• Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid

    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand.
    Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation.
    At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics.
    Future use cases for AEON include:

    Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio.
    Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings.
    Part inspection, which includes checking parts for defects or ensuring adherence to specifications.
    Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners.

    “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.”

    Using NVIDIA’s Three Computers to Develop AEON 
    To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models.
    Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations.
    AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning.


    This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment.
    In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation.
    “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.”
    Data Comes to Life Through Reality Capture and Omniverse Integration 
    AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas.

    Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure.
    “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.”
    AEON’s Next Steps
    By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON.
    This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data.
    Watch the Hexagon LIVE keynote, explore presentations and read more about AEON.
    All imagery courtesy of Hexagon.
    #hexagon #taps #nvidia #robotics #software
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio. Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon. #hexagon #taps #nvidia #robotics #software
    BLOGS.NVIDIA.COM
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Reality (HxDR) platform powering Hexagon Reality Cloud Studio (RCS). Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. https://blogs.nvidia.com/wp-content/uploads/2025/06/Copy-of-robotics-hxgn-live-blog-1920x1080-1.mp4 This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon.
    Like
    Love
    Wow
    Sad
    Angry
    38
    0 Comentários 0 Compartilhamentos
  • Hello, wonderful people! Today, I want to take a moment to celebrate the incredible advancements happening in the world of 3D printing, especially highlighted at the recent Paris Air Show!

    What an exciting week it has been for the additive manufacturing industry! The #3DExpress has been buzzing with news, showcasing how innovation and creativity are taking flight together! The Paris Air Show is not just a platform for the latest planes; it’s a stage for groundbreaking technologies that promise to revolutionize our future!

    Imagine a world where designing and producing complex aircraft parts becomes not only efficient but also sustainable! The use of 3D printing is paving the way for a greener future, reducing waste and making manufacturing more accessible than ever before. The possibilities are endless, and it’s invigorating to witness how these technologies can transform entire industries! 💪🏽

    During the show, we saw some amazing demonstrations of 3D printed components that are not only lightweight but also incredibly strong. This is a game-changer for aerospace engineering! Every layer printed brings us closer to smarter, more efficient air travel, and who wouldn’t want to be part of that journey?

    Let’s not forget the talented minds behind these innovations! The engineers, designers, and creators are the true superheroes, pushing boundaries and inspiring the next generation to dream bigger! Their passion and dedication remind us that with hard work and determination, we can reach for the stars!

    If you’ve ever doubted the power of creativity and technology, let this be your reminder: the future is bright, and we have the tools to shape it! So, let’s stay curious, keep pushing forward, and embrace every opportunity that comes our way! Together, we can soar to new heights!

    Let’s keep the conversation going about how #3D printing and additive manufacturing can change our world. What are your thoughts on these incredible innovations? Share your ideas and let’s inspire each other!

    #3DPrinting #Innovation #ParisAirShow #AdditiveManufacturing #FutureOfFlight
    🌟✨ Hello, wonderful people! Today, I want to take a moment to celebrate the incredible advancements happening in the world of 3D printing, especially highlighted at the recent Paris Air Show! 🚀🎉 What an exciting week it has been for the additive manufacturing industry! The #3DExpress has been buzzing with news, showcasing how innovation and creativity are taking flight together! 🌈✈️ The Paris Air Show is not just a platform for the latest planes; it’s a stage for groundbreaking technologies that promise to revolutionize our future! Imagine a world where designing and producing complex aircraft parts becomes not only efficient but also sustainable! 🌍💚 The use of 3D printing is paving the way for a greener future, reducing waste and making manufacturing more accessible than ever before. The possibilities are endless, and it’s invigorating to witness how these technologies can transform entire industries! 💪🏽✨ During the show, we saw some amazing demonstrations of 3D printed components that are not only lightweight but also incredibly strong. This is a game-changer for aerospace engineering! 🛠️🔧 Every layer printed brings us closer to smarter, more efficient air travel, and who wouldn’t want to be part of that journey? 🌟🌍 Let’s not forget the talented minds behind these innovations! The engineers, designers, and creators are the true superheroes, pushing boundaries and inspiring the next generation to dream bigger! 💖🔭 Their passion and dedication remind us that with hard work and determination, we can reach for the stars! 🌟 If you’ve ever doubted the power of creativity and technology, let this be your reminder: the future is bright, and we have the tools to shape it! So, let’s stay curious, keep pushing forward, and embrace every opportunity that comes our way! Together, we can soar to new heights! 🚀💖 Let’s keep the conversation going about how #3D printing and additive manufacturing can change our world. What are your thoughts on these incredible innovations? Share your ideas and let’s inspire each other! 🌈✨ #3DPrinting #Innovation #ParisAirShow #AdditiveManufacturing #FutureOfFlight
    #3DExpress: La fabricación aditiva en el Paris Air Show
    ¿Qué ha ocurrido esta semana en la industria de la impresión 3D? En el 3DExpress de hoy te ofrecemos un resumen rápido con las noticias más destacadas de los últimos días. En primer lugar, el Paris Air Show es esta…
    Like
    Love
    Wow
    Sad
    Angry
    287
    1 Comentários 0 Compartilhamentos
  • Nike Introduces the Air Max 1000 its First Fully 3D Printed Sneaker

    Global sportswear leader Nike is reportedly preparing to release the Air Max 1000 Oatmeal, its first fully 3D printed sneaker, with a launch tentatively scheduled for Summer 2025. While Nike has yet to confirm an official release date, industry sources suggest the debut may occur sometime between June and August. The retail price is expected to be approximately This model marks a step in Nike’s exploration of additive manufacturing, enabled through a collaboration with Zellerfeld, a German startup known for its work in fully 3D printed footwear.
    Building Buzz Online
    The “Oatmeal” colorway—a neutral blend of soft beige tones—has already attracted attention on social platforms like TikTok, Instagram, and X. In April, content creator Janelle C. Shuttlesworth described the shoes as “light as air” in a video preview. Sneaker-focused accounts such as JustFreshKicks and TikTok user @shoehefner5 have also offered early walkthroughs. Among fans, the nickname “Foamy Oat” has started to catch on.
    Nike’s 3D printed Air Max 1000 Oatmeal. Photo via Janelle C. Shuttlesworth.
    Before generating buzz online, the sneaker made a public appearance at ComplexCon Las Vegas in November 2024. There, its laceless, sculptural silhouette and smooth, seamless texture stood out—merging futuristic design with signature Air Max elements, such as the visible heel air unit.
    Reimagining the Air Max Legacy
    Drawing inspiration from the original Air Max 1, the Air Max 1000 retains the iconic air cushion in the heel while reinventing the rest of the structure using 3D printing. The shoe’s upper and outsole are formed as a single, continuous piece, produced from ZellerFoam, a proprietary flexible material developed by Zellerfeld.
    Zellerfeld’s fused filament fabricationprocess enables varied material densities throughout the shoe—resulting in a firm, supportive sole paired with a lightweight, breathable upper. The laceless, slip-on design prioritizes ease of wear while reinforcing a sleek, minimalist aesthetic.
    Nike’s Chief Innovation Officer, John Hoke, emphasized the broader impact of the design, noting that the Air Max 1000 “opens up new creative possibilities” and achieves levels of precision and contouring not possible with traditional footwear manufacturing. He also pointed to the sustainability benefits of AM, which produces minimal waste by fabricating only the necessary components.
    Expansion of 3D Printed Footwear Technology
    The Air Max 1000 joins a growing lineup of 3D printed footwear innovations from major brands. Gucci, the Italian luxury brand known for blending traditional craftsmanship with modern techniques, unveiled several Cub3d sneakers as part of its Spring Summer 2025collection. The brand developed Demetra, a material made from at least 70% plant-based ingredients, including viscose, wood pulp, and bio-based polyurethane. The bi-material sole combines an EVA-filled interior for cushioning and a TPU exterior, featuring an Interlocking G pattern that creates a 3D effect.
    Elsewhere, Syntilay, a footwear company combining artificial intelligence with 3D printing, launched a range of custom-fit slides. These slides are designed using AI-generated 3D models, starting with sketch-based concepts that are refined through AI platforms and then transformed into digital 3D designs. The company offers sizing adjustments based on smartphone foot scans, which are integrated into the manufacturing process.
    Join our Additive Manufacturing Advantageevent on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now.
    Who won the2024 3D Printing Industry Awards?
    Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news.
    You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content.
    Featured image shows Nike’s 3D printed Air Max 1000 Oatmeal. Photo via Janelle C. Shuttlesworth.

    Paloma Duran
    Paloma Duran holds a BA in International Relations and an MA in Journalism. Specializing in writing, podcasting, and content and event creation, she works across politics, energy, mining, and technology. With a passion for global trends, Paloma is particularly interested in the impact of technology like 3D printing on shaping our future.
    #nike #introduces #air #max #its
    Nike Introduces the Air Max 1000 its First Fully 3D Printed Sneaker
    Global sportswear leader Nike is reportedly preparing to release the Air Max 1000 Oatmeal, its first fully 3D printed sneaker, with a launch tentatively scheduled for Summer 2025. While Nike has yet to confirm an official release date, industry sources suggest the debut may occur sometime between June and August. The retail price is expected to be approximately This model marks a step in Nike’s exploration of additive manufacturing, enabled through a collaboration with Zellerfeld, a German startup known for its work in fully 3D printed footwear. Building Buzz Online The “Oatmeal” colorway—a neutral blend of soft beige tones—has already attracted attention on social platforms like TikTok, Instagram, and X. In April, content creator Janelle C. Shuttlesworth described the shoes as “light as air” in a video preview. Sneaker-focused accounts such as JustFreshKicks and TikTok user @shoehefner5 have also offered early walkthroughs. Among fans, the nickname “Foamy Oat” has started to catch on. Nike’s 3D printed Air Max 1000 Oatmeal. Photo via Janelle C. Shuttlesworth. Before generating buzz online, the sneaker made a public appearance at ComplexCon Las Vegas in November 2024. There, its laceless, sculptural silhouette and smooth, seamless texture stood out—merging futuristic design with signature Air Max elements, such as the visible heel air unit. Reimagining the Air Max Legacy Drawing inspiration from the original Air Max 1, the Air Max 1000 retains the iconic air cushion in the heel while reinventing the rest of the structure using 3D printing. The shoe’s upper and outsole are formed as a single, continuous piece, produced from ZellerFoam, a proprietary flexible material developed by Zellerfeld. Zellerfeld’s fused filament fabricationprocess enables varied material densities throughout the shoe—resulting in a firm, supportive sole paired with a lightweight, breathable upper. The laceless, slip-on design prioritizes ease of wear while reinforcing a sleek, minimalist aesthetic. Nike’s Chief Innovation Officer, John Hoke, emphasized the broader impact of the design, noting that the Air Max 1000 “opens up new creative possibilities” and achieves levels of precision and contouring not possible with traditional footwear manufacturing. He also pointed to the sustainability benefits of AM, which produces minimal waste by fabricating only the necessary components. Expansion of 3D Printed Footwear Technology The Air Max 1000 joins a growing lineup of 3D printed footwear innovations from major brands. Gucci, the Italian luxury brand known for blending traditional craftsmanship with modern techniques, unveiled several Cub3d sneakers as part of its Spring Summer 2025collection. The brand developed Demetra, a material made from at least 70% plant-based ingredients, including viscose, wood pulp, and bio-based polyurethane. The bi-material sole combines an EVA-filled interior for cushioning and a TPU exterior, featuring an Interlocking G pattern that creates a 3D effect. Elsewhere, Syntilay, a footwear company combining artificial intelligence with 3D printing, launched a range of custom-fit slides. These slides are designed using AI-generated 3D models, starting with sketch-based concepts that are refined through AI platforms and then transformed into digital 3D designs. The company offers sizing adjustments based on smartphone foot scans, which are integrated into the manufacturing process. Join our Additive Manufacturing Advantageevent on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now. Who won the2024 3D Printing Industry Awards? Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news. You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content. Featured image shows Nike’s 3D printed Air Max 1000 Oatmeal. Photo via Janelle C. Shuttlesworth. Paloma Duran Paloma Duran holds a BA in International Relations and an MA in Journalism. Specializing in writing, podcasting, and content and event creation, she works across politics, energy, mining, and technology. With a passion for global trends, Paloma is particularly interested in the impact of technology like 3D printing on shaping our future. #nike #introduces #air #max #its
    3DPRINTINGINDUSTRY.COM
    Nike Introduces the Air Max 1000 its First Fully 3D Printed Sneaker
    Global sportswear leader Nike is reportedly preparing to release the Air Max 1000 Oatmeal, its first fully 3D printed sneaker, with a launch tentatively scheduled for Summer 2025. While Nike has yet to confirm an official release date, industry sources suggest the debut may occur sometime between June and August. The retail price is expected to be approximately $210. This model marks a step in Nike’s exploration of additive manufacturing (AM), enabled through a collaboration with Zellerfeld, a German startup known for its work in fully 3D printed footwear. Building Buzz Online The “Oatmeal” colorway—a neutral blend of soft beige tones—has already attracted attention on social platforms like TikTok, Instagram, and X. In April, content creator Janelle C. Shuttlesworth described the shoes as “light as air” in a video preview. Sneaker-focused accounts such as JustFreshKicks and TikTok user @shoehefner5 have also offered early walkthroughs. Among fans, the nickname “Foamy Oat” has started to catch on. Nike’s 3D printed Air Max 1000 Oatmeal. Photo via Janelle C. Shuttlesworth. Before generating buzz online, the sneaker made a public appearance at ComplexCon Las Vegas in November 2024. There, its laceless, sculptural silhouette and smooth, seamless texture stood out—merging futuristic design with signature Air Max elements, such as the visible heel air unit. Reimagining the Air Max Legacy Drawing inspiration from the original Air Max 1 (1987), the Air Max 1000 retains the iconic air cushion in the heel while reinventing the rest of the structure using 3D printing. The shoe’s upper and outsole are formed as a single, continuous piece, produced from ZellerFoam, a proprietary flexible material developed by Zellerfeld. Zellerfeld’s fused filament fabrication (FFF) process enables varied material densities throughout the shoe—resulting in a firm, supportive sole paired with a lightweight, breathable upper. The laceless, slip-on design prioritizes ease of wear while reinforcing a sleek, minimalist aesthetic. Nike’s Chief Innovation Officer, John Hoke, emphasized the broader impact of the design, noting that the Air Max 1000 “opens up new creative possibilities” and achieves levels of precision and contouring not possible with traditional footwear manufacturing. He also pointed to the sustainability benefits of AM, which produces minimal waste by fabricating only the necessary components. Expansion of 3D Printed Footwear Technology The Air Max 1000 joins a growing lineup of 3D printed footwear innovations from major brands. Gucci, the Italian luxury brand known for blending traditional craftsmanship with modern techniques, unveiled several Cub3d sneakers as part of its Spring Summer 2025 (SS25) collection. The brand developed Demetra, a material made from at least 70% plant-based ingredients, including viscose, wood pulp, and bio-based polyurethane. The bi-material sole combines an EVA-filled interior for cushioning and a TPU exterior, featuring an Interlocking G pattern that creates a 3D effect. Elsewhere, Syntilay, a footwear company combining artificial intelligence with 3D printing, launched a range of custom-fit slides. These slides are designed using AI-generated 3D models, starting with sketch-based concepts that are refined through AI platforms and then transformed into digital 3D designs. The company offers sizing adjustments based on smartphone foot scans, which are integrated into the manufacturing process. Join our Additive Manufacturing Advantage (AMAA) event on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now. Who won the2024 3D Printing Industry Awards? Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news. You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content. Featured image shows Nike’s 3D printed Air Max 1000 Oatmeal. Photo via Janelle C. Shuttlesworth. Paloma Duran Paloma Duran holds a BA in International Relations and an MA in Journalism. Specializing in writing, podcasting, and content and event creation, she works across politics, energy, mining, and technology. With a passion for global trends, Paloma is particularly interested in the impact of technology like 3D printing on shaping our future.
    0 Comentários 0 Compartilhamentos
  • Znamy sie completes a coastal-inspired patisserie in Warsaw

    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" ";
    Japanese architect Shigeru Ban has created the Blue Ocean Domefor the Osaka-Kansai Expo 2025, addressing the urgent issue of marine plastic pollution and raising crucial awareness about it.Named Blue Ocean Dome, the pavilion stands out with its innovative design, comprising three distinct dome types: Dome A, Dome B, and Dome C. Each dome is specifically crafted to host captivating installations and dynamic exhibitions, promising an unforgettable experience for all visitors throughout the event. Image © Taiki FukaoThe project was commissioned by the Zero Emissions Research and Initiatives , a global network of creative minds, seeking solutions to the ever increasing problems of the world.Rather than outright rejecting plastic, the pavilion inspires deep reflection on how we use and manage materials, highlighting our critical responsibility to make sustainable choices for the future.The BOD merges traditional and modern materials—like bamboo, paper, and carbon fiber reinforced plastic—to unlock new and innovative architectural possibilities.Dome A, serving as the striking entrance, is expertly crafted from laminated bamboo. This innovative design not only showcases the beauty of bamboo but also tackles the pressing issue of abandoned bamboo groves in Japan, which pose a risk to land stability due to their shallow root systems.Utilizing raw bamboo for structural purposes is often difficult; however, through advanced processing, it is transformed into thin, laminated boards that boast strength even greater than that of conventional wood. These boards have been skillfully fashioned into a remarkable 19-meter dome, drawing inspiration from traditional Japanese bamboo hats. This project brilliantly turns an environmental challenge into a sustainable architectural solution, highlighting the potential of bamboo as a valuable resource.Dome B stands as the central and largest structure of its kind, boasting a remarkable diameter of 42 meters. It is primarily constructed from Carbon Fiber Reinforced Polymer, a cutting-edge material revered for its extraordinary strength-to-weight ratio—four times stronger than steel yet only one-fifth the weight. While CFRP is predominantly seen in industries such as aerospace and automotive due to its high cost, its application in architecture is pioneering.In this project, the choice of CFRP was not just advantageous; it was essential. The primary goal was to minimize the foundation weight on the reclaimed land of the Expo site, making sustainability a top priority. To mitigate the environmental consequences of deep foundation piles, the structure had to be lighter than the soil excavated for its foundation. CFRP not only met this stringent requirement but also ensured the dome's structural integrity, showcasing a perfect marriage of innovation and environmental responsibility.Dome C, with its impressive 19-meter diameter, is crafted entirely from paper tubes that are 100% recyclable after use. Its innovative design features a three-dimensional truss structure, connected by elegant wooden spheres, evoking the beauty of molecular structures.To champion sustainability and minimize waste following the six-month Expo, the entire BOD pavilion has been meticulously designed for effortless disassembly and relocation. It is anchored by a robust steel foundation system and boasts a modular design that allows it to be conveniently packed into standard shipping containers. After the Expo concludes, this remarkable pavilion will be transported to the Maldives, where it will be transformed into a stunning resort facility, breathing new life into its design and purpose.Recently, Shigeru Ban's Paper Log House was revealed at Philip Johnson's Glass House Venue. In addition, Ban installed his Paper Partition Sheltersfor the victims of the Turkey-Syria earthquake in Mersin and Hatay provinces of Turkey.All images © Hiroyuki Hirai unless otherwise stated.> via Shigeru Ban Architects 
    #znamy #sie #completes #coastalinspired #patisserie
    Znamy sie completes a coastal-inspired patisserie in Warsaw
    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "; Japanese architect Shigeru Ban has created the Blue Ocean Domefor the Osaka-Kansai Expo 2025, addressing the urgent issue of marine plastic pollution and raising crucial awareness about it.Named Blue Ocean Dome, the pavilion stands out with its innovative design, comprising three distinct dome types: Dome A, Dome B, and Dome C. Each dome is specifically crafted to host captivating installations and dynamic exhibitions, promising an unforgettable experience for all visitors throughout the event. Image © Taiki FukaoThe project was commissioned by the Zero Emissions Research and Initiatives , a global network of creative minds, seeking solutions to the ever increasing problems of the world.Rather than outright rejecting plastic, the pavilion inspires deep reflection on how we use and manage materials, highlighting our critical responsibility to make sustainable choices for the future.The BOD merges traditional and modern materials—like bamboo, paper, and carbon fiber reinforced plastic—to unlock new and innovative architectural possibilities.Dome A, serving as the striking entrance, is expertly crafted from laminated bamboo. This innovative design not only showcases the beauty of bamboo but also tackles the pressing issue of abandoned bamboo groves in Japan, which pose a risk to land stability due to their shallow root systems.Utilizing raw bamboo for structural purposes is often difficult; however, through advanced processing, it is transformed into thin, laminated boards that boast strength even greater than that of conventional wood. These boards have been skillfully fashioned into a remarkable 19-meter dome, drawing inspiration from traditional Japanese bamboo hats. This project brilliantly turns an environmental challenge into a sustainable architectural solution, highlighting the potential of bamboo as a valuable resource.Dome B stands as the central and largest structure of its kind, boasting a remarkable diameter of 42 meters. It is primarily constructed from Carbon Fiber Reinforced Polymer, a cutting-edge material revered for its extraordinary strength-to-weight ratio—four times stronger than steel yet only one-fifth the weight. While CFRP is predominantly seen in industries such as aerospace and automotive due to its high cost, its application in architecture is pioneering.In this project, the choice of CFRP was not just advantageous; it was essential. The primary goal was to minimize the foundation weight on the reclaimed land of the Expo site, making sustainability a top priority. To mitigate the environmental consequences of deep foundation piles, the structure had to be lighter than the soil excavated for its foundation. CFRP not only met this stringent requirement but also ensured the dome's structural integrity, showcasing a perfect marriage of innovation and environmental responsibility.Dome C, with its impressive 19-meter diameter, is crafted entirely from paper tubes that are 100% recyclable after use. Its innovative design features a three-dimensional truss structure, connected by elegant wooden spheres, evoking the beauty of molecular structures.To champion sustainability and minimize waste following the six-month Expo, the entire BOD pavilion has been meticulously designed for effortless disassembly and relocation. It is anchored by a robust steel foundation system and boasts a modular design that allows it to be conveniently packed into standard shipping containers. After the Expo concludes, this remarkable pavilion will be transported to the Maldives, where it will be transformed into a stunning resort facility, breathing new life into its design and purpose.Recently, Shigeru Ban's Paper Log House was revealed at Philip Johnson's Glass House Venue. In addition, Ban installed his Paper Partition Sheltersfor the victims of the Turkey-Syria earthquake in Mersin and Hatay provinces of Turkey.All images © Hiroyuki Hirai unless otherwise stated.> via Shigeru Ban Architects  #znamy #sie #completes #coastalinspired #patisserie
    WORLDARCHITECTURE.ORG
    Znamy sie completes a coastal-inspired patisserie in Warsaw
    html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd" Japanese architect Shigeru Ban has created the Blue Ocean Dome (BOD) for the Osaka-Kansai Expo 2025, addressing the urgent issue of marine plastic pollution and raising crucial awareness about it.Named Blue Ocean Dome, the pavilion stands out with its innovative design, comprising three distinct dome types: Dome A, Dome B, and Dome C. Each dome is specifically crafted to host captivating installations and dynamic exhibitions, promising an unforgettable experience for all visitors throughout the event. Image © Taiki FukaoThe project was commissioned by the Zero Emissions Research and Initiatives (ZERI), a global network of creative minds, seeking solutions to the ever increasing problems of the world.Rather than outright rejecting plastic, the pavilion inspires deep reflection on how we use and manage materials, highlighting our critical responsibility to make sustainable choices for the future.The BOD merges traditional and modern materials—like bamboo, paper, and carbon fiber reinforced plastic (CFRP)—to unlock new and innovative architectural possibilities.Dome A, serving as the striking entrance, is expertly crafted from laminated bamboo. This innovative design not only showcases the beauty of bamboo but also tackles the pressing issue of abandoned bamboo groves in Japan, which pose a risk to land stability due to their shallow root systems.Utilizing raw bamboo for structural purposes is often difficult; however, through advanced processing, it is transformed into thin, laminated boards that boast strength even greater than that of conventional wood. These boards have been skillfully fashioned into a remarkable 19-meter dome, drawing inspiration from traditional Japanese bamboo hats. This project brilliantly turns an environmental challenge into a sustainable architectural solution, highlighting the potential of bamboo as a valuable resource.Dome B stands as the central and largest structure of its kind, boasting a remarkable diameter of 42 meters. It is primarily constructed from Carbon Fiber Reinforced Polymer (CFRP), a cutting-edge material revered for its extraordinary strength-to-weight ratio—four times stronger than steel yet only one-fifth the weight. While CFRP is predominantly seen in industries such as aerospace and automotive due to its high cost, its application in architecture is pioneering.In this project, the choice of CFRP was not just advantageous; it was essential. The primary goal was to minimize the foundation weight on the reclaimed land of the Expo site, making sustainability a top priority. To mitigate the environmental consequences of deep foundation piles, the structure had to be lighter than the soil excavated for its foundation. CFRP not only met this stringent requirement but also ensured the dome's structural integrity, showcasing a perfect marriage of innovation and environmental responsibility.Dome C, with its impressive 19-meter diameter, is crafted entirely from paper tubes that are 100% recyclable after use. Its innovative design features a three-dimensional truss structure, connected by elegant wooden spheres, evoking the beauty of molecular structures.To champion sustainability and minimize waste following the six-month Expo, the entire BOD pavilion has been meticulously designed for effortless disassembly and relocation. It is anchored by a robust steel foundation system and boasts a modular design that allows it to be conveniently packed into standard shipping containers. After the Expo concludes, this remarkable pavilion will be transported to the Maldives, where it will be transformed into a stunning resort facility, breathing new life into its design and purpose.Recently, Shigeru Ban's Paper Log House was revealed at Philip Johnson's Glass House Venue. In addition, Ban installed his Paper Partition Shelters (PPS) for the victims of the Turkey-Syria earthquake in Mersin and Hatay provinces of Turkey.All images © Hiroyuki Hirai unless otherwise stated.> via Shigeru Ban Architects 
    0 Comentários 0 Compartilhamentos
  • UMass and MIT Test Cold Spray 3D Printing to Repair Aging Massachusetts Bridge

    Researchers from the US-based University of Massachusetts Amherst, in collaboration with the Massachusetts Institute of TechnologyDepartment of Mechanical Engineering, have applied cold spray to repair the deteriorating “Brown Bridge” in Great Barrington, built in 1949. The project marks the first known use of this method on bridge infrastructure and aims to evaluate its effectiveness as a faster, more cost-effective, and less disruptive alternative to conventional repair techniques.
    “Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” said Simos Gerasimidis, associate professor of civil and environmental engineering at the University of Massachusetts Amherst. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that,” he added.
    The pilot project is also a collaboration with the Massachusetts Department of Transportation, the Massachusetts Technology Collaborative, the U.S. Department of Transportation, and the Federal Highway Administration. It was supported by the Massachusetts Manufacturing Innovation Initiative, which provided essential equipment for the demonstration.
    Members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst.
    Tackling America’s Bridge Crisis with Cold Spray Technology
    Nearly half of the bridges across the United States are in “fair” condition, while 6.8% are classified as “poor,” according to the 2025 Report Card for America’s Infrastructure. In Massachusetts, about 9% of the state’s 5,295 bridges are considered structurally deficient. The costs of restoring this infrastructure are projected to exceed billion—well beyond current funding levels. 
    The cold spray method consists of propelling metal powder particles at high velocity onto the beam’s surface. Successive applications build up additional layers, helping restore its thickness and structural integrity. This method has successfully been used to repair large structures such as submarines, airplanes, and ships, but this marks the first instance of its application to a bridge.
    One of cold spray’s key advantages is its ability to be deployed with minimal traffic disruption.  “Every time you do repairs on a bridge you have to block traffic, you have to make traffic controls for substantial amounts of time,” explained Gerasimidis. “This will allow us toon this actual bridge while cars are going.”
    To enhance precision, the research team integrated 3D LiDAR scanning technology into the process. Unlike visual inspections, which can be subjective and time-consuming, LiDAR creates high-resolution digital models that pinpoint areas of corrosion. This allows teams to develop targeted repair plans and deposit materials only where needed—reducing waste and potentially extending a bridge’s lifespan.
    Next steps: Testing Cold-Sprayed Repairs
    The bridge is scheduled for demolition in the coming years. When that happens, researchers will retrieve the repaired sections for further analysis. They plan to assess the durability, corrosion resistance, and mechanical performance of the cold-sprayed steel in real-world conditions, comparing it to results from laboratory tests.
    “This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” said John Hart, Class of 1922 Professor in the Department of Mechanical Engineering at MIT. “I think we’re just at the beginning of a digital transformation of bridge inspection, repair and maintenance, among many other important use cases.”
    3D Printing for Infrastructure Repairs
    Beyond cold spray techniques, other innovative 3D printing methods are emerging to address construction repair challenges. For example, researchers at University College Londonhave developed an asphalt 3D printer specifically designed to repair road cracks and potholes. “The material properties of 3D printed asphalt are tunable, and combined with the flexibility and efficiency of the printing platform, this technique offers a compelling new design approach to the maintenance of infrastructure,” the UCL team explained.
    Similarly, in 2018, Cintec, a Wales-based international structural engineering firm, contributed to restoring the historic Government building known as the Red House in the Republic of Trinidad and Tobago. This project, managed by Cintec’s North American branch, marked the first use of additive manufacturing within sacrificial structures. It also featured the installation of what are claimed to be the longest reinforcement anchors ever inserted into a structure—measuring an impressive 36.52 meters.
    Join our Additive Manufacturing Advantageevent on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now.
    Who won the2024 3D Printing Industry Awards?
    Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news.
    You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content.
    Featured image shows members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst.
    #umass #mit #test #cold #spray
    UMass and MIT Test Cold Spray 3D Printing to Repair Aging Massachusetts Bridge
    Researchers from the US-based University of Massachusetts Amherst, in collaboration with the Massachusetts Institute of TechnologyDepartment of Mechanical Engineering, have applied cold spray to repair the deteriorating “Brown Bridge” in Great Barrington, built in 1949. The project marks the first known use of this method on bridge infrastructure and aims to evaluate its effectiveness as a faster, more cost-effective, and less disruptive alternative to conventional repair techniques. “Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” said Simos Gerasimidis, associate professor of civil and environmental engineering at the University of Massachusetts Amherst. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that,” he added. The pilot project is also a collaboration with the Massachusetts Department of Transportation, the Massachusetts Technology Collaborative, the U.S. Department of Transportation, and the Federal Highway Administration. It was supported by the Massachusetts Manufacturing Innovation Initiative, which provided essential equipment for the demonstration. Members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst. Tackling America’s Bridge Crisis with Cold Spray Technology Nearly half of the bridges across the United States are in “fair” condition, while 6.8% are classified as “poor,” according to the 2025 Report Card for America’s Infrastructure. In Massachusetts, about 9% of the state’s 5,295 bridges are considered structurally deficient. The costs of restoring this infrastructure are projected to exceed billion—well beyond current funding levels.  The cold spray method consists of propelling metal powder particles at high velocity onto the beam’s surface. Successive applications build up additional layers, helping restore its thickness and structural integrity. This method has successfully been used to repair large structures such as submarines, airplanes, and ships, but this marks the first instance of its application to a bridge. One of cold spray’s key advantages is its ability to be deployed with minimal traffic disruption.  “Every time you do repairs on a bridge you have to block traffic, you have to make traffic controls for substantial amounts of time,” explained Gerasimidis. “This will allow us toon this actual bridge while cars are going.” To enhance precision, the research team integrated 3D LiDAR scanning technology into the process. Unlike visual inspections, which can be subjective and time-consuming, LiDAR creates high-resolution digital models that pinpoint areas of corrosion. This allows teams to develop targeted repair plans and deposit materials only where needed—reducing waste and potentially extending a bridge’s lifespan. Next steps: Testing Cold-Sprayed Repairs The bridge is scheduled for demolition in the coming years. When that happens, researchers will retrieve the repaired sections for further analysis. They plan to assess the durability, corrosion resistance, and mechanical performance of the cold-sprayed steel in real-world conditions, comparing it to results from laboratory tests. “This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” said John Hart, Class of 1922 Professor in the Department of Mechanical Engineering at MIT. “I think we’re just at the beginning of a digital transformation of bridge inspection, repair and maintenance, among many other important use cases.” 3D Printing for Infrastructure Repairs Beyond cold spray techniques, other innovative 3D printing methods are emerging to address construction repair challenges. For example, researchers at University College Londonhave developed an asphalt 3D printer specifically designed to repair road cracks and potholes. “The material properties of 3D printed asphalt are tunable, and combined with the flexibility and efficiency of the printing platform, this technique offers a compelling new design approach to the maintenance of infrastructure,” the UCL team explained. Similarly, in 2018, Cintec, a Wales-based international structural engineering firm, contributed to restoring the historic Government building known as the Red House in the Republic of Trinidad and Tobago. This project, managed by Cintec’s North American branch, marked the first use of additive manufacturing within sacrificial structures. It also featured the installation of what are claimed to be the longest reinforcement anchors ever inserted into a structure—measuring an impressive 36.52 meters. Join our Additive Manufacturing Advantageevent on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now. Who won the2024 3D Printing Industry Awards? Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news. You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content. Featured image shows members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis. Photo via UMass Amherst. #umass #mit #test #cold #spray
    3DPRINTINGINDUSTRY.COM
    UMass and MIT Test Cold Spray 3D Printing to Repair Aging Massachusetts Bridge
    Researchers from the US-based University of Massachusetts Amherst (UMass), in collaboration with the Massachusetts Institute of Technology (MIT) Department of Mechanical Engineering, have applied cold spray to repair the deteriorating “Brown Bridge” in Great Barrington, built in 1949. The project marks the first known use of this method on bridge infrastructure and aims to evaluate its effectiveness as a faster, more cost-effective, and less disruptive alternative to conventional repair techniques. “Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” said Simos Gerasimidis, associate professor of civil and environmental engineering at the University of Massachusetts Amherst. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that,” he added. The pilot project is also a collaboration with the Massachusetts Department of Transportation (MassDOT), the Massachusetts Technology Collaborative (MassTech), the U.S. Department of Transportation, and the Federal Highway Administration. It was supported by the Massachusetts Manufacturing Innovation Initiative, which provided essential equipment for the demonstration. Members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis (left, standing). Photo via UMass Amherst. Tackling America’s Bridge Crisis with Cold Spray Technology Nearly half of the bridges across the United States are in “fair” condition, while 6.8% are classified as “poor,” according to the 2025 Report Card for America’s Infrastructure. In Massachusetts, about 9% of the state’s 5,295 bridges are considered structurally deficient. The costs of restoring this infrastructure are projected to exceed $190 billion—well beyond current funding levels.  The cold spray method consists of propelling metal powder particles at high velocity onto the beam’s surface. Successive applications build up additional layers, helping restore its thickness and structural integrity. This method has successfully been used to repair large structures such as submarines, airplanes, and ships, but this marks the first instance of its application to a bridge. One of cold spray’s key advantages is its ability to be deployed with minimal traffic disruption.  “Every time you do repairs on a bridge you have to block traffic, you have to make traffic controls for substantial amounts of time,” explained Gerasimidis. “This will allow us to [apply the technique] on this actual bridge while cars are going [across].” To enhance precision, the research team integrated 3D LiDAR scanning technology into the process. Unlike visual inspections, which can be subjective and time-consuming, LiDAR creates high-resolution digital models that pinpoint areas of corrosion. This allows teams to develop targeted repair plans and deposit materials only where needed—reducing waste and potentially extending a bridge’s lifespan. Next steps: Testing Cold-Sprayed Repairs The bridge is scheduled for demolition in the coming years. When that happens, researchers will retrieve the repaired sections for further analysis. They plan to assess the durability, corrosion resistance, and mechanical performance of the cold-sprayed steel in real-world conditions, comparing it to results from laboratory tests. “This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” said John Hart, Class of 1922 Professor in the Department of Mechanical Engineering at MIT. “I think we’re just at the beginning of a digital transformation of bridge inspection, repair and maintenance, among many other important use cases.” 3D Printing for Infrastructure Repairs Beyond cold spray techniques, other innovative 3D printing methods are emerging to address construction repair challenges. For example, researchers at University College London (UCL) have developed an asphalt 3D printer specifically designed to repair road cracks and potholes. “The material properties of 3D printed asphalt are tunable, and combined with the flexibility and efficiency of the printing platform, this technique offers a compelling new design approach to the maintenance of infrastructure,” the UCL team explained. Similarly, in 2018, Cintec, a Wales-based international structural engineering firm, contributed to restoring the historic Government building known as the Red House in the Republic of Trinidad and Tobago. This project, managed by Cintec’s North American branch, marked the first use of additive manufacturing within sacrificial structures. It also featured the installation of what are claimed to be the longest reinforcement anchors ever inserted into a structure—measuring an impressive 36.52 meters. Join our Additive Manufacturing Advantage (AMAA) event on July 10th, where AM leaders from Aerospace, Space, and Defense come together to share mission-critical insights. Online and free to attend.Secure your spot now. Who won the2024 3D Printing Industry Awards? Subscribe to the 3D Printing Industry newsletterto keep up with the latest 3D printing news. You can also follow us onLinkedIn, and subscribe to the 3D Printing Industry Youtube channel to access more exclusive content. Featured image shows members of the UMass Amherst and MIT Department of Mechanical Engineering research team, led by Simos Gerasimidis (left, standing). Photo via UMass Amherst.
    0 Comentários 0 Compartilhamentos