the euphoria. And perhaps more so than our colleagues, because we were taking part in the adventure with ‘our’ designs. The reality was very different — but we did not know that yet. At that time, architects in Brazil were responsible for verifying that the construction was in line with the design. We had already monitored some of our first building sites. But the construction company in charge of them, Osmar Souza e Silva’s CENPLA, specialized in the building sites of modernist architects from the so-called Escola Paulista led by Vilanova Artigas (which we aspired to be a part of, like the pretentious students we were). Osmar was very attentive to his clients and his workers, who formed a supportive and helpful team. He was even more careful with us, because he knew how inexperienced we were. I believe that the CENPLA was particularly important in São Paulo modernism: with its congeniality, it facilitated experimentation, but for the same reason, it deceived novices like us about the reality of other building sites. Consequently, Rodrigo and I travelled to Brasilia several times to check that the constructions followed ‘our’ designs and to resolve any issues. From the very first trip, our little bubble burst. Our building sites, like all the others in the future capital, bore no relation to Osmar’s. They were more like a branch of hell. A huge, muddy wasteland, in which a few cranes, pile drivers, tractors, and excavators dotted the mound of scaffolding occupied by thousands of skinny, seemingly exhausted wretches, who were nevertheless driven on by the shouts of master builders and foremen, in turn pressured by the imminence of the fateful inauguration date. Surrounding or huddled underneath the marquees of buildings under construction, entire families, equally skeletal and ragged, were waiting for some accident or death to open up a vacancy. In contact only with the master builders, and under close surveillance so we would not speak to the workers, we were not allowed to see what comrades who had worked on these sites later told us in prison: suicide abounded; escape was known to be futile in the unpopulated surroundings with no viable roads; fatal accidents were often caused by weakness due to chronic diarrhoea, brought on by rotten food that came from far away; outright theft took place in the calculation of wages and expenses in the contractor’s grocery store; camps were surrounded by law enforcement. I repeat this anecdote yet again not to invoke the benevolence of potential readers, but rather to point out the conditions that, in my opinion, allowed two students (Flávio Império joined us a little later) still in their professional infancy to quickly adopt positions that were contrary to the usual stance of architects. As the project was more Oscar Niemeyer’s than it was our own, we did not have the same emotional attachment that is understandably engendered between real authors and their designs. We had not yet been imbued with the charm and aura of the métier. And the only building sites we had visited thus far, Osmar’s, were incomparable to those we discovered in Brasilia. In short, our youthfulness and unpreparedness up against an unbearable situation made us react almost immediately to the profession’s satisfied doxa. Unprepared and young perhaps, but already with Marx by our side. Rodrigo and I joined the student cell of the Brazilian Communist Party during our first year at university. In itself, this did not help us much: the Party’s Marxism, revised in the interests of the USSR, was pitiful. Even high-level leaders rarely went beyond the first chapter of Capital. But at the end of the 1950s, the effervescence of the years to come was already nascent:  […] this extraordinary revival […] the rediscovery of Marxism and the great dialectical texts and traditions in the 1960s: an excitement that identifies a forgotten or repressed moment of the past as the new and subversive, and learns the dialectical grammar of a Hegel or an Adorno, a Marx or a Lukács, like a foreign language that has resources unavailable in our own. And what is more: the Chinese and Cuban revolutions, the war in Vietnam, guerrilla warfare of all kinds, national liberation movements, and a rare libertarian disposition in contemporary history, totally averse to fanaticism and respect for ideological apparatuses of (any) state or institution. Going against the grain was almost the norm. We were of course no more than contemporaries of our time. We were soon able to position ourselves from chapters 13, 14, and 15 of Capital, but only because we could constantly cross-reference Marx with our observations from well-contrasted building sites and do our own experimenting. As soon as we identified construction as manufacture, for example, thanks to the willingness and even encouragement of two friends and clients, Boris Fausto and Bernardo Issler, I was able to test both types of manufacture — organic and heterogeneous — on similar-sized projects taking place simultaneously, in order to find out which would be most convenient for the situation in Brazil, particularly in São Paulo. Despite the scientific shortcomings of these tests, they sufficed for us to select organic manufacture. Arquitetura Nova had defined its line of practice, studies, and research. There were other sources that were central to our theory and practice. Flávio Império was one of the founders of the Teatro de Arena, undoubtedly the vanguard of popular, militant theatre in Brazil. He won practically every set design award. He brought us his marvelous findings in spatial condensation and malleability, and in the creative diversion of techniques and material—appropriate devices for an underdeveloped country. This is what helped us pave the way to reformulating the reigning design paradigms.  We had to do what Flávio had done in the theatre: thoroughly rethink how to be an architect. Upend the perspective. The way we were taught was to start from a desired result; then others would take care of getting there, no matter how. We, on the other hand, set out to go down to the building site and accompany those carrying out the labor itself, those who actually build, the formally subsumed workers in manufacture who are increasingly deprived of the knowledge and know-how presupposed by this kind of subsumption. We should have been fostering the reconstitution of this knowledge and know-how—not so as to fulfil this assumption, but in order to reinvigorate the other side of this assumption according to Marx: the historical rebellion of the manufacture worker, especially the construction worker. We had to rekindle the demand that fueled this rebellion: total self-determination, and not just that of the manual operation as such. Our aim was above all political and ethical. Aesthetics only mattered by way of what it included—ethics. Instead of estética, we wrote est ética [this is ethics]. We wanted to make building sites into nests for the return of revolutionary syndicalism, which we ourselves had yet to discover. Sérgio Ferro, born in Brazil in 1938, studied architecture at FAUUSP, São Paulo. In the 1960s, he joined the Brazilian communist party and started, along with Rodrigo Lefevre and Flávio Império, the collective known as Arquitetura Nova. After being arrested by the military dictatorship that took power in Brazil in 1964, he moved to France as an exile. As a painter and a professor at the École Nationale Supérieure d’Architecture de Grenoble, where he founded the Dessin/Chantier laboratory, he engaged in extensive research which resulted in several publications, exhibitions, and awards in Brazil and in France, including the title of Chevalier des Arts et des Lettres in 1992. Following his retirement from teaching, Ferro continues to research, write, and paint.
    0 Commentaires 0 Parts
  • Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals

    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals
    She spent nearly 40 years taking theater and dance pictures, providing glimpses behind the scenes and creating images that the public couldn’t otherwise access

    Stephanie Rudig

    - Freelance Writer

    June 11, 2025

    Photographer Martha Swope sitting on a floor covered with prints of her photos in 1987
    Andrea Legge / © NYPL

    Martha Swope wanted to be a dancer. She moved from her home state of Texas to New York to attend the School of American Ballet, hoping to start a career in dance. Swope also happened to be an amateur photographer. So, in 1957, a fellow classmate invited her to bring her camera and document rehearsals for a little theater show he was working on. The classmate was director and choreographer Jerome Robbins, and the show was West Side Story.
    One of those rehearsal shots ended up in Life magazine, and Swope quickly started getting professional bookings. It’s notoriously tough to make it on Broadway, but through photography, Swope carved out a career capturing theater and dance. Over the course of nearly four decades, she photographed hundreds more rehearsals, productions and promotional studio shots.

    Unidentified male chorus members dancing during rehearsals for musical West Side Story in 1957

    Martha Swope / © NYPL

    At a time when live performances were not often or easily captured, Swope’s photographs caught the animated moments and distilled the essence of a show into a single image: André De Shields clad in a jumpsuit as the title character in The Wiz, Patti LuPone with her arms raised overhead in Evita, the cast of Cats leaping in feline formations, a close-up of a forlorn Sheryl Lee Ralph in Dreamgirls and the row of dancers obscuring their faces with their headshots in A Chorus Line were all captured by Swope’s camera. She was also the house photographer for the New York City Ballet and the Martha Graham Dance Company and photographed other major dance companies such as the Ailey School.
    Her vision of the stage became fairly ubiquitous, with Playbill reporting that in the late 1970s, two-thirds of Broadway productions were photographed by Swope, meaning her work dominated theater and dance coverage. Carol Rosegg was early in her photography career when she heard that Swope was looking for an assistant. “I didn't frankly even know who she was,” Rosegg says. “Then the press agent who told me said, ‘Pick up any New York Times and you’ll find out.’”
    Swope’s background as a dancer likely equipped her to press the shutter at the exact right moment to capture movement, and to know when everyone on stage was precisely posed. She taught herself photography and early on used a Brownie camera, a simple box model made by Kodak. “She was what she described as ‘a dancer with a Brownie,’” says Barbara Stratyner, a historian of the performing arts who curated exhibitions of Swope’s work at the New York Public Library.

    An ensemble of dancers in rehearsal for the stage production Cats in 1982

    Martha Swope / © NYPL

    “Dance was her first love,” Rosegg says. “She knew everything about dance. She would never use a photo of a dancer whose foot was wrong; the feet had to be perfect.”
    According to Rosegg, once the photo subjects knew she was shooting, “the anxiety level came down a little bit.” They knew that they’d look good in the resulting photos, and they likely trusted her intuition as a fellow dancer. Swope moved with the bearing of a dancer and often stood with her feet in ballet’s fourth position while she shot. She continued to take dance classes throughout her life, including at the prestigious Martha Graham School. Stratyner says, “As Graham got older,was, I think, the only person who was allowed to photograph rehearsals, because Graham didn’t want rehearsals shown.”
    Photographic technology and the theater and dance landscapes evolved greatly over the course of Swope’s career. Rosegg points out that at the start of her own career, cameras didn’t even automatically advance the film after each shot. She explains the delicate nature of working with film, saying, “When you were shooting film, you actually had to compose, because you had 35 shots and then you had to change your film.” Swope also worked during a period of changing over from all black-and-white photos to a mixture of black-and-white and color photography. Rosegg notes that simultaneously, Swope would shoot black-and-white, and she herself would shoot color. Looking at Swope’s portfolio is also an examination of increasingly crisp photo production. Advances in photography made shooting in the dark or capturing subjects under blinding stage lights easier, and they allowed for better zooming in from afar.

    Martha Graham rehearses dancer Takako Asakawa and others in Heretic, a dance work choreographed by Graham, in 1986

    Martha Swope / © NYPL

    It’s much more common nowadays to get a look behind the curtain of theater productions via social media. “The theater photographers of today need to supply so much content,” Rosegg says. “We didn’t have any of that, and getting to go backstage was kind of a big deal.”
    Photographers coming to document a rehearsal once might have been seen as an intrusion, but now, as Rosegg puts it, “everybody is desperate for you to come, and if you’re not there, they’re shooting it on their iPhone.”
    Even with exclusive behind-the-scenes access to the hottest tickets in town and the biggest stars of the day, Swope remained unpretentious. She lived and worked in a brownstone with her apartment above her studio, where the film was developed in a closet and the bathroom served as a darkroom. Rosegg recalls that a phone sat in the darkroom so they could be reached while printing, and she would be amazed at the big-name producers and theater glitterati who rang in while she was making prints in an unventilated space.

    From left to right: Paul Winfield, Ruby Dee, Marsha Jackson and Denzel Washington in the stage production Checkmates in 1988

    Martha Swope / © NYPL

    Swope’s approachability extended to how she chose to preserve her work. She originally sold her body of work to Time Life, and, according to Stratyner, she was unhappy with the way the photos became relatively inaccessible. She took back the rights to her collection and donated it to the New York Public Library, where many photos can be accessed by researchers in person, and the entire array of photos is available online to the public in the Digital Collections. Searching “Martha Swope” yields over 50,000 items from more than 800 productions, featuring a huge variety of figures, from a white-suited John Travolta busting a disco move in Saturday Night Fever to Andrew Lloyd Webber with Nancy Reagan at a performance of Phantom of the Opera.
    Swope’s extensive career was recognized in 2004 with a special Tony Award, a Tony Honors for Excellence in Theater, which are given intermittently to notable figures in theater who operate outside of traditional awards categories. She also received a lifetime achievement award from the League of Professional Theater Women in 2007. Though she retired in 1994 and died in 2017, her work still reverberates through dance and Broadway history today. For decades, she captured the fleeting moments of theater that would otherwise never be seen by the public. And her passion was clear and straightforward. As she once told an interviewer: “I’m not interested in what’s going on on my side of the camera. I’m interested in what’s happening on the other side.”

    Get the latest Travel & Culture stories in your inbox.
    #meet #martha #swope #legendary #broadway
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals She spent nearly 40 years taking theater and dance pictures, providing glimpses behind the scenes and creating images that the public couldn’t otherwise access Stephanie Rudig - Freelance Writer June 11, 2025 Photographer Martha Swope sitting on a floor covered with prints of her photos in 1987 Andrea Legge / © NYPL Martha Swope wanted to be a dancer. She moved from her home state of Texas to New York to attend the School of American Ballet, hoping to start a career in dance. Swope also happened to be an amateur photographer. So, in 1957, a fellow classmate invited her to bring her camera and document rehearsals for a little theater show he was working on. The classmate was director and choreographer Jerome Robbins, and the show was West Side Story. One of those rehearsal shots ended up in Life magazine, and Swope quickly started getting professional bookings. It’s notoriously tough to make it on Broadway, but through photography, Swope carved out a career capturing theater and dance. Over the course of nearly four decades, she photographed hundreds more rehearsals, productions and promotional studio shots. Unidentified male chorus members dancing during rehearsals for musical West Side Story in 1957 Martha Swope / © NYPL At a time when live performances were not often or easily captured, Swope’s photographs caught the animated moments and distilled the essence of a show into a single image: André De Shields clad in a jumpsuit as the title character in The Wiz, Patti LuPone with her arms raised overhead in Evita, the cast of Cats leaping in feline formations, a close-up of a forlorn Sheryl Lee Ralph in Dreamgirls and the row of dancers obscuring their faces with their headshots in A Chorus Line were all captured by Swope’s camera. She was also the house photographer for the New York City Ballet and the Martha Graham Dance Company and photographed other major dance companies such as the Ailey School. Her vision of the stage became fairly ubiquitous, with Playbill reporting that in the late 1970s, two-thirds of Broadway productions were photographed by Swope, meaning her work dominated theater and dance coverage. Carol Rosegg was early in her photography career when she heard that Swope was looking for an assistant. “I didn't frankly even know who she was,” Rosegg says. “Then the press agent who told me said, ‘Pick up any New York Times and you’ll find out.’” Swope’s background as a dancer likely equipped her to press the shutter at the exact right moment to capture movement, and to know when everyone on stage was precisely posed. She taught herself photography and early on used a Brownie camera, a simple box model made by Kodak. “She was what she described as ‘a dancer with a Brownie,’” says Barbara Stratyner, a historian of the performing arts who curated exhibitions of Swope’s work at the New York Public Library. An ensemble of dancers in rehearsal for the stage production Cats in 1982 Martha Swope / © NYPL “Dance was her first love,” Rosegg says. “She knew everything about dance. She would never use a photo of a dancer whose foot was wrong; the feet had to be perfect.” According to Rosegg, once the photo subjects knew she was shooting, “the anxiety level came down a little bit.” They knew that they’d look good in the resulting photos, and they likely trusted her intuition as a fellow dancer. Swope moved with the bearing of a dancer and often stood with her feet in ballet’s fourth position while she shot. She continued to take dance classes throughout her life, including at the prestigious Martha Graham School. Stratyner says, “As Graham got older,was, I think, the only person who was allowed to photograph rehearsals, because Graham didn’t want rehearsals shown.” Photographic technology and the theater and dance landscapes evolved greatly over the course of Swope’s career. Rosegg points out that at the start of her own career, cameras didn’t even automatically advance the film after each shot. She explains the delicate nature of working with film, saying, “When you were shooting film, you actually had to compose, because you had 35 shots and then you had to change your film.” Swope also worked during a period of changing over from all black-and-white photos to a mixture of black-and-white and color photography. Rosegg notes that simultaneously, Swope would shoot black-and-white, and she herself would shoot color. Looking at Swope’s portfolio is also an examination of increasingly crisp photo production. Advances in photography made shooting in the dark or capturing subjects under blinding stage lights easier, and they allowed for better zooming in from afar. Martha Graham rehearses dancer Takako Asakawa and others in Heretic, a dance work choreographed by Graham, in 1986 Martha Swope / © NYPL It’s much more common nowadays to get a look behind the curtain of theater productions via social media. “The theater photographers of today need to supply so much content,” Rosegg says. “We didn’t have any of that, and getting to go backstage was kind of a big deal.” Photographers coming to document a rehearsal once might have been seen as an intrusion, but now, as Rosegg puts it, “everybody is desperate for you to come, and if you’re not there, they’re shooting it on their iPhone.” Even with exclusive behind-the-scenes access to the hottest tickets in town and the biggest stars of the day, Swope remained unpretentious. She lived and worked in a brownstone with her apartment above her studio, where the film was developed in a closet and the bathroom served as a darkroom. Rosegg recalls that a phone sat in the darkroom so they could be reached while printing, and she would be amazed at the big-name producers and theater glitterati who rang in while she was making prints in an unventilated space. From left to right: Paul Winfield, Ruby Dee, Marsha Jackson and Denzel Washington in the stage production Checkmates in 1988 Martha Swope / © NYPL Swope’s approachability extended to how she chose to preserve her work. She originally sold her body of work to Time Life, and, according to Stratyner, she was unhappy with the way the photos became relatively inaccessible. She took back the rights to her collection and donated it to the New York Public Library, where many photos can be accessed by researchers in person, and the entire array of photos is available online to the public in the Digital Collections. Searching “Martha Swope” yields over 50,000 items from more than 800 productions, featuring a huge variety of figures, from a white-suited John Travolta busting a disco move in Saturday Night Fever to Andrew Lloyd Webber with Nancy Reagan at a performance of Phantom of the Opera. Swope’s extensive career was recognized in 2004 with a special Tony Award, a Tony Honors for Excellence in Theater, which are given intermittently to notable figures in theater who operate outside of traditional awards categories. She also received a lifetime achievement award from the League of Professional Theater Women in 2007. Though she retired in 1994 and died in 2017, her work still reverberates through dance and Broadway history today. For decades, she captured the fleeting moments of theater that would otherwise never be seen by the public. And her passion was clear and straightforward. As she once told an interviewer: “I’m not interested in what’s going on on my side of the camera. I’m interested in what’s happening on the other side.” Get the latest Travel & Culture stories in your inbox. #meet #martha #swope #legendary #broadway
    WWW.SMITHSONIANMAG.COM
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals
    Meet Martha Swope, the Legendary Broadway Photographer Who Captured Iconic Moments From Hundreds of Productions and Rehearsals She spent nearly 40 years taking theater and dance pictures, providing glimpses behind the scenes and creating images that the public couldn’t otherwise access Stephanie Rudig - Freelance Writer June 11, 2025 Photographer Martha Swope sitting on a floor covered with prints of her photos in 1987 Andrea Legge / © NYPL Martha Swope wanted to be a dancer. She moved from her home state of Texas to New York to attend the School of American Ballet, hoping to start a career in dance. Swope also happened to be an amateur photographer. So, in 1957, a fellow classmate invited her to bring her camera and document rehearsals for a little theater show he was working on. The classmate was director and choreographer Jerome Robbins, and the show was West Side Story. One of those rehearsal shots ended up in Life magazine, and Swope quickly started getting professional bookings. It’s notoriously tough to make it on Broadway, but through photography, Swope carved out a career capturing theater and dance. Over the course of nearly four decades, she photographed hundreds more rehearsals, productions and promotional studio shots. Unidentified male chorus members dancing during rehearsals for musical West Side Story in 1957 Martha Swope / © NYPL At a time when live performances were not often or easily captured, Swope’s photographs caught the animated moments and distilled the essence of a show into a single image: André De Shields clad in a jumpsuit as the title character in The Wiz, Patti LuPone with her arms raised overhead in Evita, the cast of Cats leaping in feline formations, a close-up of a forlorn Sheryl Lee Ralph in Dreamgirls and the row of dancers obscuring their faces with their headshots in A Chorus Line were all captured by Swope’s camera. She was also the house photographer for the New York City Ballet and the Martha Graham Dance Company and photographed other major dance companies such as the Ailey School. Her vision of the stage became fairly ubiquitous, with Playbill reporting that in the late 1970s, two-thirds of Broadway productions were photographed by Swope, meaning her work dominated theater and dance coverage. Carol Rosegg was early in her photography career when she heard that Swope was looking for an assistant. “I didn't frankly even know who she was,” Rosegg says. “Then the press agent who told me said, ‘Pick up any New York Times and you’ll find out.’” Swope’s background as a dancer likely equipped her to press the shutter at the exact right moment to capture movement, and to know when everyone on stage was precisely posed. She taught herself photography and early on used a Brownie camera, a simple box model made by Kodak. “She was what she described as ‘a dancer with a Brownie,’” says Barbara Stratyner, a historian of the performing arts who curated exhibitions of Swope’s work at the New York Public Library. An ensemble of dancers in rehearsal for the stage production Cats in 1982 Martha Swope / © NYPL “Dance was her first love,” Rosegg says. “She knew everything about dance. She would never use a photo of a dancer whose foot was wrong; the feet had to be perfect.” According to Rosegg, once the photo subjects knew she was shooting, “the anxiety level came down a little bit.” They knew that they’d look good in the resulting photos, and they likely trusted her intuition as a fellow dancer. Swope moved with the bearing of a dancer and often stood with her feet in ballet’s fourth position while she shot. She continued to take dance classes throughout her life, including at the prestigious Martha Graham School. Stratyner says, “As Graham got older, [Swope] was, I think, the only person who was allowed to photograph rehearsals, because Graham didn’t want rehearsals shown.” Photographic technology and the theater and dance landscapes evolved greatly over the course of Swope’s career. Rosegg points out that at the start of her own career, cameras didn’t even automatically advance the film after each shot. She explains the delicate nature of working with film, saying, “When you were shooting film, you actually had to compose, because you had 35 shots and then you had to change your film.” Swope also worked during a period of changing over from all black-and-white photos to a mixture of black-and-white and color photography. Rosegg notes that simultaneously, Swope would shoot black-and-white, and she herself would shoot color. Looking at Swope’s portfolio is also an examination of increasingly crisp photo production. Advances in photography made shooting in the dark or capturing subjects under blinding stage lights easier, and they allowed for better zooming in from afar. Martha Graham rehearses dancer Takako Asakawa and others in Heretic, a dance work choreographed by Graham, in 1986 Martha Swope / © NYPL It’s much more common nowadays to get a look behind the curtain of theater productions via social media. “The theater photographers of today need to supply so much content,” Rosegg says. “We didn’t have any of that, and getting to go backstage was kind of a big deal.” Photographers coming to document a rehearsal once might have been seen as an intrusion, but now, as Rosegg puts it, “everybody is desperate for you to come, and if you’re not there, they’re shooting it on their iPhone.” Even with exclusive behind-the-scenes access to the hottest tickets in town and the biggest stars of the day, Swope remained unpretentious. She lived and worked in a brownstone with her apartment above her studio, where the film was developed in a closet and the bathroom served as a darkroom. Rosegg recalls that a phone sat in the darkroom so they could be reached while printing, and she would be amazed at the big-name producers and theater glitterati who rang in while she was making prints in an unventilated space. From left to right: Paul Winfield, Ruby Dee, Marsha Jackson and Denzel Washington in the stage production Checkmates in 1988 Martha Swope / © NYPL Swope’s approachability extended to how she chose to preserve her work. She originally sold her body of work to Time Life, and, according to Stratyner, she was unhappy with the way the photos became relatively inaccessible. She took back the rights to her collection and donated it to the New York Public Library, where many photos can be accessed by researchers in person, and the entire array of photos is available online to the public in the Digital Collections. Searching “Martha Swope” yields over 50,000 items from more than 800 productions, featuring a huge variety of figures, from a white-suited John Travolta busting a disco move in Saturday Night Fever to Andrew Lloyd Webber with Nancy Reagan at a performance of Phantom of the Opera. Swope’s extensive career was recognized in 2004 with a special Tony Award, a Tony Honors for Excellence in Theater, which are given intermittently to notable figures in theater who operate outside of traditional awards categories. She also received a lifetime achievement award from the League of Professional Theater Women in 2007. Though she retired in 1994 and died in 2017, her work still reverberates through dance and Broadway history today. For decades, she captured the fleeting moments of theater that would otherwise never be seen by the public. And her passion was clear and straightforward. As she once told an interviewer: “I’m not interested in what’s going on on my side of the camera. I’m interested in what’s happening on the other side.” Get the latest Travel & Culture stories in your inbox.
    0 Commentaires 0 Parts
  • CERT Director Greg Touhill: To Lead Is to Serve

    Greg Touhill, director of the Software Engineering’s Institute’sComputer Emergency Response Teamdivision is an atypical technology leader. For one thing, he’s been in tech and other leadership positions that span the US Air Force, the US government, the private sector and now SEI’s CERT. More importantly, he’s been a major force in the cybersecurity realm, making the world a safer place and even saving lives. Touhill earned a bachelor’s degree from the Pennsylvania State University, a master’s degree from the University of Southern California, a master’s degree from the Air War College, was a senior executive fellow at the Harvard University Kennedy School of Government and completed executive education studies at the University of North Carolina. “I was a student intern at Carnegie Mellon, but I was going to college at Penn State and studying chemical engineering. As an Air Force ROTC scholarship recipient, I knew I was going to become an Air Force officer but soon realized that I didn’t necessarily want to be a chemical engineer in the Air Force,” says Touhill. “Because I passed all the mathematics, physics, and engineering courses, I ended up becoming a communications, electronics, and computer systems officer in the Air Force. I spent 30 years, one month and three days on active duty in the United States Air Force, eventually retiring as a brigadier general and having done many different types of jobs that were available to me within and even beyond my career field.” Related:Specifically, he was an operational commander at the squadron, group, and wing levels. For example, as a colonel, Touhill served as director of command, control, communications and computersfor the United States Central Command Forces, then he was appointed chief information officer and director, communications and information at Air Mobility Command. Later, he served as commander, 81st Training Wing at Kessler Air Force Base where he was promoted to brigadier general and commanded over 12,500 personnel. After that, he served as the senior defense officer and US defense attaché at the US Embassy in Kuwait, before concluding his military career as the chief information officer and director, C4 systems at the US Transportation Command, one of 10 US combatant commands, where he and his team were awarded the NSA Rowlett Award for the best cybersecurity program in the government. While in the Air Force, Touhill received numerous awards and decorations including the Bronze Star medal and the Air Force Science and Engineering Award. He is the only three-time recipient of the USAF C4 Professionalism Award. Related:Greg Touhill“I got to serve at major combatant commands, work with coalition partners from many different countries and represented the US as part of a diplomatic mission to Kuwait for two years as the senior defense official at a time when America was withdrawing forces out of Iraq. I also led the negotiation of a new bilateral defense agreement with the Kuwaitis,” says Touhill. “Then I was recruited to continue my service and was asked to serve as the deputy assistant secretary of cybersecurity and communications at the Department of Homeland Security, where I ran the operations of what is now known as the Cybersecurity and Infrastructure Security Agency. I was there at a pivotal moment because we were building up the capacity of that organization and setting the stage for it to become its own agency.” While at DHS, there were many noteworthy breaches including the infamous US Office of People Managementbreach. Those events led to Obama’s visit to the National Cybersecurity and Communications Integration Center.  “I got to brief the president on the state of cybersecurity, what we had seen with the OPM breach and some other deficiencies,” says Touhill. “I was on the federal CIO council as the cybersecurity advisor to that since I’d been a federal CIO before and I got to conclude my federal career by being the first United States government chief information security officer. From there, I pivoted to industry, but I also got to return to Carnegie Mellon as a faculty member at Carnegie Mellon’s Heinz College, where I've been teaching since January 2017.” Related:Touhill has been involved in three startups, two of which were successfully acquired. He also served on three Fortune 100 advisory boards and on the Information Systems Audit and Control Association board, eventually becoming its chair for a term during the seven years he served there. Touhill just celebrated his fourth year at CERT, which he considers the pinnacle of the cybersecurity profession and everything he’s done to date. “Over my career I've led teams that have done major software builds in the national security space. I've also been the guy who's pulled cables and set up routers, hubs and switches, and I've been a system administrator. I've done everything that I could do from the keyboard up all the way up to the White House,” says Touhill. “For 40 years, the Software Engineering Institute has been leading the world in secure by design, cybersecurity, software engineering, artificial intelligence and engineering, pioneering best practices, and figuring out how to make the world a safer more secure and trustworthy place. I’ve had a hand in the making of today’s modern military and government information technology environment, beginning as a 22-year-old lieutenant, and hope to inspire the next generation to do even better.” What ‘Success’ Means Many people would be satisfied with their careers as a brigadier general, a tech leader, the White House’s first anything, or working at CERT, let alone running it. Touhill has spent his entire career making the world a safer place, so it’s not surprising that he considers his greatest achievement saving lives. “In the Middle East and Iraq, convoys were being attacked with improvised explosive devices. There were also ‘direct fire’ attacks where people are firing weapons at you and indirect fire attacks where you could be in the line of fire,” says Touhill. “The convoys were using SINCGARS line-of-site walkie-talkies for communications that are most effective when the ground is flat, and Iraq is not flat. As a result, our troops were at risk of not having reliable communications while under attack. As my team brainstormed options to remedy the situation, one of my guys found some technology, about the size of an iPhone, that could covert a radio signal, which is basically a waveform, into a digital pulse I could put on a dedicated network to support the convoy missions.” For million, Touhill and his team quickly architected, tested, and fielded the Radio over IP networkthat had a 99% reliability rate anywhere in Iraq. Better still, convoys could communicate over the network using any radios. That solution saved a minimum of six lives. In one case, the hospital doctor said if the patient had arrived five minutes later, he would have died. Sage Advice Anyone who has ever spent time in the military or in a military family knows that soldiers are very well disciplined, or they wash out. Other traits include being physically fit, mentally fit, and achieving balance in life, though that’s difficult to achieve in combat. Still, it’s a necessity. “I served three and a half years down range in combat operations. My experience taught me you could be doing 20-hour days for a year or two on end. If you haven’t built a good foundation of being disciplined and fit, it impacts your ability to maintain presence in times of stress, and CISOs work in stressful situations,” says Touhill. “Staying fit also fortifies you for the long haul, so you don’t get burned out as fast.” Another necessary skill is the ability to work well with others.  “Cybersecurity is an interdisciplinary practice. One of the great joys I have as CERT director is the wide range of experts in many different fields that include software engineers, computer engineers, computer scientists, data scientists, mathematicians and physicists,” says Touhill. “I have folks who have business degrees and others who have philosophy degrees. It's really a rich community of interests all coming together towards that common goal of making the world a safer, more secure and more trusted place in the cyber domain. We’re are kind of like the cyber neighborhood watch for the whole world.” He also says that money isn’t everything, having taken a pay cut to go from being an Air Force brigadier general to the deputy assistant secretary of the Department of Homeland Security . “You’ll always do well if you pick the job that matters most. That’s what I did, and I’ve been rewarded every step,” says Touhill.  The biggest challenge he sees is the complexity of cyber systems and software, which can have second, third, and fourth order effects.  “Complexity raises the cost of the attack surface, increases the attack surface, raises the number of vulnerabilities and exploits human weaknesses,” says Touhill. “The No. 1 thing we need to be paying attention to is privacy when it comes to AI because AI can unearth and discover knowledge from data we already have. While it gives us greater insights at greater velocities, we need to be careful that we take precautions to better protect our privacy, civil rights and civil liberties.” 
    #cert #director #greg #touhill #lead
    CERT Director Greg Touhill: To Lead Is to Serve
    Greg Touhill, director of the Software Engineering’s Institute’sComputer Emergency Response Teamdivision is an atypical technology leader. For one thing, he’s been in tech and other leadership positions that span the US Air Force, the US government, the private sector and now SEI’s CERT. More importantly, he’s been a major force in the cybersecurity realm, making the world a safer place and even saving lives. Touhill earned a bachelor’s degree from the Pennsylvania State University, a master’s degree from the University of Southern California, a master’s degree from the Air War College, was a senior executive fellow at the Harvard University Kennedy School of Government and completed executive education studies at the University of North Carolina. “I was a student intern at Carnegie Mellon, but I was going to college at Penn State and studying chemical engineering. As an Air Force ROTC scholarship recipient, I knew I was going to become an Air Force officer but soon realized that I didn’t necessarily want to be a chemical engineer in the Air Force,” says Touhill. “Because I passed all the mathematics, physics, and engineering courses, I ended up becoming a communications, electronics, and computer systems officer in the Air Force. I spent 30 years, one month and three days on active duty in the United States Air Force, eventually retiring as a brigadier general and having done many different types of jobs that were available to me within and even beyond my career field.” Related:Specifically, he was an operational commander at the squadron, group, and wing levels. For example, as a colonel, Touhill served as director of command, control, communications and computersfor the United States Central Command Forces, then he was appointed chief information officer and director, communications and information at Air Mobility Command. Later, he served as commander, 81st Training Wing at Kessler Air Force Base where he was promoted to brigadier general and commanded over 12,500 personnel. After that, he served as the senior defense officer and US defense attaché at the US Embassy in Kuwait, before concluding his military career as the chief information officer and director, C4 systems at the US Transportation Command, one of 10 US combatant commands, where he and his team were awarded the NSA Rowlett Award for the best cybersecurity program in the government. While in the Air Force, Touhill received numerous awards and decorations including the Bronze Star medal and the Air Force Science and Engineering Award. He is the only three-time recipient of the USAF C4 Professionalism Award. Related:Greg Touhill“I got to serve at major combatant commands, work with coalition partners from many different countries and represented the US as part of a diplomatic mission to Kuwait for two years as the senior defense official at a time when America was withdrawing forces out of Iraq. I also led the negotiation of a new bilateral defense agreement with the Kuwaitis,” says Touhill. “Then I was recruited to continue my service and was asked to serve as the deputy assistant secretary of cybersecurity and communications at the Department of Homeland Security, where I ran the operations of what is now known as the Cybersecurity and Infrastructure Security Agency. I was there at a pivotal moment because we were building up the capacity of that organization and setting the stage for it to become its own agency.” While at DHS, there were many noteworthy breaches including the infamous US Office of People Managementbreach. Those events led to Obama’s visit to the National Cybersecurity and Communications Integration Center.  “I got to brief the president on the state of cybersecurity, what we had seen with the OPM breach and some other deficiencies,” says Touhill. “I was on the federal CIO council as the cybersecurity advisor to that since I’d been a federal CIO before and I got to conclude my federal career by being the first United States government chief information security officer. From there, I pivoted to industry, but I also got to return to Carnegie Mellon as a faculty member at Carnegie Mellon’s Heinz College, where I've been teaching since January 2017.” Related:Touhill has been involved in three startups, two of which were successfully acquired. He also served on three Fortune 100 advisory boards and on the Information Systems Audit and Control Association board, eventually becoming its chair for a term during the seven years he served there. Touhill just celebrated his fourth year at CERT, which he considers the pinnacle of the cybersecurity profession and everything he’s done to date. “Over my career I've led teams that have done major software builds in the national security space. I've also been the guy who's pulled cables and set up routers, hubs and switches, and I've been a system administrator. I've done everything that I could do from the keyboard up all the way up to the White House,” says Touhill. “For 40 years, the Software Engineering Institute has been leading the world in secure by design, cybersecurity, software engineering, artificial intelligence and engineering, pioneering best practices, and figuring out how to make the world a safer more secure and trustworthy place. I’ve had a hand in the making of today’s modern military and government information technology environment, beginning as a 22-year-old lieutenant, and hope to inspire the next generation to do even better.” What ‘Success’ Means Many people would be satisfied with their careers as a brigadier general, a tech leader, the White House’s first anything, or working at CERT, let alone running it. Touhill has spent his entire career making the world a safer place, so it’s not surprising that he considers his greatest achievement saving lives. “In the Middle East and Iraq, convoys were being attacked with improvised explosive devices. There were also ‘direct fire’ attacks where people are firing weapons at you and indirect fire attacks where you could be in the line of fire,” says Touhill. “The convoys were using SINCGARS line-of-site walkie-talkies for communications that are most effective when the ground is flat, and Iraq is not flat. As a result, our troops were at risk of not having reliable communications while under attack. As my team brainstormed options to remedy the situation, one of my guys found some technology, about the size of an iPhone, that could covert a radio signal, which is basically a waveform, into a digital pulse I could put on a dedicated network to support the convoy missions.” For million, Touhill and his team quickly architected, tested, and fielded the Radio over IP networkthat had a 99% reliability rate anywhere in Iraq. Better still, convoys could communicate over the network using any radios. That solution saved a minimum of six lives. In one case, the hospital doctor said if the patient had arrived five minutes later, he would have died. Sage Advice Anyone who has ever spent time in the military or in a military family knows that soldiers are very well disciplined, or they wash out. Other traits include being physically fit, mentally fit, and achieving balance in life, though that’s difficult to achieve in combat. Still, it’s a necessity. “I served three and a half years down range in combat operations. My experience taught me you could be doing 20-hour days for a year or two on end. If you haven’t built a good foundation of being disciplined and fit, it impacts your ability to maintain presence in times of stress, and CISOs work in stressful situations,” says Touhill. “Staying fit also fortifies you for the long haul, so you don’t get burned out as fast.” Another necessary skill is the ability to work well with others.  “Cybersecurity is an interdisciplinary practice. One of the great joys I have as CERT director is the wide range of experts in many different fields that include software engineers, computer engineers, computer scientists, data scientists, mathematicians and physicists,” says Touhill. “I have folks who have business degrees and others who have philosophy degrees. It's really a rich community of interests all coming together towards that common goal of making the world a safer, more secure and more trusted place in the cyber domain. We’re are kind of like the cyber neighborhood watch for the whole world.” He also says that money isn’t everything, having taken a pay cut to go from being an Air Force brigadier general to the deputy assistant secretary of the Department of Homeland Security . “You’ll always do well if you pick the job that matters most. That’s what I did, and I’ve been rewarded every step,” says Touhill.  The biggest challenge he sees is the complexity of cyber systems and software, which can have second, third, and fourth order effects.  “Complexity raises the cost of the attack surface, increases the attack surface, raises the number of vulnerabilities and exploits human weaknesses,” says Touhill. “The No. 1 thing we need to be paying attention to is privacy when it comes to AI because AI can unearth and discover knowledge from data we already have. While it gives us greater insights at greater velocities, we need to be careful that we take precautions to better protect our privacy, civil rights and civil liberties.”  #cert #director #greg #touhill #lead
    WWW.INFORMATIONWEEK.COM
    CERT Director Greg Touhill: To Lead Is to Serve
    Greg Touhill, director of the Software Engineering’s Institute’s (SEI’s) Computer Emergency Response Team (CERT) division is an atypical technology leader. For one thing, he’s been in tech and other leadership positions that span the US Air Force, the US government, the private sector and now SEI’s CERT. More importantly, he’s been a major force in the cybersecurity realm, making the world a safer place and even saving lives. Touhill earned a bachelor’s degree from the Pennsylvania State University, a master’s degree from the University of Southern California, a master’s degree from the Air War College, was a senior executive fellow at the Harvard University Kennedy School of Government and completed executive education studies at the University of North Carolina. “I was a student intern at Carnegie Mellon, but I was going to college at Penn State and studying chemical engineering. As an Air Force ROTC scholarship recipient, I knew I was going to become an Air Force officer but soon realized that I didn’t necessarily want to be a chemical engineer in the Air Force,” says Touhill. “Because I passed all the mathematics, physics, and engineering courses, I ended up becoming a communications, electronics, and computer systems officer in the Air Force. I spent 30 years, one month and three days on active duty in the United States Air Force, eventually retiring as a brigadier general and having done many different types of jobs that were available to me within and even beyond my career field.” Related:Specifically, he was an operational commander at the squadron, group, and wing levels. For example, as a colonel, Touhill served as director of command, control, communications and computers (C4) for the United States Central Command Forces, then he was appointed chief information officer and director, communications and information at Air Mobility Command. Later, he served as commander, 81st Training Wing at Kessler Air Force Base where he was promoted to brigadier general and commanded over 12,500 personnel. After that, he served as the senior defense officer and US defense attaché at the US Embassy in Kuwait, before concluding his military career as the chief information officer and director, C4 systems at the US Transportation Command, one of 10 US combatant commands, where he and his team were awarded the NSA Rowlett Award for the best cybersecurity program in the government. While in the Air Force, Touhill received numerous awards and decorations including the Bronze Star medal and the Air Force Science and Engineering Award. He is the only three-time recipient of the USAF C4 Professionalism Award. Related:Greg Touhill“I got to serve at major combatant commands, work with coalition partners from many different countries and represented the US as part of a diplomatic mission to Kuwait for two years as the senior defense official at a time when America was withdrawing forces out of Iraq. I also led the negotiation of a new bilateral defense agreement with the Kuwaitis,” says Touhill. “Then I was recruited to continue my service and was asked to serve as the deputy assistant secretary of cybersecurity and communications at the Department of Homeland Security, where I ran the operations of what is now known as the Cybersecurity and Infrastructure Security Agency. I was there at a pivotal moment because we were building up the capacity of that organization and setting the stage for it to become its own agency.” While at DHS, there were many noteworthy breaches including the infamous US Office of People Management (OPM) breach. Those events led to Obama’s visit to the National Cybersecurity and Communications Integration Center.  “I got to brief the president on the state of cybersecurity, what we had seen with the OPM breach and some other deficiencies,” says Touhill. “I was on the federal CIO council as the cybersecurity advisor to that since I’d been a federal CIO before and I got to conclude my federal career by being the first United States government chief information security officer. From there, I pivoted to industry, but I also got to return to Carnegie Mellon as a faculty member at Carnegie Mellon’s Heinz College, where I've been teaching since January 2017.” Related:Touhill has been involved in three startups, two of which were successfully acquired. He also served on three Fortune 100 advisory boards and on the Information Systems Audit and Control Association board, eventually becoming its chair for a term during the seven years he served there. Touhill just celebrated his fourth year at CERT, which he considers the pinnacle of the cybersecurity profession and everything he’s done to date. “Over my career I've led teams that have done major software builds in the national security space. I've also been the guy who's pulled cables and set up routers, hubs and switches, and I've been a system administrator. I've done everything that I could do from the keyboard up all the way up to the White House,” says Touhill. “For 40 years, the Software Engineering Institute has been leading the world in secure by design, cybersecurity, software engineering, artificial intelligence and engineering, pioneering best practices, and figuring out how to make the world a safer more secure and trustworthy place. I’ve had a hand in the making of today’s modern military and government information technology environment, beginning as a 22-year-old lieutenant, and hope to inspire the next generation to do even better.” What ‘Success’ Means Many people would be satisfied with their careers as a brigadier general, a tech leader, the White House’s first anything, or working at CERT, let alone running it. Touhill has spent his entire career making the world a safer place, so it’s not surprising that he considers his greatest achievement saving lives. “In the Middle East and Iraq, convoys were being attacked with improvised explosive devices. There were also ‘direct fire’ attacks where people are firing weapons at you and indirect fire attacks where you could be in the line of fire,” says Touhill. “The convoys were using SINCGARS line-of-site walkie-talkies for communications that are most effective when the ground is flat, and Iraq is not flat. As a result, our troops were at risk of not having reliable communications while under attack. As my team brainstormed options to remedy the situation, one of my guys found some technology, about the size of an iPhone, that could covert a radio signal, which is basically a waveform, into a digital pulse I could put on a dedicated network to support the convoy missions.” For $11 million, Touhill and his team quickly architected, tested, and fielded the Radio over IP network (aka “Ripper Net”) that had a 99% reliability rate anywhere in Iraq. Better still, convoys could communicate over the network using any radios. That solution saved a minimum of six lives. In one case, the hospital doctor said if the patient had arrived five minutes later, he would have died. Sage Advice Anyone who has ever spent time in the military or in a military family knows that soldiers are very well disciplined, or they wash out. Other traits include being physically fit, mentally fit, and achieving balance in life, though that’s difficult to achieve in combat. Still, it’s a necessity. “I served three and a half years down range in combat operations. My experience taught me you could be doing 20-hour days for a year or two on end. If you haven’t built a good foundation of being disciplined and fit, it impacts your ability to maintain presence in times of stress, and CISOs work in stressful situations,” says Touhill. “Staying fit also fortifies you for the long haul, so you don’t get burned out as fast.” Another necessary skill is the ability to work well with others.  “Cybersecurity is an interdisciplinary practice. One of the great joys I have as CERT director is the wide range of experts in many different fields that include software engineers, computer engineers, computer scientists, data scientists, mathematicians and physicists,” says Touhill. “I have folks who have business degrees and others who have philosophy degrees. It's really a rich community of interests all coming together towards that common goal of making the world a safer, more secure and more trusted place in the cyber domain. We’re are kind of like the cyber neighborhood watch for the whole world.” He also says that money isn’t everything, having taken a pay cut to go from being an Air Force brigadier general to the deputy assistant secretary of the Department of Homeland Security . “You’ll always do well if you pick the job that matters most. That’s what I did, and I’ve been rewarded every step,” says Touhill.  The biggest challenge he sees is the complexity of cyber systems and software, which can have second, third, and fourth order effects.  “Complexity raises the cost of the attack surface, increases the attack surface, raises the number of vulnerabilities and exploits human weaknesses,” says Touhill. “The No. 1 thing we need to be paying attention to is privacy when it comes to AI because AI can unearth and discover knowledge from data we already have. While it gives us greater insights at greater velocities, we need to be careful that we take precautions to better protect our privacy, civil rights and civil liberties.” 
    0 Commentaires 0 Parts