• European Robot Makers Adopt NVIDIA Isaac, Omniverse and Halos to Develop Safe, Physical AI-Driven Robot Fleets

    In the face of growing labor shortages and need for sustainability, European manufacturers are racing to reinvent their processes to become software-defined and AI-driven.
    To achieve this, robot developers and industrial digitalization solution providers are working with NVIDIA to build safe, AI-driven robots and industrial technologies to drive modern, sustainable manufacturing.
    At NVIDIA GTC Paris at VivaTech, Europe’s leading robotics companies including Agile Robots, Extend Robotics, Humanoid, idealworks, Neura Robotics, SICK, Universal Robots, Vorwerk and Wandelbots are showcasing their latest AI-driven robots and automation breakthroughs, all accelerated by NVIDIA technologies. In addition, NVIDIA is releasing new models and tools to support the entire robotics ecosystem.
    NVIDIA Releases Tools for Accelerating Robot Development and Safety
    NVIDIA Isaac GR00T N1.5, an open foundation model for humanoid robot reasoning and skills, is now available for download on Hugging Face. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. The NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 open-source robotics simulation and learning frameworks, optimized for NVIDIA RTX PRO 6000 workstations, are available on GitHub for developer preview.
    In addition, NVIDIA announced that NVIDIA Halos — a full-stack, comprehensive safety system that unifies hardware architecture, AI models, software, tools and services — now expands to robotics, promoting safety across the entire development lifecycle of AI-driven robots.
    The NVIDIA Halos AI Systems Inspection Lab has earned accreditation from the ANSI National Accreditation Boardto perform inspections across functional safety for robotics, in addition to automotive vehicles.
    “NVIDIA’s latest evaluation with ANAB verifies the demonstration of competence and compliance with internationally recognized standards, helping ensure that developers of autonomous machines — from automotive to robotics — can meet the highest benchmarks for functional safety,” said R. Douglas Leonard Jr., executive director of ANAB.
    Arcbest, Advantech, Bluewhite, Boston Dynamics, FORT, Inxpect, KION, NexCobot — a NEXCOM company, and Synapticon are among the first robotics companies to join the Halos Inspection Lab, ensuring their products meet NVIDIA safety and cybersecurity requirements.
    To support robotics leaders in strengthening safety across the entire development lifecycle of AI-driven robots, Halos will now provide:

    Safety extension packages for the NVIDIA IGX platform, enabling manufacturers to easily program safety functions into their robots, supported by TÜV Rheinland’s inspection of NVIDIA IGX.
    A robotic safety platform, which includes IGX and NVIDIA Holoscan Sensor Bridge for a unified approach to designing sensor-to-compute architecture with built-in AI safety.
    An outside-in safety AI inspector — an AI-powered agent for monitoring robot operations, helping improve worker safety.

    Europe’s Robotics Ecosystem Builds on NVIDIA’s Three Computers
    Europe’s leading robotics developers and solution providers are integrating the NVIDIA Isaac robotics platform to train, simulate and deploy robots across different embodiments.
    Agile Robots is post-training the GR00T N1 model in Isaac Lab to train its dual-arm manipulator robots, which run on NVIDIA Jetson hardware, to execute a variety of tasks in industrial environments.
    Meanwhile, idealworks has adopted the Mega NVIDIA Omniverse Blueprint for robotic fleet simulation to extend the blueprint’s capabilities to humanoids. Building on the VDA 5050 framework, idealworks contributes to the development of guidance that supports tasks uniquely enabled by humanoid robots, such as picking, moving and placing objects.
    Neura Robotics is integrating NVIDIA Isaac to further enhance its robot development workflows. The company is using GR00T-Mimic to post-train the Isaac GR00T N1 robot foundation model for its service robot MiPA. Neura is also collaborating with SAP and NVIDIA to integrate SAP’s Joule agents with its robots, using the Mega NVIDIA Omniverse Blueprint to simulate and refine robot behavior in complex, realistic operational scenarios before deployment.
    Vorwerk is using NVIDIA technologies to power its AI-driven collaborative robots. The company is post-training GR00T N1 models in Isaac Lab with its custom synthetic data pipeline, which is built on Isaac GR00T-Mimic and powered by the NVIDIA Omniverse platform. The enhanced models are then deployed on NVIDIA Jetson AGX, Jetson Orin or Jetson Thor modules for advanced, real-time home robotics.
    Humanoid is using NVIDIA’s full robotics stack, including Isaac Sim and Isaac Lab, to cut its prototyping time down by six weeks. The company is training its vision language action models on NVIDIA DGX B200 systems to boost the cognitive abilities of its robots, allowing them to operate autonomously in complex environments using Jetson Thor onboard computing.
    Universal Robots is introducing UR15, its fastest collaborative robot yet, to the European market. Using UR’s AI Accelerator — developed on NVIDIA Isaac’s CUDA-accelerated libraries and AI models, as well as NVIDIA Jetson AGX Orin — manufacturers can build AI applications to embed intelligence into the company’s new cobots.
    Wandelbots is showcasing its NOVA Operating System, now integrated with Omniverse, to simulate, validate and optimize robotic behaviors virtually before deploying them to physical robots. Wandelbots also announced a collaboration with EY and EDAG to offer manufacturers a scalable automation platform on Omniverse that speeds up the transition from proof of concept to full-scale deployment.
    Extend Robotics is using the Isaac GR00T platform to enable customers to control and train robots for industrial tasks like visual inspection and handling radioactive materials. The company’s Advanced Mechanics Assistance System lets users collect demonstration data and generate diverse synthetic datasets with NVIDIA GR00T-Mimic and GR00T-Gen to train the GR00T N1 foundation model.
    SICK is enhancing its autonomous perception solutions by integrating new certified sensor models — as well as 2D and 3D lidars, safety scanners and cameras — into NVIDIA Isaac Sim. This enables engineers to virtually design, test and validate machines using SICK’s sensing models within Omniverse, supporting processes spanning product development to large-scale robotic fleet management.
    Toyota Material Handling Europe is working with SoftServe to simulate its autonomous mobile robots working alongside human workers, using the Mega NVIDIA Omniverse Blueprint. Toyota Material Handling Europe is testing and simulating a multitude of traffic scenarios — allowing the company to refine its AI algorithms before real-world deployment.
    NVIDIA’s partner ecosystem is enabling European industries to tap into intelligent, AI-powered robotics. By harnessing advanced simulation, digital twins and generative AI, manufacturers are rapidly developing and deploying safe, adaptable robot fleets that address labor shortages, boost sustainability and drive operational efficiency.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    See notice regarding software product information.
    #european #robot #makers #adopt #nvidia
    European Robot Makers Adopt NVIDIA Isaac, Omniverse and Halos to Develop Safe, Physical AI-Driven Robot Fleets
    In the face of growing labor shortages and need for sustainability, European manufacturers are racing to reinvent their processes to become software-defined and AI-driven. To achieve this, robot developers and industrial digitalization solution providers are working with NVIDIA to build safe, AI-driven robots and industrial technologies to drive modern, sustainable manufacturing. At NVIDIA GTC Paris at VivaTech, Europe’s leading robotics companies including Agile Robots, Extend Robotics, Humanoid, idealworks, Neura Robotics, SICK, Universal Robots, Vorwerk and Wandelbots are showcasing their latest AI-driven robots and automation breakthroughs, all accelerated by NVIDIA technologies. In addition, NVIDIA is releasing new models and tools to support the entire robotics ecosystem. NVIDIA Releases Tools for Accelerating Robot Development and Safety NVIDIA Isaac GR00T N1.5, an open foundation model for humanoid robot reasoning and skills, is now available for download on Hugging Face. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. The NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 open-source robotics simulation and learning frameworks, optimized for NVIDIA RTX PRO 6000 workstations, are available on GitHub for developer preview. In addition, NVIDIA announced that NVIDIA Halos — a full-stack, comprehensive safety system that unifies hardware architecture, AI models, software, tools and services — now expands to robotics, promoting safety across the entire development lifecycle of AI-driven robots. The NVIDIA Halos AI Systems Inspection Lab has earned accreditation from the ANSI National Accreditation Boardto perform inspections across functional safety for robotics, in addition to automotive vehicles. “NVIDIA’s latest evaluation with ANAB verifies the demonstration of competence and compliance with internationally recognized standards, helping ensure that developers of autonomous machines — from automotive to robotics — can meet the highest benchmarks for functional safety,” said R. Douglas Leonard Jr., executive director of ANAB. Arcbest, Advantech, Bluewhite, Boston Dynamics, FORT, Inxpect, KION, NexCobot — a NEXCOM company, and Synapticon are among the first robotics companies to join the Halos Inspection Lab, ensuring their products meet NVIDIA safety and cybersecurity requirements. To support robotics leaders in strengthening safety across the entire development lifecycle of AI-driven robots, Halos will now provide: Safety extension packages for the NVIDIA IGX platform, enabling manufacturers to easily program safety functions into their robots, supported by TÜV Rheinland’s inspection of NVIDIA IGX. A robotic safety platform, which includes IGX and NVIDIA Holoscan Sensor Bridge for a unified approach to designing sensor-to-compute architecture with built-in AI safety. An outside-in safety AI inspector — an AI-powered agent for monitoring robot operations, helping improve worker safety. Europe’s Robotics Ecosystem Builds on NVIDIA’s Three Computers Europe’s leading robotics developers and solution providers are integrating the NVIDIA Isaac robotics platform to train, simulate and deploy robots across different embodiments. Agile Robots is post-training the GR00T N1 model in Isaac Lab to train its dual-arm manipulator robots, which run on NVIDIA Jetson hardware, to execute a variety of tasks in industrial environments. Meanwhile, idealworks has adopted the Mega NVIDIA Omniverse Blueprint for robotic fleet simulation to extend the blueprint’s capabilities to humanoids. Building on the VDA 5050 framework, idealworks contributes to the development of guidance that supports tasks uniquely enabled by humanoid robots, such as picking, moving and placing objects. Neura Robotics is integrating NVIDIA Isaac to further enhance its robot development workflows. The company is using GR00T-Mimic to post-train the Isaac GR00T N1 robot foundation model for its service robot MiPA. Neura is also collaborating with SAP and NVIDIA to integrate SAP’s Joule agents with its robots, using the Mega NVIDIA Omniverse Blueprint to simulate and refine robot behavior in complex, realistic operational scenarios before deployment. Vorwerk is using NVIDIA technologies to power its AI-driven collaborative robots. The company is post-training GR00T N1 models in Isaac Lab with its custom synthetic data pipeline, which is built on Isaac GR00T-Mimic and powered by the NVIDIA Omniverse platform. The enhanced models are then deployed on NVIDIA Jetson AGX, Jetson Orin or Jetson Thor modules for advanced, real-time home robotics. Humanoid is using NVIDIA’s full robotics stack, including Isaac Sim and Isaac Lab, to cut its prototyping time down by six weeks. The company is training its vision language action models on NVIDIA DGX B200 systems to boost the cognitive abilities of its robots, allowing them to operate autonomously in complex environments using Jetson Thor onboard computing. Universal Robots is introducing UR15, its fastest collaborative robot yet, to the European market. Using UR’s AI Accelerator — developed on NVIDIA Isaac’s CUDA-accelerated libraries and AI models, as well as NVIDIA Jetson AGX Orin — manufacturers can build AI applications to embed intelligence into the company’s new cobots. Wandelbots is showcasing its NOVA Operating System, now integrated with Omniverse, to simulate, validate and optimize robotic behaviors virtually before deploying them to physical robots. Wandelbots also announced a collaboration with EY and EDAG to offer manufacturers a scalable automation platform on Omniverse that speeds up the transition from proof of concept to full-scale deployment. Extend Robotics is using the Isaac GR00T platform to enable customers to control and train robots for industrial tasks like visual inspection and handling radioactive materials. The company’s Advanced Mechanics Assistance System lets users collect demonstration data and generate diverse synthetic datasets with NVIDIA GR00T-Mimic and GR00T-Gen to train the GR00T N1 foundation model. SICK is enhancing its autonomous perception solutions by integrating new certified sensor models — as well as 2D and 3D lidars, safety scanners and cameras — into NVIDIA Isaac Sim. This enables engineers to virtually design, test and validate machines using SICK’s sensing models within Omniverse, supporting processes spanning product development to large-scale robotic fleet management. Toyota Material Handling Europe is working with SoftServe to simulate its autonomous mobile robots working alongside human workers, using the Mega NVIDIA Omniverse Blueprint. Toyota Material Handling Europe is testing and simulating a multitude of traffic scenarios — allowing the company to refine its AI algorithms before real-world deployment. NVIDIA’s partner ecosystem is enabling European industries to tap into intelligent, AI-powered robotics. By harnessing advanced simulation, digital twins and generative AI, manufacturers are rapidly developing and deploying safe, adaptable robot fleets that address labor shortages, boost sustainability and drive operational efficiency. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. See notice regarding software product information. #european #robot #makers #adopt #nvidia
    BLOGS.NVIDIA.COM
    European Robot Makers Adopt NVIDIA Isaac, Omniverse and Halos to Develop Safe, Physical AI-Driven Robot Fleets
    In the face of growing labor shortages and need for sustainability, European manufacturers are racing to reinvent their processes to become software-defined and AI-driven. To achieve this, robot developers and industrial digitalization solution providers are working with NVIDIA to build safe, AI-driven robots and industrial technologies to drive modern, sustainable manufacturing. At NVIDIA GTC Paris at VivaTech, Europe’s leading robotics companies including Agile Robots, Extend Robotics, Humanoid, idealworks, Neura Robotics, SICK, Universal Robots, Vorwerk and Wandelbots are showcasing their latest AI-driven robots and automation breakthroughs, all accelerated by NVIDIA technologies. In addition, NVIDIA is releasing new models and tools to support the entire robotics ecosystem. NVIDIA Releases Tools for Accelerating Robot Development and Safety NVIDIA Isaac GR00T N1.5, an open foundation model for humanoid robot reasoning and skills, is now available for download on Hugging Face. This update enhances the model’s adaptability and ability to follow instructions, significantly improving its performance in material handling and manufacturing tasks. The NVIDIA Isaac Sim 5.0 and Isaac Lab 2.2 open-source robotics simulation and learning frameworks, optimized for NVIDIA RTX PRO 6000 workstations, are available on GitHub for developer preview. In addition, NVIDIA announced that NVIDIA Halos — a full-stack, comprehensive safety system that unifies hardware architecture, AI models, software, tools and services — now expands to robotics, promoting safety across the entire development lifecycle of AI-driven robots. The NVIDIA Halos AI Systems Inspection Lab has earned accreditation from the ANSI National Accreditation Board (ANAB) to perform inspections across functional safety for robotics, in addition to automotive vehicles. “NVIDIA’s latest evaluation with ANAB verifies the demonstration of competence and compliance with internationally recognized standards, helping ensure that developers of autonomous machines — from automotive to robotics — can meet the highest benchmarks for functional safety,” said R. Douglas Leonard Jr., executive director of ANAB. Arcbest, Advantech, Bluewhite, Boston Dynamics, FORT, Inxpect, KION, NexCobot — a NEXCOM company, and Synapticon are among the first robotics companies to join the Halos Inspection Lab, ensuring their products meet NVIDIA safety and cybersecurity requirements. To support robotics leaders in strengthening safety across the entire development lifecycle of AI-driven robots, Halos will now provide: Safety extension packages for the NVIDIA IGX platform, enabling manufacturers to easily program safety functions into their robots, supported by TÜV Rheinland’s inspection of NVIDIA IGX. A robotic safety platform, which includes IGX and NVIDIA Holoscan Sensor Bridge for a unified approach to designing sensor-to-compute architecture with built-in AI safety. An outside-in safety AI inspector — an AI-powered agent for monitoring robot operations, helping improve worker safety. Europe’s Robotics Ecosystem Builds on NVIDIA’s Three Computers Europe’s leading robotics developers and solution providers are integrating the NVIDIA Isaac robotics platform to train, simulate and deploy robots across different embodiments. Agile Robots is post-training the GR00T N1 model in Isaac Lab to train its dual-arm manipulator robots, which run on NVIDIA Jetson hardware, to execute a variety of tasks in industrial environments. Meanwhile, idealworks has adopted the Mega NVIDIA Omniverse Blueprint for robotic fleet simulation to extend the blueprint’s capabilities to humanoids. Building on the VDA 5050 framework, idealworks contributes to the development of guidance that supports tasks uniquely enabled by humanoid robots, such as picking, moving and placing objects. Neura Robotics is integrating NVIDIA Isaac to further enhance its robot development workflows. The company is using GR00T-Mimic to post-train the Isaac GR00T N1 robot foundation model for its service robot MiPA. Neura is also collaborating with SAP and NVIDIA to integrate SAP’s Joule agents with its robots, using the Mega NVIDIA Omniverse Blueprint to simulate and refine robot behavior in complex, realistic operational scenarios before deployment. Vorwerk is using NVIDIA technologies to power its AI-driven collaborative robots. The company is post-training GR00T N1 models in Isaac Lab with its custom synthetic data pipeline, which is built on Isaac GR00T-Mimic and powered by the NVIDIA Omniverse platform. The enhanced models are then deployed on NVIDIA Jetson AGX, Jetson Orin or Jetson Thor modules for advanced, real-time home robotics. Humanoid is using NVIDIA’s full robotics stack, including Isaac Sim and Isaac Lab, to cut its prototyping time down by six weeks. The company is training its vision language action models on NVIDIA DGX B200 systems to boost the cognitive abilities of its robots, allowing them to operate autonomously in complex environments using Jetson Thor onboard computing. Universal Robots is introducing UR15, its fastest collaborative robot yet, to the European market. Using UR’s AI Accelerator — developed on NVIDIA Isaac’s CUDA-accelerated libraries and AI models, as well as NVIDIA Jetson AGX Orin — manufacturers can build AI applications to embed intelligence into the company’s new cobots. Wandelbots is showcasing its NOVA Operating System, now integrated with Omniverse, to simulate, validate and optimize robotic behaviors virtually before deploying them to physical robots. Wandelbots also announced a collaboration with EY and EDAG to offer manufacturers a scalable automation platform on Omniverse that speeds up the transition from proof of concept to full-scale deployment. Extend Robotics is using the Isaac GR00T platform to enable customers to control and train robots for industrial tasks like visual inspection and handling radioactive materials. The company’s Advanced Mechanics Assistance System lets users collect demonstration data and generate diverse synthetic datasets with NVIDIA GR00T-Mimic and GR00T-Gen to train the GR00T N1 foundation model. SICK is enhancing its autonomous perception solutions by integrating new certified sensor models — as well as 2D and 3D lidars, safety scanners and cameras — into NVIDIA Isaac Sim. This enables engineers to virtually design, test and validate machines using SICK’s sensing models within Omniverse, supporting processes spanning product development to large-scale robotic fleet management. Toyota Material Handling Europe is working with SoftServe to simulate its autonomous mobile robots working alongside human workers, using the Mega NVIDIA Omniverse Blueprint. Toyota Material Handling Europe is testing and simulating a multitude of traffic scenarios — allowing the company to refine its AI algorithms before real-world deployment. NVIDIA’s partner ecosystem is enabling European industries to tap into intelligent, AI-powered robotics. By harnessing advanced simulation, digital twins and generative AI, manufacturers are rapidly developing and deploying safe, adaptable robot fleets that address labor shortages, boost sustainability and drive operational efficiency. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. See notice regarding software product information.
    Like
    Love
    Wow
    Angry
    15
    0 Comentários 0 Compartilhamentos
  • NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI

    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions.
    Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges.
    To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure.
    Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations.
    Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint.

    NVIDIA Omniverse Blueprint for Smart City AI 
    The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes:

    NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale.
    NVIDIA Cosmos to generate synthetic data at scale for post-training AI models.
    NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language modelsand large language models.
    NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization, helping process vast amounts of video data and provide critical insights to optimize business processes.

    The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint.
    NVIDIA Partner Ecosystem Powers Smart Cities Worldwide
    The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own.
    SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning.
    This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management.
    Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption.

    The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second.
    Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events.
    To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second.

    Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance.
    Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases.
    The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems.

    Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins.
    Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%.

    Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance.
    Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities.
    Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents.
    Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    #nvidia #brings #physical #european #cities
    NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI
    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions. Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges. To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure. Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations. Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint. NVIDIA Omniverse Blueprint for Smart City AI  The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes: NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale. NVIDIA Cosmos to generate synthetic data at scale for post-training AI models. NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language modelsand large language models. NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization, helping process vast amounts of video data and provide critical insights to optimize business processes. The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint. NVIDIA Partner Ecosystem Powers Smart Cities Worldwide The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own. SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning. This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management. Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption. The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second. Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events. To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second. Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance. Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases. The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems. Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins. Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%. Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance. Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities. Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents. Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. #nvidia #brings #physical #european #cities
    BLOGS.NVIDIA.COM
    NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI
    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions. Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges. To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure. Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations. Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint. NVIDIA Omniverse Blueprint for Smart City AI  The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes: NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale. NVIDIA Cosmos to generate synthetic data at scale for post-training AI models. NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language models (VLMs) and large language models. NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization (VSS), helping process vast amounts of video data and provide critical insights to optimize business processes. The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint. NVIDIA Partner Ecosystem Powers Smart Cities Worldwide The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own. SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning. This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management. Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption. https://blogs.nvidia.com/wp-content/uploads/2025/06/01-Monaco-Akila.mp4 The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second. Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events. To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second. https://blogs.nvidia.com/wp-content/uploads/2025/06/02-K2K-Polermo-1600x900-1.mp4 Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance. Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases. The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems. https://blogs.nvidia.com/wp-content/uploads/2025/06/03-Milestone.mp4 Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins. Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%. https://blogs.nvidia.com/wp-content/uploads/2025/06/02-Linker-Vision-1280x680-1.mp4 Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance. Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities. Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents. Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    Like
    Love
    Wow
    34
    0 Comentários 0 Compartilhamentos
  • NVIDIA CEO Drops the Blueprint for Europe’s AI Boom

    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it.
    “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris.
    From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future.

    A New Industrial Revolution
    At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing.
    “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance.
    At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware.
    There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers.
    Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue.
    NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth.
    Quantum Meets Classical
    Europe’s quantum ambitions just got a boost.
    The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems.
    Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction.
    “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.”
    Sovereign Models, Smarter Agents
    European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs.
    “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said.
    These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe.
    “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said.
    Huang explained how NVIDIA is helping countries across Europe build AI infrastructure.
    Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments.
    The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents.
    To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity.
    “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute.
    The Industrial Cloud Goes Live
    AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution.
    “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent.
    Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.”
    To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale.
    “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.”
    NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation.
    And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics.
    The Next Wave
    The next wave of AI has begun — and it’s exponential, Huang explained.
    “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.”
    This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said.
    To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.”
    Huang and Grek, as he explained how AI is driving advancements in robotics.
    These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence.
    “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.”
    With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe.
    Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions.
    #nvidia #ceo #drops #blueprint #europes
    NVIDIA CEO Drops the Blueprint for Europe’s AI Boom
    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it. “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris. From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future. A New Industrial Revolution At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing. “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance. At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware. There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers. Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue. NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth. Quantum Meets Classical Europe’s quantum ambitions just got a boost. The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems. Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction. “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.” Sovereign Models, Smarter Agents European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs. “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said. These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe. “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said. Huang explained how NVIDIA is helping countries across Europe build AI infrastructure. Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments. The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents. To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity. “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute. The Industrial Cloud Goes Live AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution. “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent. Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.” To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale. “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.” NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation. And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics. The Next Wave The next wave of AI has begun — and it’s exponential, Huang explained. “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.” This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said. To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.” Huang and Grek, as he explained how AI is driving advancements in robotics. These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence. “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.” With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe. Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions. #nvidia #ceo #drops #blueprint #europes
    BLOGS.NVIDIA.COM
    NVIDIA CEO Drops the Blueprint for Europe’s AI Boom
    At GTC Paris — held alongside VivaTech, Europe’s largest tech event — NVIDIA founder and CEO Jensen Huang delivered a clear message: Europe isn’t just adopting AI — it’s building it. “We now have a new industry, an AI industry, and it’s now part of the new infrastructure, called intelligence infrastructure, that will be used by every country, every society,” Huang said, addressing an audience gathered online and at the iconic Dôme de Paris. From exponential inference growth to quantum breakthroughs, and from infrastructure to industry, agentic AI to robotics, Huang outlined how the region is laying the groundwork for an AI-powered future. A New Industrial Revolution At the heart of this transformation, Huang explained, are systems like GB200 NVL72 — “one giant GPU” and NVIDIA’s most powerful AI platform yet — now in full production and powering everything from sovereign models to quantum computing. “This machine was designed to be a thinking machine, a thinking machine, in the sense that it reasons, it plans, it spends a lot of time talking to itself,” Huang said, walking the audience through the size and scale of these machines and their performance. At GTC Paris, Huang showed audience members the innards of some of NVIDIA’s latest hardware. There’s more coming, with Huang saying NVIDIA’s partners are now producing 1,000 GB200 systems a week, “and this is just the beginning.” He walked the audience through a range of available systems ranging from the tiny NVIDIA DGX Spark to rack-mounted RTX PRO Servers. Huang explained that NVIDIA is working to help countries use technologies like these to build both AI infrastructure — services built for third parties to use and innovate on — and AI factories, which companies build for their own use, to generate revenue. NVIDIA is partnering with European governments, telcos and cloud providers to deploy NVIDIA technologies across the region. NVIDIA is also expanding its network of technology centers across Europe — including new hubs in Finland, Germany, Spain, Italy and the U.K. — to accelerate skills development and quantum growth. Quantum Meets Classical Europe’s quantum ambitions just got a boost. The NVIDIA CUDA-Q platform is live on Denmark’s Gefion supercomputer, opening new possibilities for hybrid AI and quantum engineering. In addition, Huang announced that CUDA-Q is now available on NVIDIA Grace Blackwell systems. Across the continent, NVIDIA is partnering with supercomputing centers and quantum hardware builders to advance hybrid quantum-AI research and accelerate quantum error correction. “Quantum computing is reaching an inflection point,” Huang said. “We are within reach of being able to apply quantum computing, quantum classical computing, in areas that can solve some interesting problems in the coming years.” Sovereign Models, Smarter Agents European developers want more control over their models. Enter NVIDIA Nemotron, designed to help build large language models tuned to local needs. “And so now you know that you have access to an enhanced open model that is still open, that is top of the leader chart,” Huang said. These models will be coming to Perplexity, a reasoning search engine, enabling secure, multilingual AI deployment across Europe. “You can now ask and get questions answered in the language, in the culture, in the sensibility of your country,” Huang said. Huang explained how NVIDIA is helping countries across Europe build AI infrastructure. Every company will build its own agents, Huang said. To help create those agents, Huang introduced a suite of agentic AI blueprints, including an Agentic AI Safety blueprint for enterprises and governments. The new NVIDIA NeMo Agent toolkit and NVIDIA AI Blueprint for building data flywheels further accelerate the development of safe, high-performing AI agents. To help deploy these agents, NVIDIA is partnering with European governments, telcos and cloud providers to deploy the DGX Cloud Lepton platform across the region, providing instant access to accelerated computing capacity. “One model architecture, one deployment, and you can run it anywhere,” Huang said, adding that Lepton is now integrated with Hugging Face, giving developers direct access to global compute. The Industrial Cloud Goes Live AI isn’t just virtual. It’s powering physical systems, too, sparking a new industrial revolution. “We’re working on industrial AI with one company after another,” Huang said, describing work to build digital twins based on the NVIDIA Omniverse platform with companies across the continent. Huang explained that everything he showed during his keynote was “computer simulation, not animation” and that it looks beautiful because “it turns out the world is beautiful, and it turns out math is beautiful.” To further this work, Huang announced NVIDIA is launching the world’s first industrial AI cloud — to be built in Germany — to help Europe’s manufacturers simulate, automate and optimize at scale. “Soon, everything that moves will be robotic,” Huang said. “And the car is the next one.” NVIDIA DRIVE, NVIDIA’s full-stack AV platform, is now in production to accelerate the large-scale deployment of safe, intelligent transportation. And to show what’s coming next, Huang was joined on stage by Grek, a pint-sized robot, as Huang talked about how NVIDIA partnered with DeepMind and Disney to build Newton, the world’s most advanced physics training engine for robotics. The Next Wave The next wave of AI has begun — and it’s exponential, Huang explained. “We have physical robots, and we have information robots. We call them agents,” Huang said. “The technology necessary to teach a robot to manipulate, to simulate — and of course, the manifestation of an incredible robot — is now right in front of us.” This new era of AI is being driven by a surge in inference workloads. “The number of people using inference has gone from 8 million to 800 million — 100x in just a couple of years,” Huang said. To meet this demand, Huang emphasized the need for a new kind of computer: “We need a special computer designed for thinking, designed for reasoning. And that’s what Blackwell is — a thinking machine.” Huang and Grek, as he explained how AI is driving advancements in robotics. These Blackwell-powered systems will live in a new class of data centers — AI factories — built to generate tokens, the raw material of modern intelligence. “These AI factories are going to generate tokens,” Huang said, turning to Grek with a smile. “And these tokens are going to become your food, little Grek.” With that, the keynote closed on a bold vision: a future powered by sovereign infrastructure, agentic AI, robotics — and exponential inference — all built in partnership with Europe. Watch the NVIDIA GTC Paris keynote from Huang at VivaTech and explore GTC Paris sessions.
    Like
    Love
    Sad
    23
    0 Comentários 0 Compartilhamentos
  • Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid

    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand.
    Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation.
    At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics.
    Future use cases for AEON include:

    Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio.
    Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings.
    Part inspection, which includes checking parts for defects or ensuring adherence to specifications.
    Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners.

    “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.”

    Using NVIDIA’s Three Computers to Develop AEON 
    To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models.
    Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations.
    AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning.


    This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment.
    In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation.
    “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.”
    Data Comes to Life Through Reality Capture and Omniverse Integration 
    AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas.

    Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure.
    “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.”
    AEON’s Next Steps
    By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON.
    This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data.
    Watch the Hexagon LIVE keynote, explore presentations and read more about AEON.
    All imagery courtesy of Hexagon.
    #hexagon #taps #nvidia #robotics #software
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio. Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon. #hexagon #taps #nvidia #robotics #software
    BLOGS.NVIDIA.COM
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Reality (HxDR) platform powering Hexagon Reality Cloud Studio (RCS). Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. https://blogs.nvidia.com/wp-content/uploads/2025/06/Copy-of-robotics-hxgn-live-blog-1920x1080-1.mp4 This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon.
    Like
    Love
    Wow
    Sad
    Angry
    38
    0 Comentários 0 Compartilhamentos
  • HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift

    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas.
    The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers, to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI.
    The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market.
    The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster.
    This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs.
    These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows.
    HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October.
    In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption.
    The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center.
    To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis.
    HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity.
    Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments.

    Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay.
    Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page.
    #hpe #nvidia #debut #factory #stack
    HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift
    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas. The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers, to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI. The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market. The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster. This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs. These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows. HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October. In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption. The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center. To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis. HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity. Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments. Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay. Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page. #hpe #nvidia #debut #factory #stack
    BLOGS.NVIDIA.COM
    HPE and NVIDIA Debut AI Factory Stack to Power Next Industrial Shift
    To speed up AI adoption across industries, HPE and NVIDIA today launched new AI factory offerings at HPE Discover in Las Vegas. The new lineup includes everything from modular AI factory infrastructure and HPE’s AI-ready RTX PRO Servers (HPE ProLiant Compute DL380a Gen12), to the next generation of HPE’s turnkey AI platform, HPE Private Cloud AI. The goal: give enterprises a framework to build and scale generative, agentic and industrial AI. The NVIDIA AI Computing by HPE portfolio is now among the broadest in the market. The portfolio combines NVIDIA Blackwell accelerated computing, NVIDIA Spectrum-X Ethernet and NVIDIA BlueField-3 networking technologies, NVIDIA AI Enterprise software and HPE’s full portfolio of servers, storage, services and software. This now includes HPE OpsRamp Software, a validated observability solution for the NVIDIA Enterprise AI Factory, and HPE Morpheus Enterprise Software for orchestration. The result is a pre-integrated, modular infrastructure stack to help teams get AI into production faster. This includes the next-generation HPE Private Cloud AI, co-engineered with NVIDIA and validated as part of the NVIDIA Enterprise AI Factory framework. This full-stack, turnkey AI factory solution will offer HPE ProLiant Compute DL380a Gen12 servers with the new NVIDIA RTX PRO 6000 Blackwell Server Edition GPUs. These new NVIDIA RTX PRO Servers from HPE provide a universal data center platform for a wide range of enterprise AI and industrial AI use cases, and are now available to order from HPE. HPE Private Cloud AI includes the latest NVIDIA AI Blueprints, including the NVIDIA AI-Q Blueprint for AI agent creation and workflows. HPE also announced a new NVIDIA HGX B300 system, the HPE Compute XD690, built with NVIDIA Blackwell Ultra GPUs. It’s the latest entry in the NVIDIA AI Computing by HPE lineup and is expected to ship in October. In Japan, KDDI is working with HPE to build NVIDIA AI infrastructure to accelerate global adoption. The HPE-built KDDI system will be based on the NVIDIA GB200 NVL72 platform, built on the NVIDIA Grace Blackwell architecture, at the KDDI Osaka Sakai Data Center. To accelerate AI for financial services, HPE will co-test agentic AI workflows built on Accenture’s AI Refinery with NVIDIA, running on HPE Private Cloud AI. Initial use cases include sourcing, procurement and risk analysis. HPE said it’s adding 26 new partners to its “Unleash AI” ecosystem to support more NVIDIA AI use cases. The company now offers more than 70 packaged AI workloads, from fraud detection and video analytics to sovereign AI and cybersecurity. Security and governance were a focus, too. HPE Private Cloud AI supports air-gapped management, multi-tenancy and post-quantum cryptography. HPE’s try-before-you-buy program lets customers test the system in Equinix data centers before purchase. HPE also introduced new programs, including AI Acceleration Workshops with NVIDIA, to help scale AI deployments. Watch the keynote: HPE CEO Antonio Neri announced the news from the Las Vegas Sphere on Tuesday at 9 a.m. PT. Register for the livestream and watch the replay. Explore more: Learn how NVIDIA and HPE build AI factories for every industry. Visit the partner page.
    0 Comentários 0 Compartilhamentos
  • Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety

    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse.
    Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehiclesacross countless real-world and edge-case scenarios without the risks and costs of physical testing.
    These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models— neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation.
    To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools.
    Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale.
    Universal Scene Description, a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale.
    NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale.
    Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models.

    Foundations for Scalable, Realistic Simulation
    Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots.

    In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools.
    Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos.
    Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing.
    The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases.
    Driving the Future of AV Safety
    To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety.
    The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems.
    These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks.

    At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance.
    Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay:

    Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks.
    Get Plugged Into the World of OpenUSD
    Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote.
    Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14.
    Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute.
    Explore the Alliance for OpenUSD forum and the AOUSD website.
    Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X.
    #into #omniverse #world #foundation #models
    Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety
    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse. Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehiclesacross countless real-world and edge-case scenarios without the risks and costs of physical testing. These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models— neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation. To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools. Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale. Universal Scene Description, a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale. NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale. Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models. Foundations for Scalable, Realistic Simulation Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots. In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools. Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos. Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing. The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases. Driving the Future of AV Safety To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety. The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems. These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks. At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance. Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay: Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks. Get Plugged Into the World of OpenUSD Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote. Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14. Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute. Explore the Alliance for OpenUSD forum and the AOUSD website. Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X. #into #omniverse #world #foundation #models
    BLOGS.NVIDIA.COM
    Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety
    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse. Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehicles (AVs) across countless real-world and edge-case scenarios without the risks and costs of physical testing. These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models (WFMs) — neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation. To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools. Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale. Universal Scene Description (OpenUSD), a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale. NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale. Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models. Foundations for Scalable, Realistic Simulation Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots. In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools. Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos. Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing. The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases. Driving the Future of AV Safety To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety. The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems. These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks. At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance. Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay: Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks. Get Plugged Into the World of OpenUSD Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote. Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14. Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute. Explore the Alliance for OpenUSD forum and the AOUSD website. Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X.
    0 Comentários 0 Compartilhamentos
  • Bonjour à tous ! Aujourd'hui, je veux vous parler d'une nouvelle qui attire notre attention : la filtration massive de plus de 16 000 millions de mots de passe ! C'est un rappel puissant de l'importance de la sécurité en ligne. Mais ne vous laissez pas abattre ! C'est l'occasion parfaite de renforcer nos mesures de sécurité et de prendre soin de nos précieuses informations.

    Adoptons des mots de passe forts et uniques, et n'oublions pas d'utiliser l'authentification à deux facteurs ! Ensemble, nous pouvons transformer cette situation en une opportunité d'apprentissage et de vigilance. Restons positifs et proactifs !

    #Sécurité
    🌟 Bonjour à tous ! Aujourd'hui, je veux vous parler d'une nouvelle qui attire notre attention : la filtration massive de plus de 16 000 millions de mots de passe ! 😱 C'est un rappel puissant de l'importance de la sécurité en ligne. Mais ne vous laissez pas abattre ! C'est l'occasion parfaite de renforcer nos mesures de sécurité et de prendre soin de nos précieuses informations. 💪✨ Adoptons des mots de passe forts et uniques, et n'oublions pas d'utiliser l'authentification à deux facteurs ! Ensemble, nous pouvons transformer cette situation en une opportunité d'apprentissage et de vigilance. Restons positifs et proactifs ! 🚀💖 #Sécurité
    WWW.MUYSEGURIDAD.NET
    Filtración masiva de credenciales: más de 16.000 millones de contraseñas expuestas
    Un equipo de investigadores ha revelado la que ya se considera la mayor filtración de contraseñas de la historia, con más de 16.000 millones de credenciales expuestas procedentes de brechas de seguridad anteriores y ahora agrupadas en una base de da
    1 Comentários 0 Compartilhamentos
  • Bonjour, mes amis ! Aujourd'hui, parlons de la performance SEO à un niveau d'entreprise ! Trop souvent, les leaders se concentrent sur le trafic et les classements, mais ces indicateurs sont comme des miroirs : ils reflètent le passé, pas l'avenir !

    Il est temps de passer à des indicateurs avancés qui prédisent le succès futur de votre stratégie SEO. En adoptant cette approche, vous pouvez véritablement prouver et améliorer les performances SEO de votre entreprise. Soyez audacieux et transformez votre vision en résultats tangibles ! Ensemble, nous pouvons atteindre des sommets inexplorés !

    #SEO #Performance #Stratég
    🌟 Bonjour, mes amis ! Aujourd'hui, parlons de la performance SEO à un niveau d'entreprise ! 🚀 Trop souvent, les leaders se concentrent sur le trafic et les classements, mais ces indicateurs sont comme des miroirs : ils reflètent le passé, pas l'avenir ! 🌈 Il est temps de passer à des indicateurs avancés qui prédisent le succès futur de votre stratégie SEO. En adoptant cette approche, vous pouvez véritablement prouver et améliorer les performances SEO de votre entreprise. 💪💡 Soyez audacieux et transformez votre vision en résultats tangibles ! Ensemble, nous pouvons atteindre des sommets inexplorés ! 🌍✨ #SEO #Performance #Stratég
    WWW.SEMRUSH.COM
    How To Prove (And Improve) SEO Performance At An Enterprise Level
    While many CMOs and growth leaders chase traffic and rankings, these lagging indicators tell you little about the real-time impact of your strategy. Instead enterprises must shift toward leading indicators as these metrics predict future SEO success.
    Like
    Sad
    Love
    Wow
    Angry
    14
    1 Comentários 0 Compartilhamentos
  • Bonjour, amis! Aujourd'hui, parlons de l'impact de votre marque et de la façon de le rendre plus quantifiable ! Investir dans votre marque est crucial, mais mesurer son efficacité est tout aussi essentiel. Voici 5 façons simples mais puissantes pour suivre les performances de votre marque avec rigueur et pertinence !

    En adoptant une approche structurée, vous pourrez non seulement évaluer le succès de vos efforts, mais aussi en tirer des enseignements précieux pour l'avenir. N'oubliez jamais que chaque petit pas compte dans ce voyage passionnant ! Ensemble, faisons briller nos marques !

    #ImpactDeMarque #MesurerLeSuccès #
    🌟✨ Bonjour, amis! Aujourd'hui, parlons de l'impact de votre marque et de la façon de le rendre plus quantifiable ! 💪📈 Investir dans votre marque est crucial, mais mesurer son efficacité est tout aussi essentiel. Voici 5 façons simples mais puissantes pour suivre les performances de votre marque avec rigueur et pertinence ! 🎯 En adoptant une approche structurée, vous pourrez non seulement évaluer le succès de vos efforts, mais aussi en tirer des enseignements précieux pour l'avenir. 🚀 N'oubliez jamais que chaque petit pas compte dans ce voyage passionnant ! Ensemble, faisons briller nos marques ! 🌈💖 #ImpactDeMarque #MesurerLeSuccès #
    WWW.SEMRUSH.COM
    5 Ways To Make Brand Impact More Quantifiable
    You’ve invested heavily in brand. But how do you know if it’s working? Brand performance can and needs to be measured, but this measurement must come with rigor, structure, and business relevance. Here‘s how.
    1 Comentários 0 Compartilhamentos
  • In a world where 3D printing has become the new frontier of human achievement, it appears that our beloved gadgets are not just printing our wildest dreams, but also a symphony of snaps and crackles that would make even the most seasoned sound engineer weep. Enter the Prunt Printer Firmware—a name that sounds like it was born out of an intense brainstorming session involving too much caffeine and too little sleep.

    Let’s face it, for ages now, Marlin has been the undisputed champion of firmware for custom 3D printers, akin to that one friend who always gets picked first in gym class. But wait! Just when you thought it couldn’t get any better, Klipper slides into the ring, offering some serious competition. Think of Klipper as the underdog in a sports movie—full of potential but still figuring out whether it should be hitting its rivals hard or just trying not to trip over its own laces.

    Now, onto the real magic: controlling the charmingly chaotic duo of Snap and Crackle. It’s almost poetic, isn’t it? You finally invest in a 3D printer, dreaming of creating intricate models, only to have it serenade you with a cacophony reminiscent of a breakfast cereal commercial gone horribly wrong. But fear not! The Prunt Printer Firmware is here to save the day—because who doesn't want their printer to sound like a caffeinated squirrel rather than a well-oiled machine?

    Embracing the Prunt Firmware is like adopting a pet rock. Sure, it’s different, and maybe it doesn’t do much, but it’s unique and, let’s be honest, everyone loves a conversation starter. With Prunt, you can finally rest assured that your 3D printer will not only produce high-quality prints but will also keep Snap and Crackle under control! It’s like having a built-in sound engineer who’s only slightly less competent than your average barista.

    And let’s not overlook the sheer genius of this firmware’s name. “Prunt”? It’s catchy, it’s quirky, and it’s definitely a conversation starter at parties—if you’re still invited to parties after dropping that knowledge bomb. “Oh, you’re using Marlin? How quaint. I’ve upgraded to Prunt. It’s the future!” Cue the blank stares and awkward silence.

    In conclusion, if you’ve ever dreamt of a world where your 3D printer operates smoothly and quietly, devoid of the musical stylings of Snap and Crackle, perhaps it’s time to throw caution to the wind and give Prunt a whirl. After all, in the grand saga of 3D printing, why not add a dash of whimsy to your technical woes?

    Let’s embrace the chaos and let Snap and Crackle have their moment—just as long as they’re under control with Prunt Printer Firmware. Because in the end, isn’t that what we all really want?

    #3DPrinting #PruntFirmware #SnapAndCrackle #MarlinVsKlipper #TechHumor
    In a world where 3D printing has become the new frontier of human achievement, it appears that our beloved gadgets are not just printing our wildest dreams, but also a symphony of snaps and crackles that would make even the most seasoned sound engineer weep. Enter the Prunt Printer Firmware—a name that sounds like it was born out of an intense brainstorming session involving too much caffeine and too little sleep. Let’s face it, for ages now, Marlin has been the undisputed champion of firmware for custom 3D printers, akin to that one friend who always gets picked first in gym class. But wait! Just when you thought it couldn’t get any better, Klipper slides into the ring, offering some serious competition. Think of Klipper as the underdog in a sports movie—full of potential but still figuring out whether it should be hitting its rivals hard or just trying not to trip over its own laces. Now, onto the real magic: controlling the charmingly chaotic duo of Snap and Crackle. It’s almost poetic, isn’t it? You finally invest in a 3D printer, dreaming of creating intricate models, only to have it serenade you with a cacophony reminiscent of a breakfast cereal commercial gone horribly wrong. But fear not! The Prunt Printer Firmware is here to save the day—because who doesn't want their printer to sound like a caffeinated squirrel rather than a well-oiled machine? Embracing the Prunt Firmware is like adopting a pet rock. Sure, it’s different, and maybe it doesn’t do much, but it’s unique and, let’s be honest, everyone loves a conversation starter. With Prunt, you can finally rest assured that your 3D printer will not only produce high-quality prints but will also keep Snap and Crackle under control! It’s like having a built-in sound engineer who’s only slightly less competent than your average barista. And let’s not overlook the sheer genius of this firmware’s name. “Prunt”? It’s catchy, it’s quirky, and it’s definitely a conversation starter at parties—if you’re still invited to parties after dropping that knowledge bomb. “Oh, you’re using Marlin? How quaint. I’ve upgraded to Prunt. It’s the future!” Cue the blank stares and awkward silence. In conclusion, if you’ve ever dreamt of a world where your 3D printer operates smoothly and quietly, devoid of the musical stylings of Snap and Crackle, perhaps it’s time to throw caution to the wind and give Prunt a whirl. After all, in the grand saga of 3D printing, why not add a dash of whimsy to your technical woes? Let’s embrace the chaos and let Snap and Crackle have their moment—just as long as they’re under control with Prunt Printer Firmware. Because in the end, isn’t that what we all really want? #3DPrinting #PruntFirmware #SnapAndCrackle #MarlinVsKlipper #TechHumor
    Keeping Snap and Crackle under Control with Prunt Printer Firmware
    For quite some time now, Marlin has been the firmware of choice for any kind of custom 3D printer, with only Klipper offering some serious competition in the open-source world. …read more
    Like
    Love
    Wow
    Sad
    Angry
    632
    1 Comentários 0 Compartilhamentos
Páginas Impulsionadas