• Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA

    AI is packing and shipping efficiency for the retail and consumer packaged goodsindustries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs.
    Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online.
    At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees.
    3D Digital Twins and AI Transform Marketing, Advertising and Product Design
    The meeting of generative AI and 3D product digital twins results in unlimited creative potential.
    Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels.
    The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch.
    Image courtesy of Nestlé
    The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure.
    Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands.
    LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy.
    The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale.
    The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation.
    Image courtesy of Grip
    L’Oréal Gives Marketing and Online Shopping an AI Makeover
    Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI.
    L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines.
    “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.”
    CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences.
    The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates.

    Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products.
    Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare.
    “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.” 

    The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure.
    Rapid Innovation With the NVIDIA Partner Ecosystem
    NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI.
    Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference.
    AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need.
    The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale.
    Physical AI Brings Acceleration to Supply Chain and Logistics
    AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%.
    Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments.
    Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers.
    From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations.
    Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    #retail #reboot #major #global #brands
    Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA
    AI is packing and shipping efficiency for the retail and consumer packaged goodsindustries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs. Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online. At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees. 3D Digital Twins and AI Transform Marketing, Advertising and Product Design The meeting of generative AI and 3D product digital twins results in unlimited creative potential. Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels. The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch. Image courtesy of Nestlé The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure. Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands. LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy. The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale. The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation. Image courtesy of Grip L’Oréal Gives Marketing and Online Shopping an AI Makeover Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI. L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines. “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.” CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences. The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates. Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products. Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare. “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.”  The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure. Rapid Innovation With the NVIDIA Partner Ecosystem NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI. Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference. AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need. The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale. Physical AI Brings Acceleration to Supply Chain and Logistics AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%. Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments. Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers. From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations. Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. #retail #reboot #major #global #brands
    BLOGS.NVIDIA.COM
    Retail Reboot: Major Global Brands Transform End-to-End Operations With NVIDIA
    AI is packing and shipping efficiency for the retail and consumer packaged goods (CPG) industries, with a majority of surveyed companies in the space reporting the technology is increasing revenue and reducing operational costs. Global brands are reimagining every facet of their businesses with AI, from how products are designed and manufactured to how they’re marketed, shipped and experienced in-store and online. At NVIDIA GTC Paris at VivaTech, industry leaders including L’Oréal, LVMH and Nestlé shared how they’re using tools like AI agents and physical AI — powered by NVIDIA AI and simulation technologies — across every step of the product lifecycle to enhance operations and experiences for partners, customers and employees. 3D Digital Twins and AI Transform Marketing, Advertising and Product Design The meeting of generative AI and 3D product digital twins results in unlimited creative potential. Nestlé, the world’s largest food and beverage company, today announced a collaboration with NVIDIA and Accenture to launch a new, AI-powered in-house service that will create high-quality product content at scale for e-commerce and digital media channels. The new content service, based on digital twins powered by the NVIDIA Omniverse platform, creates exact 3D virtual replicas of physical products. Product packaging can be adjusted or localized digitally, enabling seamless integration into various environments, such as seasonal campaigns or channel-specific formats. This means that new creative content can be generated without having to constantly reshoot from scratch. Image courtesy of Nestlé The service is developed in partnership with Accenture Song, using Accenture AI Refinery built on NVIDIA Omniverse for advanced digital twin creation. It uses NVIDIA AI Enterprise for generative AI, hosted on Microsoft Azure for robust cloud infrastructure. Nestlé already has a baseline of 4,000 3D digital products — mainly for global brands — with the ambition to convert a total of 10,000 products into digital twins in the next two years across global and local brands. LVMH, the world’s leading luxury goods company, home to 75 distinguished maisons, is bringing 3D digital twins to its content production processes through its wine and spirits division, Moët Hennessy. The group partnered with content configuration engine Grip to develop a solution using the NVIDIA Omniverse platform, which enables the creation of 3D digital twins that power content variation production. With Grip’s solution, Moët Hennessy teams can quickly generate digital marketing assets and experiences to promote luxury products at scale. The initiative, led by Capucine Lafarge and Chloé Fournier, has been recognized by LVMH as a leading approach to scaling content creation. Image courtesy of Grip L’Oréal Gives Marketing and Online Shopping an AI Makeover Innovation starts at the drawing board. Today, that board is digital — and it’s powered by AI. L’Oréal Groupe, the world’s leading beauty player, announced its collaboration with NVIDIA today. Through this collaboration, L’Oréal and its partner ecosystem will leverage the NVIDIA AI Enterprise platform to transform its consumer beauty experiences, marketing and advertising content pipelines. “AI doesn’t think with the same constraints as a human being. That opens new avenues for creativity,” said Anne Machet, global head of content and entertainment at L’Oréal. “Generative AI enables our teams and partner agencies to explore creative possibilities.” CreAItech, L’Oréal’s generative AI content platform, is augmenting the creativity of marketing and content teams. Combining a modular ecosystem of models, expertise, technologies and partners — including NVIDIA — CreAltech empowers marketers to generate thousands of unique, on-brand images, videos and lines of text for diverse platforms and global audiences. The solution empowers L’Oréal’s marketing teams to quickly iterate on campaigns that improve consumer engagement across social media, e-commerce content and influencer marketing — driving higher conversion rates. Noli.com, the first AI-powered multi-brand marketplace startup founded and backed by the  L’Oréal Groupe, is reinventing how people discover and shop for beauty products. Noli’s AI Beauty Matchmaker experience uses L’Oréal Groupe’s century-long expertise in beauty, including its extensive knowledge of beauty science, beauty tech and consumer insights, built from over 1 million skin data points and analysis of thousands of product formulations. It gives users a BeautyDNA profile with expert-level guidance and personalized product recommendations for skincare and haircare. “Beauty shoppers are often overwhelmed by choice and struggling to find the products that are right for them,” said Amos Susskind, founder and CEO of Noli. “By applying the latest AI models accelerated by NVIDIA and Accenture to the unparalleled knowledge base and expertise of the L’Oréal Groupe, we can provide hyper-personalized, explainable recommendations to our users.”  https://blogs.nvidia.com/wp-content/uploads/2025/06/Noli_Demo.mp4 The Accenture AI Refinery, powered by NVIDIA AI Enterprise, will provide the platform for Noli to experiment and scale. Noli’s new agent models will use NVIDIA NIM and NVIDIA NeMo microservices, including NeMo Retriever, running on Microsoft Azure. Rapid Innovation With the NVIDIA Partner Ecosystem NVIDIA’s ecosystem of solution provider partners empowers retail and CPG companies to innovate faster, personalize customer experiences, and optimize operations with NVIDIA accelerated computing and AI. Global digital agency Monks is reshaping the landscape of AI-driven marketing, creative production and enterprise transformation. At the heart of their innovation lies the Monks.Flow platform that enhances both the speed and sophistication of creative workflows through NVIDIA Omniverse, NVIDIA NIM microservices and Triton Inference Server for lightning-fast inference. AI image solutions provider Bria is helping retail giants like Lidl and L’Oreal to enhance marketing asset creation. Bria AI transforms static product images into compelling, dynamic advertisements that can be quickly scaled for use across any marketing need. The company’s generative AI platform uses NVIDIA Triton Inference Server software and the NVIDIA TensorRT software development kit for accelerated inference, as well as NVIDIA NIM and NeMo microservices for quick image generation at scale. Physical AI Brings Acceleration to Supply Chain and Logistics AI’s impact extends far beyond the digital world. Physical AI-powered warehousing robots, for example, are helping maximize efficiency in retail supply chain operations. Four in five retail companies have reported that AI has helped reduce supply chain operational costs, with 25% reporting cost reductions of at least 10%. Technology providers Lyric, KoiReader Technologies and Exotec are tackling the challenges of integrating AI into complex warehouse environments. Lyric is using the NVIDIA cuOpt GPU-accelerated solver for warehouse network planning and route optimization, and is collaborating with NVIDIA to apply the technology to broader supply chain decision-making problems. KoiReader Technologies is tapping the NVIDIA Metropolis stack for its computer vision solutions within logistics, supply chain and manufacturing environments using the KoiVision Platform. And Exotec is using NVIDIA CUDA libraries and the NVIDIA JetPack software development kit for embedded robotic systems in warehouse and distribution centers. From real-time robotics orchestration to predictive maintenance, these solutions are delivering impact on uptime, throughput and cost savings for supply chain operations. Learn more by joining a follow-up discussion on digital twins and AI-powered creativity with Microsoft, Nestlé, Accenture and NVIDIA at Cannes Lions on Monday, June 16. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    Like
    Love
    Sad
    Wow
    Angry
    23
    0 Comentários 0 Compartilhamentos
  • Fusion and AI: How private sector tech is powering progress at ITER

    In April 2025, at the ITER Private Sector Fusion Workshop in Cadarache, something remarkable unfolded. In a room filled with scientists, engineers and software visionaries, the line between big science and commercial innovation began to blur.  
    Three organisations – Microsoft Research, Arena and Brigantium Engineering – shared how artificial intelligence, already transforming everything from language models to logistics, is now stepping into a new role: helping humanity to unlock the power of nuclear fusion. 
    Each presenter addressed a different part of the puzzle, but the message was the same: AI isn’t just a buzzword anymore. It’s becoming a real tool – practical, powerful and indispensable – for big science and engineering projects, including fusion. 
    “If we think of the agricultural revolution and the industrial revolution, the AI revolution is next – and it’s coming at a pace which is unprecedented,” said Kenji Takeda, director of research incubations at Microsoft Research. 
    Microsoft’s collaboration with ITER is already in motion. Just a month before the workshop, the two teams signed a Memorandum of Understandingto explore how AI can accelerate research and development. This follows ITER’s initial use of Microsoft technology to empower their teams.
    A chatbot in Azure OpenAI service was developed to help staff navigate technical knowledge, on more than a million ITER documents, using natural conversation. GitHub Copilot assists with coding, while AI helps to resolve IT support tickets – those everyday but essential tasks that keep the lights on. 
    But Microsoft’s vision goes deeper. Fusion demands materials that can survive extreme conditions – heat, radiation, pressure – and that’s where AI shows a different kind of potential. MatterGen, a Microsoft Research generative AI model for materials, designs entirely new materials based on specific properties.
    “It’s like ChatGPT,” said Takeda, “but instead of ‘Write me a poem’, we ask it to design a material that can survive as the first wall of a fusion reactor.” 
    The next step? MatterSim – a simulation tool that predicts how these imagined materials will behave in the real world. By combining generation and simulation, Microsoft hopes to uncover materials that don’t yet exist in any catalogue. 
    While Microsoft tackles the atomic scale, Arena is focused on a different challenge: speeding up hardware development. As general manager Michael Frei put it: “Software innovation happens in seconds. In hardware, that loop can take months – or years.” 
    Arena’s answer is Atlas, a multimodal AI platform that acts as an extra set of hands – and eyes – for engineers. It can read data sheets, interpret lab results, analyse circuit diagrams and even interact with lab equipment through software interfaces. “Instead of adjusting an oscilloscope manually,” said Frei, “you can just say, ‘Verify the I2Cprotocol’, and Atlas gets it done.” 
    It doesn’t stop there. Atlas can write and adapt firmware on the fly, responding to real-time conditions. That means tighter feedback loops, faster prototyping and fewer late nights in the lab. Arena aims to make building hardware feel a little more like writing software – fluid, fast and assisted by smart tools. 

    Fusion, of course, isn’t just about atoms and code – it’s also about construction. Gigantic, one-of-a-kind machines don’t build themselves. That’s where Brigantium Engineering comes in.
    Founder Lynton Sutton explained how his team uses “4D planning” – a marriage of 3D CAD models and detailed construction schedules – to visualise how everything comes together over time. “Gantt charts are hard to interpret. 3D models are static. Our job is to bring those together,” he said. 
    The result is a time-lapse-style animation that shows the construction process step by step. It’s proven invaluable for safety reviews and stakeholder meetings. Rather than poring over spreadsheets, teams can simply watch the plan come to life. 
    And there’s more. Brigantium is bringing these models into virtual reality using Unreal Engine – the same one behind many video games. One recent model recreated ITER’s tokamak pit using drone footage and photogrammetry. The experience is fully interactive and can even run in a web browser.
    “We’ve really improved the quality of the visualisation,” said Sutton. “It’s a lot smoother; the textures look a lot better. Eventually, we’ll have this running through a web browser, so anybody on the team can just click on a web link to navigate this 4D model.” 
    Looking forward, Sutton believes AI could help automate the painstaking work of syncing schedules with 3D models. One day, these simulations could reach all the way down to individual bolts and fasteners – not just with impressive visuals, but with critical tools for preventing delays. 
    Despite the different approaches, one theme ran through all three presentations: AI isn’t just a tool for office productivity. It’s becoming a partner in creativity, problem-solving and even scientific discovery. 
    Takeda mentioned that Microsoft is experimenting with “world models” inspired by how video games simulate physics. These models learn about the physical world by watching pixels in the form of videos of real phenomena such as plasma behaviour. “Our thesis is that if you showed this AI videos of plasma, it might learn the physics of plasmas,” he said. 
    It sounds futuristic, but the logic holds. The more AI can learn from the world, the more it can help us understand it – and perhaps even master it. At its heart, the message from the workshop was simple: AI isn’t here to replace the scientist, the engineer or the planner; it’s here to help, and to make their work faster, more flexible and maybe a little more fun.
    As Takeda put it: “Those are just a few examples of how AI is starting to be used at ITER. And it’s just the start of that journey.” 
    If these early steps are any indication, that journey won’t just be faster – it might also be more inspired. 
    #fusion #how #private #sector #tech
    Fusion and AI: How private sector tech is powering progress at ITER
    In April 2025, at the ITER Private Sector Fusion Workshop in Cadarache, something remarkable unfolded. In a room filled with scientists, engineers and software visionaries, the line between big science and commercial innovation began to blur.   Three organisations – Microsoft Research, Arena and Brigantium Engineering – shared how artificial intelligence, already transforming everything from language models to logistics, is now stepping into a new role: helping humanity to unlock the power of nuclear fusion.  Each presenter addressed a different part of the puzzle, but the message was the same: AI isn’t just a buzzword anymore. It’s becoming a real tool – practical, powerful and indispensable – for big science and engineering projects, including fusion.  “If we think of the agricultural revolution and the industrial revolution, the AI revolution is next – and it’s coming at a pace which is unprecedented,” said Kenji Takeda, director of research incubations at Microsoft Research.  Microsoft’s collaboration with ITER is already in motion. Just a month before the workshop, the two teams signed a Memorandum of Understandingto explore how AI can accelerate research and development. This follows ITER’s initial use of Microsoft technology to empower their teams. A chatbot in Azure OpenAI service was developed to help staff navigate technical knowledge, on more than a million ITER documents, using natural conversation. GitHub Copilot assists with coding, while AI helps to resolve IT support tickets – those everyday but essential tasks that keep the lights on.  But Microsoft’s vision goes deeper. Fusion demands materials that can survive extreme conditions – heat, radiation, pressure – and that’s where AI shows a different kind of potential. MatterGen, a Microsoft Research generative AI model for materials, designs entirely new materials based on specific properties. “It’s like ChatGPT,” said Takeda, “but instead of ‘Write me a poem’, we ask it to design a material that can survive as the first wall of a fusion reactor.”  The next step? MatterSim – a simulation tool that predicts how these imagined materials will behave in the real world. By combining generation and simulation, Microsoft hopes to uncover materials that don’t yet exist in any catalogue.  While Microsoft tackles the atomic scale, Arena is focused on a different challenge: speeding up hardware development. As general manager Michael Frei put it: “Software innovation happens in seconds. In hardware, that loop can take months – or years.”  Arena’s answer is Atlas, a multimodal AI platform that acts as an extra set of hands – and eyes – for engineers. It can read data sheets, interpret lab results, analyse circuit diagrams and even interact with lab equipment through software interfaces. “Instead of adjusting an oscilloscope manually,” said Frei, “you can just say, ‘Verify the I2Cprotocol’, and Atlas gets it done.”  It doesn’t stop there. Atlas can write and adapt firmware on the fly, responding to real-time conditions. That means tighter feedback loops, faster prototyping and fewer late nights in the lab. Arena aims to make building hardware feel a little more like writing software – fluid, fast and assisted by smart tools.  Fusion, of course, isn’t just about atoms and code – it’s also about construction. Gigantic, one-of-a-kind machines don’t build themselves. That’s where Brigantium Engineering comes in. Founder Lynton Sutton explained how his team uses “4D planning” – a marriage of 3D CAD models and detailed construction schedules – to visualise how everything comes together over time. “Gantt charts are hard to interpret. 3D models are static. Our job is to bring those together,” he said.  The result is a time-lapse-style animation that shows the construction process step by step. It’s proven invaluable for safety reviews and stakeholder meetings. Rather than poring over spreadsheets, teams can simply watch the plan come to life.  And there’s more. Brigantium is bringing these models into virtual reality using Unreal Engine – the same one behind many video games. One recent model recreated ITER’s tokamak pit using drone footage and photogrammetry. The experience is fully interactive and can even run in a web browser. “We’ve really improved the quality of the visualisation,” said Sutton. “It’s a lot smoother; the textures look a lot better. Eventually, we’ll have this running through a web browser, so anybody on the team can just click on a web link to navigate this 4D model.”  Looking forward, Sutton believes AI could help automate the painstaking work of syncing schedules with 3D models. One day, these simulations could reach all the way down to individual bolts and fasteners – not just with impressive visuals, but with critical tools for preventing delays.  Despite the different approaches, one theme ran through all three presentations: AI isn’t just a tool for office productivity. It’s becoming a partner in creativity, problem-solving and even scientific discovery.  Takeda mentioned that Microsoft is experimenting with “world models” inspired by how video games simulate physics. These models learn about the physical world by watching pixels in the form of videos of real phenomena such as plasma behaviour. “Our thesis is that if you showed this AI videos of plasma, it might learn the physics of plasmas,” he said.  It sounds futuristic, but the logic holds. The more AI can learn from the world, the more it can help us understand it – and perhaps even master it. At its heart, the message from the workshop was simple: AI isn’t here to replace the scientist, the engineer or the planner; it’s here to help, and to make their work faster, more flexible and maybe a little more fun. As Takeda put it: “Those are just a few examples of how AI is starting to be used at ITER. And it’s just the start of that journey.”  If these early steps are any indication, that journey won’t just be faster – it might also be more inspired.  #fusion #how #private #sector #tech
    WWW.COMPUTERWEEKLY.COM
    Fusion and AI: How private sector tech is powering progress at ITER
    In April 2025, at the ITER Private Sector Fusion Workshop in Cadarache, something remarkable unfolded. In a room filled with scientists, engineers and software visionaries, the line between big science and commercial innovation began to blur.   Three organisations – Microsoft Research, Arena and Brigantium Engineering – shared how artificial intelligence (AI), already transforming everything from language models to logistics, is now stepping into a new role: helping humanity to unlock the power of nuclear fusion.  Each presenter addressed a different part of the puzzle, but the message was the same: AI isn’t just a buzzword anymore. It’s becoming a real tool – practical, powerful and indispensable – for big science and engineering projects, including fusion.  “If we think of the agricultural revolution and the industrial revolution, the AI revolution is next – and it’s coming at a pace which is unprecedented,” said Kenji Takeda, director of research incubations at Microsoft Research.  Microsoft’s collaboration with ITER is already in motion. Just a month before the workshop, the two teams signed a Memorandum of Understanding (MoU) to explore how AI can accelerate research and development. This follows ITER’s initial use of Microsoft technology to empower their teams. A chatbot in Azure OpenAI service was developed to help staff navigate technical knowledge, on more than a million ITER documents, using natural conversation. GitHub Copilot assists with coding, while AI helps to resolve IT support tickets – those everyday but essential tasks that keep the lights on.  But Microsoft’s vision goes deeper. Fusion demands materials that can survive extreme conditions – heat, radiation, pressure – and that’s where AI shows a different kind of potential. MatterGen, a Microsoft Research generative AI model for materials, designs entirely new materials based on specific properties. “It’s like ChatGPT,” said Takeda, “but instead of ‘Write me a poem’, we ask it to design a material that can survive as the first wall of a fusion reactor.”  The next step? MatterSim – a simulation tool that predicts how these imagined materials will behave in the real world. By combining generation and simulation, Microsoft hopes to uncover materials that don’t yet exist in any catalogue.  While Microsoft tackles the atomic scale, Arena is focused on a different challenge: speeding up hardware development. As general manager Michael Frei put it: “Software innovation happens in seconds. In hardware, that loop can take months – or years.”  Arena’s answer is Atlas, a multimodal AI platform that acts as an extra set of hands – and eyes – for engineers. It can read data sheets, interpret lab results, analyse circuit diagrams and even interact with lab equipment through software interfaces. “Instead of adjusting an oscilloscope manually,” said Frei, “you can just say, ‘Verify the I2C [inter integrated circuit] protocol’, and Atlas gets it done.”  It doesn’t stop there. Atlas can write and adapt firmware on the fly, responding to real-time conditions. That means tighter feedback loops, faster prototyping and fewer late nights in the lab. Arena aims to make building hardware feel a little more like writing software – fluid, fast and assisted by smart tools.  Fusion, of course, isn’t just about atoms and code – it’s also about construction. Gigantic, one-of-a-kind machines don’t build themselves. That’s where Brigantium Engineering comes in. Founder Lynton Sutton explained how his team uses “4D planning” – a marriage of 3D CAD models and detailed construction schedules – to visualise how everything comes together over time. “Gantt charts are hard to interpret. 3D models are static. Our job is to bring those together,” he said.  The result is a time-lapse-style animation that shows the construction process step by step. It’s proven invaluable for safety reviews and stakeholder meetings. Rather than poring over spreadsheets, teams can simply watch the plan come to life.  And there’s more. Brigantium is bringing these models into virtual reality using Unreal Engine – the same one behind many video games. One recent model recreated ITER’s tokamak pit using drone footage and photogrammetry. The experience is fully interactive and can even run in a web browser. “We’ve really improved the quality of the visualisation,” said Sutton. “It’s a lot smoother; the textures look a lot better. Eventually, we’ll have this running through a web browser, so anybody on the team can just click on a web link to navigate this 4D model.”  Looking forward, Sutton believes AI could help automate the painstaking work of syncing schedules with 3D models. One day, these simulations could reach all the way down to individual bolts and fasteners – not just with impressive visuals, but with critical tools for preventing delays.  Despite the different approaches, one theme ran through all three presentations: AI isn’t just a tool for office productivity. It’s becoming a partner in creativity, problem-solving and even scientific discovery.  Takeda mentioned that Microsoft is experimenting with “world models” inspired by how video games simulate physics. These models learn about the physical world by watching pixels in the form of videos of real phenomena such as plasma behaviour. “Our thesis is that if you showed this AI videos of plasma, it might learn the physics of plasmas,” he said.  It sounds futuristic, but the logic holds. The more AI can learn from the world, the more it can help us understand it – and perhaps even master it. At its heart, the message from the workshop was simple: AI isn’t here to replace the scientist, the engineer or the planner; it’s here to help, and to make their work faster, more flexible and maybe a little more fun. As Takeda put it: “Those are just a few examples of how AI is starting to be used at ITER. And it’s just the start of that journey.”  If these early steps are any indication, that journey won’t just be faster – it might also be more inspired. 
    Like
    Love
    Wow
    Sad
    Angry
    490
    2 Comentários 0 Compartilhamentos
  • Rewriting SymCrypt in Rust to modernize Microsoft’s cryptographic library 

    Outdated coding practices and memory-unsafe languages like C are putting software, including cryptographic libraries, at risk. Fortunately, memory-safe languages like Rust, along with formal verification tools, are now mature enough to be used at scale, helping prevent issues like crashes, data corruption, flawed implementation, and side-channel attacks.
    To address these vulnerabilities and improve memory safety, we’re rewriting SymCrypt—Microsoft’s open-source cryptographic library—in Rust. We’re also incorporating formal verification methods. SymCrypt is used in Windows, Azure Linux, Xbox, and other platforms.
    Currently, SymCrypt is primarily written in cross-platform C, with limited use of hardware-specific optimizations through intrinsicsand assembly language. It provides a wide range of algorithms, including AES-GCM, SHA, ECDSA, and the more recent post-quantum algorithms ML-KEM and ML-DSA. 
    Formal verification will confirm that implementations behave as intended and don’t deviate from algorithm specifications, critical for preventing attacks. We’ll also analyze compiled code to detect side-channel leaks caused by timing or hardware-level behavior.
    Proving Rust program properties with Aeneas
    Program verification is the process of proving that a piece of code will always satisfy a given property, no matter the input. Rust’s type system profoundly improves the prospects for program verification by providing strong ownership guarantees, by construction, using a discipline known as “aliasing xor mutability”.
    For example, reasoning about C code often requires proving that two non-const pointers are live and non-overlapping, a property that can depend on external client code. In contrast, Rust’s type system guarantees this property for any two mutably borrowed references.
    As a result, new tools have emerged specifically for verifying Rust code. We chose Aeneasbecause it helps provide a clean separation between code and proofs.
    Developed by Microsoft Azure Research in partnership with Inria, the French National Institute for Research in Digital Science and Technology, Aeneas connects to proof assistants like Lean, allowing us to draw on a large body of mathematical proofs—especially valuable given the mathematical nature of cryptographic algorithms—and benefit from Lean’s active user community.
    Compiling Rust to C supports backward compatibility  
    We recognize that switching to Rust isn’t feasible for all use cases, so we’ll continue to support, extend, and certify C-based APIs as long as users need them. Users won’t see any changes, as Rust runs underneath the existing C APIs.
    Some users compile our C code directly and may rely on specific toolchains or compiler features that complicate the adoption of Rust code. To address this, we will use Eurydice, a Rust-to-C compiler developed by Microsoft Azure Research, to replace handwritten C code with C generated from formally verified Rust. Eurydicecompiles directly from Rust’s MIR intermediate language, and the resulting C code will be checked into the SymCrypt repository alongside the original Rust source code.
    As more users adopt Rust, we’ll continue supporting this compilation path for those who build SymCrypt from source code but aren’t ready to use the Rust compiler. In the long term, we hope to transition users to either use precompiled SymCrypt binaries, or compile from source code in Rust, at which point the Rust-to-C compilation path will no longer be needed.

    Microsoft research podcast

    Ideas: AI and democracy with Madeleine Daepp and Robert Osazuwa Ness
    As the “biggest election year in history” comes to an end, researchers Madeleine Daepp and Robert Osazuwa Ness and Democracy Forward GM Ginny Badanes discuss AI’s impact on democracy, including the tech’s use in Taiwan and India.

    Listen now

    Opens in a new tab
    Timing analysis with Revizor 
    Even software that has been verified for functional correctness can remain vulnerable to low-level security threats, such as side channels caused by timing leaks or speculative execution. These threats operate at the hardware level and can leak private information, such as memory load addresses, branch targets, or division operands, even when the source code is provably correct. 
    To address this, we’re extending Revizor, a tool developed by Microsoft Azure Research, to more effectively analyze SymCrypt binaries. Revizor models microarchitectural leakage and uses fuzzing techniques to systematically uncover instructions that may expose private information through known hardware-level effects.  
    Earlier cryptographic libraries relied on constant-time programming to avoid operations on secret data. However, recent research has shown that this alone is insufficient with today’s CPUs, where every new optimization may open a new side channel. 
    By analyzing binary code for specific compilers and platforms, our extended Revizor tool enables deeper scrutiny of vulnerabilities that aren’t visible in the source code.
    Verified Rust implementations begin with ML-KEM
    This long-term effort is in alignment with the Microsoft Secure Future Initiative and brings together experts across Microsoft, building on decades of Microsoft Research investment in program verification and security tooling.
    A preliminary version of ML-KEM in Rust is now available on the preview feature/verifiedcryptobranch of the SymCrypt repository. We encourage users to try the Rust build and share feedback. Looking ahead, we plan to support direct use of the same cryptographic library in Rust without requiring C bindings. 
    Over the coming months, we plan to rewrite, verify, and ship several algorithms in Rust as part of SymCrypt. As our investment in Rust deepens, we expect to gain new insights into how to best leverage the language for high-assurance cryptographic implementations with low-level optimizations. 
    As performance is key to scalability and sustainability, we’re holding new implementations to a high bar using our benchmarking tools to match or exceed existing systems.
    Looking forward 
    This is a pivotal moment for high-assurance software. Microsoft’s investment in Rust and formal verification presents a rare opportunity to advance one of our key libraries. We’re excited to scale this work and ultimately deliver an industrial-grade, Rust-based, FIPS-certified cryptographic library.
    Opens in a new tab
    #rewriting #symcrypt #rust #modernize #microsofts
    Rewriting SymCrypt in Rust to modernize Microsoft’s cryptographic library 
    Outdated coding practices and memory-unsafe languages like C are putting software, including cryptographic libraries, at risk. Fortunately, memory-safe languages like Rust, along with formal verification tools, are now mature enough to be used at scale, helping prevent issues like crashes, data corruption, flawed implementation, and side-channel attacks. To address these vulnerabilities and improve memory safety, we’re rewriting SymCrypt—Microsoft’s open-source cryptographic library—in Rust. We’re also incorporating formal verification methods. SymCrypt is used in Windows, Azure Linux, Xbox, and other platforms. Currently, SymCrypt is primarily written in cross-platform C, with limited use of hardware-specific optimizations through intrinsicsand assembly language. It provides a wide range of algorithms, including AES-GCM, SHA, ECDSA, and the more recent post-quantum algorithms ML-KEM and ML-DSA.  Formal verification will confirm that implementations behave as intended and don’t deviate from algorithm specifications, critical for preventing attacks. We’ll also analyze compiled code to detect side-channel leaks caused by timing or hardware-level behavior. Proving Rust program properties with Aeneas Program verification is the process of proving that a piece of code will always satisfy a given property, no matter the input. Rust’s type system profoundly improves the prospects for program verification by providing strong ownership guarantees, by construction, using a discipline known as “aliasing xor mutability”. For example, reasoning about C code often requires proving that two non-const pointers are live and non-overlapping, a property that can depend on external client code. In contrast, Rust’s type system guarantees this property for any two mutably borrowed references. As a result, new tools have emerged specifically for verifying Rust code. We chose Aeneasbecause it helps provide a clean separation between code and proofs. Developed by Microsoft Azure Research in partnership with Inria, the French National Institute for Research in Digital Science and Technology, Aeneas connects to proof assistants like Lean, allowing us to draw on a large body of mathematical proofs—especially valuable given the mathematical nature of cryptographic algorithms—and benefit from Lean’s active user community. Compiling Rust to C supports backward compatibility   We recognize that switching to Rust isn’t feasible for all use cases, so we’ll continue to support, extend, and certify C-based APIs as long as users need them. Users won’t see any changes, as Rust runs underneath the existing C APIs. Some users compile our C code directly and may rely on specific toolchains or compiler features that complicate the adoption of Rust code. To address this, we will use Eurydice, a Rust-to-C compiler developed by Microsoft Azure Research, to replace handwritten C code with C generated from formally verified Rust. Eurydicecompiles directly from Rust’s MIR intermediate language, and the resulting C code will be checked into the SymCrypt repository alongside the original Rust source code. As more users adopt Rust, we’ll continue supporting this compilation path for those who build SymCrypt from source code but aren’t ready to use the Rust compiler. In the long term, we hope to transition users to either use precompiled SymCrypt binaries, or compile from source code in Rust, at which point the Rust-to-C compilation path will no longer be needed. Microsoft research podcast Ideas: AI and democracy with Madeleine Daepp and Robert Osazuwa Ness As the “biggest election year in history” comes to an end, researchers Madeleine Daepp and Robert Osazuwa Ness and Democracy Forward GM Ginny Badanes discuss AI’s impact on democracy, including the tech’s use in Taiwan and India. Listen now Opens in a new tab Timing analysis with Revizor  Even software that has been verified for functional correctness can remain vulnerable to low-level security threats, such as side channels caused by timing leaks or speculative execution. These threats operate at the hardware level and can leak private information, such as memory load addresses, branch targets, or division operands, even when the source code is provably correct.  To address this, we’re extending Revizor, a tool developed by Microsoft Azure Research, to more effectively analyze SymCrypt binaries. Revizor models microarchitectural leakage and uses fuzzing techniques to systematically uncover instructions that may expose private information through known hardware-level effects.   Earlier cryptographic libraries relied on constant-time programming to avoid operations on secret data. However, recent research has shown that this alone is insufficient with today’s CPUs, where every new optimization may open a new side channel.  By analyzing binary code for specific compilers and platforms, our extended Revizor tool enables deeper scrutiny of vulnerabilities that aren’t visible in the source code. Verified Rust implementations begin with ML-KEM This long-term effort is in alignment with the Microsoft Secure Future Initiative and brings together experts across Microsoft, building on decades of Microsoft Research investment in program verification and security tooling. A preliminary version of ML-KEM in Rust is now available on the preview feature/verifiedcryptobranch of the SymCrypt repository. We encourage users to try the Rust build and share feedback. Looking ahead, we plan to support direct use of the same cryptographic library in Rust without requiring C bindings.  Over the coming months, we plan to rewrite, verify, and ship several algorithms in Rust as part of SymCrypt. As our investment in Rust deepens, we expect to gain new insights into how to best leverage the language for high-assurance cryptographic implementations with low-level optimizations.  As performance is key to scalability and sustainability, we’re holding new implementations to a high bar using our benchmarking tools to match or exceed existing systems. Looking forward  This is a pivotal moment for high-assurance software. Microsoft’s investment in Rust and formal verification presents a rare opportunity to advance one of our key libraries. We’re excited to scale this work and ultimately deliver an industrial-grade, Rust-based, FIPS-certified cryptographic library. Opens in a new tab #rewriting #symcrypt #rust #modernize #microsofts
    WWW.MICROSOFT.COM
    Rewriting SymCrypt in Rust to modernize Microsoft’s cryptographic library 
    Outdated coding practices and memory-unsafe languages like C are putting software, including cryptographic libraries, at risk. Fortunately, memory-safe languages like Rust, along with formal verification tools, are now mature enough to be used at scale, helping prevent issues like crashes, data corruption, flawed implementation, and side-channel attacks. To address these vulnerabilities and improve memory safety, we’re rewriting SymCrypt (opens in new tab)—Microsoft’s open-source cryptographic library—in Rust. We’re also incorporating formal verification methods. SymCrypt is used in Windows, Azure Linux, Xbox, and other platforms. Currently, SymCrypt is primarily written in cross-platform C, with limited use of hardware-specific optimizations through intrinsics (compiler-provided low-level functions) and assembly language (direct processor instructions). It provides a wide range of algorithms, including AES-GCM, SHA, ECDSA, and the more recent post-quantum algorithms ML-KEM and ML-DSA.  Formal verification will confirm that implementations behave as intended and don’t deviate from algorithm specifications, critical for preventing attacks. We’ll also analyze compiled code to detect side-channel leaks caused by timing or hardware-level behavior. Proving Rust program properties with Aeneas Program verification is the process of proving that a piece of code will always satisfy a given property, no matter the input. Rust’s type system profoundly improves the prospects for program verification by providing strong ownership guarantees, by construction, using a discipline known as “aliasing xor mutability”. For example, reasoning about C code often requires proving that two non-const pointers are live and non-overlapping, a property that can depend on external client code. In contrast, Rust’s type system guarantees this property for any two mutably borrowed references. As a result, new tools have emerged specifically for verifying Rust code. We chose Aeneas (opens in new tab) because it helps provide a clean separation between code and proofs. Developed by Microsoft Azure Research in partnership with Inria, the French National Institute for Research in Digital Science and Technology, Aeneas connects to proof assistants like Lean (opens in new tab), allowing us to draw on a large body of mathematical proofs—especially valuable given the mathematical nature of cryptographic algorithms—and benefit from Lean’s active user community. Compiling Rust to C supports backward compatibility   We recognize that switching to Rust isn’t feasible for all use cases, so we’ll continue to support, extend, and certify C-based APIs as long as users need them. Users won’t see any changes, as Rust runs underneath the existing C APIs. Some users compile our C code directly and may rely on specific toolchains or compiler features that complicate the adoption of Rust code. To address this, we will use Eurydice (opens in new tab), a Rust-to-C compiler developed by Microsoft Azure Research, to replace handwritten C code with C generated from formally verified Rust. Eurydice (opens in new tab) compiles directly from Rust’s MIR intermediate language, and the resulting C code will be checked into the SymCrypt repository alongside the original Rust source code. As more users adopt Rust, we’ll continue supporting this compilation path for those who build SymCrypt from source code but aren’t ready to use the Rust compiler. In the long term, we hope to transition users to either use precompiled SymCrypt binaries (via C or Rust APIs), or compile from source code in Rust, at which point the Rust-to-C compilation path will no longer be needed. Microsoft research podcast Ideas: AI and democracy with Madeleine Daepp and Robert Osazuwa Ness As the “biggest election year in history” comes to an end, researchers Madeleine Daepp and Robert Osazuwa Ness and Democracy Forward GM Ginny Badanes discuss AI’s impact on democracy, including the tech’s use in Taiwan and India. Listen now Opens in a new tab Timing analysis with Revizor  Even software that has been verified for functional correctness can remain vulnerable to low-level security threats, such as side channels caused by timing leaks or speculative execution. These threats operate at the hardware level and can leak private information, such as memory load addresses, branch targets, or division operands, even when the source code is provably correct.  To address this, we’re extending Revizor (opens in new tab), a tool developed by Microsoft Azure Research, to more effectively analyze SymCrypt binaries. Revizor models microarchitectural leakage and uses fuzzing techniques to systematically uncover instructions that may expose private information through known hardware-level effects.   Earlier cryptographic libraries relied on constant-time programming to avoid operations on secret data. However, recent research has shown that this alone is insufficient with today’s CPUs, where every new optimization may open a new side channel.  By analyzing binary code for specific compilers and platforms, our extended Revizor tool enables deeper scrutiny of vulnerabilities that aren’t visible in the source code. Verified Rust implementations begin with ML-KEM This long-term effort is in alignment with the Microsoft Secure Future Initiative and brings together experts across Microsoft, building on decades of Microsoft Research investment in program verification and security tooling. A preliminary version of ML-KEM in Rust is now available on the preview feature/verifiedcrypto (opens in new tab) branch of the SymCrypt repository. We encourage users to try the Rust build and share feedback (opens in new tab). Looking ahead, we plan to support direct use of the same cryptographic library in Rust without requiring C bindings.  Over the coming months, we plan to rewrite, verify, and ship several algorithms in Rust as part of SymCrypt. As our investment in Rust deepens, we expect to gain new insights into how to best leverage the language for high-assurance cryptographic implementations with low-level optimizations.  As performance is key to scalability and sustainability, we’re holding new implementations to a high bar using our benchmarking tools to match or exceed existing systems. Looking forward  This is a pivotal moment for high-assurance software. Microsoft’s investment in Rust and formal verification presents a rare opportunity to advance one of our key libraries. We’re excited to scale this work and ultimately deliver an industrial-grade, Rust-based, FIPS-certified cryptographic library. Opens in a new tab
    0 Comentários 0 Compartilhamentos
  • From Rivals to Partners: What’s Up with the Google and OpenAI Cloud Deal?

    Google and OpenAI struck a cloud computing deal in May, according to a Reuters report.
    The deal surprised the industry as the two are seen as major AI rivals.
    Signs of friction between OpenAI and Microsoft may have also fueled the move.
    The partnership is a win-win.OpenAI gets more badly needed computing resources while Google profits from its B investment to boost its cloud computing capacity in 2025.

    In a surprise move, Google and OpenAI inked a deal that will see the AI rivals partnering to address OpenAI’s growing cloud computing needs.
    The story, reported by Reuters, cited anonymous sources saying that the deal had been discussed for months and finalized in May. Around this time, OpenAI has struggled to keep up with demand as its number of weekly active users and business users grew in Q1 2025. There’s also speculation of friction between OpenAI and its biggest investor Microsoft.
    Why the Deal Surprised the Tech Industry
    The rivalry between the two companies hardly needs an introduction. When OpenAI’s ChatGPT launched in November 2022, it posed a huge threat to Google that triggered a code red within the search giant and cloud services provider.
    Since then, Google has launched Bardto compete with OpenAI head-on. However, it had to play catch up with OpenAI’s more advanced ChatGPT AI chatbot. This led to numerous issues with Bard, with critics referring to it as a half-baked product.

    A post on X in February 2023 showed the Bard AI chatbot erroneously stating that the James Webb Telescope took the first picture of an exoplanet. It was, in fact, the European Southern Observatory’s Very Large Telescope that did this in 2004. Google’s parent company Alphabet lost B off its market value within 24 hours as a result.
    Two years on, Gemini made significant strides in terms of accuracy, quoting sources, and depth of information, but is still prone to hallucinations from time to time. You can see examples of these posted on social media, like telling a user to make spicy spaghetti with gasoline or the AI thinking it’s still 2024. 
    And then there’s this gem:

    With the entire industry shifting towards more AI integrations, Google went ahead and integrated its AI suite into Search via AI Overviews. It then doubled down on this integration with AI Mode, an experimental feature that lets you perform AI-powered searches by typing in a question, uploading a photo, or using your voice.
    In the future, AI Mode from Google Search could be a viable competitor to ChatGPT—unless of course, Google decides to bin it along with many of its previous products. Given the scope of the investment, and Gemini’s significant improvement, we doubt AI + Search will be axed.
    It’s a Win-Win for Google and OpenAI—Not So Much for Microsoft?
    In the business world, money and the desire for expansion can break even the biggest rivalries. And the one between the two tech giants isn’t an exception.
    Partly, it could be attributed to OpenAI’s relationship with Microsoft. Although the Redmond, Washington-based company has invested billions in OpenAI and has the resources to meet the latter’s cloud computing needs, their partnership hasn’t always been rosy. 
    Some would say it began when OpenAI CEO Sam Altman was briefly ousted in November 2023, which put a strain on the ‘best bromance in tech’ between him and Microsoft CEO Satya Nadella. Then last year, Microsoft added OpenAI to its list of competitors in the AI space before eventually losing its status as OpenAI’s exclusive cloud provider in January 2025.
    If that wasn’t enough, there’s also the matter of the two companies’ goal of achieving artificial general intelligence. Defined as when OpenAI develops AI systems that generate B in profits, reaching AGI means Microsoft will lose access to the former’s technology. With the company behind ChatGPT expecting to triple its 2025 revenue to from B the previous year, this could happen sooner rather than later.
    While OpenAI already has deals with Microsoft, Oracle, and CoreWeave to provide it with cloud services and access to infrastructure, it needs more and soon as the company has seen massive growth in the past few months.
    In February, OpenAI announced that it had over 400M weekly active users, up from 300M in December 2024. Meanwhile, the number of its business users who use ChatGPT Enterprise, ChatGPT Team, and ChatGPT Edu products also jumped from 2M in February to 3M in March.
    The good news is Google is more than ready to deliver. Its parent company has earmarked B towards its investments in AI this year, which includes boosting its cloud computing capacity.

    In April, Google launched its 7th generation tensor processing unitcalled Ironwood, which has been designed specifically for inference. According to the company, the new TPU will help power AI models that will ‘proactively retrieve and generate data to collaboratively deliver insights and answers, not just data.’The deal with OpenAI can be seen as a vote of confidence in Google’s cloud computing capability that competes with the likes of Microsoft Azure and Amazon Web Services. It also expands Google’s vast client list that includes tech, gaming, entertainment, and retail companies, as well as organizations in the public sector.

    As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy.
    With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility.
    Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines.
    Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech. 
    He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom.
    That fascination with tech didn’t just stick. It evolved into a full-blown calling.
    After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career.
    He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy.
    His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers.
    At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap.
    Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual.
    As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting.
    From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it.

    View all articles by Cedric Solidon

    Our editorial process

    The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors.
    #rivals #partners #whats #with #google
    From Rivals to Partners: What’s Up with the Google and OpenAI Cloud Deal?
    Google and OpenAI struck a cloud computing deal in May, according to a Reuters report. The deal surprised the industry as the two are seen as major AI rivals. Signs of friction between OpenAI and Microsoft may have also fueled the move. The partnership is a win-win.OpenAI gets more badly needed computing resources while Google profits from its B investment to boost its cloud computing capacity in 2025. In a surprise move, Google and OpenAI inked a deal that will see the AI rivals partnering to address OpenAI’s growing cloud computing needs. The story, reported by Reuters, cited anonymous sources saying that the deal had been discussed for months and finalized in May. Around this time, OpenAI has struggled to keep up with demand as its number of weekly active users and business users grew in Q1 2025. There’s also speculation of friction between OpenAI and its biggest investor Microsoft. Why the Deal Surprised the Tech Industry The rivalry between the two companies hardly needs an introduction. When OpenAI’s ChatGPT launched in November 2022, it posed a huge threat to Google that triggered a code red within the search giant and cloud services provider. Since then, Google has launched Bardto compete with OpenAI head-on. However, it had to play catch up with OpenAI’s more advanced ChatGPT AI chatbot. This led to numerous issues with Bard, with critics referring to it as a half-baked product. A post on X in February 2023 showed the Bard AI chatbot erroneously stating that the James Webb Telescope took the first picture of an exoplanet. It was, in fact, the European Southern Observatory’s Very Large Telescope that did this in 2004. Google’s parent company Alphabet lost B off its market value within 24 hours as a result. Two years on, Gemini made significant strides in terms of accuracy, quoting sources, and depth of information, but is still prone to hallucinations from time to time. You can see examples of these posted on social media, like telling a user to make spicy spaghetti with gasoline or the AI thinking it’s still 2024.  And then there’s this gem: With the entire industry shifting towards more AI integrations, Google went ahead and integrated its AI suite into Search via AI Overviews. It then doubled down on this integration with AI Mode, an experimental feature that lets you perform AI-powered searches by typing in a question, uploading a photo, or using your voice. In the future, AI Mode from Google Search could be a viable competitor to ChatGPT—unless of course, Google decides to bin it along with many of its previous products. Given the scope of the investment, and Gemini’s significant improvement, we doubt AI + Search will be axed. It’s a Win-Win for Google and OpenAI—Not So Much for Microsoft? In the business world, money and the desire for expansion can break even the biggest rivalries. And the one between the two tech giants isn’t an exception. Partly, it could be attributed to OpenAI’s relationship with Microsoft. Although the Redmond, Washington-based company has invested billions in OpenAI and has the resources to meet the latter’s cloud computing needs, their partnership hasn’t always been rosy.  Some would say it began when OpenAI CEO Sam Altman was briefly ousted in November 2023, which put a strain on the ‘best bromance in tech’ between him and Microsoft CEO Satya Nadella. Then last year, Microsoft added OpenAI to its list of competitors in the AI space before eventually losing its status as OpenAI’s exclusive cloud provider in January 2025. If that wasn’t enough, there’s also the matter of the two companies’ goal of achieving artificial general intelligence. Defined as when OpenAI develops AI systems that generate B in profits, reaching AGI means Microsoft will lose access to the former’s technology. With the company behind ChatGPT expecting to triple its 2025 revenue to from B the previous year, this could happen sooner rather than later. While OpenAI already has deals with Microsoft, Oracle, and CoreWeave to provide it with cloud services and access to infrastructure, it needs more and soon as the company has seen massive growth in the past few months. In February, OpenAI announced that it had over 400M weekly active users, up from 300M in December 2024. Meanwhile, the number of its business users who use ChatGPT Enterprise, ChatGPT Team, and ChatGPT Edu products also jumped from 2M in February to 3M in March. The good news is Google is more than ready to deliver. Its parent company has earmarked B towards its investments in AI this year, which includes boosting its cloud computing capacity. In April, Google launched its 7th generation tensor processing unitcalled Ironwood, which has been designed specifically for inference. According to the company, the new TPU will help power AI models that will ‘proactively retrieve and generate data to collaboratively deliver insights and answers, not just data.’The deal with OpenAI can be seen as a vote of confidence in Google’s cloud computing capability that competes with the likes of Microsoft Azure and Amazon Web Services. It also expands Google’s vast client list that includes tech, gaming, entertainment, and retail companies, as well as organizations in the public sector. As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy. With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility. Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines. Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech.  He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom. That fascination with tech didn’t just stick. It evolved into a full-blown calling. After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career. He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy. His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers. At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap. Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual. As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting. From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it. View all articles by Cedric Solidon Our editorial process The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors. #rivals #partners #whats #with #google
    TECHREPORT.COM
    From Rivals to Partners: What’s Up with the Google and OpenAI Cloud Deal?
    Google and OpenAI struck a cloud computing deal in May, according to a Reuters report. The deal surprised the industry as the two are seen as major AI rivals. Signs of friction between OpenAI and Microsoft may have also fueled the move. The partnership is a win-win.OpenAI gets more badly needed computing resources while Google profits from its $75B investment to boost its cloud computing capacity in 2025. In a surprise move, Google and OpenAI inked a deal that will see the AI rivals partnering to address OpenAI’s growing cloud computing needs. The story, reported by Reuters, cited anonymous sources saying that the deal had been discussed for months and finalized in May. Around this time, OpenAI has struggled to keep up with demand as its number of weekly active users and business users grew in Q1 2025. There’s also speculation of friction between OpenAI and its biggest investor Microsoft. Why the Deal Surprised the Tech Industry The rivalry between the two companies hardly needs an introduction. When OpenAI’s ChatGPT launched in November 2022, it posed a huge threat to Google that triggered a code red within the search giant and cloud services provider. Since then, Google has launched Bard (now known as Gemini) to compete with OpenAI head-on. However, it had to play catch up with OpenAI’s more advanced ChatGPT AI chatbot. This led to numerous issues with Bard, with critics referring to it as a half-baked product. A post on X in February 2023 showed the Bard AI chatbot erroneously stating that the James Webb Telescope took the first picture of an exoplanet. It was, in fact, the European Southern Observatory’s Very Large Telescope that did this in 2004. Google’s parent company Alphabet lost $100B off its market value within 24 hours as a result. Two years on, Gemini made significant strides in terms of accuracy, quoting sources, and depth of information, but is still prone to hallucinations from time to time. You can see examples of these posted on social media, like telling a user to make spicy spaghetti with gasoline or the AI thinking it’s still 2024.  And then there’s this gem: With the entire industry shifting towards more AI integrations, Google went ahead and integrated its AI suite into Search via AI Overviews. It then doubled down on this integration with AI Mode, an experimental feature that lets you perform AI-powered searches by typing in a question, uploading a photo, or using your voice. In the future, AI Mode from Google Search could be a viable competitor to ChatGPT—unless of course, Google decides to bin it along with many of its previous products. Given the scope of the investment, and Gemini’s significant improvement, we doubt AI + Search will be axed. It’s a Win-Win for Google and OpenAI—Not So Much for Microsoft? In the business world, money and the desire for expansion can break even the biggest rivalries. And the one between the two tech giants isn’t an exception. Partly, it could be attributed to OpenAI’s relationship with Microsoft. Although the Redmond, Washington-based company has invested billions in OpenAI and has the resources to meet the latter’s cloud computing needs, their partnership hasn’t always been rosy.  Some would say it began when OpenAI CEO Sam Altman was briefly ousted in November 2023, which put a strain on the ‘best bromance in tech’ between him and Microsoft CEO Satya Nadella. Then last year, Microsoft added OpenAI to its list of competitors in the AI space before eventually losing its status as OpenAI’s exclusive cloud provider in January 2025. If that wasn’t enough, there’s also the matter of the two companies’ goal of achieving artificial general intelligence (AGI). Defined as when OpenAI develops AI systems that generate $100B in profits, reaching AGI means Microsoft will lose access to the former’s technology. With the company behind ChatGPT expecting to triple its 2025 revenue to $12.7 from $3.7B the previous year, this could happen sooner rather than later. While OpenAI already has deals with Microsoft, Oracle, and CoreWeave to provide it with cloud services and access to infrastructure, it needs more and soon as the company has seen massive growth in the past few months. In February, OpenAI announced that it had over 400M weekly active users, up from 300M in December 2024. Meanwhile, the number of its business users who use ChatGPT Enterprise, ChatGPT Team, and ChatGPT Edu products also jumped from 2M in February to 3M in March. The good news is Google is more than ready to deliver. Its parent company has earmarked $75B towards its investments in AI this year, which includes boosting its cloud computing capacity. In April, Google launched its 7th generation tensor processing unit (TPU) called Ironwood, which has been designed specifically for inference. According to the company, the new TPU will help power AI models that will ‘proactively retrieve and generate data to collaboratively deliver insights and answers, not just data.’The deal with OpenAI can be seen as a vote of confidence in Google’s cloud computing capability that competes with the likes of Microsoft Azure and Amazon Web Services. It also expands Google’s vast client list that includes tech, gaming, entertainment, and retail companies, as well as organizations in the public sector. As technology continues to evolve—from the return of 'dumbphones' to faster and sleeker computers—seasoned tech journalist, Cedric Solidon, continues to dedicate himself to writing stories that inform, empower, and connect with readers across all levels of digital literacy. With 20 years of professional writing experience, this University of the Philippines Journalism graduate has carved out a niche as a trusted voice in tech media. Whether he's breaking down the latest advancements in cybersecurity or explaining how silicon-carbon batteries can extend your phone’s battery life, his writing remains rooted in clarity, curiosity, and utility. Long before he was writing for Techreport, HP, Citrix, SAP, Globe Telecom, CyberGhost VPN, and ExpressVPN, Cedric's love for technology began at home courtesy of a Nintendo Family Computer and a stack of tech magazines. Growing up, his days were often filled with sessions of Contra, Bomberman, Red Alert 2, and the criminally underrated Crusader: No Regret. But gaming wasn't his only gateway to tech.  He devoured every T3, PCMag, and PC Gamer issue he could get his hands on, often reading them cover to cover. It wasn’t long before he explored the early web in IRC chatrooms, online forums, and fledgling tech blogs, soaking in every byte of knowledge from the late '90s and early 2000s internet boom. That fascination with tech didn’t just stick. It evolved into a full-blown calling. After graduating with a degree in Journalism, he began his writing career at the dawn of Web 2.0. What started with small editorial roles and freelance gigs soon grew into a full-fledged career. He has since collaborated with global tech leaders, lending his voice to content that bridges technical expertise with everyday usability. He’s also written annual reports for Globe Telecom and consumer-friendly guides for VPN companies like CyberGhost and ExpressVPN, empowering readers to understand the importance of digital privacy. His versatility spans not just tech journalism but also technical writing. He once worked with a local tech company developing web and mobile apps for logistics firms, crafting documentation and communication materials that brought together user-friendliness with deep technical understanding. That experience sharpened his ability to break down dense, often jargon-heavy material into content that speaks clearly to both developers and decision-makers. At the heart of his work lies a simple belief: technology should feel empowering, not intimidating. Even if the likes of smartphones and AI are now commonplace, he understands that there's still a knowledge gap, especially when it comes to hardware or the real-world benefits of new tools. His writing hopes to help close that gap. Cedric’s writing style reflects that mission. It’s friendly without being fluffy and informative without being overwhelming. Whether writing for seasoned IT professionals or casual readers curious about the latest gadgets, he focuses on how a piece of technology can improve our lives, boost our productivity, or make our work more efficient. That human-first approach makes his content feel more like a conversation than a technical manual. As his writing career progresses, his passion for tech journalism remains as strong as ever. With the growing need for accessible, responsible tech communication, he sees his role not just as a journalist but as a guide who helps readers navigate a digital world that’s often as confusing as it is exciting. From reviewing the latest devices to unpacking global tech trends, Cedric isn’t just reporting on the future; he’s helping to write it. View all articles by Cedric Solidon Our editorial process The Tech Report editorial policy is centered on providing helpful, accurate content that offers real value to our readers. We only work with experienced writers who have specific knowledge in the topics they cover, including latest developments in technology, online privacy, cryptocurrencies, software, and more. Our editorial policy ensures that each topic is researched and curated by our in-house editors. We maintain rigorous journalistic standards, and every article is 100% written by real authors.
    0 Comentários 0 Compartilhamentos
  • Popular Chrome Extensions Leak API Keys, User Data via HTTP and Hard-Coded Credentials

    Cybersecurity researchers have flagged several popular Google Chrome extensions that have been found to transmit data in HTTP and hard-code secrets in their code, exposing users to privacy and security risks.
    "Several widely used extensionsunintentionally transmit sensitive data over simple HTTP," Yuanjing Guo, a security researcher in the Symantec's Security Technology and Response team, said. "By doing so, they expose browsing domains, machine IDs, operating system details, usage analytics, and even uninstall information, in plaintext."
    The fact that the network traffic is unencrypted also means that they are susceptible to adversary-in-the-middleattacks, allowing malicious actors on the same network such as a public Wi-Fi to intercept and, even worse, modify this data, which could lead to far more serious consequences.

    The list of identified extensions are below -

    SEMRush Rankand PI Rank, which call the URL "rank.trelliancom" over plain HTTP
    Browsec VPN, which uses HTTP to call an uninstall URL at "browsec-uninstall.s3-website.eu-central-1.amazonawscom" when a user attempts to uninstall the extension
    MSN New Taband MSN Homepage, Bing Search & News, which transmit a unique machine identifier and other details over HTTP to "g.ceipmsncom"
    DualSafe Password Manager & Digital Vault, which constructs an HTTP-based URL request to "stats.itopupdatecom" along with information about the extension version, user's browser language, and usage "type"

    "Although credentials or passwords do not appear to be leaked, the fact that a password manager uses unencrypted requests for telemetry erodes trust in its overall security posture," Guo said.
    Symantec said it also identified another set of extensions with API keys, secrets, and tokens directly embedded in the JavaScript code, which an attacker could weaponize to craft malicious requests and carry out various malicious actions -

    Online Security & Privacy extension, AVG Online Security, Speed Dial- New Tab Page, 3D, Sync, and SellerSprite - Amazon Research Tool, which expose a hard-coded Google Analytics 4API secret that an attacker could use to bombard the GA4 endpoint and corrupt metrics
    Equatio – Math Made Digital, which embeds a Microsoft Azure API key used for speech recognition that an attacker could use to inflate the developer's costs or exhaust their usage limits
    Awesome Screen Recorder & Screenshotand Scrolling Screenshot Tool & Screen Capture, which expose the developer's Amazon Web Servicesaccess key used to upload screenshots to the developer's S3 bucket
    Microsoft Editor – Spelling & Grammar Checker, which exposes a telemetry key named "StatsApiKey" to log user data for analytics
    Antidote Connector, which incorporates a third-party library called InboxSDK that contains hard-coded credentials, including API keys.
    Watch2Gether, which exposes a Tenor GIF search API key
    Trust Wallet, which exposes an API key associated with the Ramp Network, a Web3 platform that offers wallet developers a way to let users buy or sell crypto directly from the app
    TravelArrow – Your Virtual Travel Agent, which exposes a geolocation API key when making queries to "ip-apicom"

    Attackers who end up finding these keys could weaponize them to drive up API costs, host illegal content, send spoofed telemetry data, and mimic cryptocurrency transaction orders, some of which could see the developer's ban getting banned.
    Adding to the concern, Antidote Connector is just one of over 90 extensions that use InboxSDK, meaning the other extensions are susceptible to the same problem. The names of the other extensions were not disclosed by Symantec.

    "From GA4 analytics secrets to Azure speech keys, and from AWS S3 credentials to Google-specific tokens, each of these snippets demonstrates how a few lines of code can jeopardize an entire service," Guo said. "The solution: never store sensitive credentials on the client side."
    Developers are recommended to switch to HTTPS whenever they send or receive data, store credentials securely in a backend server using a credentials management service, and regularly rotate secrets to further minimize risk.
    The findings show how even popular extensions with hundreds of thousands of installations can suffer from trivial misconfigurations and security blunders like hard-coded credentials, leaving users' data at risk.
    "Users of these extensions should consider removing them until the developers address the insecurecalls," the company said. "The risk is not just theoretical; unencrypted traffic is simple to capture, and the data can be used for profiling, phishing, or other targeted attacks."
    "The overarching lesson is that a large install base or a well-known brand does not necessarily ensure best practices around encryption. Extensions should be scrutinized for the protocols they use and the data they share, to ensure users' information remains truly safe."

    Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post.
    #popular #chrome #extensions #leak #api
    Popular Chrome Extensions Leak API Keys, User Data via HTTP and Hard-Coded Credentials
    Cybersecurity researchers have flagged several popular Google Chrome extensions that have been found to transmit data in HTTP and hard-code secrets in their code, exposing users to privacy and security risks. "Several widely used extensionsunintentionally transmit sensitive data over simple HTTP," Yuanjing Guo, a security researcher in the Symantec's Security Technology and Response team, said. "By doing so, they expose browsing domains, machine IDs, operating system details, usage analytics, and even uninstall information, in plaintext." The fact that the network traffic is unencrypted also means that they are susceptible to adversary-in-the-middleattacks, allowing malicious actors on the same network such as a public Wi-Fi to intercept and, even worse, modify this data, which could lead to far more serious consequences. The list of identified extensions are below - SEMRush Rankand PI Rank, which call the URL "rank.trelliancom" over plain HTTP Browsec VPN, which uses HTTP to call an uninstall URL at "browsec-uninstall.s3-website.eu-central-1.amazonawscom" when a user attempts to uninstall the extension MSN New Taband MSN Homepage, Bing Search & News, which transmit a unique machine identifier and other details over HTTP to "g.ceipmsncom" DualSafe Password Manager & Digital Vault, which constructs an HTTP-based URL request to "stats.itopupdatecom" along with information about the extension version, user's browser language, and usage "type" "Although credentials or passwords do not appear to be leaked, the fact that a password manager uses unencrypted requests for telemetry erodes trust in its overall security posture," Guo said. Symantec said it also identified another set of extensions with API keys, secrets, and tokens directly embedded in the JavaScript code, which an attacker could weaponize to craft malicious requests and carry out various malicious actions - Online Security & Privacy extension, AVG Online Security, Speed Dial- New Tab Page, 3D, Sync, and SellerSprite - Amazon Research Tool, which expose a hard-coded Google Analytics 4API secret that an attacker could use to bombard the GA4 endpoint and corrupt metrics Equatio – Math Made Digital, which embeds a Microsoft Azure API key used for speech recognition that an attacker could use to inflate the developer's costs or exhaust their usage limits Awesome Screen Recorder & Screenshotand Scrolling Screenshot Tool & Screen Capture, which expose the developer's Amazon Web Servicesaccess key used to upload screenshots to the developer's S3 bucket Microsoft Editor – Spelling & Grammar Checker, which exposes a telemetry key named "StatsApiKey" to log user data for analytics Antidote Connector, which incorporates a third-party library called InboxSDK that contains hard-coded credentials, including API keys. Watch2Gether, which exposes a Tenor GIF search API key Trust Wallet, which exposes an API key associated with the Ramp Network, a Web3 platform that offers wallet developers a way to let users buy or sell crypto directly from the app TravelArrow – Your Virtual Travel Agent, which exposes a geolocation API key when making queries to "ip-apicom" Attackers who end up finding these keys could weaponize them to drive up API costs, host illegal content, send spoofed telemetry data, and mimic cryptocurrency transaction orders, some of which could see the developer's ban getting banned. Adding to the concern, Antidote Connector is just one of over 90 extensions that use InboxSDK, meaning the other extensions are susceptible to the same problem. The names of the other extensions were not disclosed by Symantec. "From GA4 analytics secrets to Azure speech keys, and from AWS S3 credentials to Google-specific tokens, each of these snippets demonstrates how a few lines of code can jeopardize an entire service," Guo said. "The solution: never store sensitive credentials on the client side." Developers are recommended to switch to HTTPS whenever they send or receive data, store credentials securely in a backend server using a credentials management service, and regularly rotate secrets to further minimize risk. The findings show how even popular extensions with hundreds of thousands of installations can suffer from trivial misconfigurations and security blunders like hard-coded credentials, leaving users' data at risk. "Users of these extensions should consider removing them until the developers address the insecurecalls," the company said. "The risk is not just theoretical; unencrypted traffic is simple to capture, and the data can be used for profiling, phishing, or other targeted attacks." "The overarching lesson is that a large install base or a well-known brand does not necessarily ensure best practices around encryption. Extensions should be scrutinized for the protocols they use and the data they share, to ensure users' information remains truly safe." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. #popular #chrome #extensions #leak #api
    THEHACKERNEWS.COM
    Popular Chrome Extensions Leak API Keys, User Data via HTTP and Hard-Coded Credentials
    Cybersecurity researchers have flagged several popular Google Chrome extensions that have been found to transmit data in HTTP and hard-code secrets in their code, exposing users to privacy and security risks. "Several widely used extensions [...] unintentionally transmit sensitive data over simple HTTP," Yuanjing Guo, a security researcher in the Symantec's Security Technology and Response team, said. "By doing so, they expose browsing domains, machine IDs, operating system details, usage analytics, and even uninstall information, in plaintext." The fact that the network traffic is unencrypted also means that they are susceptible to adversary-in-the-middle (AitM) attacks, allowing malicious actors on the same network such as a public Wi-Fi to intercept and, even worse, modify this data, which could lead to far more serious consequences. The list of identified extensions are below - SEMRush Rank (extension ID: idbhoeaiokcojcgappfigpifhpkjgmab) and PI Rank (ID: ccgdboldgdlngcgfdolahmiilojmfndl), which call the URL "rank.trellian[.]com" over plain HTTP Browsec VPN (ID: omghfjlpggmjjaagoclmmobgdodcjboh), which uses HTTP to call an uninstall URL at "browsec-uninstall.s3-website.eu-central-1.amazonaws[.]com" when a user attempts to uninstall the extension MSN New Tab (ID: lklfbkdigihjaaeamncibechhgalldgl) and MSN Homepage, Bing Search & News (ID: midiombanaceofjhodpdibeppmnamfcj), which transmit a unique machine identifier and other details over HTTP to "g.ceipmsn[.]com" DualSafe Password Manager & Digital Vault (ID: lgbjhdkjmpgjgcbcdlhkokkckpjmedgc), which constructs an HTTP-based URL request to "stats.itopupdate[.]com" along with information about the extension version, user's browser language, and usage "type" "Although credentials or passwords do not appear to be leaked, the fact that a password manager uses unencrypted requests for telemetry erodes trust in its overall security posture," Guo said. Symantec said it also identified another set of extensions with API keys, secrets, and tokens directly embedded in the JavaScript code, which an attacker could weaponize to craft malicious requests and carry out various malicious actions - Online Security & Privacy extension (ID: gomekmidlodglbbmalcneegieacbdmki), AVG Online Security (ID: nbmoafcmbajniiapeidgficgifbfmjfo), Speed Dial [FVD] - New Tab Page, 3D, Sync (ID: llaficoajjainaijghjlofdfmbjpebpa), and SellerSprite - Amazon Research Tool (ID: lnbmbgocenenhhhdojdielgnmeflbnfb), which expose a hard-coded Google Analytics 4 (GA4) API secret that an attacker could use to bombard the GA4 endpoint and corrupt metrics Equatio – Math Made Digital (ID: hjngolefdpdnooamgdldlkjgmdcmcjnc), which embeds a Microsoft Azure API key used for speech recognition that an attacker could use to inflate the developer's costs or exhaust their usage limits Awesome Screen Recorder & Screenshot (ID: nlipoenfbbikpbjkfpfillcgkoblgpmj) and Scrolling Screenshot Tool & Screen Capture (ID: mfpiaehgjbbfednooihadalhehabhcjo), which expose the developer's Amazon Web Services (AWS) access key used to upload screenshots to the developer's S3 bucket Microsoft Editor – Spelling & Grammar Checker (ID: gpaiobkfhnonedkhhfjpmhdalgeoebfa), which exposes a telemetry key named "StatsApiKey" to log user data for analytics Antidote Connector (ID: lmbopdiikkamfphhgcckcjhojnokgfeo), which incorporates a third-party library called InboxSDK that contains hard-coded credentials, including API keys. Watch2Gether (ID: cimpffimgeipdhnhjohpbehjkcdpjolg), which exposes a Tenor GIF search API key Trust Wallet (ID: egjidjbpglichdcondbcbdnbeeppgdph), which exposes an API key associated with the Ramp Network, a Web3 platform that offers wallet developers a way to let users buy or sell crypto directly from the app TravelArrow – Your Virtual Travel Agent (ID: coplmfnphahpcknbchcehdikbdieognn), which exposes a geolocation API key when making queries to "ip-api[.]com" Attackers who end up finding these keys could weaponize them to drive up API costs, host illegal content, send spoofed telemetry data, and mimic cryptocurrency transaction orders, some of which could see the developer's ban getting banned. Adding to the concern, Antidote Connector is just one of over 90 extensions that use InboxSDK, meaning the other extensions are susceptible to the same problem. The names of the other extensions were not disclosed by Symantec. "From GA4 analytics secrets to Azure speech keys, and from AWS S3 credentials to Google-specific tokens, each of these snippets demonstrates how a few lines of code can jeopardize an entire service," Guo said. "The solution: never store sensitive credentials on the client side." Developers are recommended to switch to HTTPS whenever they send or receive data, store credentials securely in a backend server using a credentials management service, and regularly rotate secrets to further minimize risk. The findings show how even popular extensions with hundreds of thousands of installations can suffer from trivial misconfigurations and security blunders like hard-coded credentials, leaving users' data at risk. "Users of these extensions should consider removing them until the developers address the insecure [HTTP] calls," the company said. "The risk is not just theoretical; unencrypted traffic is simple to capture, and the data can be used for profiling, phishing, or other targeted attacks." "The overarching lesson is that a large install base or a well-known brand does not necessarily ensure best practices around encryption. Extensions should be scrutinized for the protocols they use and the data they share, to ensure users' information remains truly safe." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post.
    Like
    Love
    Wow
    Sad
    Angry
    334
    0 Comentários 0 Compartilhamentos