• Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA

    AI is packing and shipping efficiency for the retail and consumer packaged goodsindustries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs.
    Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online.
    At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees.
    3D Digital Twins and AI Transform Marketing, Advertising and Product Design
    The meeting of generative AI and 3D product digital twins results in unlimited creative potential.
    Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels.
    The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch.
    Image courtesy of Nestlé
    The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure.
    Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands.
    LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy.
    The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale.
    The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation.
    Image courtesy of Grip
    L’Oréal Gives Marketing and Online Shopping an AI Makeover
    Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI.
    L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines.
    “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.”
    CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences.
    The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates.

    Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products.
    Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare.
    “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.” 

    The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure.
    Rapid Innovation With the NVIDIA Partner Ecosystem
    NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI.
    Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference.
    AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need.
    The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale.
    Physical AI Brings Acceleration to Supply Chain and Logistics
    AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%.
    Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments.
    Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers.
    From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations.
    Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    #retail #reboot #major #global #brands
    Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA
    AI is packing and shipping efficiency for the retail and consumer packaged goodsindustries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs. Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online. At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees. 3D Digital Twins and AI Transform Marketing, Advertising and Product Design The meeting of generative AI and 3D product digital twins results in unlimited creative potential. Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels. The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch. Image courtesy of Nestlé The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure. Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands. LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy. The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale. The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation. Image courtesy of Grip L’Oréal Gives Marketing and Online Shopping an AI Makeover Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI. L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines. “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.” CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences. The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates. Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products. Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare. “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.”  The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure. Rapid Innovation With the NVIDIA Partner Ecosystem NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI. Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference. AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need. The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale. Physical AI Brings Acceleration to Supply Chain and Logistics AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%. Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments. Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers. From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations. Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. #retail #reboot #major #global #brands
    BLOGS.NVIDIA.COM
    Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA
    AI is packing and shipping efficiency for the retail and consumer packaged goods (CPG) industries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs. Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online. At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees. 3D Digital Twins and AI Transform Marketing, Advertising and Product Design The meeting of generative AI and 3D product digital twins results in unlimited creative potential. Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels. The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch. Image courtesy of Nestlé The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure. Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands. LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy. The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale. The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation. Image courtesy of Grip L’Oréal Gives Marketing and Online Shopping an AI Makeover Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI. L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines. “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.” CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences. The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates. Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products. Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare. “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.”  https://blogs.nvidia.com/wp-content/uploads/2025/06/Noli_Demo.mp4 The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure. Rapid Innovation With the NVIDIA Partner Ecosystem NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI. Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference. AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need. The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale. Physical AI Brings Acceleration to Supply Chain and Logistics AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%. Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments. Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers. From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations. Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    Like
    Love
    Sad
    Wow
    Angry
    23
    0 Commentarios 0 Acciones
  • Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid

    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand.
    Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation.
    At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics.
    Future use cases for AEON include:

    Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio.
    Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings.
    Part inspection, which includes checking parts for defects or ensuring adherence to specifications.
    Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners.

    “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.”

    Using NVIDIA’s Three Computers to Develop AEON 
    To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models.
    Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations.
    AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning.


    This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment.
    In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation.
    “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.”
    Data Comes to Life Through Reality Capture and Omniverse Integration 
    AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas.

    Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure.
    “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.”
    AEON’s Next Steps
    By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON.
    This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data.
    Watch the Hexagon LIVE keynote, explore presentations and read more about AEON.
    All imagery courtesy of Hexagon.
    #hexagon #taps #nvidia #robotics #software
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Realityplatform powering Hexagon Reality Cloud Studio. Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon. #hexagon #taps #nvidia #robotics #software
    BLOGS.NVIDIA.COM
    Hexagon Taps NVIDIA Robotics and AI Software to Build and Deploy AEON, a New Humanoid
    As a global labor shortage leaves 50 million positions unfilled across industries like manufacturing and logistics, Hexagon — a global leader in measurement technologies — is developing humanoid robots that can lend a helping hand. Industrial sectors depend on skilled workers to perform a variety of error-prone tasks, including operating high-precision scanners for reality capture — the process of capturing digital data to replicate the real world in simulation. At the Hexagon LIVE Global conference, Hexagon’s robotics division today unveiled AEON — a new humanoid robot built in collaboration with NVIDIA that’s engineered to perform a wide range of industrial applications, from manipulation and asset inspection to reality capture and operator support. Hexagon plans to deploy AEON across automotive, transportation, aerospace, manufacturing, warehousing and logistics. Future use cases for AEON include: Reality capture, which involves automatic planning and then scanning of assets, industrial spaces and environments to generate 3D models. The captured data is then used for advanced visualization and collaboration in the Hexagon Digital Reality (HxDR) platform powering Hexagon Reality Cloud Studio (RCS). Manipulation tasks, such as sorting and moving parts in various industrial and manufacturing settings. Part inspection, which includes checking parts for defects or ensuring adherence to specifications. Industrial operations, including highly dexterous technical tasks like machinery operations, teleoperation and scanning parts using high-end scanners. “The age of general-purpose robotics has arrived, due to technological advances in simulation and physical AI,” said Deepu Talla, vice president of robotics and edge AI at NVIDIA. “Hexagon’s new AEON humanoid embodies the integration of NVIDIA’s three-computer robotics platform and is making a significant leap forward in addressing industry-critical challenges.” Using NVIDIA’s Three Computers to Develop AEON  To build AEON, Hexagon used NVIDIA’s three computers for developing and deploying physical AI systems. They include AI supercomputers to train and fine-tune powerful foundation models; the NVIDIA Omniverse platform, running on NVIDIA OVX servers, for testing and optimizing these models in simulation environments using real and physically based synthetic data; and NVIDIA IGX Thor robotic computers to run the models. Hexagon is exploring using NVIDIA accelerated computing to post-train the NVIDIA Isaac GR00T N1.5 open foundation model to improve robot reasoning and policies, and tapping Isaac GR00T-Mimic to generate vast amounts of synthetic motion data from a few human demonstrations. AEON learns many of its skills through simulations powered by the NVIDIA Isaac platform. Hexagon uses NVIDIA Isaac Sim, a reference robotic simulation application built on Omniverse, to simulate complex robot actions like navigation, locomotion and manipulation. These skills are then refined using reinforcement learning in NVIDIA Isaac Lab, an open-source framework for robot learning. https://blogs.nvidia.com/wp-content/uploads/2025/06/Copy-of-robotics-hxgn-live-blog-1920x1080-1.mp4 This simulation-first approach enabled Hexagon to fast-track its robotic development, allowing AEON to master core locomotion skills in just 2-3 weeks — rather than 5-6 months — before real-world deployment. In addition, AEON taps into NVIDIA Jetson Orin onboard computers to autonomously move, navigate and perform its tasks in real time, enhancing its speed and accuracy while operating in complex and dynamic environments. Hexagon is also planning to upgrade AEON with NVIDIA IGX Thor to enable functional safety for collaborative operation. “Our goal with AEON was to design an intelligent, autonomous humanoid that addresses the real-world challenges industrial leaders have shared with us over the past months,” said Arnaud Robert, president of Hexagon’s robotics division. “By leveraging NVIDIA’s full-stack robotics and simulation platforms, we were able to deliver a best-in-class humanoid that combines advanced mechatronics, multimodal sensor fusion and real-time AI.” Data Comes to Life Through Reality Capture and Omniverse Integration  AEON will be piloted in factories and warehouses to scan everything from small precision parts and automotive components to large assembly lines and storage areas. Captured data comes to life in RCS, a platform that allows users to collaborate, visualize and share reality-capture data by tapping into HxDR and NVIDIA Omniverse running in the cloud. This removes the constraint of local infrastructure. “Digital twins offer clear advantages, but adoption has been challenging in several industries,” said Lucas Heinzle, vice president of research and development at Hexagon’s robotics division. “AEON’s sophisticated sensor suite enables the integration of reality data capture with NVIDIA Omniverse, streamlining workflows for our customers and moving us closer to making digital twins a mainstream tool for collaboration and innovation.” AEON’s Next Steps By adopting the OpenUSD framework and developing on Omniverse, Hexagon can generate high-fidelity digital twins from scanned data — establishing a data flywheel to continuously train AEON. This latest work with Hexagon is helping shape the future of physical AI — delivering scalable, efficient solutions to address the challenges faced by industries that depend on capturing real-world data. Watch the Hexagon LIVE keynote, explore presentations and read more about AEON. All imagery courtesy of Hexagon.
    Like
    Love
    Wow
    Sad
    Angry
    38
    0 Commentarios 0 Acciones
  • Reallusion releases Character Creator 4.54 and iClone 8.54

    Character generator and real-time animation tool get updates to AI Smart Search, plus new lower-cost iContent licenses for stock assets.
    Reallusion releases Character Creator 4.54 and iClone 8.54 Character generator and real-time animation tool get updates to AI Smart Search, plus new lower-cost iContent licenses for stock assets.
    Reallusion releases Character Creator 4.54 and iClone 8.54
    Character generator and real-time animation tool get updates to AI Smart Search, plus new lower-cost iContent licenses for stock assets.
    1 Commentarios 0 Acciones
  • Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety

    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse.
    Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehiclesacross countless real-world and edge-case scenarios without the risks and costs of physical testing.
    These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models— neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation.
    To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools.
    Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale.
    Universal Scene Description, a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale.
    NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale.
    Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models.

    Foundations for Scalable, Realistic Simulation
    Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots.

    In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools.
    Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos.
    Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing.
    The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases.
    Driving the Future of AV Safety
    To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety.
    The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems.
    These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks.

    At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance.
    Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay:

    Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks.
    Get Plugged Into the World of OpenUSD
    Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote.
    Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14.
    Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute.
    Explore the Alliance for OpenUSD forum and the AOUSD website.
    Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X.
    #into #omniverse #world #foundation #models
    Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety
    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse. Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehiclesacross countless real-world and edge-case scenarios without the risks and costs of physical testing. These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models— neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation. To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools. Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale. Universal Scene Description, a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale. NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale. Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models. Foundations for Scalable, Realistic Simulation Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots. In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools. Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos. Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing. The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases. Driving the Future of AV Safety To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety. The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems. These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks. At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance. Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay: Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks. Get Plugged Into the World of OpenUSD Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote. Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14. Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute. Explore the Alliance for OpenUSD forum and the AOUSD website. Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X. #into #omniverse #world #foundation #models
    BLOGS.NVIDIA.COM
    Into the Omniverse: World Foundation Models Advance Autonomous Vehicle Simulation and Safety
    Editor’s note: This blog is a part of Into the Omniverse, a series focused on how developers, 3D practitioners and enterprises can transform their workflows using the latest advances in OpenUSD and NVIDIA Omniverse. Simulated driving environments enable engineers to safely and efficiently train, test and validate autonomous vehicles (AVs) across countless real-world and edge-case scenarios without the risks and costs of physical testing. These simulated environments can be created through neural reconstruction of real-world data from AV fleets or generated with world foundation models (WFMs) — neural networks that understand physics and real-world properties. WFMs can be used to generate synthetic datasets for enhanced AV simulation. To help physical AI developers build such simulated environments, NVIDIA unveiled major advances in WFMs at the GTC Paris and CVPR conferences earlier this month. These new capabilities enhance NVIDIA Cosmos — a platform of generative WFMs, advanced tokenizers, guardrails and accelerated data processing tools. Key innovations like Cosmos Predict-2, the Cosmos Transfer-1 NVIDIA preview NIM microservice and Cosmos Reason are improving how AV developers generate synthetic data, build realistic simulated environments and validate safety systems at unprecedented scale. Universal Scene Description (OpenUSD), a unified data framework and standard for physical AI applications, enables seamless integration and interoperability of simulation assets across the development pipeline. OpenUSD standardization plays a critical role in ensuring 3D pipelines are built to scale. NVIDIA Omniverse, a platform of application programming interfaces, software development kits and services for building OpenUSD-based physical AI applications, enables simulations from WFMs and neural reconstruction at world scale. Leading AV organizations — including Foretellix, Mcity, Oxa, Parallel Domain, Plus AI and Uber — are among the first to adopt Cosmos models. Foundations for Scalable, Realistic Simulation Cosmos Predict-2, NVIDIA’s latest WFM, generates high-quality synthetic data by predicting future world states from multimodal inputs like text, images and video. This capability is critical for creating temporally consistent, realistic scenarios that accelerate training and validation of AVs and robots. In addition, Cosmos Transfer, a control model that adds variations in weather, lighting and terrain to existing scenarios, will soon be available to 150,000 developers on CARLA, a leading open-source AV simulator. This greatly expands the broad AV developer community’s access to advanced AI-powered simulation tools. Developers can start integrating synthetic data into their own pipelines using the NVIDIA Physical AI Dataset. The latest release includes 40,000 clips generated using Cosmos. Building on these foundations, the Omniverse Blueprint for AV simulation provides a standardized, API-driven workflow for constructing rich digital twins, replaying real-world sensor data and generating new ground-truth data for closed-loop testing. The blueprint taps into OpenUSD’s layer-stacking and composition arcs, which enable developers to collaborate asynchronously and modify scenes nondestructively. This helps create modular, reusable scenario variants to efficiently generate different weather conditions, traffic patterns and edge cases. Driving the Future of AV Safety To bolster the operational safety of AV systems, NVIDIA earlier this year introduced NVIDIA Halos — a comprehensive safety platform that integrates the company’s full automotive hardware and software stack with AI research focused on AV safety. The new Cosmos models — Cosmos Predict- 2, Cosmos Transfer- 1 NIM and Cosmos Reason — deliver further safety enhancements to the Halos platform, enabling developers to create diverse, controllable and realistic scenarios for training and validating AV systems. These models, trained on massive multimodal datasets including driving data, amplify the breadth and depth of simulation, allowing for robust scenario coverage — including rare and safety-critical events — while supporting post-training customization for specialized AV tasks. At CVPR, NVIDIA was recognized as an Autonomous Grand Challenge winner, highlighting its leadership in advancing end-to-end AV workflows. The challenge used OpenUSD’s robust metadata and interoperability to simulate sensor inputs and vehicle trajectories in semi-reactive environments, achieving state-of-the-art results in safety and compliance. Learn more about how developers are leveraging tools like CARLA, Cosmos, and Omniverse to advance AV simulation in this livestream replay: Hear NVIDIA Director of Autonomous Vehicle Research Marco Pavone on the NVIDIA AI Podcast share how digital twins and high-fidelity simulation are improving vehicle testing, accelerating development and reducing real-world risks. Get Plugged Into the World of OpenUSD Learn more about what’s next for AV simulation with OpenUSD by watching the replay of NVIDIA founder and CEO Jensen Huang’s GTC Paris keynote. Looking for more live opportunities to learn more about OpenUSD? Don’t miss sessions and labs happening at SIGGRAPH 2025, August 10–14. Discover why developers and 3D practitioners are using OpenUSD and learn how to optimize 3D workflows with the self-paced “Learn OpenUSD” curriculum for 3D developers and practitioners, available for free through the NVIDIA Deep Learning Institute. Explore the Alliance for OpenUSD forum and the AOUSD website. Stay up to date by subscribing to NVIDIA Omniverse news, joining the community and following NVIDIA Omniverse on Instagram, LinkedIn, Medium and X.
    0 Commentarios 0 Acciones
  • Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler

    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production.
    Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below.
    Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder.
    In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session.
    From Concept to Completion
    To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms.
    For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI.
    ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated.
    Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY.
    NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU.
    ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images.
    Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost.
    LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY.
    “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY 

    Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models.
    Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch.
    To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x.
    Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started.
    Photorealistic renders. Image courtesy of FITY.
    Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time.
    Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY.
    “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY

    Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #startup #uses #nvidia #rtxpowered #generative
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #startup #uses #nvidia #rtxpowered #generative
    BLOGS.NVIDIA.COM
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. Read more about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from $999. GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. Save the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptation (LoRA) models — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    0 Commentarios 0 Acciones
  • HOW DISGUISE BUILT OUT THE VIRTUAL ENVIRONMENTS FOR A MINECRAFT MOVIE

    By TREVOR HOGG

    Images courtesy of Warner Bros. Pictures.

    Rather than a world constructed around photorealistic pixels, a video game created by Markus Persson has taken the boxier 3D voxel route, which has become its signature aesthetic, and sparked an international phenomenon that finally gets adapted into a feature with the release of A Minecraft Movie. Brought onboard to help filmmaker Jared Hess in creating the environments that the cast of Jason Momoa, Jack Black, Sebastian Hansen, Emma Myers and Danielle Brooks find themselves inhabiting was Disguise under the direction of Production VFX Supervisor Dan Lemmon.

    “s the Senior Unreal Artist within the Virtual Art Departmenton Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.”
    —Talia Finlayson, Creative Technologist, Disguise

    Interior and exterior environments had to be created, such as the shop owned by Steve.

    “Prior to working on A Minecraft Movie, I held more technical roles, like serving as the Virtual Production LED Volume Operator on a project for Apple TV+ and Paramount Pictures,” notes Talia Finlayson, Creative Technologist for Disguise. “But as the Senior Unreal Artist within the Virtual Art Departmenton Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.” The project provided new opportunities. “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance,” notes Laura Bell, Creative Technologist for Disguise. “But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.”

    Set designs originally created by the art department in Rhinoceros 3D were transformed into fully navigable 3D environments within Unreal Engine. “These scenes were far more than visualizations,” Finlayson remarks. “They were interactive tools used throughout the production pipeline. We would ingest 3D models and concept art, clean and optimize geometry using tools like Blender, Cinema 4D or Maya, then build out the world in Unreal Engine. This included applying materials, lighting and extending environments. These Unreal scenes we created were vital tools across the production and were used for a variety of purposes such as enabling the director to explore shot compositions, block scenes and experiment with camera movement in a virtual space, as well as passing along Unreal Engine scenes to the visual effects vendors so they could align their digital environments and set extensions with the approved production layouts.”

    A virtual exploration of Steve’s shop in Midport Village.

    Certain elements have to be kept in mind when constructing virtual environments. “When building virtual environments, you need to consider what can actually be built, how actors and cameras will move through the space, and what’s safe and practical on set,” Bell observes. “Outside the areas where strict accuracy is required, you want the environments to blend naturally with the original designs from the art department and support the story, creating a space that feels right for the scene, guides the audience’s eye and sets the right tone. Things like composition, lighting and small environmental details can be really fun to work on, but also serve as beautiful additions to help enrich a story.”

    “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance. But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.”
    —Laura Bell, Creative Technologist, Disguise

    Among the buildings that had to be created for Midport Village was Steve’sLava Chicken Shack.

    Concept art was provided that served as visual touchstones. “We received concept art provided by the amazing team of concept artists,” Finlayson states. “Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging. Sometimes we would also help the storyboard artists by sending through images of the Unreal Engine worlds to help them geographically position themselves in the worlds and aid in their storyboarding.” At times, the video game assets came in handy. “Exteriors often involved large-scale landscapes and stylized architectural elements, which had to feel true to the Minecraft world,” Finlayson explains. “In some cases, we brought in geometry from the game itself to help quickly block out areas. For example, we did this for the Elytra Flight Chase sequence, which takes place through a large canyon.”

    Flexibility was critical. “A key technical challenge we faced was ensuring that the Unreal levels were built in a way that allowed for fast and flexible iteration,” Finlayson remarks. “Since our environments were constantly being reviewed by the director, production designer, DP and VFX supervisor, we needed to be able to respond quickly to feedback, sometimes live during a review session. To support this, we had to keep our scenes modular and well-organized; that meant breaking environments down into manageable components and maintaining clean naming conventions. By setting up the levels this way, we could make layout changes, swap assets or adjust lighting on the fly without breaking the scene or slowing down the process.” Production schedules influence the workflows, pipelines and techniques. “No two projects will ever feel exactly the same,” Bell notes. “For example, Pat Younisadapted his typical VR setup to allow scene reviews using a PS5 controller, which made it much more comfortable and accessible for the director. On a more technical side, because everything was cubes and voxels, my Blender workflow ended up being way heavier on the re-mesh modifier than usual, definitely not something I’ll run into again anytime soon!”

    A virtual study and final still of the cast members standing outside of the Lava Chicken Shack.

    “We received concept art provided by the amazing team of concept artists. Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging.”
    —Talia Finlayson, Creative Technologist, Disguise

    The design and composition of virtual environments tended to remain consistent throughout principal photography. “The only major design change I can recall was the removal of a second story from a building in Midport Village to allow the camera crane to get a clear shot of the chicken perched above Steve’s lava chicken shack,” Finlayson remarks. “I would agree that Midport Village likely went through the most iterations,” Bell responds. “The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled. I remember rebuilding the stairs leading up to the rampart five or six times, using different configurations based on the physically constructed stairs. This was because there were storyboarded sequences of the film’s characters, Henry, Steve and Garrett, being chased by piglins, and the action needed to match what could be achieved practically on set.”

    Virtually conceptualizing the layout of Midport Village.

    Complex virtual environments were constructed for the final battle and the various forest scenes throughout the movie. “What made these particularly challenging was the way physical set pieces were repurposed and repositioned to serve multiple scenes and locations within the story,” Finlayson reveals. “The same built elements had to appear in different parts of the world, so we had to carefully adjust the virtual environments to accommodate those different positions.” Bell is in agreement with her colleague. “The forest scenes were some of the more complex environments to manage. It could get tricky, particularly when the filming schedule shifted. There was one day on set where the order of shots changed unexpectedly, and because the physical sets looked so similar, I initially loaded a different perspective than planned. Fortunately, thanks to our workflow, Lindsay Georgeand I were able to quickly open the recorded sequence in Unreal Engine and swap out the correct virtual environment for the live composite without any disruption to the shoot.”

    An example of the virtual and final version of the Woodland Mansion.

    “Midport Village likely went through the most iterations. The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled.”
    —Laura Bell, Creative Technologist, Disguise

    Extensive detail was given to the center of the sets where the main action unfolds. “For these areas, we received prop layouts from the prop department to ensure accurate placement and alignment with the physical builds,” Finlayson explains. “These central environments were used heavily for storyboarding, blocking and department reviews, so precision was essential. As we moved further out from the practical set, the environments became more about blocking and spatial context rather than fine detail. We worked closely with Production Designer Grant Major to get approval on these extended environments, making sure they aligned with the overall visual direction. We also used creatures and crowd stand-ins provided by the visual effects team. These gave a great sense of scale and placement during early planning stages and allowed other departments to better understand how these elements would be integrated into the scenes.”

    Cast members Sebastian Hansen, Danielle Brooks and Emma Myers stand in front of the Earth Portal Plateau environment.

    Doing a virtual scale study of the Mountainside.

    Practical requirements like camera moves, stunt choreography and crane setups had an impact on the creation of virtual environments. “Sometimes we would adjust layouts slightly to open up areas for tracking shots or rework spaces to accommodate key action beats, all while keeping the environment feeling cohesive and true to the Minecraft world,” Bell states. “Simulcam bridged the physical and virtual worlds on set, overlaying Unreal Engine environments onto live-action scenes in real-time, giving the director, DP and other department heads a fully-realized preview of shots and enabling precise, informed decisions during production. It also recorded critical production data like camera movement paths, which was handed over to the post-production team to give them the exact tracks they needed, streamlining the visual effects pipeline.”

    Piglots cause mayhem during the Wingsuit Chase.

    Virtual versions of the exterior and interior of the Safe House located in the Enchanted Woods.

    “One of the biggest challenges for me was managing constant iteration while keeping our environments clean, organized and easy to update,” Finlayson notes. “Because the virtual sets were reviewed regularly by the director and other heads of departments, feedback was often implemented live in the room. This meant the environments had to be flexible. But overall, this was an amazing project to work on, and I am so grateful for the incredible VAD team I was a part of – Heide Nichols, Pat Younis, Jake Tuckand Laura. Everyone on this team worked so collaboratively, seamlessly and in such a supportive way that I never felt like I was out of my depth.” There was another challenge that is more to do with familiarity. “Having a VAD on a film is still a relatively new process in production,” Bell states. “There were moments where other departments were still learning what we did and how to best work with us. That said, the response was overwhelmingly positive. I remember being on set at the Simulcam station and seeing how excited people were to look at the virtual environments as they walked by, often stopping for a chat and a virtual tour. Instead of seeing just a huge blue curtain, they were stoked to see something Minecraft and could get a better sense of what they were actually shooting.”
    #how #disguise #built #out #virtual
    HOW DISGUISE BUILT OUT THE VIRTUAL ENVIRONMENTS FOR A MINECRAFT MOVIE
    By TREVOR HOGG Images courtesy of Warner Bros. Pictures. Rather than a world constructed around photorealistic pixels, a video game created by Markus Persson has taken the boxier 3D voxel route, which has become its signature aesthetic, and sparked an international phenomenon that finally gets adapted into a feature with the release of A Minecraft Movie. Brought onboard to help filmmaker Jared Hess in creating the environments that the cast of Jason Momoa, Jack Black, Sebastian Hansen, Emma Myers and Danielle Brooks find themselves inhabiting was Disguise under the direction of Production VFX Supervisor Dan Lemmon. “s the Senior Unreal Artist within the Virtual Art Departmenton Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.” —Talia Finlayson, Creative Technologist, Disguise Interior and exterior environments had to be created, such as the shop owned by Steve. “Prior to working on A Minecraft Movie, I held more technical roles, like serving as the Virtual Production LED Volume Operator on a project for Apple TV+ and Paramount Pictures,” notes Talia Finlayson, Creative Technologist for Disguise. “But as the Senior Unreal Artist within the Virtual Art Departmenton Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.” The project provided new opportunities. “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance,” notes Laura Bell, Creative Technologist for Disguise. “But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.” Set designs originally created by the art department in Rhinoceros 3D were transformed into fully navigable 3D environments within Unreal Engine. “These scenes were far more than visualizations,” Finlayson remarks. “They were interactive tools used throughout the production pipeline. We would ingest 3D models and concept art, clean and optimize geometry using tools like Blender, Cinema 4D or Maya, then build out the world in Unreal Engine. This included applying materials, lighting and extending environments. These Unreal scenes we created were vital tools across the production and were used for a variety of purposes such as enabling the director to explore shot compositions, block scenes and experiment with camera movement in a virtual space, as well as passing along Unreal Engine scenes to the visual effects vendors so they could align their digital environments and set extensions with the approved production layouts.” A virtual exploration of Steve’s shop in Midport Village. Certain elements have to be kept in mind when constructing virtual environments. “When building virtual environments, you need to consider what can actually be built, how actors and cameras will move through the space, and what’s safe and practical on set,” Bell observes. “Outside the areas where strict accuracy is required, you want the environments to blend naturally with the original designs from the art department and support the story, creating a space that feels right for the scene, guides the audience’s eye and sets the right tone. Things like composition, lighting and small environmental details can be really fun to work on, but also serve as beautiful additions to help enrich a story.” “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance. But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.” —Laura Bell, Creative Technologist, Disguise Among the buildings that had to be created for Midport Village was Steve’sLava Chicken Shack. Concept art was provided that served as visual touchstones. “We received concept art provided by the amazing team of concept artists,” Finlayson states. “Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging. Sometimes we would also help the storyboard artists by sending through images of the Unreal Engine worlds to help them geographically position themselves in the worlds and aid in their storyboarding.” At times, the video game assets came in handy. “Exteriors often involved large-scale landscapes and stylized architectural elements, which had to feel true to the Minecraft world,” Finlayson explains. “In some cases, we brought in geometry from the game itself to help quickly block out areas. For example, we did this for the Elytra Flight Chase sequence, which takes place through a large canyon.” Flexibility was critical. “A key technical challenge we faced was ensuring that the Unreal levels were built in a way that allowed for fast and flexible iteration,” Finlayson remarks. “Since our environments were constantly being reviewed by the director, production designer, DP and VFX supervisor, we needed to be able to respond quickly to feedback, sometimes live during a review session. To support this, we had to keep our scenes modular and well-organized; that meant breaking environments down into manageable components and maintaining clean naming conventions. By setting up the levels this way, we could make layout changes, swap assets or adjust lighting on the fly without breaking the scene or slowing down the process.” Production schedules influence the workflows, pipelines and techniques. “No two projects will ever feel exactly the same,” Bell notes. “For example, Pat Younisadapted his typical VR setup to allow scene reviews using a PS5 controller, which made it much more comfortable and accessible for the director. On a more technical side, because everything was cubes and voxels, my Blender workflow ended up being way heavier on the re-mesh modifier than usual, definitely not something I’ll run into again anytime soon!” A virtual study and final still of the cast members standing outside of the Lava Chicken Shack. “We received concept art provided by the amazing team of concept artists. Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging.” —Talia Finlayson, Creative Technologist, Disguise The design and composition of virtual environments tended to remain consistent throughout principal photography. “The only major design change I can recall was the removal of a second story from a building in Midport Village to allow the camera crane to get a clear shot of the chicken perched above Steve’s lava chicken shack,” Finlayson remarks. “I would agree that Midport Village likely went through the most iterations,” Bell responds. “The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled. I remember rebuilding the stairs leading up to the rampart five or six times, using different configurations based on the physically constructed stairs. This was because there were storyboarded sequences of the film’s characters, Henry, Steve and Garrett, being chased by piglins, and the action needed to match what could be achieved practically on set.” Virtually conceptualizing the layout of Midport Village. Complex virtual environments were constructed for the final battle and the various forest scenes throughout the movie. “What made these particularly challenging was the way physical set pieces were repurposed and repositioned to serve multiple scenes and locations within the story,” Finlayson reveals. “The same built elements had to appear in different parts of the world, so we had to carefully adjust the virtual environments to accommodate those different positions.” Bell is in agreement with her colleague. “The forest scenes were some of the more complex environments to manage. It could get tricky, particularly when the filming schedule shifted. There was one day on set where the order of shots changed unexpectedly, and because the physical sets looked so similar, I initially loaded a different perspective than planned. Fortunately, thanks to our workflow, Lindsay Georgeand I were able to quickly open the recorded sequence in Unreal Engine and swap out the correct virtual environment for the live composite without any disruption to the shoot.” An example of the virtual and final version of the Woodland Mansion. “Midport Village likely went through the most iterations. The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled.” —Laura Bell, Creative Technologist, Disguise Extensive detail was given to the center of the sets where the main action unfolds. “For these areas, we received prop layouts from the prop department to ensure accurate placement and alignment with the physical builds,” Finlayson explains. “These central environments were used heavily for storyboarding, blocking and department reviews, so precision was essential. As we moved further out from the practical set, the environments became more about blocking and spatial context rather than fine detail. We worked closely with Production Designer Grant Major to get approval on these extended environments, making sure they aligned with the overall visual direction. We also used creatures and crowd stand-ins provided by the visual effects team. These gave a great sense of scale and placement during early planning stages and allowed other departments to better understand how these elements would be integrated into the scenes.” Cast members Sebastian Hansen, Danielle Brooks and Emma Myers stand in front of the Earth Portal Plateau environment. Doing a virtual scale study of the Mountainside. Practical requirements like camera moves, stunt choreography and crane setups had an impact on the creation of virtual environments. “Sometimes we would adjust layouts slightly to open up areas for tracking shots or rework spaces to accommodate key action beats, all while keeping the environment feeling cohesive and true to the Minecraft world,” Bell states. “Simulcam bridged the physical and virtual worlds on set, overlaying Unreal Engine environments onto live-action scenes in real-time, giving the director, DP and other department heads a fully-realized preview of shots and enabling precise, informed decisions during production. It also recorded critical production data like camera movement paths, which was handed over to the post-production team to give them the exact tracks they needed, streamlining the visual effects pipeline.” Piglots cause mayhem during the Wingsuit Chase. Virtual versions of the exterior and interior of the Safe House located in the Enchanted Woods. “One of the biggest challenges for me was managing constant iteration while keeping our environments clean, organized and easy to update,” Finlayson notes. “Because the virtual sets were reviewed regularly by the director and other heads of departments, feedback was often implemented live in the room. This meant the environments had to be flexible. But overall, this was an amazing project to work on, and I am so grateful for the incredible VAD team I was a part of – Heide Nichols, Pat Younis, Jake Tuckand Laura. Everyone on this team worked so collaboratively, seamlessly and in such a supportive way that I never felt like I was out of my depth.” There was another challenge that is more to do with familiarity. “Having a VAD on a film is still a relatively new process in production,” Bell states. “There were moments where other departments were still learning what we did and how to best work with us. That said, the response was overwhelmingly positive. I remember being on set at the Simulcam station and seeing how excited people were to look at the virtual environments as they walked by, often stopping for a chat and a virtual tour. Instead of seeing just a huge blue curtain, they were stoked to see something Minecraft and could get a better sense of what they were actually shooting.” #how #disguise #built #out #virtual
    WWW.VFXVOICE.COM
    HOW DISGUISE BUILT OUT THE VIRTUAL ENVIRONMENTS FOR A MINECRAFT MOVIE
    By TREVOR HOGG Images courtesy of Warner Bros. Pictures. Rather than a world constructed around photorealistic pixels, a video game created by Markus Persson has taken the boxier 3D voxel route, which has become its signature aesthetic, and sparked an international phenomenon that finally gets adapted into a feature with the release of A Minecraft Movie. Brought onboard to help filmmaker Jared Hess in creating the environments that the cast of Jason Momoa, Jack Black, Sebastian Hansen, Emma Myers and Danielle Brooks find themselves inhabiting was Disguise under the direction of Production VFX Supervisor Dan Lemmon. “[A]s the Senior Unreal Artist within the Virtual Art Department (VAD) on Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.” —Talia Finlayson, Creative Technologist, Disguise Interior and exterior environments had to be created, such as the shop owned by Steve (Jack Black). “Prior to working on A Minecraft Movie, I held more technical roles, like serving as the Virtual Production LED Volume Operator on a project for Apple TV+ and Paramount Pictures,” notes Talia Finlayson, Creative Technologist for Disguise. “But as the Senior Unreal Artist within the Virtual Art Department (VAD) on Minecraft, I experienced the full creative workflow. What stood out most was how deeply the VAD was embedded across every stage of production. We weren’t working in isolation. From the production designer and director to the VFX supervisor and DP, the VAD became a hub for collaboration.” The project provided new opportunities. “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance,” notes Laura Bell, Creative Technologist for Disguise. “But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.” Set designs originally created by the art department in Rhinoceros 3D were transformed into fully navigable 3D environments within Unreal Engine. “These scenes were far more than visualizations,” Finlayson remarks. “They were interactive tools used throughout the production pipeline. We would ingest 3D models and concept art, clean and optimize geometry using tools like Blender, Cinema 4D or Maya, then build out the world in Unreal Engine. This included applying materials, lighting and extending environments. These Unreal scenes we created were vital tools across the production and were used for a variety of purposes such as enabling the director to explore shot compositions, block scenes and experiment with camera movement in a virtual space, as well as passing along Unreal Engine scenes to the visual effects vendors so they could align their digital environments and set extensions with the approved production layouts.” A virtual exploration of Steve’s shop in Midport Village. Certain elements have to be kept in mind when constructing virtual environments. “When building virtual environments, you need to consider what can actually be built, how actors and cameras will move through the space, and what’s safe and practical on set,” Bell observes. “Outside the areas where strict accuracy is required, you want the environments to blend naturally with the original designs from the art department and support the story, creating a space that feels right for the scene, guides the audience’s eye and sets the right tone. Things like composition, lighting and small environmental details can be really fun to work on, but also serve as beautiful additions to help enrich a story.” “I’ve always loved the physicality of working with an LED volume, both for the immersion it provides and the way that seeing the environment helps shape an actor’s performance. But for A Minecraft Movie, we used Simulcam instead, and it was an incredible experience to live-composite an entire Minecraft world in real-time, especially with nothing on set but blue curtains.” —Laura Bell, Creative Technologist, Disguise Among the buildings that had to be created for Midport Village was Steve’s (Jack Black) Lava Chicken Shack. Concept art was provided that served as visual touchstones. “We received concept art provided by the amazing team of concept artists,” Finlayson states. “Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging. Sometimes we would also help the storyboard artists by sending through images of the Unreal Engine worlds to help them geographically position themselves in the worlds and aid in their storyboarding.” At times, the video game assets came in handy. “Exteriors often involved large-scale landscapes and stylized architectural elements, which had to feel true to the Minecraft world,” Finlayson explains. “In some cases, we brought in geometry from the game itself to help quickly block out areas. For example, we did this for the Elytra Flight Chase sequence, which takes place through a large canyon.” Flexibility was critical. “A key technical challenge we faced was ensuring that the Unreal levels were built in a way that allowed for fast and flexible iteration,” Finlayson remarks. “Since our environments were constantly being reviewed by the director, production designer, DP and VFX supervisor, we needed to be able to respond quickly to feedback, sometimes live during a review session. To support this, we had to keep our scenes modular and well-organized; that meant breaking environments down into manageable components and maintaining clean naming conventions. By setting up the levels this way, we could make layout changes, swap assets or adjust lighting on the fly without breaking the scene or slowing down the process.” Production schedules influence the workflows, pipelines and techniques. “No two projects will ever feel exactly the same,” Bell notes. “For example, Pat Younis [VAD Art Director] adapted his typical VR setup to allow scene reviews using a PS5 controller, which made it much more comfortable and accessible for the director. On a more technical side, because everything was cubes and voxels, my Blender workflow ended up being way heavier on the re-mesh modifier than usual, definitely not something I’ll run into again anytime soon!” A virtual study and final still of the cast members standing outside of the Lava Chicken Shack. “We received concept art provided by the amazing team of concept artists. Not only did they send us 2D artwork, but they often shared the 3D models they used to create those visuals. These models were incredibly helpful as starting points when building out the virtual environments in Unreal Engine; they gave us a clear sense of composition and design intent. Storyboards were also a key part of the process and were constantly being updated as the project evolved. Having access to the latest versions allowed us to tailor the virtual environments to match camera angles, story beats and staging.” —Talia Finlayson, Creative Technologist, Disguise The design and composition of virtual environments tended to remain consistent throughout principal photography. “The only major design change I can recall was the removal of a second story from a building in Midport Village to allow the camera crane to get a clear shot of the chicken perched above Steve’s lava chicken shack,” Finlayson remarks. “I would agree that Midport Village likely went through the most iterations,” Bell responds. “The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled. I remember rebuilding the stairs leading up to the rampart five or six times, using different configurations based on the physically constructed stairs. This was because there were storyboarded sequences of the film’s characters, Henry, Steve and Garrett, being chased by piglins, and the action needed to match what could be achieved practically on set.” Virtually conceptualizing the layout of Midport Village. Complex virtual environments were constructed for the final battle and the various forest scenes throughout the movie. “What made these particularly challenging was the way physical set pieces were repurposed and repositioned to serve multiple scenes and locations within the story,” Finlayson reveals. “The same built elements had to appear in different parts of the world, so we had to carefully adjust the virtual environments to accommodate those different positions.” Bell is in agreement with her colleague. “The forest scenes were some of the more complex environments to manage. It could get tricky, particularly when the filming schedule shifted. There was one day on set where the order of shots changed unexpectedly, and because the physical sets looked so similar, I initially loaded a different perspective than planned. Fortunately, thanks to our workflow, Lindsay George [VP Tech] and I were able to quickly open the recorded sequence in Unreal Engine and swap out the correct virtual environment for the live composite without any disruption to the shoot.” An example of the virtual and final version of the Woodland Mansion. “Midport Village likely went through the most iterations. The archway, in particular, became a visual anchor across different levels. We often placed it off in the distance to help orient both ourselves and the audience and show how far the characters had traveled.” —Laura Bell, Creative Technologist, Disguise Extensive detail was given to the center of the sets where the main action unfolds. “For these areas, we received prop layouts from the prop department to ensure accurate placement and alignment with the physical builds,” Finlayson explains. “These central environments were used heavily for storyboarding, blocking and department reviews, so precision was essential. As we moved further out from the practical set, the environments became more about blocking and spatial context rather than fine detail. We worked closely with Production Designer Grant Major to get approval on these extended environments, making sure they aligned with the overall visual direction. We also used creatures and crowd stand-ins provided by the visual effects team. These gave a great sense of scale and placement during early planning stages and allowed other departments to better understand how these elements would be integrated into the scenes.” Cast members Sebastian Hansen, Danielle Brooks and Emma Myers stand in front of the Earth Portal Plateau environment. Doing a virtual scale study of the Mountainside. Practical requirements like camera moves, stunt choreography and crane setups had an impact on the creation of virtual environments. “Sometimes we would adjust layouts slightly to open up areas for tracking shots or rework spaces to accommodate key action beats, all while keeping the environment feeling cohesive and true to the Minecraft world,” Bell states. “Simulcam bridged the physical and virtual worlds on set, overlaying Unreal Engine environments onto live-action scenes in real-time, giving the director, DP and other department heads a fully-realized preview of shots and enabling precise, informed decisions during production. It also recorded critical production data like camera movement paths, which was handed over to the post-production team to give them the exact tracks they needed, streamlining the visual effects pipeline.” Piglots cause mayhem during the Wingsuit Chase. Virtual versions of the exterior and interior of the Safe House located in the Enchanted Woods. “One of the biggest challenges for me was managing constant iteration while keeping our environments clean, organized and easy to update,” Finlayson notes. “Because the virtual sets were reviewed regularly by the director and other heads of departments, feedback was often implemented live in the room. This meant the environments had to be flexible. But overall, this was an amazing project to work on, and I am so grateful for the incredible VAD team I was a part of – Heide Nichols [VAD Supervisor], Pat Younis, Jake Tuck [Unreal Artist] and Laura. Everyone on this team worked so collaboratively, seamlessly and in such a supportive way that I never felt like I was out of my depth.” There was another challenge that is more to do with familiarity. “Having a VAD on a film is still a relatively new process in production,” Bell states. “There were moments where other departments were still learning what we did and how to best work with us. That said, the response was overwhelmingly positive. I remember being on set at the Simulcam station and seeing how excited people were to look at the virtual environments as they walked by, often stopping for a chat and a virtual tour. Instead of seeing just a huge blue curtain, they were stoked to see something Minecraft and could get a better sense of what they were actually shooting.”
    0 Commentarios 0 Acciones
  • In a world where consistency is key, I often find myself lost in the chaos of fleeting moments. Just like the world's biggest brands that rely on Frontify for digital asset management, I too crave a sense of stability. Yet, the weight of loneliness pulls me down, leaving me to wonder how to save my own heart from this emotional turmoil.

    As brands strive for effortless efficiency, I search for connections that seem just out of reach. The irony of it all: while they save money, I feel like I'm losing pieces of myself, one by one.

    #Loneliness #Heartbreak #EmotionalStruggles #DigitalAssets #Frontify
    In a world where consistency is key, I often find myself lost in the chaos of fleeting moments. Just like the world's biggest brands that rely on Frontify for digital asset management, I too crave a sense of stability. Yet, the weight of loneliness pulls me down, leaving me to wonder how to save my own heart from this emotional turmoil. As brands strive for effortless efficiency, I search for connections that seem just out of reach. The irony of it all: while they save money, I feel like I'm losing pieces of myself, one by one. 💔 #Loneliness #Heartbreak #EmotionalStruggles #DigitalAssets #Frontify
    1 Commentarios 0 Acciones
  • Just when you thought your game assets couldn’t get any more stylized, SideFX drops Project Skylark like a magician pulling a rabbit from a hat. Now you can download free Houdini tools that promise to turn your 3D buildings into architectural masterpieces and your clouds into fluffy, Instagrammable puffs. Who knew procedural generators could make you feel like a real artist without the need for actual talent?

    So, grab your free tools and let the world believe your game is a work of art, while you sit back and enjoy the virtual applause. Remember, it’s not about the destination; it’s about pretending you know what you’re doing along the way!

    #HoudiniTools #GameAssets #ProjectSkylark #3
    Just when you thought your game assets couldn’t get any more stylized, SideFX drops Project Skylark like a magician pulling a rabbit from a hat. Now you can download free Houdini tools that promise to turn your 3D buildings into architectural masterpieces and your clouds into fluffy, Instagrammable puffs. Who knew procedural generators could make you feel like a real artist without the need for actual talent? So, grab your free tools and let the world believe your game is a work of art, while you sit back and enjoy the virtual applause. Remember, it’s not about the destination; it’s about pretending you know what you’re doing along the way! #HoudiniTools #GameAssets #ProjectSkylark #3
    Download free Houdini tools from SideFX’s Project Skylark
    Get custom tools for creating stylized game assets, including procedural generators for 3D buildings, bridges and clouds.
    1 Commentarios 0 Acciones
  • Exciting news for all Blender enthusiasts! Have you heard about ScatterFlow? This incredible add-on brings physics-based scattering to your projects, allowing you to dress environments quickly and effortlessly! Imagine spawning 3D assets that settle beautifully under the influence of gravity—it's like magic!

    No more tedious manual placements; now you can focus on unleashing your creativity and bringing your visions to life! Whether you're a beginner or a seasoned pro, ScatterFlow is here to elevate your Blender experience. Let's create stunning worlds together!

    #Blender #ScatterFlow #3DArt #CreativeCommunity #Inspiration
    ✨🌟 Exciting news for all Blender enthusiasts! 🎉 Have you heard about ScatterFlow? This incredible add-on brings physics-based scattering to your projects, allowing you to dress environments quickly and effortlessly! 🌍💫 Imagine spawning 3D assets that settle beautifully under the influence of gravity—it's like magic! 🪄✨ No more tedious manual placements; now you can focus on unleashing your creativity and bringing your visions to life! 🎨💖 Whether you're a beginner or a seasoned pro, ScatterFlow is here to elevate your Blender experience. Let's create stunning worlds together! 🚀🔥 #Blender #ScatterFlow #3DArt #CreativeCommunity #Inspiration
    ScatterFlow adds physics-based scattering to Blender
    Inexpensive add-on lets you dress environments quickly in Blender by spawning in 3D assets and letting them settle naturally under gravity.
    1 Commentarios 0 Acciones
  • It’s absolutely infuriating how the creative industry is still drowning in mediocrity when it comes to job opportunities for Blender artists. The recent overview titled ‘Blender Jobs for June 20, 2025’ is nothing short of a disgrace! What are we doing here? Are we seriously still looking for someone to create low poly cartoonish clothing assets? This is 2025, people! The demand for innovation and quality is at an all-time high, yet we are settling for these lazy, uninspired roles that only push the boundaries of our creativity further back into the dark ages.

    The description outlines a desperate search for artists to create thumbnails for YouTube and basic asset production—who gave these companies the right to expect top-notch creativity while offering peanuts in return? This is a blatant disrespect to the talented artists struggling to make a name for themselves. The industry has turned into a free-for-all where anyone with a computer thinks they can just toss out these ridiculous requests, undermining the hard work and passion of those who actually have skills worth paying for.

    “Stealth Startup” and “Pizza Party Productions”? Really? Is this some kind of joke? These names scream lack of professionalism and vision. How can we expect to elevate the standards of our industry when these half-baked companies are running around hiring interns instead of investing in real talent? It’s ludicrous! What’s next? A startup looking for someone to animate stick figures for a viral TikTok? Come on!

    Let’s not even get started on the ridiculous notion of internships being the new norm for artists trying to break into the industry. The term “3D Artist Intern” is a euphemism for “overworked and underpaid.” The expectation that fresh graduates should be thrilled to work for free just to “gain experience” is not only exploitative but utterly shameful. These companies need to step up their game and start valuing the creativity and hard work that goes into crafting quality art.

    Every time I scroll through these job postings, I feel my blood boil. Are we going to continue to allow this cycle of mediocrity to persist? It’s time for artists to take a stand and demand better. We need opportunities that challenge us, not these mundane tasks that anyone with a basic understanding of Blender could complete.

    We deserve to work in an environment that fosters creativity, innovation, and respect for our craft. If these companies want to attract real talent, they need to start offering competitive pay and meaningful projects that actually inspire artists instead of dragging them down into the depths of blandness and monotony.

    Wake up, industry! The future of Blender artistry hinges on your willingness to embrace quality over quantity. Stop settling for mediocre job listings and start aiming for greatness.

    #BlenderJobs #3DArtist #CreativityMatters #ArtIndustry #DemandBetter
    It’s absolutely infuriating how the creative industry is still drowning in mediocrity when it comes to job opportunities for Blender artists. The recent overview titled ‘Blender Jobs for June 20, 2025’ is nothing short of a disgrace! What are we doing here? Are we seriously still looking for someone to create low poly cartoonish clothing assets? This is 2025, people! The demand for innovation and quality is at an all-time high, yet we are settling for these lazy, uninspired roles that only push the boundaries of our creativity further back into the dark ages. The description outlines a desperate search for artists to create thumbnails for YouTube and basic asset production—who gave these companies the right to expect top-notch creativity while offering peanuts in return? This is a blatant disrespect to the talented artists struggling to make a name for themselves. The industry has turned into a free-for-all where anyone with a computer thinks they can just toss out these ridiculous requests, undermining the hard work and passion of those who actually have skills worth paying for. “Stealth Startup” and “Pizza Party Productions”? Really? Is this some kind of joke? These names scream lack of professionalism and vision. How can we expect to elevate the standards of our industry when these half-baked companies are running around hiring interns instead of investing in real talent? It’s ludicrous! What’s next? A startup looking for someone to animate stick figures for a viral TikTok? Come on! Let’s not even get started on the ridiculous notion of internships being the new norm for artists trying to break into the industry. The term “3D Artist Intern” is a euphemism for “overworked and underpaid.” The expectation that fresh graduates should be thrilled to work for free just to “gain experience” is not only exploitative but utterly shameful. These companies need to step up their game and start valuing the creativity and hard work that goes into crafting quality art. Every time I scroll through these job postings, I feel my blood boil. Are we going to continue to allow this cycle of mediocrity to persist? It’s time for artists to take a stand and demand better. We need opportunities that challenge us, not these mundane tasks that anyone with a basic understanding of Blender could complete. We deserve to work in an environment that fosters creativity, innovation, and respect for our craft. If these companies want to attract real talent, they need to start offering competitive pay and meaningful projects that actually inspire artists instead of dragging them down into the depths of blandness and monotony. Wake up, industry! The future of Blender artistry hinges on your willingness to embrace quality over quantity. Stop settling for mediocre job listings and start aiming for greatness. #BlenderJobs #3DArtist #CreativityMatters #ArtIndustry #DemandBetter
    Blender Jobs for June 20, 2025
    Here's an overview of the most recent Blender jobs on Blender Artists, ArtStation and 3djobs.xyz: Looking for someone to create some low poly cartoonish clothing asset for my character I'm looking for an artist to make me a Thumbnail for YouTube Vert
    Like
    Love
    Wow
    Angry
    Sad
    219
    1 Commentarios 0 Acciones
Resultados de la búsqueda