• Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging

    Menu

    Home
    News

    Hardware

    Gaming

    Mobile

    Finance
    Deals
    Reviews
    How To

    Wccftech

    Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging

    Omar Sohail •
    Jun 16, 2025 at 02:00am EDT

    TSMC might have started accepting orders for its 2nm wafers, but the first chipsets fabricated on this cutting-edge lithography are not expected to arrive until late next year. As the majority of you are well aware, Apple likely pounced on the opportunity to be the first recipient of this technology, with its A20 rumored to be mass produced on the 2nm process. However, the same rumor claims that the Cupertino firm will employ the foundry giant’s WMCMpackaging, bringing in more benefits, but customers can only experience these if they intend on making the iPhone 18 Pro, iPhone 18 Pro Max, or Apple’s upcoming foldable flagship their daily driver.
    The latest rumor also claims that Apple will not be upping the RAM count on any iPhone model that will ship with the A20
    The efforts to bring WMCM packaging to the A20 will be highly beneficial for Apple because it will allow the latter to maintain the chipset’s footprint while having immense flexibility in combining different components. In short, multiple dies such as the CPU, GPU, memory, and other parts can be integrated at a wafer level, before being sliced into individual chips. This approach will help Apple to mass manufacture smaller chipsets that are considerably power-efficient, but also powerful at the same time, leading to an incredible ‘performance per watt’ metric.
    China Times reports that this A20 upgrade will arrive for the iPhone 18 Pro, the iPhone 18 Pro Max, and Apple’s foldable flagship, which the rumor refers to as the iPhone 18 Fold. TSMC’s production line specifically for WMCM chipsets will be located in Chiayi AP7, with an estimated monthly production capacity of 50,000 pieces by the end of 2026. Interestingly, the RAM count will not change from this year, with Apple said to retain the 12GB limit. We have reported about the iPhone 18 series shifting to TSMC’s WMCM packaging before, while also talking about a separate rumor claiming that the A20 will be 15 percent faster than the A19 at the same power draw.
    The rumor does not mention whether the less expensive iPhone 18 models will be treated to chipsets featuring WMCM packaging, or if Apple intends to save on design and production costs by sticking with the older Integrated Fan-Outpackaging. All of these answers will be provided in the fourth quarter of 2026, when the iPhone 18 family goes official, so stay tuned.
    News Source: China Times

    Subscribe to get an everyday digest of the latest technology news in your inbox

    Follow us on

    Topics

    Sections

    Company

    Some posts on wccftech.com may contain affiliate links. We are a participant in the Amazon Services LLC
    Associates Program, an affiliate advertising program designed to provide a means for sites to earn
    advertising fees by advertising and linking to amazon.com
    © 2025 WCCF TECH INC. 700 - 401 West Georgia Street, Vancouver, BC, Canada
    #apples #a20 #rumored #exclusive #iphone
    Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging
    Menu Home News Hardware Gaming Mobile Finance Deals Reviews How To Wccftech Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging Omar Sohail • Jun 16, 2025 at 02:00am EDT TSMC might have started accepting orders for its 2nm wafers, but the first chipsets fabricated on this cutting-edge lithography are not expected to arrive until late next year. As the majority of you are well aware, Apple likely pounced on the opportunity to be the first recipient of this technology, with its A20 rumored to be mass produced on the 2nm process. However, the same rumor claims that the Cupertino firm will employ the foundry giant’s WMCMpackaging, bringing in more benefits, but customers can only experience these if they intend on making the iPhone 18 Pro, iPhone 18 Pro Max, or Apple’s upcoming foldable flagship their daily driver. The latest rumor also claims that Apple will not be upping the RAM count on any iPhone model that will ship with the A20 The efforts to bring WMCM packaging to the A20 will be highly beneficial for Apple because it will allow the latter to maintain the chipset’s footprint while having immense flexibility in combining different components. In short, multiple dies such as the CPU, GPU, memory, and other parts can be integrated at a wafer level, before being sliced into individual chips. This approach will help Apple to mass manufacture smaller chipsets that are considerably power-efficient, but also powerful at the same time, leading to an incredible ‘performance per watt’ metric. China Times reports that this A20 upgrade will arrive for the iPhone 18 Pro, the iPhone 18 Pro Max, and Apple’s foldable flagship, which the rumor refers to as the iPhone 18 Fold. TSMC’s production line specifically for WMCM chipsets will be located in Chiayi AP7, with an estimated monthly production capacity of 50,000 pieces by the end of 2026. Interestingly, the RAM count will not change from this year, with Apple said to retain the 12GB limit. We have reported about the iPhone 18 series shifting to TSMC’s WMCM packaging before, while also talking about a separate rumor claiming that the A20 will be 15 percent faster than the A19 at the same power draw. The rumor does not mention whether the less expensive iPhone 18 models will be treated to chipsets featuring WMCM packaging, or if Apple intends to save on design and production costs by sticking with the older Integrated Fan-Outpackaging. All of these answers will be provided in the fourth quarter of 2026, when the iPhone 18 family goes official, so stay tuned. News Source: China Times Subscribe to get an everyday digest of the latest technology news in your inbox Follow us on Topics Sections Company Some posts on wccftech.com may contain affiliate links. We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to amazon.com © 2025 WCCF TECH INC. 700 - 401 West Georgia Street, Vancouver, BC, Canada #apples #a20 #rumored #exclusive #iphone
    WCCFTECH.COM
    Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging
    Menu Home News Hardware Gaming Mobile Finance Deals Reviews How To Wccftech Apple’s A20 Rumored To Be Exclusive To The iPhone 18 Pro, iPhone 18 Pro Max And The Company’s Foldable Flagship, Will Leverage TSMC’s Advanced 2nm Process Combined With The Newer WMCM Packaging Omar Sohail • Jun 16, 2025 at 02:00am EDT TSMC might have started accepting orders for its 2nm wafers, but the first chipsets fabricated on this cutting-edge lithography are not expected to arrive until late next year. As the majority of you are well aware, Apple likely pounced on the opportunity to be the first recipient of this technology, with its A20 rumored to be mass produced on the 2nm process. However, the same rumor claims that the Cupertino firm will employ the foundry giant’s WMCM (Wafer-Level Multi-Chip Module) packaging, bringing in more benefits, but customers can only experience these if they intend on making the iPhone 18 Pro, iPhone 18 Pro Max, or Apple’s upcoming foldable flagship their daily driver. The latest rumor also claims that Apple will not be upping the RAM count on any iPhone model that will ship with the A20 The efforts to bring WMCM packaging to the A20 will be highly beneficial for Apple because it will allow the latter to maintain the chipset’s footprint while having immense flexibility in combining different components. In short, multiple dies such as the CPU, GPU, memory, and other parts can be integrated at a wafer level, before being sliced into individual chips. This approach will help Apple to mass manufacture smaller chipsets that are considerably power-efficient, but also powerful at the same time, leading to an incredible ‘performance per watt’ metric. China Times reports that this A20 upgrade will arrive for the iPhone 18 Pro, the iPhone 18 Pro Max, and Apple’s foldable flagship, which the rumor refers to as the iPhone 18 Fold. TSMC’s production line specifically for WMCM chipsets will be located in Chiayi AP7, with an estimated monthly production capacity of 50,000 pieces by the end of 2026. Interestingly, the RAM count will not change from this year, with Apple said to retain the 12GB limit. We have reported about the iPhone 18 series shifting to TSMC’s WMCM packaging before, while also talking about a separate rumor claiming that the A20 will be 15 percent faster than the A19 at the same power draw. The rumor does not mention whether the less expensive iPhone 18 models will be treated to chipsets featuring WMCM packaging, or if Apple intends to save on design and production costs by sticking with the older Integrated Fan-Out (InFo) packaging. All of these answers will be provided in the fourth quarter of 2026, when the iPhone 18 family goes official, so stay tuned. News Source: China Times Subscribe to get an everyday digest of the latest technology news in your inbox Follow us on Topics Sections Company Some posts on wccftech.com may contain affiliate links. We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to amazon.com © 2025 WCCF TECH INC. 700 - 401 West Georgia Street, Vancouver, BC, Canada
    Like
    Love
    Wow
    Angry
    Sad
    470
    2 Comentários 0 Compartilhamentos
  • A shortage of high-voltage power cables could stall the clean energy transition

    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why.
    A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea.
    Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment.
    High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress.

    "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg.
    The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities.
    // Related Stories

    As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct currentcables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses.

    But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometersof new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years.
    Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused.
    Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule.
    Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross.
    Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted.
    The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them."
    #shortage #highvoltage #power #cables #could
    A shortage of high-voltage power cables could stall the clean energy transition
    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why. A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea. Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment. High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress. "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg. The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities. // Related Stories As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct currentcables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses. But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometersof new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years. Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused. Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule. Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross. Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted. The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them." #shortage #highvoltage #power #cables #could
    WWW.TECHSPOT.COM
    A shortage of high-voltage power cables could stall the clean energy transition
    In a nutshell: As nations set ever more ambitious targets for renewable energy and electrification, the humble high-voltage cable has emerged as a linchpin – and a potential chokepoint – in the race to decarbonize the global economy. A Bloomberg interview with Claes Westerlind, CEO of NKT, a leading cable manufacturer based in Denmark, explains why. A global surge in demand for high-voltage electricity cables is threatening to stall the clean energy revolution, as the world's ability to build new wind farms, solar plants, and cross-border power links increasingly hinges on a supply chain bottleneck few outside the industry have considered. At the center of this challenge is the complex, capital-intensive process of manufacturing the giant cables that transport electricity across hundreds of miles, both over land and under the sea. Despite soaring demand, cable manufacturers remain cautious about expanding capacity, raising questions about whether the pace of electrification can keep up with climate ambitions, geopolitical tensions, and the practical realities of industrial investment. High-voltage cables are the arteries of modern power grids, carrying electrons from remote wind farms or hydroelectric dams to the cities and industries that need them. Unlike the thin wires that run through a home's walls, these cables are engineering marvels – sometimes as thick as a person's torso, armored to withstand the crushing pressure of the ocean floor, and designed to last for decades under extreme electrical and environmental stress. "If you look at the very high voltage direct current cable, able to carry roughly two gigawatts through two pairs of cables – that means that the equivalent of one nuclear power reactor is flowing through one cable," Westerlind told Bloomberg. The process of making these cables is as specialized as it is demanding. At the core is a conductor, typically made of copper or aluminum, twisted together like a rope for flexibility and strength. Around this, manufacturers apply multiple layers of insulation in towering vertical factories to ensure the cable remains perfectly round and can safely contain the immense voltages involved. Any impurity in the insulation, even something as small as an eyelash, can cause catastrophic failure, potentially knocking out power to entire cities. // Related Stories As the world rushes to harness new sources of renewable energy, the demand for high-voltage direct current (HVDC) cables has skyrocketed. HVDC technology, initially pioneered by NKT in the 1950s, has become the backbone of long-distance power transmission, particularly for offshore wind farms and intercontinental links. In recent years, approximately 80 to 90 percent of new large-scale cable projects have utilized HVDC, reflecting its efficiency in transmitting electricity over vast distances with minimal losses. But this surge in demand has led to a critical bottleneck. Factories that produce these cables are booked out for years, Westerlind reports, and every project requires custom engineering to match the power needs, geography, and environmental conditions of its route. According to the International Energy Agency, meeting global clean energy goals will require building the equivalent of 80 million kilometers (around 49.7 million miles) of new grid infrastructure by 2040 – essentially doubling what has been constructed over the past century, but in just 15 years. Despite the clear need, cable makers have been slow to add capacity due to reasons that are as much economic and political as technical. Building a new cable factory can cost upwards of a billion euros, and manufacturers are wary of making such investments without long-term commitments from utilities or governments. "For a company like us to do investments in the realm of €1 or 2 billion, it's a massive commitment... but it's also a massive amount of demand that is needed for this investment to actually make financial sense over the next not five years, not 10 years, but over the next 20 to 30 years," Westerlind said. The industry still bears scars from a decade ago, when anticipated demand failed to materialize and expensive new facilities sat underused. Some governments and transmission system operators are trying to break the logjam by making "anticipatory investments" – committing to buy cable capacity even before specific projects are finalized. This approach, backed by regulators, gives manufacturers the confidence to expand, but it remains the exception rather than the rule. Meanwhile, the industry's structure itself creates barriers to rapid expansion, according to Westerlind. The expertise, technology, and infrastructure required to make high-voltage cables are concentrated in a handful of companies, creating what analysts describe as a "deep moat" that is difficult for new entrants to cross. Geopolitical tensions add another layer of complexity. China has built more HVDC lines than any other country, although Western manufacturers, such as NKT, maintain a technical edge in the most advanced cable systems. Still, there is growing concern in Europe and the US about becoming dependent on foreign suppliers for such critical infrastructure, especially in light of recent global conflicts and trade disputes. "Strategic autonomy is very important when it comes to the core parts and the fundamental parts of your society, where the grid backbone is one," Westerlind noted. The stakes are high. Without a rapid and coordinated push to expand cable manufacturing, the world's clean energy transition could be slowed not by a lack of wind or sun but by a shortage of the cables needed to connect them to the grid. As Westerlind put it, "We all know it has to be done... These are large investments. They are very expensive investments. So also the governments have to have a part in enabling these anticipatory investments, and making it possible for the TSOs to actually carry forward with them."
    0 Comentários 0 Compartilhamentos
  • NVIDIA and Deutsche Telekom Partner to Advance Germany’s Sovereign AI

    Industrial AI isn’t slowing down. Germany is ready.
    Following London Tech Week and GTC Paris at VivaTech, NVIDIA founder and CEO Jensen Huang’s European tour continued with a stop in Germany to discuss with Chancellor Friedrich Merz — pictured above — new partnerships poised to bring breakthrough innovations on the world’s first industrial AI cloud.
    This AI factory, to be located in Germany and operated by Deutsche Telekom, will enable Europe’s industrial leaders to accelerate manufacturing applications including design, engineering, simulation, digital twins and robotics.
    “In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Jensen Huang, founder and CEO of NVIDIA. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.”
    “Europe’s technological future needs a sprint, not a stroll,” said Timotheus Höttges, CEO of Deutsche Telekom AG. “We must seize the opportunities of artificial intelligence now, revolutionize our industry and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.”
    This AI infrastructure — Germany’s single largest AI deployment — is an important leap for the nation in establishing its own sovereign AI infrastructure and providing a launchpad to accelerate AI development and adoption across industries. In its first phase, it’ll feature 10,000 NVIDIA Blackwell GPUs — spanning NVIDIA DGX B200 systems and NVIDIA RTX PRO Servers — as well as NVIDIA networking and AI software.
    NEURA Robotics’ training center for cognitive robots.
    NEURA Robotics, a Germany-based global pioneer in physical AI and cognitive robotics, will use the computing resources to power its state-of-the-art training centers for cognitive robots — a tangible example of how physical AI can evolve through powerful, connected infrastructure.
    At this work’s core is the Neuraverse, a seamlessly networked robot ecosystem that allows robots to learn from each other across a wide range of industrial and domestic applications. This platform creates an app-store-like hub for robotic intelligence — for tasks like welding and ironing — enabling continuous development and deployment of robotic skills in real-world environments.
    “Physical AI is the electricity of the future — it will power every machine on the planet,” said David Reger, founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.”
    Critical to Germany’s competitiveness is AI technology development, including the expansion of data center capacity, according to a Deloitte study. This is strategically important because demand for data center capacity is expected to triple over the next five years to 5 gigawatts.
    Driving Germany’s Industrial Ecosystem
    Deutsche Telekom will operate the AI factory and provide AI cloud computing resources to Europe’s industrial ecosystem.
    Customers will be able to run NVIDIA CUDA-X libraries, as well as NVIDIA RTX- and Omniverse-accelerated workloads from leading software providers such as Siemens, Ansys, Cadence and Rescale.
    Many more stand to benefit. From the country’s robust small- and medium-sized businesses, known as the Mittelstand, to academia, research and major enterprises — the AI factory offers strategic technology leaps.
    A Speedboat Toward AI Gigafactories
    The industrial AI cloud will accelerate AI development and adoption from European manufacturers, driving simulation-first, AI-driven manufacturing practices and helping prepare for the country’s transition to AI gigafactories, the next step in Germany’s sovereign AI infrastructure journey.
    The AI gigafactory initiative is a 100,000 GPU-powered program backed by the European Union, Germany and partners.
    Poised to go online in 2027, it’ll provide state-of-the-art AI infrastructure that gives enterprises, startups, researchers and universities access to accelerated computing through the establishment and expansion of high-performance computing centers.
    As of March, there are about 900 Germany-based members of the NVIDIA Inception program for cutting-edge startups, all of which will be eligible to access the AI resources.
    NVIDIA offers learning courses through its Deep Learning Institute to promote education and certification in AI across the globe, and those resources are broadly available across Germany’s computing ecosystem to offer upskilling opportunities.
    Additional European telcos are building AI infrastructure for regional enterprises to build and deploy agentic AI applications.
    Learn more about the latest AI advancements by watching Huang’s GTC Paris keynote in replay.
    #nvidia #deutsche #telekom #partner #advance
    NVIDIA and Deutsche Telekom Partner to Advance Germany’s Sovereign AI
    Industrial AI isn’t slowing down. Germany is ready. Following London Tech Week and GTC Paris at VivaTech, NVIDIA founder and CEO Jensen Huang’s European tour continued with a stop in Germany to discuss with Chancellor Friedrich Merz — pictured above — new partnerships poised to bring breakthrough innovations on the world’s first industrial AI cloud. This AI factory, to be located in Germany and operated by Deutsche Telekom, will enable Europe’s industrial leaders to accelerate manufacturing applications including design, engineering, simulation, digital twins and robotics. “In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Jensen Huang, founder and CEO of NVIDIA. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.” “Europe’s technological future needs a sprint, not a stroll,” said Timotheus Höttges, CEO of Deutsche Telekom AG. “We must seize the opportunities of artificial intelligence now, revolutionize our industry and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.” This AI infrastructure — Germany’s single largest AI deployment — is an important leap for the nation in establishing its own sovereign AI infrastructure and providing a launchpad to accelerate AI development and adoption across industries. In its first phase, it’ll feature 10,000 NVIDIA Blackwell GPUs — spanning NVIDIA DGX B200 systems and NVIDIA RTX PRO Servers — as well as NVIDIA networking and AI software. NEURA Robotics’ training center for cognitive robots. NEURA Robotics, a Germany-based global pioneer in physical AI and cognitive robotics, will use the computing resources to power its state-of-the-art training centers for cognitive robots — a tangible example of how physical AI can evolve through powerful, connected infrastructure. At this work’s core is the Neuraverse, a seamlessly networked robot ecosystem that allows robots to learn from each other across a wide range of industrial and domestic applications. This platform creates an app-store-like hub for robotic intelligence — for tasks like welding and ironing — enabling continuous development and deployment of robotic skills in real-world environments. “Physical AI is the electricity of the future — it will power every machine on the planet,” said David Reger, founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.” Critical to Germany’s competitiveness is AI technology development, including the expansion of data center capacity, according to a Deloitte study. This is strategically important because demand for data center capacity is expected to triple over the next five years to 5 gigawatts. Driving Germany’s Industrial Ecosystem Deutsche Telekom will operate the AI factory and provide AI cloud computing resources to Europe’s industrial ecosystem. Customers will be able to run NVIDIA CUDA-X libraries, as well as NVIDIA RTX- and Omniverse-accelerated workloads from leading software providers such as Siemens, Ansys, Cadence and Rescale. Many more stand to benefit. From the country’s robust small- and medium-sized businesses, known as the Mittelstand, to academia, research and major enterprises — the AI factory offers strategic technology leaps. A Speedboat Toward AI Gigafactories The industrial AI cloud will accelerate AI development and adoption from European manufacturers, driving simulation-first, AI-driven manufacturing practices and helping prepare for the country’s transition to AI gigafactories, the next step in Germany’s sovereign AI infrastructure journey. The AI gigafactory initiative is a 100,000 GPU-powered program backed by the European Union, Germany and partners. Poised to go online in 2027, it’ll provide state-of-the-art AI infrastructure that gives enterprises, startups, researchers and universities access to accelerated computing through the establishment and expansion of high-performance computing centers. As of March, there are about 900 Germany-based members of the NVIDIA Inception program for cutting-edge startups, all of which will be eligible to access the AI resources. NVIDIA offers learning courses through its Deep Learning Institute to promote education and certification in AI across the globe, and those resources are broadly available across Germany’s computing ecosystem to offer upskilling opportunities. Additional European telcos are building AI infrastructure for regional enterprises to build and deploy agentic AI applications. Learn more about the latest AI advancements by watching Huang’s GTC Paris keynote in replay. #nvidia #deutsche #telekom #partner #advance
    BLOGS.NVIDIA.COM
    NVIDIA and Deutsche Telekom Partner to Advance Germany’s Sovereign AI
    Industrial AI isn’t slowing down. Germany is ready. Following London Tech Week and GTC Paris at VivaTech, NVIDIA founder and CEO Jensen Huang’s European tour continued with a stop in Germany to discuss with Chancellor Friedrich Merz — pictured above — new partnerships poised to bring breakthrough innovations on the world’s first industrial AI cloud. This AI factory, to be located in Germany and operated by Deutsche Telekom, will enable Europe’s industrial leaders to accelerate manufacturing applications including design, engineering, simulation, digital twins and robotics. “In the era of AI, every manufacturer needs two factories: one for making things, and one for creating the intelligence that powers them,” said Jensen Huang, founder and CEO of NVIDIA. “By building Europe’s first industrial AI infrastructure, we’re enabling the region’s leading industrial companies to advance simulation-first, AI-driven manufacturing.” “Europe’s technological future needs a sprint, not a stroll,” said Timotheus Höttges, CEO of Deutsche Telekom AG. “We must seize the opportunities of artificial intelligence now, revolutionize our industry and secure a leading position in the global technology competition. Our economic success depends on quick decisions and collaborative innovations.” This AI infrastructure — Germany’s single largest AI deployment — is an important leap for the nation in establishing its own sovereign AI infrastructure and providing a launchpad to accelerate AI development and adoption across industries. In its first phase, it’ll feature 10,000 NVIDIA Blackwell GPUs — spanning NVIDIA DGX B200 systems and NVIDIA RTX PRO Servers — as well as NVIDIA networking and AI software. NEURA Robotics’ training center for cognitive robots. NEURA Robotics, a Germany-based global pioneer in physical AI and cognitive robotics, will use the computing resources to power its state-of-the-art training centers for cognitive robots — a tangible example of how physical AI can evolve through powerful, connected infrastructure. At this work’s core is the Neuraverse, a seamlessly networked robot ecosystem that allows robots to learn from each other across a wide range of industrial and domestic applications. This platform creates an app-store-like hub for robotic intelligence — for tasks like welding and ironing — enabling continuous development and deployment of robotic skills in real-world environments. “Physical AI is the electricity of the future — it will power every machine on the planet,” said David Reger, founder and CEO of NEURA Robotics. “Through this initiative, we’re helping build the sovereign infrastructure Europe needs to lead in intelligent robotics and stay in control of its future.” Critical to Germany’s competitiveness is AI technology development, including the expansion of data center capacity, according to a Deloitte study. This is strategically important because demand for data center capacity is expected to triple over the next five years to 5 gigawatts. Driving Germany’s Industrial Ecosystem Deutsche Telekom will operate the AI factory and provide AI cloud computing resources to Europe’s industrial ecosystem. Customers will be able to run NVIDIA CUDA-X libraries, as well as NVIDIA RTX- and Omniverse-accelerated workloads from leading software providers such as Siemens, Ansys, Cadence and Rescale. Many more stand to benefit. From the country’s robust small- and medium-sized businesses, known as the Mittelstand, to academia, research and major enterprises — the AI factory offers strategic technology leaps. A Speedboat Toward AI Gigafactories The industrial AI cloud will accelerate AI development and adoption from European manufacturers, driving simulation-first, AI-driven manufacturing practices and helping prepare for the country’s transition to AI gigafactories, the next step in Germany’s sovereign AI infrastructure journey. The AI gigafactory initiative is a 100,000 GPU-powered program backed by the European Union, Germany and partners. Poised to go online in 2027, it’ll provide state-of-the-art AI infrastructure that gives enterprises, startups, researchers and universities access to accelerated computing through the establishment and expansion of high-performance computing centers. As of March, there are about 900 Germany-based members of the NVIDIA Inception program for cutting-edge startups, all of which will be eligible to access the AI resources. NVIDIA offers learning courses through its Deep Learning Institute to promote education and certification in AI across the globe, and those resources are broadly available across Germany’s computing ecosystem to offer upskilling opportunities. Additional European telcos are building AI infrastructure for regional enterprises to build and deploy agentic AI applications. Learn more about the latest AI advancements by watching Huang’s GTC Paris keynote in replay.
    0 Comentários 0 Compartilhamentos