• Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler

    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production.
    Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below.
    Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder.
    In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session.
    From Concept to Completion
    To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms.
    For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI.
    ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated.
    Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY.
    NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU.
    ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images.
    Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost.
    LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY.
    “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY 

    Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models.
    Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch.
    To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x.
    Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started.
    Photorealistic renders. Image courtesy of FITY.
    Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time.
    Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY.
    “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY

    Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added.
    Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations. 
    Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter.
    Follow NVIDIA Workstation on LinkedIn and X. 
    See notice regarding software product information.
    #startup #uses #nvidia #rtxpowered #generative
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptationmodels — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information. #startup #uses #nvidia #rtxpowered #generative
    BLOGS.NVIDIA.COM
    Startup Uses NVIDIA RTX-Powered Generative AI to Make Coolers, Cooler
    Mark Theriault founded the startup FITY envisioning a line of clever cooling products: cold drink holders that come with freezable pucks to keep beverages cold for longer without the mess of ice. The entrepreneur started with 3D prints of products in his basement, building one unit at a time, before eventually scaling to mass production. Founding a consumer product company from scratch was a tall order for a single person. Going from preliminary sketches to production-ready designs was a major challenge. To bring his creative vision to life, Theriault relied on AI and his NVIDIA GeForce RTX-equipped system. For him, AI isn’t just a tool — it’s an entire pipeline to help him accomplish his goals. Read more about his workflow below. Plus, GeForce RTX 5050 laptops start arriving today at retailers worldwide, from $999. GeForce RTX 5050 Laptop GPUs feature 2,560 NVIDIA Blackwell CUDA cores, fifth-generation AI Tensor Cores, fourth-generation RT Cores, a ninth-generation NVENC encoder and a sixth-generation NVDEC decoder. In addition, NVIDIA’s Plug and Play: Project G-Assist Plug-In Hackathon — running virtually through Wednesday, July 16 — invites developers to explore AI and build custom G-Assist plug-ins for a chance to win prizes. Save the date for the G-Assist Plug-In webinar on Wednesday, July 9, from 10-11 a.m. PT, to learn more about Project G-Assist capabilities and fundamentals, and to participate in a live Q&A session. From Concept to Completion To create his standout products, Theriault tinkers with potential FITY Flex cooler designs with traditional methods, from sketch to computer-aided design to rapid prototyping, until he finds the right vision. A unique aspect of the FITY Flex design is that it can be customized with fun, popular shoe charms. For packaging design inspiration, Theriault uses his preferred text-to-image generative AI model for prototyping, Stable Diffusion XL — which runs 60% faster with the NVIDIA TensorRT software development kit — using the modular, node-based interface ComfyUI. ComfyUI gives users granular control over every step of the generation process — prompting, sampling, model loading, image conditioning and post-processing. It’s ideal for advanced users like Theriault who want to customize how images are generated. Theriault’s uses of AI result in a complete computer graphics-based ad campaign. Image courtesy of FITY. NVIDIA and GeForce RTX GPUs based on the NVIDIA Blackwell architecture include fifth-generation Tensor Cores designed to accelerate AI and deep learning workloads. These GPUs work with CUDA optimizations in PyTorch to seamlessly accelerate ComfyUI, reducing generation time on FLUX.1-dev, an image generation model from Black Forest Labs, from two minutes per image on the Mac M3 Ultra to about four seconds on the GeForce RTX 5090 desktop GPU. ComfyUI can also add ControlNets — AI models that help control image generation — that Theriault uses for tasks like guiding human poses, setting compositions via depth mapping and converting scribbles to images. Theriault even creates his own fine-tuned models to keep his style consistent. He used low-rank adaptation (LoRA) models — small, efficient adapters into specific layers of the network — enabling hyper-customized generation with minimal compute cost. LoRA models allow Theriault to ideate on visuals quickly. Image courtesy of FITY. “Over the last few months, I’ve been shifting from AI-assisted computer graphics renders to fully AI-generated product imagery using a custom Flux LoRA I trained in house. My RTX 4080 SUPER GPU has been essential for getting the performance I need to train and iterate quickly.” – Mark Theriault, founder of FITY  Theriault also taps into generative AI to create marketing assets like FITY Flex product packaging. He uses FLUX.1, which excels at generating legible text within images, addressing a common challenge in text-to-image models. Though FLUX.1 models can typically consume over 23GB of VRAM, NVIDIA has collaborated with Black Forest Labs to help reduce the size of these models using quantization — a technique that reduces model size while maintaining quality. The models were then accelerated with TensorRT, which provides an up to 2x speedup over PyTorch. To simplify using these models in ComfyUI, NVIDIA created the FLUX.1 NIM microservice, a containerized version of FLUX.1 that can be loaded in ComfyUI and enables FP4 quantization and TensorRT support. Combined, the models come down to just over 11GB of VRAM, and performance improves by 2.5x. Theriault uses the Blender Cycles app to render out final files. For 3D workflows, NVIDIA offers the AI Blueprint for 3D-guided generative AI to ease the positioning and composition of 3D images, so anyone interested in this method can quickly get started. Photorealistic renders. Image courtesy of FITY. Finally, Theriault uses large language models to generate marketing copy — tailored for search engine optimization, tone and storytelling — as well as to complete his patent and provisional applications, work that usually costs thousands of dollars in legal fees and considerable time. Generative AI helps Theriault create promotional materials like the above. Image courtesy of FITY. “As a one-man band with a ton of content to generate, having on-the-fly generation capabilities for my product designs really helps speed things up.” – Mark Theriault, founder of FITY Every texture, every word, every photo, every accessory was a micro-decision, Theriault said. AI helped him survive the “death by a thousand cuts” that can stall solo startup founders, he added. Each week, the RTX AI Garage blog series features community-driven AI innovations and content for those looking to learn more about NVIDIA NIM microservices and AI Blueprints, as well as building AI agents, creative workflows, digital humans, productivity apps and more on AI PCs and workstations.  Plug in to NVIDIA AI PC on Facebook, Instagram, TikTok and X — and stay informed by subscribing to the RTX AI PC newsletter. Follow NVIDIA Workstation on LinkedIn and X.  See notice regarding software product information.
    0 Comentários 0 Compartilhamentos
  • What a world we live in when scientists finally unlock the secrets to the axolotls' ability to regenerate limbs, only to reveal that the key lies not in some miraculous regrowth molecule, but in its controlled destruction! Seriously, what kind of twisted logic is this? Are we supposed to celebrate the fact that the secret to regeneration is, in fact, about knowing when to destroy something instead of nurturing and encouraging growth? This revelation is not just baffling; it's downright infuriating!

    In an age where regenerative medicine holds the promise of healing wounds and restoring functionality, we are faced with the shocking realization that the science is not about building up, but rather about tearing down. Why would we ever want to focus on the destruction of growth molecules instead of creating an environment where regeneration can bloom unimpeded? Where is the inspiration in that? It feels like a slap in the face to anyone who believes in the potential of science to improve lives!

    Moreover, can we talk about the implications of this discovery? If the key to regeneration involves a meticulous dance of destruction, what does that say about our approach to medical advancements? Are we really expected to just stand by and accept that we must embrace an idea that says, "let's get rid of the good stuff to allow for growth"? This is not just a minor flaw in reasoning; it's a fundamental misunderstanding of what regeneration should mean for us!

    To make matters worse, this revelation could lead to misguided practices in regenerative medicine. Instead of developing therapies that promote healing and growth, we could end up with treatments that focus on the elimination of beneficial molecules. This is absolutely unacceptable! How dare the scientific community suggest that the way forward is through destruction rather than cultivation? We should be demanding more from our researchers, not less!

    Let’s not forget the ethical implications. If the path to regeneration is paved with the controlled destruction of vital components, how can we trust the outcomes? We’re putting lives in the hands of a process that promotes destruction. Just imagine the future of medicine being dictated by a philosophy that sounds more like a dystopian nightmare than a beacon of hope.

    It is high time we hold scientists accountable for the direction they are taking in regenerative research. We need a shift in focus that prioritizes constructive growth, not destructive measures. If we are serious about advancing regenerative medicine, we must reject this flawed notion and demand a commitment to genuine regeneration—the kind that nurtures life, rather than sabotages it.

    Let’s raise our voices against this madness. We deserve better than a science that advocates for destruction as the means to an end. The axolotls may thrive on this paradox, but we, as humans, should expect far more from our scientific endeavors.

    #RegenerativeMedicine #Axolotl #ScienceFail #MedicalEthics #Innovation
    What a world we live in when scientists finally unlock the secrets to the axolotls' ability to regenerate limbs, only to reveal that the key lies not in some miraculous regrowth molecule, but in its controlled destruction! Seriously, what kind of twisted logic is this? Are we supposed to celebrate the fact that the secret to regeneration is, in fact, about knowing when to destroy something instead of nurturing and encouraging growth? This revelation is not just baffling; it's downright infuriating! In an age where regenerative medicine holds the promise of healing wounds and restoring functionality, we are faced with the shocking realization that the science is not about building up, but rather about tearing down. Why would we ever want to focus on the destruction of growth molecules instead of creating an environment where regeneration can bloom unimpeded? Where is the inspiration in that? It feels like a slap in the face to anyone who believes in the potential of science to improve lives! Moreover, can we talk about the implications of this discovery? If the key to regeneration involves a meticulous dance of destruction, what does that say about our approach to medical advancements? Are we really expected to just stand by and accept that we must embrace an idea that says, "let's get rid of the good stuff to allow for growth"? This is not just a minor flaw in reasoning; it's a fundamental misunderstanding of what regeneration should mean for us! To make matters worse, this revelation could lead to misguided practices in regenerative medicine. Instead of developing therapies that promote healing and growth, we could end up with treatments that focus on the elimination of beneficial molecules. This is absolutely unacceptable! How dare the scientific community suggest that the way forward is through destruction rather than cultivation? We should be demanding more from our researchers, not less! Let’s not forget the ethical implications. If the path to regeneration is paved with the controlled destruction of vital components, how can we trust the outcomes? We’re putting lives in the hands of a process that promotes destruction. Just imagine the future of medicine being dictated by a philosophy that sounds more like a dystopian nightmare than a beacon of hope. It is high time we hold scientists accountable for the direction they are taking in regenerative research. We need a shift in focus that prioritizes constructive growth, not destructive measures. If we are serious about advancing regenerative medicine, we must reject this flawed notion and demand a commitment to genuine regeneration—the kind that nurtures life, rather than sabotages it. Let’s raise our voices against this madness. We deserve better than a science that advocates for destruction as the means to an end. The axolotls may thrive on this paradox, but we, as humans, should expect far more from our scientific endeavors. #RegenerativeMedicine #Axolotl #ScienceFail #MedicalEthics #Innovation
    Scientists Discover the Key to Axolotls’ Ability to Regenerate Limbs
    A new study reveals the key lies not in the production of a regrowth molecule, but in that molecule's controlled destruction. The discovery could inspire future regenerative medicine.
    Like
    Love
    Wow
    Sad
    Angry
    586
    1 Comentários 0 Compartilhamentos
  • The recent announcement of CEAD inaugurating a center dedicated to 3D printing for manufacturing boat hulls is nothing short of infuriating. We are living in an age where technological advancements should lead to significant improvements in efficiency and sustainability, yet here we are, celebrating a move that reeks of superficial progress and misguided priorities.

    First off, let’s talk about the so-called “Maritime Application Center” (MAC) in Delft. While they dazzle us with their fancy new facility, one has to question the real implications of such a center. Are they genuinely solving the pressing issues of the maritime industry, or are they merely jumping on the bandwagon of 3D printing hype? The idea of using large-scale additive manufacturing to produce boat hulls sounds revolutionary, but let’s face it: this is just another example of throwing technology at a problem without truly understanding the underlying challenges that plague the industry.

    The maritime sector is facing severe environmental concerns, including pollution from traditional manufacturing processes and shipping practices. Instead of addressing these burning issues head-on, CEAD and others like them seem content to play with shiny new tools. 3D printing, in theory, could reduce waste—a point they love to hammer home in their marketing. But what about the energy consumption and material sourcing involved? Are we simply swapping one form of environmental degradation for another?

    Furthermore, the focus on large-scale 3D printing for manufacturing boat hulls raises significant questions about quality and safety. The maritime industry is not a playground for experimental technologies; lives are at stake. Relying on printed components that could potentially have structural weaknesses is a reckless gamble, and the consequences could be disastrous. Are we prepared to accept the liability if these hulls fail at sea?

    Let’s not forget the economic implications of this move. Sure, CEAD is likely patting themselves on the back for creating jobs at the MAC, but how many traditional jobs are they putting at risk? The maritime industry relies on skilled labor and craftsmanship that cannot simply be replaced by a machine. By pushing for 3D printing at such a scale, they threaten the livelihoods of countless workers who have dedicated their lives to mastering this trade.

    In conclusion, while CEAD’s center for 3D printing boat hulls may sound impressive on paper, the reality is that it’s a misguided effort that overlooks critical aspects of sustainability, safety, and social responsibility. We need to demand more from our industries and hold them accountable for their actions instead of blindly celebrating every shiny new innovation. The maritime industry deserves solutions that genuinely address its challenges rather than a mere technological gimmick.

    #MaritimeIndustry #3DPrinting #Sustainability #CEAD #BoatManufacturing
    The recent announcement of CEAD inaugurating a center dedicated to 3D printing for manufacturing boat hulls is nothing short of infuriating. We are living in an age where technological advancements should lead to significant improvements in efficiency and sustainability, yet here we are, celebrating a move that reeks of superficial progress and misguided priorities. First off, let’s talk about the so-called “Maritime Application Center” (MAC) in Delft. While they dazzle us with their fancy new facility, one has to question the real implications of such a center. Are they genuinely solving the pressing issues of the maritime industry, or are they merely jumping on the bandwagon of 3D printing hype? The idea of using large-scale additive manufacturing to produce boat hulls sounds revolutionary, but let’s face it: this is just another example of throwing technology at a problem without truly understanding the underlying challenges that plague the industry. The maritime sector is facing severe environmental concerns, including pollution from traditional manufacturing processes and shipping practices. Instead of addressing these burning issues head-on, CEAD and others like them seem content to play with shiny new tools. 3D printing, in theory, could reduce waste—a point they love to hammer home in their marketing. But what about the energy consumption and material sourcing involved? Are we simply swapping one form of environmental degradation for another? Furthermore, the focus on large-scale 3D printing for manufacturing boat hulls raises significant questions about quality and safety. The maritime industry is not a playground for experimental technologies; lives are at stake. Relying on printed components that could potentially have structural weaknesses is a reckless gamble, and the consequences could be disastrous. Are we prepared to accept the liability if these hulls fail at sea? Let’s not forget the economic implications of this move. Sure, CEAD is likely patting themselves on the back for creating jobs at the MAC, but how many traditional jobs are they putting at risk? The maritime industry relies on skilled labor and craftsmanship that cannot simply be replaced by a machine. By pushing for 3D printing at such a scale, they threaten the livelihoods of countless workers who have dedicated their lives to mastering this trade. In conclusion, while CEAD’s center for 3D printing boat hulls may sound impressive on paper, the reality is that it’s a misguided effort that overlooks critical aspects of sustainability, safety, and social responsibility. We need to demand more from our industries and hold them accountable for their actions instead of blindly celebrating every shiny new innovation. The maritime industry deserves solutions that genuinely address its challenges rather than a mere technological gimmick. #MaritimeIndustry #3DPrinting #Sustainability #CEAD #BoatManufacturing
    CEAD inaugura un centro dedicado a la impresión 3D para fabricar cascos de barcos
    La industria marítima está experimentando una transformación importante gracias a la impresión 3D de gran formato. El grupo holandés CEAD, especialista en fabricación aditiva a gran escala, ha inaugurado recientemente su Maritime Application Center (
    Like
    Love
    Wow
    Sad
    Angry
    587
    1 Comentários 0 Compartilhamentos
  • Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon

    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey.

    Get the Popular Science daily newsletter
    Breakthroughs, discoveries, and DIY tips sent every weekday.

    South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations.
    Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered.
    Frontiers: What inspired you to become a researcher?
    Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved.
    F: Can you tell us about the research you’re currently working on?
    BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation.
    Local boating the Amazon River. CREDIT: Beatriz Cosendey.
    F: Could you tell us about one of the legends surrounding anacondas?
    BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty.
    F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity?
    BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently.
    A giant anaconda is being measured. Credit: Pedro Calazans.
    F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play?
    BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?”
    For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste.
    One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey.
    Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey.
    We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals.
    F: Are there any common misconceptions about this area of research? How would you address them?
    BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data.
    However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework.
    To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society.
    The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey.
    F: What are some of the areas of research you’d like to see tackled in the years ahead?
    BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere.
    F: How has open science benefited the reach and impact of your research?
    BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups.
    The Q&A can also be read here.
    #qampampa #how #anacondas #chickens #locals
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here. #qampampa #how #anacondas #chickens #locals
    WWW.POPSCI.COM
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals (up to around 2–2.5 meters), while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is her [the anaconda’s] favorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh (to block smaller animals), and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here.
    Like
    Love
    Wow
    Sad
    Angry
    443
    2 Comentários 0 Compartilhamentos
  • OAQ Awards of Excellence winners announced

    Montreal City Hall – Beaupré Michaud and Associates, Architects in collaboration with MU Architecture, Montreal. Photo credit: Raphaël Thibodeau
    The Ordre des architectes du Québechas revealed the winners of its 2025 Awards of Excellence in Architecture.
    A total of eleven projects were recognized at a gala hosted by Jean-René Dufort at Espace St-Denis in Montreal.
    The Grand Prix d’excellence en architecture was awarded to the restoration of Montreal City Hall , a major project led by Beaupré Michaud et Associés, architects, and MU Architecture. This complex project successfully preserves the building’s historical qualities while transforming it into an exemplary place in terms of energy and ecology.  Guided by plans from the 1920s, the architects revived this building by equipping it with contemporary, efficient, more open, and more accessible features for residents. In addition to the heritage restoration, the team also reconciled old and contemporary technologies, energy efficiency, universal accessibility, and the reappropriation of spaces that had become dilapidated.
    The People’s Choice Award was presented to the Coop Milieu de l’île, designed by Pivot: Coopérative d’architecture. Located in Outremont, this 91-unit intergenerational housing cooperative was born from the initiative of a group of committed citizens looking to address the housing crisis by creating affordable, off-market housing. In the context of the housing crisis, the jury emphasized that this project, which is also the recipient of an Award of Excellence, designed by and for its residents, acts as a “breath of fresh air in Outremont.”
    Coop Milieu de l’île. Pivot: Architecture Cooperative, Montreal. Photo credit: Annie Fafard
    “The projects we evaluated this year were truly remarkable in their richness and diversity. The jury found in them everything that makes Quebec architecture so strong and unique: rigor, attention to detail, and respect for the context and built heritage. We saw emblematic projects, but also discreet gestures, almost invisible in the landscape. Some projects rehabilitated forgotten places, transformed historic buildings, or even imagined new spaces for collective living. All, in their own way, highlighted the powerful impact of built quality on our living environments,” said Gabrielle Nadeau, chair of the OAQ Awards of Excellence Jury.
    The jury for the 2025 Awards of Excellence in Architecture was chaired by Gabrielle Nadeau, principal design architect, COBE in Copenhagen. It also included architects Marianne Charbonneau of Agence Spatiale, Maxime-Alexis Frappier of ACDF, and Guillaume Martel-Trudel of Provencher-Roy. Élène Levasseur, director of research and education at Architecture sans frontières Québec, acted as the public representative.
    Through the Awards of Excellence in Architecture, presented annually, the Order aims to raise awareness among Quebecers of the multiple dimensions of architectural quality, in addition to promoting the role of the architects in the design of inspiring, sustainable and thoughtful senior living environments.
    The full list of winners include the following.

    Habitat Sélénite by _naturehumaine
    Habitat Sélénite – _naturehumaine, Eastman. Photo: Raphaël Thibodeau

    École secondaire du Bosquet by ABCP | Menkès Shooner Dagenais LeTourneux | Bilodeau Baril Leeming Architectes
    École secondaire du Bosquet – ABCP | Menkès Shooner Dagenais LeTourneux | Bilodeau Baril Leeming Architectes, Drummondville. Photo: Stéphane Brügger

    Bibliothèque Gabrielle-Roy by Saucier + Perrotte Architectes et GLCRM Architectes
    Bibliothèque Gabrielle-Roy – Saucier + Perrotte Architectes et GLCRM Architectes, Québec. Photo: Olivier Blouin

    Maison A by Atelier Pierre Thibault
    Maison A – Atelier Pierre Thibault, Saint-Nicolas. Photo: Maxime Brouillet

    Nouvel Hôtel de Ville de La Pêche by BGLA Architecture et Design Urbain
    Nouvel Hôtel de Ville de La Pêche – BGLA Architecture et Design Urbain, La Pêche. Photo: Stéphane Brügger / Dominique Laroche

    École du Zénith by Pelletier de Fontenay + Leclerc
    École du Zénith – Pelletier de Fontenay + Leclerc, Shefford. Photo: James Brittain / David Boyer

    Le Paquebot by _naturehumaine
    Le Paquebot – _naturehumaine, Montréal. Photo: Ronan Mézière

    Coopérative funéraire la Seigneurie by ultralocal architectes

    Coopérative funéraire la Seigneurie – ultralocal architectes, Québec. Photo credit: Paul Dussault
    Site d’observation des bélugas Putep’t-awt by atelier5 + mainstudio
    Site d’observation des bélugas Putep’t-awt – atelier5 + mainstudio, Cacouna. Photo: Stéphane Groleau

    The post OAQ Awards of Excellence winners announced appeared first on Canadian Architect.
    #oaq #awards #excellence #winners #announced
    OAQ Awards of Excellence winners announced
    Montreal City Hall – Beaupré Michaud and Associates, Architects in collaboration with MU Architecture, Montreal. Photo credit: Raphaël Thibodeau The Ordre des architectes du Québechas revealed the winners of its 2025 Awards of Excellence in Architecture. A total of eleven projects were recognized at a gala hosted by Jean-René Dufort at Espace St-Denis in Montreal. The Grand Prix d’excellence en architecture was awarded to the restoration of Montreal City Hall , a major project led by Beaupré Michaud et Associés, architects, and MU Architecture. This complex project successfully preserves the building’s historical qualities while transforming it into an exemplary place in terms of energy and ecology.  Guided by plans from the 1920s, the architects revived this building by equipping it with contemporary, efficient, more open, and more accessible features for residents. In addition to the heritage restoration, the team also reconciled old and contemporary technologies, energy efficiency, universal accessibility, and the reappropriation of spaces that had become dilapidated. The People’s Choice Award was presented to the Coop Milieu de l’île, designed by Pivot: Coopérative d’architecture. Located in Outremont, this 91-unit intergenerational housing cooperative was born from the initiative of a group of committed citizens looking to address the housing crisis by creating affordable, off-market housing. In the context of the housing crisis, the jury emphasized that this project, which is also the recipient of an Award of Excellence, designed by and for its residents, acts as a “breath of fresh air in Outremont.” Coop Milieu de l’île. Pivot: Architecture Cooperative, Montreal. Photo credit: Annie Fafard “The projects we evaluated this year were truly remarkable in their richness and diversity. The jury found in them everything that makes Quebec architecture so strong and unique: rigor, attention to detail, and respect for the context and built heritage. We saw emblematic projects, but also discreet gestures, almost invisible in the landscape. Some projects rehabilitated forgotten places, transformed historic buildings, or even imagined new spaces for collective living. All, in their own way, highlighted the powerful impact of built quality on our living environments,” said Gabrielle Nadeau, chair of the OAQ Awards of Excellence Jury. The jury for the 2025 Awards of Excellence in Architecture was chaired by Gabrielle Nadeau, principal design architect, COBE in Copenhagen. It also included architects Marianne Charbonneau of Agence Spatiale, Maxime-Alexis Frappier of ACDF, and Guillaume Martel-Trudel of Provencher-Roy. Élène Levasseur, director of research and education at Architecture sans frontières Québec, acted as the public representative. Through the Awards of Excellence in Architecture, presented annually, the Order aims to raise awareness among Quebecers of the multiple dimensions of architectural quality, in addition to promoting the role of the architects in the design of inspiring, sustainable and thoughtful senior living environments. The full list of winners include the following. Habitat Sélénite by _naturehumaine Habitat Sélénite – _naturehumaine, Eastman. Photo: Raphaël Thibodeau École secondaire du Bosquet by ABCP | Menkès Shooner Dagenais LeTourneux | Bilodeau Baril Leeming Architectes École secondaire du Bosquet – ABCP | Menkès Shooner Dagenais LeTourneux | Bilodeau Baril Leeming Architectes, Drummondville. Photo: Stéphane Brügger Bibliothèque Gabrielle-Roy by Saucier + Perrotte Architectes et GLCRM Architectes Bibliothèque Gabrielle-Roy – Saucier + Perrotte Architectes et GLCRM Architectes, Québec. Photo: Olivier Blouin Maison A by Atelier Pierre Thibault Maison A – Atelier Pierre Thibault, Saint-Nicolas. Photo: Maxime Brouillet Nouvel Hôtel de Ville de La Pêche by BGLA Architecture et Design Urbain Nouvel Hôtel de Ville de La Pêche – BGLA Architecture et Design Urbain, La Pêche. Photo: Stéphane Brügger / Dominique Laroche École du Zénith by Pelletier de Fontenay + Leclerc École du Zénith – Pelletier de Fontenay + Leclerc, Shefford. Photo: James Brittain / David Boyer Le Paquebot by _naturehumaine Le Paquebot – _naturehumaine, Montréal. Photo: Ronan Mézière Coopérative funéraire la Seigneurie by ultralocal architectes Coopérative funéraire la Seigneurie – ultralocal architectes, Québec. Photo credit: Paul Dussault Site d’observation des bélugas Putep’t-awt by atelier5 + mainstudio Site d’observation des bélugas Putep’t-awt – atelier5 + mainstudio, Cacouna. Photo: Stéphane Groleau The post OAQ Awards of Excellence winners announced appeared first on Canadian Architect. #oaq #awards #excellence #winners #announced
    WWW.CANADIANARCHITECT.COM
    OAQ Awards of Excellence winners announced
    Montreal City Hall – Beaupré Michaud and Associates, Architects in collaboration with MU Architecture, Montreal. Photo credit: Raphaël Thibodeau The Ordre des architectes du Québec (OAQ) has revealed the winners of its 2025 Awards of Excellence in Architecture. A total of eleven projects were recognized at a gala hosted by Jean-René Dufort at Espace St-Denis in Montreal. The Grand Prix d’excellence en architecture was awarded to the restoration of Montreal City Hall , a major project led by Beaupré Michaud et Associés, architects, and MU Architecture. This complex project successfully preserves the building’s historical qualities while transforming it into an exemplary place in terms of energy and ecology.  Guided by plans from the 1920s, the architects revived this building by equipping it with contemporary, efficient, more open, and more accessible features for residents. In addition to the heritage restoration, the team also reconciled old and contemporary technologies, energy efficiency, universal accessibility, and the reappropriation of spaces that had become dilapidated. The People’s Choice Award was presented to the Coop Milieu de l’île, designed by Pivot: Coopérative d’architecture. Located in Outremont, this 91-unit intergenerational housing cooperative was born from the initiative of a group of committed citizens looking to address the housing crisis by creating affordable, off-market housing. In the context of the housing crisis, the jury emphasized that this project, which is also the recipient of an Award of Excellence, designed by and for its residents, acts as a “breath of fresh air in Outremont.” Coop Milieu de l’île. Pivot: Architecture Cooperative, Montreal. Photo credit: Annie Fafard “The projects we evaluated this year were truly remarkable in their richness and diversity. The jury found in them everything that makes Quebec architecture so strong and unique: rigor, attention to detail, and respect for the context and built heritage. We saw emblematic projects, but also discreet gestures, almost invisible in the landscape. Some projects rehabilitated forgotten places, transformed historic buildings, or even imagined new spaces for collective living. All, in their own way, highlighted the powerful impact of built quality on our living environments,” said Gabrielle Nadeau, chair of the OAQ Awards of Excellence Jury. The jury for the 2025 Awards of Excellence in Architecture was chaired by Gabrielle Nadeau, principal design architect, COBE in Copenhagen. It also included architects Marianne Charbonneau of Agence Spatiale, Maxime-Alexis Frappier of ACDF, and Guillaume Martel-Trudel of Provencher-Roy. Élène Levasseur, director of research and education at Architecture sans frontières Québec, acted as the public representative. Through the Awards of Excellence in Architecture, presented annually, the Order aims to raise awareness among Quebecers of the multiple dimensions of architectural quality, in addition to promoting the role of the architects in the design of inspiring, sustainable and thoughtful senior living environments. The full list of winners include the following. Habitat Sélénite by _naturehumaine Habitat Sélénite – _naturehumaine, Eastman (Estrie). Photo: Raphaël Thibodeau École secondaire du Bosquet by ABCP | Menkès Shooner Dagenais LeTourneux | Bilodeau Baril Leeming Architectes École secondaire du Bosquet – ABCP | Menkès Shooner Dagenais LeTourneux | Bilodeau Baril Leeming Architectes, Drummondville (Centre-du-Québec). Photo: Stéphane Brügger Bibliothèque Gabrielle-Roy by Saucier + Perrotte Architectes et GLCRM Architectes Bibliothèque Gabrielle-Roy – Saucier + Perrotte Architectes et GLCRM Architectes, Québec (Capitale-Nationale). Photo: Olivier Blouin Maison A by Atelier Pierre Thibault Maison A – Atelier Pierre Thibault, Saint-Nicolas (Chaudière-Appalaches). Photo: Maxime Brouillet Nouvel Hôtel de Ville de La Pêche by BGLA Architecture et Design Urbain Nouvel Hôtel de Ville de La Pêche – BGLA Architecture et Design Urbain, La Pêche (Outaouais). Photo: Stéphane Brügger / Dominique Laroche École du Zénith by Pelletier de Fontenay + Leclerc École du Zénith – Pelletier de Fontenay + Leclerc, Shefford (Estrie). Photo: James Brittain / David Boyer Le Paquebot by _naturehumaine Le Paquebot – _naturehumaine, Montréal (Montréal). Photo: Ronan Mézière Coopérative funéraire la Seigneurie by ultralocal architectes Coopérative funéraire la Seigneurie – ultralocal architectes, Québec (Capitale-Nationale). Photo credit: Paul Dussault Site d’observation des bélugas Putep’t-awt by atelier5 + mainstudio Site d’observation des bélugas Putep’t-awt – atelier5 + mainstudio, Cacouna (Bas-Saint-Laurent). Photo: Stéphane Groleau The post OAQ Awards of Excellence winners announced appeared first on Canadian Architect.
    Like
    Love
    Wow
    Sad
    Angry
    520
    2 Comentários 0 Compartilhamentos
  • Tech billionaires are making a risky bet with humanity’s future

    “The best way to predict the future is to invent it,” the famed computer scientist Alan Kay once said. Uttered more out of exasperation than as inspiration, his remark has nevertheless attained gospel-like status among Silicon Valley entrepreneurs, in particular a handful of tech billionaires who fancy themselves the chief architects of humanity’s future. 

    Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals and ambitions in the near term, but their grand visions for the next decade and beyond are remarkably similar. Framed less as technological objectives and more as existential imperatives, they include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality; establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos.

    While there’s a sprawling patchwork of ideas and philosophies powering these visions, three features play a central role, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits. In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker calls this triumvirate of beliefs the “ideology of technological salvation” and warns that tech titans are using it to steer humanity in a dangerous direction. 

    “In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress.”

    “The credence that tech billionaires give to these specific science-fictional futures validates their pursuit of more—to portray the growth of their businesses as a moral imperative, to reduce the complex problems of the world to simple questions of technology,to justify nearly any action they might want to take,” he writes. Becker argues that the only way to break free of these visions is to see them for what they are: a convenient excuse to continue destroying the environment, skirt regulations, amass more power and control, and dismiss the very real problems of today to focus on the imagined ones of tomorrow. 

    A lot of critics, academics, and journalists have tried to define or distill the Silicon Valley ethos over the years. There was the “Californian Ideology” in the mid-’90s, the “Move fast and break things” era of the early 2000s, and more recently the “Libertarianism for me, feudalism for thee”  or “techno-­authoritarian” views. How do you see the “ideology of technological salvation” fitting in? 

    I’d say it’s very much of a piece with those earlier attempts to describe the Silicon Valley mindset. I mean, you can draw a pretty straight line from Max More’s principles of transhumanism in the ’90s to the Californian Ideologyand through to what I call the ideology of technological salvation. The fact is, many of the ideas that define or animate Silicon Valley thinking have never been much of a ­mystery—libertarianism, an antipathy toward the government and regulation, the boundless faith in technology, the obsession with optimization. 

    What can be difficult is to parse where all these ideas come from and how they fit together—or if they fit together at all. I came up with the ideology of technological salvation as a way to name and give shape to a group of interrelated concepts and philosophies that can seem sprawling and ill-defined at first, but that actually sit at the center of a worldview shared by venture capitalists, executives, and other thought leaders in the tech industry. 

    Readers will likely be familiar with the tech billionaires featured in your book and at least some of their ambitions. I’m guessing they’ll be less familiar with the various “isms” that you argue have influenced or guided their thinking. Effective altruism, rationalism, long­termism, extropianism, effective accelerationism, futurism, singularitarianism, ­transhumanism—there are a lot of them. Is there something that they all share? 

    They’re definitely connected. In a sense, you could say they’re all versions or instantiations of the ideology of technological salvation, but there are also some very deep historical connections between the people in these groups and their aims and beliefs. The Extropians in the late ’80s believed in self-­transformation through technology and freedom from limitations of any kind—ideas that Ray Kurzweil eventually helped popularize and legitimize for a larger audience with the Singularity. 

    In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress. I should say that AI researcher Timnit Gebru and philosopher Émile Torres have also done a lot of great work linking these ideologies to one another and showing how they all have ties to racism, misogyny, and eugenics.

    You argue that the Singularity is the purest expression of the ideology of technological salvation. How so?

    Well, for one thing, it’s just this very simple, straightforward idea—the Singularity is coming and will occur when we merge our brains with the cloud and expand our intelligence a millionfold. This will then deepen our awareness and consciousness and everything will be amazing. In many ways, it’s a fantastical vision of a perfect technological utopia. We’re all going to live as long as we want in an eternal paradise, watched over by machines of loving grace, and everything will just get exponentially better forever. The end.

    The other isms I talk about in the book have a little more … heft isn’t the right word—they just have more stuff going on. There’s more to them, right? The rationalists and the effective altruists and the longtermists—they think that something like a singularity will happen, or could happen, but that there’s this really big danger between where we are now and that potential event. We have to address the fact that an all-powerful AI might destroy humanity—the so-called alignment problem—before any singularity can happen. 

    Then you’ve got the effective accelerationists, who are more like Kurzweil, but they’ve got more of a tech-bro spin on things. They’ve taken some of the older transhumanist ideas from the Singularity and updated them for startup culture. Marc Andreessen’s “Techno-Optimist Manifesto”is a good example. You could argue that all of these other philosophies that have gained purchase in Silicon Valley are just twists on Kurzweil’s Singularity, each one building on top of the core ideas of transcendence, techno­-optimism, and exponential growth. 

    Early on in the book you take aim at that idea of exponential growth—specifically, Kurzweil’s “Law of Accelerating Returns.” Could you explain what that is and why you think it’s flawed?

    Kurzweil thinks there’s this immutable “Law of Accelerating Returns” at work in the affairs of the universe, especially when it comes to technology. It’s the idea that technological progress isn’t linear but exponential. Advancements in one technology fuel even more rapid advancements in the future, which in turn lead to greater complexity and greater technological power, and on and on. This is just a mistake. Kurzweil uses the Law of Accelerating Returns to explain why the Singularity is inevitable, but to be clear, he’s far from the only one who believes in this so-called law.

    “I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear.”

    My sense is that it’s an idea that comes from staring at Moore’s Law for too long. Moore’s Law is of course the famous prediction that the number of transistors on a chip will double roughly every two years, with a minimal increase in cost. Now, that has in fact happened for the last 50 years or so, but not because of some fundamental law in the universe. It’s because the tech industry made a choice and some very sizable investments to make it happen. Moore’s Law was ultimately this really interesting observation or projection of a historical trend, but even Gordon Mooreknew that it wouldn’t and couldn’t last forever. In fact, some think it’s already over. 

    These ideologies take inspiration from some pretty unsavory characters. Transhumanism, you say, was first popularized by the eugenicist Julian Huxley in a speech in 1951. Marc Andreessen’s “Techno-Optimist Manifesto” name-checks the noted fascist Filippo Tommaso Marinetti and his futurist manifesto. Did you get the sense while researching the book that the tech titans who champion these ideas understand their dangerous origins?

    You’re assuming in the framing of that question that there’s any rigorous thought going on here at all. As I say in the book, Andreessen’s manifesto runs almost entirely on vibes, not logic. I think someone may have told him about the futurist manifesto at some point, and he just sort of liked the general vibe, which is why he paraphrases a part of it. Maybe he learned something about Marinetti and forgot it. Maybe he didn’t care. 

    I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear. For many of these billionaires, the vibes of fascism, authoritarianism, and colonialism are attractive because they’re fundamentally about creating a fantasy of control. 

    You argue that these visions of the future are being used to hasten environmental destruction, increase authoritarianism, and exacerbate inequalities. You also admit that they appeal to lots of people who aren’t billionaires. Why do you think that is? 

    I think a lot of us are also attracted to these ideas for the same reasons the tech billionaires are—they offer this fantasy of knowing what the future holds, of transcending death, and a sense that someone or something out there is in control. It’s hard to overstate how comforting a simple, coherent narrative can be in an increasingly complex and fast-moving world. This is of course what religion offers for many of us, and I don’t think it’s an accident that a sizable number of people in the rationalist and effective altruist communities are actually ex-evangelicals.

    More than any one specific technology, it seems like the most consequential thing these billionaires have invented is a sense of inevitability—that their visions for the future are somehow predestined. How does one fight against that?

    It’s a difficult question. For me, the answer was to write this book. I guess I’d also say this: Silicon Valley enjoyed well over a decade with little to no pushback on anything. That’s definitely a big part of how we ended up in this mess. There was no regulation, very little critical coverage in the press, and a lot of self-mythologizing going on. Things have started to change, especially as the social and environmental damage that tech companies and industry leaders have helped facilitate has become more clear. That understanding is an essential part of deflating the power of these tech billionaires and breaking free of their visions. When we understand that these dreams of the future are actually nightmares for the rest of us, I think you’ll see that senseof inevitability vanish pretty fast. 

    This interview was edited for length and clarity.

    Bryan Gardiner is a writer based in Oakland, California. 
    #tech #billionaires #are #making #risky
    Tech billionaires are making a risky bet with humanity’s future
    “The best way to predict the future is to invent it,” the famed computer scientist Alan Kay once said. Uttered more out of exasperation than as inspiration, his remark has nevertheless attained gospel-like status among Silicon Valley entrepreneurs, in particular a handful of tech billionaires who fancy themselves the chief architects of humanity’s future.  Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals and ambitions in the near term, but their grand visions for the next decade and beyond are remarkably similar. Framed less as technological objectives and more as existential imperatives, they include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality; establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos. While there’s a sprawling patchwork of ideas and philosophies powering these visions, three features play a central role, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits. In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker calls this triumvirate of beliefs the “ideology of technological salvation” and warns that tech titans are using it to steer humanity in a dangerous direction.  “In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress.” “The credence that tech billionaires give to these specific science-fictional futures validates their pursuit of more—to portray the growth of their businesses as a moral imperative, to reduce the complex problems of the world to simple questions of technology,to justify nearly any action they might want to take,” he writes. Becker argues that the only way to break free of these visions is to see them for what they are: a convenient excuse to continue destroying the environment, skirt regulations, amass more power and control, and dismiss the very real problems of today to focus on the imagined ones of tomorrow.  A lot of critics, academics, and journalists have tried to define or distill the Silicon Valley ethos over the years. There was the “Californian Ideology” in the mid-’90s, the “Move fast and break things” era of the early 2000s, and more recently the “Libertarianism for me, feudalism for thee”  or “techno-­authoritarian” views. How do you see the “ideology of technological salvation” fitting in?  I’d say it’s very much of a piece with those earlier attempts to describe the Silicon Valley mindset. I mean, you can draw a pretty straight line from Max More’s principles of transhumanism in the ’90s to the Californian Ideologyand through to what I call the ideology of technological salvation. The fact is, many of the ideas that define or animate Silicon Valley thinking have never been much of a ­mystery—libertarianism, an antipathy toward the government and regulation, the boundless faith in technology, the obsession with optimization.  What can be difficult is to parse where all these ideas come from and how they fit together—or if they fit together at all. I came up with the ideology of technological salvation as a way to name and give shape to a group of interrelated concepts and philosophies that can seem sprawling and ill-defined at first, but that actually sit at the center of a worldview shared by venture capitalists, executives, and other thought leaders in the tech industry.  Readers will likely be familiar with the tech billionaires featured in your book and at least some of their ambitions. I’m guessing they’ll be less familiar with the various “isms” that you argue have influenced or guided their thinking. Effective altruism, rationalism, long­termism, extropianism, effective accelerationism, futurism, singularitarianism, ­transhumanism—there are a lot of them. Is there something that they all share?  They’re definitely connected. In a sense, you could say they’re all versions or instantiations of the ideology of technological salvation, but there are also some very deep historical connections between the people in these groups and their aims and beliefs. The Extropians in the late ’80s believed in self-­transformation through technology and freedom from limitations of any kind—ideas that Ray Kurzweil eventually helped popularize and legitimize for a larger audience with the Singularity.  In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress. I should say that AI researcher Timnit Gebru and philosopher Émile Torres have also done a lot of great work linking these ideologies to one another and showing how they all have ties to racism, misogyny, and eugenics. You argue that the Singularity is the purest expression of the ideology of technological salvation. How so? Well, for one thing, it’s just this very simple, straightforward idea—the Singularity is coming and will occur when we merge our brains with the cloud and expand our intelligence a millionfold. This will then deepen our awareness and consciousness and everything will be amazing. In many ways, it’s a fantastical vision of a perfect technological utopia. We’re all going to live as long as we want in an eternal paradise, watched over by machines of loving grace, and everything will just get exponentially better forever. The end. The other isms I talk about in the book have a little more … heft isn’t the right word—they just have more stuff going on. There’s more to them, right? The rationalists and the effective altruists and the longtermists—they think that something like a singularity will happen, or could happen, but that there’s this really big danger between where we are now and that potential event. We have to address the fact that an all-powerful AI might destroy humanity—the so-called alignment problem—before any singularity can happen.  Then you’ve got the effective accelerationists, who are more like Kurzweil, but they’ve got more of a tech-bro spin on things. They’ve taken some of the older transhumanist ideas from the Singularity and updated them for startup culture. Marc Andreessen’s “Techno-Optimist Manifesto”is a good example. You could argue that all of these other philosophies that have gained purchase in Silicon Valley are just twists on Kurzweil’s Singularity, each one building on top of the core ideas of transcendence, techno­-optimism, and exponential growth.  Early on in the book you take aim at that idea of exponential growth—specifically, Kurzweil’s “Law of Accelerating Returns.” Could you explain what that is and why you think it’s flawed? Kurzweil thinks there’s this immutable “Law of Accelerating Returns” at work in the affairs of the universe, especially when it comes to technology. It’s the idea that technological progress isn’t linear but exponential. Advancements in one technology fuel even more rapid advancements in the future, which in turn lead to greater complexity and greater technological power, and on and on. This is just a mistake. Kurzweil uses the Law of Accelerating Returns to explain why the Singularity is inevitable, but to be clear, he’s far from the only one who believes in this so-called law. “I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear.” My sense is that it’s an idea that comes from staring at Moore’s Law for too long. Moore’s Law is of course the famous prediction that the number of transistors on a chip will double roughly every two years, with a minimal increase in cost. Now, that has in fact happened for the last 50 years or so, but not because of some fundamental law in the universe. It’s because the tech industry made a choice and some very sizable investments to make it happen. Moore’s Law was ultimately this really interesting observation or projection of a historical trend, but even Gordon Mooreknew that it wouldn’t and couldn’t last forever. In fact, some think it’s already over.  These ideologies take inspiration from some pretty unsavory characters. Transhumanism, you say, was first popularized by the eugenicist Julian Huxley in a speech in 1951. Marc Andreessen’s “Techno-Optimist Manifesto” name-checks the noted fascist Filippo Tommaso Marinetti and his futurist manifesto. Did you get the sense while researching the book that the tech titans who champion these ideas understand their dangerous origins? You’re assuming in the framing of that question that there’s any rigorous thought going on here at all. As I say in the book, Andreessen’s manifesto runs almost entirely on vibes, not logic. I think someone may have told him about the futurist manifesto at some point, and he just sort of liked the general vibe, which is why he paraphrases a part of it. Maybe he learned something about Marinetti and forgot it. Maybe he didn’t care.  I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear. For many of these billionaires, the vibes of fascism, authoritarianism, and colonialism are attractive because they’re fundamentally about creating a fantasy of control.  You argue that these visions of the future are being used to hasten environmental destruction, increase authoritarianism, and exacerbate inequalities. You also admit that they appeal to lots of people who aren’t billionaires. Why do you think that is?  I think a lot of us are also attracted to these ideas for the same reasons the tech billionaires are—they offer this fantasy of knowing what the future holds, of transcending death, and a sense that someone or something out there is in control. It’s hard to overstate how comforting a simple, coherent narrative can be in an increasingly complex and fast-moving world. This is of course what religion offers for many of us, and I don’t think it’s an accident that a sizable number of people in the rationalist and effective altruist communities are actually ex-evangelicals. More than any one specific technology, it seems like the most consequential thing these billionaires have invented is a sense of inevitability—that their visions for the future are somehow predestined. How does one fight against that? It’s a difficult question. For me, the answer was to write this book. I guess I’d also say this: Silicon Valley enjoyed well over a decade with little to no pushback on anything. That’s definitely a big part of how we ended up in this mess. There was no regulation, very little critical coverage in the press, and a lot of self-mythologizing going on. Things have started to change, especially as the social and environmental damage that tech companies and industry leaders have helped facilitate has become more clear. That understanding is an essential part of deflating the power of these tech billionaires and breaking free of their visions. When we understand that these dreams of the future are actually nightmares for the rest of us, I think you’ll see that senseof inevitability vanish pretty fast.  This interview was edited for length and clarity. Bryan Gardiner is a writer based in Oakland, California.  #tech #billionaires #are #making #risky
    WWW.TECHNOLOGYREVIEW.COM
    Tech billionaires are making a risky bet with humanity’s future
    “The best way to predict the future is to invent it,” the famed computer scientist Alan Kay once said. Uttered more out of exasperation than as inspiration, his remark has nevertheless attained gospel-like status among Silicon Valley entrepreneurs, in particular a handful of tech billionaires who fancy themselves the chief architects of humanity’s future.  Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals and ambitions in the near term, but their grand visions for the next decade and beyond are remarkably similar. Framed less as technological objectives and more as existential imperatives, they include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality (or something close to it); establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos. While there’s a sprawling patchwork of ideas and philosophies powering these visions, three features play a central role, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits. In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker calls this triumvirate of beliefs the “ideology of technological salvation” and warns that tech titans are using it to steer humanity in a dangerous direction.  “In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress.” “The credence that tech billionaires give to these specific science-fictional futures validates their pursuit of more—to portray the growth of their businesses as a moral imperative, to reduce the complex problems of the world to simple questions of technology, [and] to justify nearly any action they might want to take,” he writes. Becker argues that the only way to break free of these visions is to see them for what they are: a convenient excuse to continue destroying the environment, skirt regulations, amass more power and control, and dismiss the very real problems of today to focus on the imagined ones of tomorrow.  A lot of critics, academics, and journalists have tried to define or distill the Silicon Valley ethos over the years. There was the “Californian Ideology” in the mid-’90s, the “Move fast and break things” era of the early 2000s, and more recently the “Libertarianism for me, feudalism for thee”  or “techno-­authoritarian” views. How do you see the “ideology of technological salvation” fitting in?  I’d say it’s very much of a piece with those earlier attempts to describe the Silicon Valley mindset. I mean, you can draw a pretty straight line from Max More’s principles of transhumanism in the ’90s to the Californian Ideology [a mashup of countercultural, libertarian, and neoliberal values] and through to what I call the ideology of technological salvation. The fact is, many of the ideas that define or animate Silicon Valley thinking have never been much of a ­mystery—libertarianism, an antipathy toward the government and regulation, the boundless faith in technology, the obsession with optimization.  What can be difficult is to parse where all these ideas come from and how they fit together—or if they fit together at all. I came up with the ideology of technological salvation as a way to name and give shape to a group of interrelated concepts and philosophies that can seem sprawling and ill-defined at first, but that actually sit at the center of a worldview shared by venture capitalists, executives, and other thought leaders in the tech industry.  Readers will likely be familiar with the tech billionaires featured in your book and at least some of their ambitions. I’m guessing they’ll be less familiar with the various “isms” that you argue have influenced or guided their thinking. Effective altruism, rationalism, long­termism, extropianism, effective accelerationism, futurism, singularitarianism, ­transhumanism—there are a lot of them. Is there something that they all share?  They’re definitely connected. In a sense, you could say they’re all versions or instantiations of the ideology of technological salvation, but there are also some very deep historical connections between the people in these groups and their aims and beliefs. The Extropians in the late ’80s believed in self-­transformation through technology and freedom from limitations of any kind—ideas that Ray Kurzweil eventually helped popularize and legitimize for a larger audience with the Singularity.  In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress. I should say that AI researcher Timnit Gebru and philosopher Émile Torres have also done a lot of great work linking these ideologies to one another and showing how they all have ties to racism, misogyny, and eugenics. You argue that the Singularity is the purest expression of the ideology of technological salvation. How so? Well, for one thing, it’s just this very simple, straightforward idea—the Singularity is coming and will occur when we merge our brains with the cloud and expand our intelligence a millionfold. This will then deepen our awareness and consciousness and everything will be amazing. In many ways, it’s a fantastical vision of a perfect technological utopia. We’re all going to live as long as we want in an eternal paradise, watched over by machines of loving grace, and everything will just get exponentially better forever. The end. The other isms I talk about in the book have a little more … heft isn’t the right word—they just have more stuff going on. There’s more to them, right? The rationalists and the effective altruists and the longtermists—they think that something like a singularity will happen, or could happen, but that there’s this really big danger between where we are now and that potential event. We have to address the fact that an all-powerful AI might destroy humanity—the so-called alignment problem—before any singularity can happen.  Then you’ve got the effective accelerationists, who are more like Kurzweil, but they’ve got more of a tech-bro spin on things. They’ve taken some of the older transhumanist ideas from the Singularity and updated them for startup culture. Marc Andreessen’s “Techno-Optimist Manifesto” [from 2023] is a good example. You could argue that all of these other philosophies that have gained purchase in Silicon Valley are just twists on Kurzweil’s Singularity, each one building on top of the core ideas of transcendence, techno­-optimism, and exponential growth.  Early on in the book you take aim at that idea of exponential growth—specifically, Kurzweil’s “Law of Accelerating Returns.” Could you explain what that is and why you think it’s flawed? Kurzweil thinks there’s this immutable “Law of Accelerating Returns” at work in the affairs of the universe, especially when it comes to technology. It’s the idea that technological progress isn’t linear but exponential. Advancements in one technology fuel even more rapid advancements in the future, which in turn lead to greater complexity and greater technological power, and on and on. This is just a mistake. Kurzweil uses the Law of Accelerating Returns to explain why the Singularity is inevitable, but to be clear, he’s far from the only one who believes in this so-called law. “I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear.” My sense is that it’s an idea that comes from staring at Moore’s Law for too long. Moore’s Law is of course the famous prediction that the number of transistors on a chip will double roughly every two years, with a minimal increase in cost. Now, that has in fact happened for the last 50 years or so, but not because of some fundamental law in the universe. It’s because the tech industry made a choice and some very sizable investments to make it happen. Moore’s Law was ultimately this really interesting observation or projection of a historical trend, but even Gordon Moore [who first articulated it] knew that it wouldn’t and couldn’t last forever. In fact, some think it’s already over.  These ideologies take inspiration from some pretty unsavory characters. Transhumanism, you say, was first popularized by the eugenicist Julian Huxley in a speech in 1951. Marc Andreessen’s “Techno-Optimist Manifesto” name-checks the noted fascist Filippo Tommaso Marinetti and his futurist manifesto. Did you get the sense while researching the book that the tech titans who champion these ideas understand their dangerous origins? You’re assuming in the framing of that question that there’s any rigorous thought going on here at all. As I say in the book, Andreessen’s manifesto runs almost entirely on vibes, not logic. I think someone may have told him about the futurist manifesto at some point, and he just sort of liked the general vibe, which is why he paraphrases a part of it. Maybe he learned something about Marinetti and forgot it. Maybe he didn’t care.  I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear. For many of these billionaires, the vibes of fascism, authoritarianism, and colonialism are attractive because they’re fundamentally about creating a fantasy of control.  You argue that these visions of the future are being used to hasten environmental destruction, increase authoritarianism, and exacerbate inequalities. You also admit that they appeal to lots of people who aren’t billionaires. Why do you think that is?  I think a lot of us are also attracted to these ideas for the same reasons the tech billionaires are—they offer this fantasy of knowing what the future holds, of transcending death, and a sense that someone or something out there is in control. It’s hard to overstate how comforting a simple, coherent narrative can be in an increasingly complex and fast-moving world. This is of course what religion offers for many of us, and I don’t think it’s an accident that a sizable number of people in the rationalist and effective altruist communities are actually ex-evangelicals. More than any one specific technology, it seems like the most consequential thing these billionaires have invented is a sense of inevitability—that their visions for the future are somehow predestined. How does one fight against that? It’s a difficult question. For me, the answer was to write this book. I guess I’d also say this: Silicon Valley enjoyed well over a decade with little to no pushback on anything. That’s definitely a big part of how we ended up in this mess. There was no regulation, very little critical coverage in the press, and a lot of self-mythologizing going on. Things have started to change, especially as the social and environmental damage that tech companies and industry leaders have helped facilitate has become more clear. That understanding is an essential part of deflating the power of these tech billionaires and breaking free of their visions. When we understand that these dreams of the future are actually nightmares for the rest of us, I think you’ll see that senseof inevitability vanish pretty fast.  This interview was edited for length and clarity. Bryan Gardiner is a writer based in Oakland, California. 
    Like
    Love
    Wow
    Sad
    Angry
    535
    2 Comentários 0 Compartilhamentos
  • New Zealand’s Email Security Requirements for Government Organizations: What You Need to Know

    The Secure Government EmailCommon Implementation Framework
    New Zealand’s government is introducing a comprehensive email security framework designed to protect official communications from phishing and domain spoofing. This new framework, which will be mandatory for all government agencies by October 2025, establishes clear technical standards to enhance email security and retire the outdated SEEMail service. 
    Key Takeaways

    All NZ government agencies must comply with new email security requirements by October 2025.
    The new framework strengthens trust and security in government communications by preventing spoofing and phishing.
    The framework mandates TLS 1.2+, SPF, DKIM, DMARC with p=reject, MTA-STS, and DLP controls.
    EasyDMARC simplifies compliance with our guided setup, monitoring, and automated reporting.

    Start a Free Trial

    What is the Secure Government Email Common Implementation Framework?
    The Secure Government EmailCommon Implementation Framework is a new government-led initiative in New Zealand designed to standardize email security across all government agencies. Its main goal is to secure external email communication, reduce domain spoofing in phishing attacks, and replace the legacy SEEMail service.
    Why is New Zealand Implementing New Government Email Security Standards?
    The framework was developed by New Zealand’s Department of Internal Affairsas part of its role in managing ICT Common Capabilities. It leverages modern email security controls via the Domain Name Systemto enable the retirement of the legacy SEEMail service and provide:

    Encryption for transmission security
    Digital signing for message integrity
    Basic non-repudiationDomain spoofing protection

    These improvements apply to all emails, not just those routed through SEEMail, offering broader protection across agency communications.
    What Email Security Technologies Are Required by the New NZ SGE Framework?
    The SGE Framework outlines the following key technologies that agencies must implement:

    TLS 1.2 or higher with implicit TLS enforced
    TLS-RPTSPFDKIMDMARCwith reporting
    MTA-STSData Loss Prevention controls

    These technologies work together to ensure encrypted email transmission, validate sender identity, prevent unauthorized use of domains, and reduce the risk of sensitive data leaks.

    Get in touch

    When Do NZ Government Agencies Need to Comply with this Framework?
    All New Zealand government agencies are expected to fully implement the Secure Government EmailCommon Implementation Framework by October 2025. Agencies should begin their planning and deployment now to ensure full compliance by the deadline.
    The All of Government Secure Email Common Implementation Framework v1.0
    What are the Mandated Requirements for Domains?
    Below are the exact requirements for all email-enabled domains under the new framework.
    ControlExact RequirementTLSMinimum TLS 1.2. TLS 1.1, 1.0, SSL, or clear-text not permitted.TLS-RPTAll email-sending domains must have TLS reporting enabled.SPFMust exist and end with -all.DKIMAll outbound email from every sending service must be DKIM-signed at the final hop.DMARCPolicy of p=reject on all email-enabled domains. adkim=s is recommended when not bulk-sending.MTA-STSEnabled and set to enforce.Implicit TLSMust be configured and enforced for every connection.Data Loss PreventionEnforce in line with the New Zealand Information Security Manualand Protective Security Requirements.
    Compliance Monitoring and Reporting
    The All of Government Service Deliveryteam will be monitoring compliance with the framework. Monitoring will initially cover SPF, DMARC, and MTA-STS settings and will be expanded to include DKIM. Changes to these settings will be monitored, enabling reporting on email security compliance across all government agencies. Ongoing monitoring will highlight changes to domains, ensure new domains are set up with security in place, and monitor the implementation of future email security technologies. 
    Should compliance changes occur, such as an agency’s SPF record being changed from -all to ~all, this will be captured so that the AoGSD Security Team can investigate. They will then communicate directly with the agency to determine if an issue exists or if an error has occurred, reviewing each case individually.
    Deployment Checklist for NZ Government Compliance

    Enforce TLS 1.2 minimum, implicit TLS, MTA-STS & TLS-RPT
    SPF with -all
    DKIM on all outbound email
    DMARC p=reject 
    adkim=s where suitable
    For non-email/parked domains: SPF -all, empty DKIM, DMARC reject strict
    Compliance dashboard
    Inbound DMARC evaluation enforced
    DLP aligned with NZISM

    Start a Free Trial

    How EasyDMARC Can Help Government Agencies Comply
    EasyDMARC provides a comprehensive email security solution that simplifies the deployment and ongoing management of DNS-based email security protocols like SPF, DKIM, and DMARC with reporting. Our platform offers automated checks, real-time monitoring, and a guided setup to help government organizations quickly reach compliance.
    1. TLS-RPT / MTA-STS audit
    EasyDMARC enables you to enable the Managed MTA-STS and TLS-RPT option with a single click. We provide the required DNS records and continuously monitor them for issues, delivering reports on TLS negotiation problems. This helps agencies ensure secure email transmission and quickly detect delivery or encryption failures.

    Note: In this screenshot, you can see how to deploy MTA-STS and TLS Reporting by adding just three CNAME records provided by EasyDMARC. It’s recommended to start in “testing” mode, evaluate the TLS-RPT reports, and then gradually switch your MTA-STS policy to “enforce”. The process is simple and takes just a few clicks.

    As shown above, EasyDMARC parses incoming TLS reports into a centralized dashboard, giving you clear visibility into delivery and encryption issues across all sending sources.
    2. SPF with “-all”In the EasyDARC platform, you can run the SPF Record Generator to create a compliant record. Publish your v=spf1 record with “-all” to enforce a hard fail for unauthorized senders and prevent spoofed emails from passing SPF checks. This strengthens your domain’s protection against impersonation.

    Note: It is highly recommended to start adjusting your SPF record only after you begin receiving DMARC reports and identifying your legitimate email sources. As we’ll explain in more detail below, both SPF and DKIM should be adjusted after you gain visibility through reports.
    Making changes without proper visibility can lead to false positives, misconfigurations, and potential loss of legitimate emails. That’s why the first step should always be setting DMARC to p=none, receiving reports, analyzing them, and then gradually fixing any SPF or DKIM issues.
    3. DKIM on all outbound email
    DKIM must be configured for all email sources sending emails on behalf of your domain. This is critical, as DKIM plays a bigger role than SPF when it comes to building domain reputation, surviving auto-forwarding, mailing lists, and other edge cases.
    As mentioned above, DMARC reports provide visibility into your email sources, allowing you to implement DKIM accordingly. If you’re using third-party services like Google Workspace, Microsoft 365, or Mimecast, you’ll need to retrieve the public DKIM key from your provider’s admin interface.
    EasyDMARC maintains a backend directory of over 1,400 email sources. We also give you detailed guidance on how to configure SPF and DKIM correctly for major ESPs. 
    Note: At the end of this article, you’ll find configuration links for well-known ESPs like Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid – helping you avoid common misconfigurations and get aligned with SGE requirements.
    If you’re using a dedicated MTA, DKIM must be implemented manually. EasyDMARC’s DKIM Record Generator lets you generate both public and private keys for your server. The private key is stored on your MTA, while the public key must be published in your DNS.

    4. DMARC p=reject rollout
    As mentioned in previous points, DMARC reporting is the first and most important step on your DMARC enforcement journey. Always start with a p=none policy and configure RUA reports to be sent to EasyDMARC. Use the report insights to identify and fix SPF and DKIM alignment issues, then gradually move to p=quarantine and finally p=reject once all legitimate email sources have been authenticated. 
    This phased approach ensures full protection against domain spoofing without risking legitimate email delivery.

    5. adkim Strict Alignment Check
    This strict alignment check is not always applicable, especially if you’re using third-party bulk ESPs, such as Sendgrid, that require you to set DKIM on a subdomain level. You can set adkim=s in your DMARC TXT record, or simply enable strict mode in EasyDMARC’s Managed DMARC settings. This ensures that only emails with a DKIM signature that exactly match your domain pass alignment, adding an extra layer of protection against domain spoofing. But only do this if you are NOT a bulk sender.

    6. Securing Non-Email Enabled Domains
    The purpose of deploying email security to non-email-enabled domains, or parked domains, is to prevent messages being spoofed from that domain. This requirement remains even if the root-level domain has SP=reject set within its DMARC record.
    Under this new framework, you must bulk import and mark parked domains as “Parked.” Crucially, this requires adjusting SPF settings to an empty record, setting DMARC to p=reject, and ensuring an empty DKIM record is in place: • SPF record: “v=spf1 -all”.
    • Wildcard DKIM record with empty public key.• DMARC record: “v=DMARC1;p=reject;adkim=s;aspf=s;rua=mailto:…”.
    EasyDMARC allows you to add and label parked domains for free. This is important because it helps you monitor any activity from these domains and ensure they remain protected with a strict DMARC policy of p=reject.
    7. Compliance Dashboard
    Use EasyDMARC’s Domain Scanner to assess the security posture of each domain with a clear compliance score and risk level. The dashboard highlights configuration gaps and guides remediation steps, helping government agencies stay on track toward full compliance with the SGE Framework.

    8. Inbound DMARC Evaluation Enforced
    You don’t need to apply any changes if you’re using Google Workspace, Microsoft 365, or other major mailbox providers. Most of them already enforce DMARC evaluation on incoming emails.
    However, some legacy Microsoft 365 setups may still quarantine emails that fail DMARC checks, even when the sending domain has a p=reject policy, instead of rejecting them. This behavior can be adjusted directly from your Microsoft Defender portal. about this in our step-by-step guide on how to set up SPF, DKIM, and DMARC from Microsoft Defender.
    If you’re using a third-party mail provider that doesn’t enforce having a DMARC policy for incoming emails, which is rare, you’ll need to contact their support to request a configuration change.
    9. Data Loss Prevention Aligned with NZISM
    The New Zealand Information Security Manualis the New Zealand Government’s manual on information assurance and information systems security. It includes guidance on data loss prevention, which must be followed to be aligned with the SEG.
    Need Help Setting up SPF and DKIM for your Email Provider?
    Setting up SPF and DKIM for different ESPs often requires specific configurations. Some providers require you to publish SPF and DKIM on a subdomain, while others only require DKIM, or have different formatting rules. We’ve simplified all these steps to help you avoid misconfigurations that could delay your DMARC enforcement, or worse, block legitimate emails from reaching your recipients.
    Below you’ll find comprehensive setup guides for Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid. You can also explore our full blog section that covers setup instructions for many other well-known ESPs.
    Remember, all this information is reflected in your DMARC aggregate reports. These reports give you live visibility into your outgoing email ecosystem, helping you analyze and fix any issues specific to a given provider.
    Here are our step-by-step guides for the most common platforms:

    Google Workspace

    Microsoft 365

    These guides will help ensure your DNS records are configured correctly as part of the Secure Government EmailFramework rollout.
    Meet New Government Email Security Standards With EasyDMARC
    New Zealand’s SEG Framework sets a clear path for government agencies to enhance their email security by October 2025. With EasyDMARC, you can meet these technical requirements efficiently and with confidence. From protocol setup to continuous monitoring and compliance tracking, EasyDMARC streamlines the entire process, ensuring strong protection against spoofing, phishing, and data loss while simplifying your transition from SEEMail.
    #new #zealands #email #security #requirements
    New Zealand’s Email Security Requirements for Government Organizations: What You Need to Know
    The Secure Government EmailCommon Implementation Framework New Zealand’s government is introducing a comprehensive email security framework designed to protect official communications from phishing and domain spoofing. This new framework, which will be mandatory for all government agencies by October 2025, establishes clear technical standards to enhance email security and retire the outdated SEEMail service.  Key Takeaways All NZ government agencies must comply with new email security requirements by October 2025. The new framework strengthens trust and security in government communications by preventing spoofing and phishing. The framework mandates TLS 1.2+, SPF, DKIM, DMARC with p=reject, MTA-STS, and DLP controls. EasyDMARC simplifies compliance with our guided setup, monitoring, and automated reporting. Start a Free Trial What is the Secure Government Email Common Implementation Framework? The Secure Government EmailCommon Implementation Framework is a new government-led initiative in New Zealand designed to standardize email security across all government agencies. Its main goal is to secure external email communication, reduce domain spoofing in phishing attacks, and replace the legacy SEEMail service. Why is New Zealand Implementing New Government Email Security Standards? The framework was developed by New Zealand’s Department of Internal Affairsas part of its role in managing ICT Common Capabilities. It leverages modern email security controls via the Domain Name Systemto enable the retirement of the legacy SEEMail service and provide: Encryption for transmission security Digital signing for message integrity Basic non-repudiationDomain spoofing protection These improvements apply to all emails, not just those routed through SEEMail, offering broader protection across agency communications. What Email Security Technologies Are Required by the New NZ SGE Framework? The SGE Framework outlines the following key technologies that agencies must implement: TLS 1.2 or higher with implicit TLS enforced TLS-RPTSPFDKIMDMARCwith reporting MTA-STSData Loss Prevention controls These technologies work together to ensure encrypted email transmission, validate sender identity, prevent unauthorized use of domains, and reduce the risk of sensitive data leaks. Get in touch When Do NZ Government Agencies Need to Comply with this Framework? All New Zealand government agencies are expected to fully implement the Secure Government EmailCommon Implementation Framework by October 2025. Agencies should begin their planning and deployment now to ensure full compliance by the deadline. The All of Government Secure Email Common Implementation Framework v1.0 What are the Mandated Requirements for Domains? Below are the exact requirements for all email-enabled domains under the new framework. ControlExact RequirementTLSMinimum TLS 1.2. TLS 1.1, 1.0, SSL, or clear-text not permitted.TLS-RPTAll email-sending domains must have TLS reporting enabled.SPFMust exist and end with -all.DKIMAll outbound email from every sending service must be DKIM-signed at the final hop.DMARCPolicy of p=reject on all email-enabled domains. adkim=s is recommended when not bulk-sending.MTA-STSEnabled and set to enforce.Implicit TLSMust be configured and enforced for every connection.Data Loss PreventionEnforce in line with the New Zealand Information Security Manualand Protective Security Requirements. Compliance Monitoring and Reporting The All of Government Service Deliveryteam will be monitoring compliance with the framework. Monitoring will initially cover SPF, DMARC, and MTA-STS settings and will be expanded to include DKIM. Changes to these settings will be monitored, enabling reporting on email security compliance across all government agencies. Ongoing monitoring will highlight changes to domains, ensure new domains are set up with security in place, and monitor the implementation of future email security technologies.  Should compliance changes occur, such as an agency’s SPF record being changed from -all to ~all, this will be captured so that the AoGSD Security Team can investigate. They will then communicate directly with the agency to determine if an issue exists or if an error has occurred, reviewing each case individually. Deployment Checklist for NZ Government Compliance Enforce TLS 1.2 minimum, implicit TLS, MTA-STS & TLS-RPT SPF with -all DKIM on all outbound email DMARC p=reject  adkim=s where suitable For non-email/parked domains: SPF -all, empty DKIM, DMARC reject strict Compliance dashboard Inbound DMARC evaluation enforced DLP aligned with NZISM Start a Free Trial How EasyDMARC Can Help Government Agencies Comply EasyDMARC provides a comprehensive email security solution that simplifies the deployment and ongoing management of DNS-based email security protocols like SPF, DKIM, and DMARC with reporting. Our platform offers automated checks, real-time monitoring, and a guided setup to help government organizations quickly reach compliance. 1. TLS-RPT / MTA-STS audit EasyDMARC enables you to enable the Managed MTA-STS and TLS-RPT option with a single click. We provide the required DNS records and continuously monitor them for issues, delivering reports on TLS negotiation problems. This helps agencies ensure secure email transmission and quickly detect delivery or encryption failures. Note: In this screenshot, you can see how to deploy MTA-STS and TLS Reporting by adding just three CNAME records provided by EasyDMARC. It’s recommended to start in “testing” mode, evaluate the TLS-RPT reports, and then gradually switch your MTA-STS policy to “enforce”. The process is simple and takes just a few clicks. As shown above, EasyDMARC parses incoming TLS reports into a centralized dashboard, giving you clear visibility into delivery and encryption issues across all sending sources. 2. SPF with “-all”In the EasyDARC platform, you can run the SPF Record Generator to create a compliant record. Publish your v=spf1 record with “-all” to enforce a hard fail for unauthorized senders and prevent spoofed emails from passing SPF checks. This strengthens your domain’s protection against impersonation. Note: It is highly recommended to start adjusting your SPF record only after you begin receiving DMARC reports and identifying your legitimate email sources. As we’ll explain in more detail below, both SPF and DKIM should be adjusted after you gain visibility through reports. Making changes without proper visibility can lead to false positives, misconfigurations, and potential loss of legitimate emails. That’s why the first step should always be setting DMARC to p=none, receiving reports, analyzing them, and then gradually fixing any SPF or DKIM issues. 3. DKIM on all outbound email DKIM must be configured for all email sources sending emails on behalf of your domain. This is critical, as DKIM plays a bigger role than SPF when it comes to building domain reputation, surviving auto-forwarding, mailing lists, and other edge cases. As mentioned above, DMARC reports provide visibility into your email sources, allowing you to implement DKIM accordingly. If you’re using third-party services like Google Workspace, Microsoft 365, or Mimecast, you’ll need to retrieve the public DKIM key from your provider’s admin interface. EasyDMARC maintains a backend directory of over 1,400 email sources. We also give you detailed guidance on how to configure SPF and DKIM correctly for major ESPs.  Note: At the end of this article, you’ll find configuration links for well-known ESPs like Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid – helping you avoid common misconfigurations and get aligned with SGE requirements. If you’re using a dedicated MTA, DKIM must be implemented manually. EasyDMARC’s DKIM Record Generator lets you generate both public and private keys for your server. The private key is stored on your MTA, while the public key must be published in your DNS. 4. DMARC p=reject rollout As mentioned in previous points, DMARC reporting is the first and most important step on your DMARC enforcement journey. Always start with a p=none policy and configure RUA reports to be sent to EasyDMARC. Use the report insights to identify and fix SPF and DKIM alignment issues, then gradually move to p=quarantine and finally p=reject once all legitimate email sources have been authenticated.  This phased approach ensures full protection against domain spoofing without risking legitimate email delivery. 5. adkim Strict Alignment Check This strict alignment check is not always applicable, especially if you’re using third-party bulk ESPs, such as Sendgrid, that require you to set DKIM on a subdomain level. You can set adkim=s in your DMARC TXT record, or simply enable strict mode in EasyDMARC’s Managed DMARC settings. This ensures that only emails with a DKIM signature that exactly match your domain pass alignment, adding an extra layer of protection against domain spoofing. But only do this if you are NOT a bulk sender. 6. Securing Non-Email Enabled Domains The purpose of deploying email security to non-email-enabled domains, or parked domains, is to prevent messages being spoofed from that domain. This requirement remains even if the root-level domain has SP=reject set within its DMARC record. Under this new framework, you must bulk import and mark parked domains as “Parked.” Crucially, this requires adjusting SPF settings to an empty record, setting DMARC to p=reject, and ensuring an empty DKIM record is in place: • SPF record: “v=spf1 -all”. • Wildcard DKIM record with empty public key.• DMARC record: “v=DMARC1;p=reject;adkim=s;aspf=s;rua=mailto:…”. EasyDMARC allows you to add and label parked domains for free. This is important because it helps you monitor any activity from these domains and ensure they remain protected with a strict DMARC policy of p=reject. 7. Compliance Dashboard Use EasyDMARC’s Domain Scanner to assess the security posture of each domain with a clear compliance score and risk level. The dashboard highlights configuration gaps and guides remediation steps, helping government agencies stay on track toward full compliance with the SGE Framework. 8. Inbound DMARC Evaluation Enforced You don’t need to apply any changes if you’re using Google Workspace, Microsoft 365, or other major mailbox providers. Most of them already enforce DMARC evaluation on incoming emails. However, some legacy Microsoft 365 setups may still quarantine emails that fail DMARC checks, even when the sending domain has a p=reject policy, instead of rejecting them. This behavior can be adjusted directly from your Microsoft Defender portal. about this in our step-by-step guide on how to set up SPF, DKIM, and DMARC from Microsoft Defender. If you’re using a third-party mail provider that doesn’t enforce having a DMARC policy for incoming emails, which is rare, you’ll need to contact their support to request a configuration change. 9. Data Loss Prevention Aligned with NZISM The New Zealand Information Security Manualis the New Zealand Government’s manual on information assurance and information systems security. It includes guidance on data loss prevention, which must be followed to be aligned with the SEG. Need Help Setting up SPF and DKIM for your Email Provider? Setting up SPF and DKIM for different ESPs often requires specific configurations. Some providers require you to publish SPF and DKIM on a subdomain, while others only require DKIM, or have different formatting rules. We’ve simplified all these steps to help you avoid misconfigurations that could delay your DMARC enforcement, or worse, block legitimate emails from reaching your recipients. Below you’ll find comprehensive setup guides for Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid. You can also explore our full blog section that covers setup instructions for many other well-known ESPs. Remember, all this information is reflected in your DMARC aggregate reports. These reports give you live visibility into your outgoing email ecosystem, helping you analyze and fix any issues specific to a given provider. Here are our step-by-step guides for the most common platforms: Google Workspace Microsoft 365 These guides will help ensure your DNS records are configured correctly as part of the Secure Government EmailFramework rollout. Meet New Government Email Security Standards With EasyDMARC New Zealand’s SEG Framework sets a clear path for government agencies to enhance their email security by October 2025. With EasyDMARC, you can meet these technical requirements efficiently and with confidence. From protocol setup to continuous monitoring and compliance tracking, EasyDMARC streamlines the entire process, ensuring strong protection against spoofing, phishing, and data loss while simplifying your transition from SEEMail. #new #zealands #email #security #requirements
    EASYDMARC.COM
    New Zealand’s Email Security Requirements for Government Organizations: What You Need to Know
    The Secure Government Email (SGE) Common Implementation Framework New Zealand’s government is introducing a comprehensive email security framework designed to protect official communications from phishing and domain spoofing. This new framework, which will be mandatory for all government agencies by October 2025, establishes clear technical standards to enhance email security and retire the outdated SEEMail service.  Key Takeaways All NZ government agencies must comply with new email security requirements by October 2025. The new framework strengthens trust and security in government communications by preventing spoofing and phishing. The framework mandates TLS 1.2+, SPF, DKIM, DMARC with p=reject, MTA-STS, and DLP controls. EasyDMARC simplifies compliance with our guided setup, monitoring, and automated reporting. Start a Free Trial What is the Secure Government Email Common Implementation Framework? The Secure Government Email (SGE) Common Implementation Framework is a new government-led initiative in New Zealand designed to standardize email security across all government agencies. Its main goal is to secure external email communication, reduce domain spoofing in phishing attacks, and replace the legacy SEEMail service. Why is New Zealand Implementing New Government Email Security Standards? The framework was developed by New Zealand’s Department of Internal Affairs (DIA) as part of its role in managing ICT Common Capabilities. It leverages modern email security controls via the Domain Name System (DNS) to enable the retirement of the legacy SEEMail service and provide: Encryption for transmission security Digital signing for message integrity Basic non-repudiation (by allowing only authorized senders) Domain spoofing protection These improvements apply to all emails, not just those routed through SEEMail, offering broader protection across agency communications. What Email Security Technologies Are Required by the New NZ SGE Framework? The SGE Framework outlines the following key technologies that agencies must implement: TLS 1.2 or higher with implicit TLS enforced TLS-RPT (TLS Reporting) SPF (Sender Policy Framework) DKIM (DomainKeys Identified Mail) DMARC (Domain-based Message Authentication, Reporting, and Conformance) with reporting MTA-STS (Mail Transfer Agent Strict Transport Security) Data Loss Prevention controls These technologies work together to ensure encrypted email transmission, validate sender identity, prevent unauthorized use of domains, and reduce the risk of sensitive data leaks. Get in touch When Do NZ Government Agencies Need to Comply with this Framework? All New Zealand government agencies are expected to fully implement the Secure Government Email (SGE) Common Implementation Framework by October 2025. Agencies should begin their planning and deployment now to ensure full compliance by the deadline. The All of Government Secure Email Common Implementation Framework v1.0 What are the Mandated Requirements for Domains? Below are the exact requirements for all email-enabled domains under the new framework. ControlExact RequirementTLSMinimum TLS 1.2. TLS 1.1, 1.0, SSL, or clear-text not permitted.TLS-RPTAll email-sending domains must have TLS reporting enabled.SPFMust exist and end with -all.DKIMAll outbound email from every sending service must be DKIM-signed at the final hop.DMARCPolicy of p=reject on all email-enabled domains. adkim=s is recommended when not bulk-sending.MTA-STSEnabled and set to enforce.Implicit TLSMust be configured and enforced for every connection.Data Loss PreventionEnforce in line with the New Zealand Information Security Manual (NZISM) and Protective Security Requirements (PSR). Compliance Monitoring and Reporting The All of Government Service Delivery (AoGSD) team will be monitoring compliance with the framework. Monitoring will initially cover SPF, DMARC, and MTA-STS settings and will be expanded to include DKIM. Changes to these settings will be monitored, enabling reporting on email security compliance across all government agencies. Ongoing monitoring will highlight changes to domains, ensure new domains are set up with security in place, and monitor the implementation of future email security technologies.  Should compliance changes occur, such as an agency’s SPF record being changed from -all to ~all, this will be captured so that the AoGSD Security Team can investigate. They will then communicate directly with the agency to determine if an issue exists or if an error has occurred, reviewing each case individually. Deployment Checklist for NZ Government Compliance Enforce TLS 1.2 minimum, implicit TLS, MTA-STS & TLS-RPT SPF with -all DKIM on all outbound email DMARC p=reject  adkim=s where suitable For non-email/parked domains: SPF -all, empty DKIM, DMARC reject strict Compliance dashboard Inbound DMARC evaluation enforced DLP aligned with NZISM Start a Free Trial How EasyDMARC Can Help Government Agencies Comply EasyDMARC provides a comprehensive email security solution that simplifies the deployment and ongoing management of DNS-based email security protocols like SPF, DKIM, and DMARC with reporting. Our platform offers automated checks, real-time monitoring, and a guided setup to help government organizations quickly reach compliance. 1. TLS-RPT / MTA-STS audit EasyDMARC enables you to enable the Managed MTA-STS and TLS-RPT option with a single click. We provide the required DNS records and continuously monitor them for issues, delivering reports on TLS negotiation problems. This helps agencies ensure secure email transmission and quickly detect delivery or encryption failures. Note: In this screenshot, you can see how to deploy MTA-STS and TLS Reporting by adding just three CNAME records provided by EasyDMARC. It’s recommended to start in “testing” mode, evaluate the TLS-RPT reports, and then gradually switch your MTA-STS policy to “enforce”. The process is simple and takes just a few clicks. As shown above, EasyDMARC parses incoming TLS reports into a centralized dashboard, giving you clear visibility into delivery and encryption issues across all sending sources. 2. SPF with “-all”In the EasyDARC platform, you can run the SPF Record Generator to create a compliant record. Publish your v=spf1 record with “-all” to enforce a hard fail for unauthorized senders and prevent spoofed emails from passing SPF checks. This strengthens your domain’s protection against impersonation. Note: It is highly recommended to start adjusting your SPF record only after you begin receiving DMARC reports and identifying your legitimate email sources. As we’ll explain in more detail below, both SPF and DKIM should be adjusted after you gain visibility through reports. Making changes without proper visibility can lead to false positives, misconfigurations, and potential loss of legitimate emails. That’s why the first step should always be setting DMARC to p=none, receiving reports, analyzing them, and then gradually fixing any SPF or DKIM issues. 3. DKIM on all outbound email DKIM must be configured for all email sources sending emails on behalf of your domain. This is critical, as DKIM plays a bigger role than SPF when it comes to building domain reputation, surviving auto-forwarding, mailing lists, and other edge cases. As mentioned above, DMARC reports provide visibility into your email sources, allowing you to implement DKIM accordingly (see first screenshot). If you’re using third-party services like Google Workspace, Microsoft 365, or Mimecast, you’ll need to retrieve the public DKIM key from your provider’s admin interface (see second screenshot). EasyDMARC maintains a backend directory of over 1,400 email sources. We also give you detailed guidance on how to configure SPF and DKIM correctly for major ESPs.  Note: At the end of this article, you’ll find configuration links for well-known ESPs like Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid – helping you avoid common misconfigurations and get aligned with SGE requirements. If you’re using a dedicated MTA (e.g., Postfix), DKIM must be implemented manually. EasyDMARC’s DKIM Record Generator lets you generate both public and private keys for your server. The private key is stored on your MTA, while the public key must be published in your DNS (see third and fourth screenshots). 4. DMARC p=reject rollout As mentioned in previous points, DMARC reporting is the first and most important step on your DMARC enforcement journey. Always start with a p=none policy and configure RUA reports to be sent to EasyDMARC. Use the report insights to identify and fix SPF and DKIM alignment issues, then gradually move to p=quarantine and finally p=reject once all legitimate email sources have been authenticated.  This phased approach ensures full protection against domain spoofing without risking legitimate email delivery. 5. adkim Strict Alignment Check This strict alignment check is not always applicable, especially if you’re using third-party bulk ESPs, such as Sendgrid, that require you to set DKIM on a subdomain level. You can set adkim=s in your DMARC TXT record, or simply enable strict mode in EasyDMARC’s Managed DMARC settings. This ensures that only emails with a DKIM signature that exactly match your domain pass alignment, adding an extra layer of protection against domain spoofing. But only do this if you are NOT a bulk sender. 6. Securing Non-Email Enabled Domains The purpose of deploying email security to non-email-enabled domains, or parked domains, is to prevent messages being spoofed from that domain. This requirement remains even if the root-level domain has SP=reject set within its DMARC record. Under this new framework, you must bulk import and mark parked domains as “Parked.” Crucially, this requires adjusting SPF settings to an empty record, setting DMARC to p=reject, and ensuring an empty DKIM record is in place: • SPF record: “v=spf1 -all”. • Wildcard DKIM record with empty public key.• DMARC record: “v=DMARC1;p=reject;adkim=s;aspf=s;rua=mailto:…”. EasyDMARC allows you to add and label parked domains for free. This is important because it helps you monitor any activity from these domains and ensure they remain protected with a strict DMARC policy of p=reject. 7. Compliance Dashboard Use EasyDMARC’s Domain Scanner to assess the security posture of each domain with a clear compliance score and risk level. The dashboard highlights configuration gaps and guides remediation steps, helping government agencies stay on track toward full compliance with the SGE Framework. 8. Inbound DMARC Evaluation Enforced You don’t need to apply any changes if you’re using Google Workspace, Microsoft 365, or other major mailbox providers. Most of them already enforce DMARC evaluation on incoming emails. However, some legacy Microsoft 365 setups may still quarantine emails that fail DMARC checks, even when the sending domain has a p=reject policy, instead of rejecting them. This behavior can be adjusted directly from your Microsoft Defender portal. Read more about this in our step-by-step guide on how to set up SPF, DKIM, and DMARC from Microsoft Defender. If you’re using a third-party mail provider that doesn’t enforce having a DMARC policy for incoming emails, which is rare, you’ll need to contact their support to request a configuration change. 9. Data Loss Prevention Aligned with NZISM The New Zealand Information Security Manual (NZISM) is the New Zealand Government’s manual on information assurance and information systems security. It includes guidance on data loss prevention (DLP), which must be followed to be aligned with the SEG. Need Help Setting up SPF and DKIM for your Email Provider? Setting up SPF and DKIM for different ESPs often requires specific configurations. Some providers require you to publish SPF and DKIM on a subdomain, while others only require DKIM, or have different formatting rules. We’ve simplified all these steps to help you avoid misconfigurations that could delay your DMARC enforcement, or worse, block legitimate emails from reaching your recipients. Below you’ll find comprehensive setup guides for Google Workspace, Microsoft 365, Zoho Mail, Amazon SES, and SendGrid. You can also explore our full blog section that covers setup instructions for many other well-known ESPs. Remember, all this information is reflected in your DMARC aggregate reports. These reports give you live visibility into your outgoing email ecosystem, helping you analyze and fix any issues specific to a given provider. Here are our step-by-step guides for the most common platforms: Google Workspace Microsoft 365 These guides will help ensure your DNS records are configured correctly as part of the Secure Government Email (SGE) Framework rollout. Meet New Government Email Security Standards With EasyDMARC New Zealand’s SEG Framework sets a clear path for government agencies to enhance their email security by October 2025. With EasyDMARC, you can meet these technical requirements efficiently and with confidence. From protocol setup to continuous monitoring and compliance tracking, EasyDMARC streamlines the entire process, ensuring strong protection against spoofing, phishing, and data loss while simplifying your transition from SEEMail.
    0 Comentários 0 Compartilhamentos
  • Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’

    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One.
    By Jay Stobie
    Visual effects supervisor John Knollconfers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact.
    Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contactand Rogue One: A Star Wars Storypropelled their respective franchises to new heights. While Star Trek Generationswelcomed Captain Jean-Luc Picard’screw to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk. Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope, it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story, The Mandalorian, Andor, Ahsoka, The Acolyte, and more.
    The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif.
    A final frame from the Battle of Scarif in Rogue One: A Star Wars Story.
    A Context for Conflict
    In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design.
    On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Ersoand Cassian Andorand the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival.
    From Physical to Digital
    By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical modelsfor its features was gradually giving way to innovative computer graphicsmodels, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001.
    Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com.
    However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.”
    John Knollconfers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact.
    Legendary Lineages
    In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.”
    Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet.
    While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got fromVER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.”
    The U.S.S. Enterprise-E in Star Trek: First Contact.
    Familiar Foes
    To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generationand Star Trek: Deep Space Nine, creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin.
    As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.”
    Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back, respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.”
    A final frame from Rogue One: A Star Wars Story.
    Forming Up the Fleets
    In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics.
    Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs, live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples. These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’spersonal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography…
    Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized.
    Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story.
    Tough Little Ships
    The Federation and Rebel Alliance each deployed “tough little ships”in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001!
    Exploration and Hope
    The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire.
    The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope?

    Jay Stobieis a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy.
    #looking #back #two #classics #ilm
    Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’
    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One. By Jay Stobie Visual effects supervisor John Knollconfers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact. Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contactand Rogue One: A Star Wars Storypropelled their respective franchises to new heights. While Star Trek Generationswelcomed Captain Jean-Luc Picard’screw to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk. Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope, it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story, The Mandalorian, Andor, Ahsoka, The Acolyte, and more. The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif. A final frame from the Battle of Scarif in Rogue One: A Star Wars Story. A Context for Conflict In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design. On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Ersoand Cassian Andorand the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival. From Physical to Digital By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical modelsfor its features was gradually giving way to innovative computer graphicsmodels, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001. Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com. However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.” John Knollconfers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact. Legendary Lineages In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.” Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet. While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got fromVER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.” The U.S.S. Enterprise-E in Star Trek: First Contact. Familiar Foes To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generationand Star Trek: Deep Space Nine, creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin. As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.” Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back, respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.” A final frame from Rogue One: A Star Wars Story. Forming Up the Fleets In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics. Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs, live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples. These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’spersonal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography… Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized. Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story. Tough Little Ships The Federation and Rebel Alliance each deployed “tough little ships”in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001! Exploration and Hope The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire. The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope? – Jay Stobieis a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy. #looking #back #two #classics #ilm
    WWW.ILM.COM
    Looking Back at Two Classics: ILM Deploys the Fleet in ‘Star Trek: First Contact’ and ‘Rogue One: A Star Wars Story’
    Guided by visual effects supervisor John Knoll, ILM embraced continually evolving methodologies to craft breathtaking visual effects for the iconic space battles in First Contact and Rogue One. By Jay Stobie Visual effects supervisor John Knoll (right) confers with modelmakers Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact (Credit: ILM). Bolstered by visual effects from Industrial Light & Magic, Star Trek: First Contact (1996) and Rogue One: A Star Wars Story (2016) propelled their respective franchises to new heights. While Star Trek Generations (1994) welcomed Captain Jean-Luc Picard’s (Patrick Stewart) crew to the big screen, First Contact stood as the first Star Trek feature that did not focus on its original captain, the legendary James T. Kirk (William Shatner). Similarly, though Rogue One immediately preceded the events of Star Wars: A New Hope (1977), it was set apart from the episodic Star Wars films and launched an era of storytelling outside of the main Skywalker saga that has gone on to include Solo: A Star Wars Story (2018), The Mandalorian (2019-23), Andor (2022-25), Ahsoka (2023), The Acolyte (2024), and more. The two films also shared a key ILM contributor, John Knoll, who served as visual effects supervisor on both projects, as well as an executive producer on Rogue One. Currently, ILM’s executive creative director and senior visual effects supervisor, Knoll – who also conceived the initial framework for Rogue One’s story – guided ILM as it brought its talents to bear on these sci-fi and fantasy epics. The work involved crafting two spectacular starship-packed space clashes – First Contact’s Battle of Sector 001 and Rogue One’s Battle of Scarif. Although these iconic installments were released roughly two decades apart, they represent a captivating case study of how ILM’s approach to visual effects has evolved over time. With this in mind, let’s examine the films’ unforgettable space battles through the lens of fascinating in-universe parallels and the ILM-produced fleets that face off near Earth and Scarif. A final frame from the Battle of Scarif in Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). A Context for Conflict In First Contact, the United Federation of Planets – a 200-year-old interstellar government consisting of more than 150 member worlds – braces itself for an invasion by the Borg – an overwhelmingly powerful collective composed of cybernetic beings who devastate entire planets by assimilating their biological populations and technological innovations. The Borg only send a single vessel, a massive cube containing thousands of hive-minded drones and their queen, pushing the Federation’s Starfleet defenders to Earth’s doorstep. Conversely, in Rogue One, the Rebel Alliance – a fledgling coalition of freedom fighters – seeks to undermine and overthrow the stalwart Galactic Empire – a totalitarian regime preparing to tighten its grip on the galaxy by revealing a horrifying superweapon. A rebel team infiltrates a top-secret vault on Scarif in a bid to steal plans to that battle station, the dreaded Death Star, with hopes of exploiting a vulnerability in its design. On the surface, the situations could not seem to be more disparate, particularly in terms of the Federation’s well-established prestige and the Rebel Alliance’s haphazardly organized factions. Yet, upon closer inspection, the spaceborne conflicts at Earth and Scarif are linked by a vital commonality. The threat posed by the Borg is well-known to the Federation, but the sudden intrusion upon their space takes its defenses by surprise. Starfleet assembles any vessel within range – including antiquated Oberth-class science ships – to intercept the Borg cube in the Typhon Sector, only to be forced back to Earth on the edge of defeat. The unsanctioned mission to Scarif with Jyn Erso (Felicity Jones) and Cassian Andor (Diego Luna) and the sudden need to take down the planet’s shield gate propels the Rebel Alliance fleet into rushing to their rescue with everything from their flagship Profundity to GR-75 medium transports. Whether Federation or Rebel Alliance, these fleets gather in last-ditch efforts to oppose enemies who would embrace their eradication – the Battles of Sector 001 and Scarif are fights for survival. From Physical to Digital By the time Jonathan Frakes was selected to direct First Contact, Star Trek’s reliance on constructing traditional physical models (many of which were built by ILM) for its features was gradually giving way to innovative computer graphics (CG) models, resulting in the film’s use of both techniques. “If one of the ships was to be seen full-screen and at length,” associate visual effects supervisor George Murphy told Cinefex’s Kevin H. Martin, “we knew it would be done as a stage model. Ships that would be doing a lot of elaborate maneuvers in space battle scenes would be created digitally.” In fact, physical and CG versions of the U.S.S. Enterprise-E appear in the film, with the latter being harnessed in shots involving the vessel’s entry into a temporal vortex at the conclusion of the Battle of Sector 001. Despite the technological leaps that ILM pioneered in the decades between First Contact and Rogue One, they considered filming physical miniatures for certain ship-related shots in the latter film. ILM considered filming physical miniatures for certain ship-related shots in Rogue One. The feature’s fleets were ultimately created digitally to allow for changes throughout post-production. “If it’s a photographed miniature element, it’s not possible to go back and make adjustments. So it’s the additional flexibility that comes with the computer graphics models that’s very attractive to many people,” John Knoll relayed to writer Jon Witmer at American Cinematographer’s TheASC.com. However, Knoll aimed to develop computer graphics that retained the same high-quality details as their physical counterparts, leading ILM to employ a modern approach to a time-honored modelmaking tactic. “I also wanted to emulate the kit-bashing aesthetic that had been part of Star Wars from the very beginning, where a lot of mechanical detail had been added onto the ships by using little pieces from plastic model kits,” explained Knoll in his chat with TheASC.com. For Rogue One, ILM replicated the process by obtaining such kits, scanning their parts, building a computer graphics library, and applying the CG parts to digitally modeled ships. “I’m very happy to say it was super-successful,” concluded Knoll. “I think a lot of our digital models look like they are motion-control models.” John Knoll (second from left) confers with Kim Smith and John Goodson with the miniature of the U.S.S. Enterprise-E during production of Star Trek: First Contact (Credit: ILM). Legendary Lineages In First Contact, Captain Picard commanded a brand-new vessel, the Sovereign-class U.S.S. Enterprise-E, continuing the celebrated starship’s legacy in terms of its famous name and design aesthetic. Designed by John Eaves and developed into blueprints by Rick Sternbach, the Enterprise-E was built into a 10-foot physical model by ILM model project supervisor John Goodson and his shop’s talented team. ILM infused the ship with extraordinary detail, including viewports equipped with backlit set images from the craft’s predecessor, the U.S.S. Enterprise-D. For the vessel’s larger windows, namely those associated with the observation lounge and arboretum, ILM took a painstakingly practical approach to match the interiors shown with the real-world set pieces. “We filled that area of the model with tiny, micro-scale furniture,” Goodson informed Cinefex, “including tables and chairs.” Rogue One’s rebel team initially traversed the galaxy in a U-wing transport/gunship, which, much like the Enterprise-E, was a unique vessel that nonetheless channeled a certain degree of inspiration from a classic design. Lucasfilm’s Doug Chiang, a co-production designer for Rogue One, referred to the U-wing as the film’s “Huey helicopter version of an X-wing” in the Designing Rogue One bonus featurette on Disney+ before revealing that, “Towards the end of the design cycle, we actually decided that maybe we should put in more X-wing features. And so we took the X-wing engines and literally mounted them onto the configuration that we had going.” Modeled by ILM digital artist Colie Wertz, the U-wing’s final computer graphics design subtly incorporated these X-wing influences to give the transport a distinctive feel without making the craft seem out of place within the rebel fleet. While ILM’s work on the Enterprise-E’s viewports offered a compelling view toward the ship’s interior, a breakthrough LED setup for Rogue One permitted ILM to obtain realistic lighting on actors as they looked out from their ships and into the space around them. “All of our major spaceship cockpit scenes were done that way, with the gimbal in this giant horseshoe of LED panels we got from [equipment vendor] VER, and we prepared graphics that went on the screens,” John Knoll shared with American Cinematographer’s Benjamin B and Jon D. Witmer. Furthermore, in Disney+’s Rogue One: Digital Storytelling bonus featurette, visual effects producer Janet Lewin noted, “For the actors, I think, in the space battle cockpits, for them to be able to see what was happening in the battle brought a higher level of accuracy to their performance.” The U.S.S. Enterprise-E in Star Trek: First Contact (Credit: Paramount). Familiar Foes To transport First Contact’s Borg invaders, John Goodson’s team at ILM resurrected the Borg cube design previously seen in Star Trek: The Next Generation (1987) and Star Trek: Deep Space Nine (1993), creating a nearly three-foot physical model to replace the one from the series. Art consultant and ILM veteran Bill George proposed that the cube’s seemingly straightforward layout be augmented with a complex network of photo-etched brass, a suggestion which produced a jagged surface and offered a visual that was both intricate and menacing. ILM also developed a two-foot motion-control model for a Borg sphere, a brand-new auxiliary vessel that emerged from the cube. “We vacuformed about 15 different patterns that conformed to this spherical curve and covered those with a lot of molded and cast pieces. Then we added tons of acid-etched brass over it, just like we had on the cube,” Goodson outlined to Cinefex’s Kevin H. Martin. As for Rogue One’s villainous fleet, reproducing the original trilogy’s Death Star and Imperial Star Destroyers centered upon translating physical models into digital assets. Although ILM no longer possessed A New Hope’s three-foot Death Star shooting model, John Knoll recreated the station’s surface paneling by gathering archival images, and as he spelled out to writer Joe Fordham in Cinefex, “I pieced all the images together. I unwrapped them into texture space and projected them onto a sphere with a trench. By doing that with enough pictures, I got pretty complete coverage of the original model, and that became a template upon which to redraw very high-resolution texture maps. Every panel, every vertical striped line, I matched from a photograph. It was as accurate as it was possible to be as a reproduction of the original model.” Knoll’s investigative eye continued to pay dividends when analyzing the three-foot and eight-foot Star Destroyer motion-control models, which had been built for A New Hope and Star Wars: The Empire Strikes Back (1980), respectively. “Our general mantra was, ‘Match your memory of it more than the reality,’ because sometimes you go look at the actual prop in the archive building or you look back at the actual shot from the movie, and you go, ‘Oh, I remember it being a little better than that,’” Knoll conveyed to TheASC.com. This philosophy motivated ILM to combine elements from those two physical models into a single digital design. “Generally, we copied the three-footer for details like the superstructure on the top of the bridge, but then we copied the internal lighting plan from the eight-footer,” Knoll explained. “And then the upper surface of the three-footer was relatively undetailed because there were no shots that saw it closely, so we took a lot of the high-detail upper surface from the eight-footer. So it’s this amalgam of the two models, but the goal was to try to make it look like you remember it from A New Hope.” A final frame from Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). Forming Up the Fleets In addition to the U.S.S. Enterprise-E, the Battle of Sector 001 debuted numerous vessels representing four new Starfleet ship classes – the Akira, Steamrunner, Saber, and Norway – all designed by ILM visual effects art director Alex Jaeger. “Since we figured a lot of the background action in the space battle would be done with computer graphics ships that needed to be built from scratch anyway, I realized that there was no reason not to do some new designs,” John Knoll told American Cinematographer writer Ron Magid. Used in previous Star Trek projects, older physical models for the Oberth and Nebula classes were mixed into the fleet for good measure, though the vast majority of the armada originated as computer graphics. Over at Scarif, ILM portrayed the Rebel Alliance forces with computer graphics models of fresh designs (the MC75 cruiser Profundity and U-wings), live-action versions of Star Wars Rebels’ VCX-100 light freighter Ghost and Hammerhead corvettes, and Star Wars staples (Nebulon-B frigates, X-wings, Y-wings, and more). These ships face off against two Imperial Star Destroyers and squadrons of TIE fighters, and – upon their late arrival to the battle – Darth Vader’s Star Destroyer and the Death Star. The Tantive IV, a CR90 corvette more popularly referred to as a blockade runner, made its own special cameo at the tail end of the fight. As Princess Leia Organa’s (Carrie Fisher and Ingvild Deila) personal ship, the Tantive IV received the Death Star plans and fled the scene, destined to be captured by Vader’s Star Destroyer at the beginning of A New Hope. And, while we’re on the subject of intricate starship maneuvers and space-based choreography… Although the First Contact team could plan visual effects shots with animated storyboards, ILM supplied Gareth Edwards with a next-level virtual viewfinder that allowed the director to select his shots by immersing himself among Rogue One’s ships in real time. “What we wanted to do is give Gareth the opportunity to shoot his space battles and other all-digital scenes the same way he shoots his live-action. Then he could go in with this sort of virtual viewfinder and view the space battle going on, and figure out what the best angle was to shoot those ships from,” senior animation supervisor Hal Hickel described in the Rogue One: Digital Storytelling featurette. Hickel divulged that the sequence involving the dish array docking with the Death Star was an example of the “spontaneous discovery of great angles,” as the scene was never storyboarded or previsualized. Visual effects supervisor John Knoll with director Gareth Edwards during production of Rogue One: A Star Wars Story (Credit: ILM & Lucasfilm). Tough Little Ships The Federation and Rebel Alliance each deployed “tough little ships” (an endearing description Commander William T. Riker [Jonathan Frakes] bestowed upon the U.S.S. Defiant in First Contact) in their respective conflicts, namely the U.S.S. Defiant from Deep Space Nine and the Tantive IV from A New Hope. VisionArt had already built a CG Defiant for the Deep Space Nine series, but ILM upgraded the model with images gathered from the ship’s three-foot physical model. A similar tactic was taken to bring the Tantive IV into the digital realm for Rogue One. “This was the Blockade Runner. This was the most accurate 1:1 reproduction we could possibly have made,” model supervisor Russell Paul declared to Cinefex’s Joe Fordham. “We did an extensive photo reference shoot and photogrammetry re-creation of the miniature. From there, we built it out as accurately as possible.” Speaking of sturdy ships, if you look very closely, you can spot a model of the Millennium Falcon flashing across the background as the U.S.S. Defiant makes an attack run on the Borg cube at the Battle of Sector 001! Exploration and Hope The in-universe ramifications that materialize from the Battles of Sector 001 and Scarif are monumental. The destruction of the Borg cube compels the Borg Queen to travel back in time in an attempt to vanquish Earth before the Federation can even be formed, but Captain Picard and the Enterprise-E foil the plot and end up helping their 21st century ancestors make “first contact” with another species, the logic-revering Vulcans. The post-Scarif benefits take longer to play out for the Rebel Alliance, but the theft of the Death Star plans eventually leads to the superweapon’s destruction. The Galactic Civil War is far from over, but Scarif is a significant step in the Alliance’s effort to overthrow the Empire. The visual effects ILM provided for First Contact and Rogue One contributed significantly to the critical and commercial acclaim both pictures enjoyed, a victory reflecting the relentless dedication, tireless work ethic, and innovative spirit embodied by visual effects supervisor John Knoll and ILM’s entire staff. While being interviewed for The Making of Star Trek: First Contact, actor Patrick Stewart praised ILM’s invaluable influence, emphasizing, “ILM was with us, on this movie, almost every day on set. There is so much that they are involved in.” And, regardless of your personal preferences – phasers or lasers, photon torpedoes or proton torpedoes, warp speed or hyperspace – perhaps Industrial Light & Magic’s ability to infuse excitement into both franchises demonstrates that Star Trek and Star Wars encompass themes that are not competitive, but compatible. After all, what goes together better than exploration and hope? – Jay Stobie (he/him) is a writer, author, and consultant who has contributed articles to ILM.com, Skysound.com, Star Wars Insider, StarWars.com, Star Trek Explorer, Star Trek Magazine, and StarTrek.com. Jay loves sci-fi, fantasy, and film, and you can learn more about him by visiting JayStobie.com or finding him on Twitter, Instagram, and other social media platforms at @StobiesGalaxy.
    0 Comentários 0 Compartilhamentos
  • Recipients of Public Awareness Sponsorship Program announced

    The latest recipients of the OAA’s Public Awareness Sponsorship program, held twice a year, have been announced.
    Under its five-year strategic plan, the OAA has identified public education as a key pillar with the goal to advance the public’s understanding and recognition that architecture is integral to the quality of life and well-being of society. As a result, the OAA offers Public Awareness Funding in amounts from to to applicants working to expand an awareness of the value of architecture in their communities.
    The Communications and Public Education Committeehas agreed to fund the following applicants.

    Toronto Public Space Committee and Cyan Station – To the Loo! Toronto Toilet Design Challenge
    The “To the Loo! Toronto Toilet Design Challenge” is a global call to reimagine public washrooms as vital elements of the urban landscape. A joint effort by the Toronto Public Space Committee and Cyan Station, the initiative emphasizes accessibility, public health, and innovative design. Featuring a summer 2025 public event and exhibition, the challenge invites architects, designers, and engaged citizens to explore creative solutions that transform how we experience these essential public spaces.
    Heritage Ottawa – 2025 Heritage Ottawa Walking Tours
    Heritage Ottawa is an advocate for the preservation and appreciation of Ottawa’s built heritage. For more than 50 years, its signature guided Walking Tours, offered in both English and French, have attracted diverse audiences and have highlighted the city’s architectural and cultural history.
    Kelvin Kung – Designing Dignity: Community-Driven Insights for Better Palliative and Long-Term Care Spaces
    “Designing Dignity: Community-Driven Insights for Better Palliative and Long-Term Care Spaces” focuses on enhancing the quality of life for aging populations by reimagining care spaces through thoughtful architectural design. By leveraging online engagement tools, AI-driven analysis, and stakeholder input, this initiative will develop data-driven reports and recommendations for the public, policymakers, and design professionals. The project aims to raise awareness about architecture’s crucial role in shaping compassionate care spaces, empowering communities to advocate for better design and influence future policies and practices.
    McEwen School of Architecture, Laurentian University – Archi-North Summer Camp
    Archi·North Summer Camp, offered by Laurentian University’s McEwen School of Architecture, is a bilingual and tricultural program designed for Northern Ontario high school students entering Grades 11 and 12. The week-long, immersive camp aims to provide an affordable introduction to architectural design through hands-on experience in drafting, model-making, and digital tools with an emphasis on sustainable materials. Led by faculty and recent graduates, the Sudbury-based camp encourages youth to be agents of change and reimagine their own communities.
    Moses Structural Engineers Inc. – TimberFever 2025
    Now in its 11th year, TimberFever 2025, presented by Moses Structural Engineers, is a hands-on design-build competition that brings together architecture and engineering students from Canadian and U.S. universities to collaborate, create, and innovate. Under the guidance of professional mentors, carpenters, and industry leaders, participants tackle real-world challenges like affordable housing and climate resilience while refining both design and construction skills.
    RAW Design – Architectural and Design Summer Camp, “Diversity in Design”
    RAW Design’s “Diversity in Design” Summer Camp introduces underrepresented high school students to the architecture profession through an immersive, hands-on experience. Now in its fifth year, this free week-long mentorship program fosters creativity, critical thinking, and teamwork with activities like model-making, workshops, and urban exploration led by architects and volunteers.
    Urban Minds – 1UP Fellowship 2025-2026
    Urban Minds’ 1UP Fellowship 2025-2026 aims to empower high school students across Ontario to become urban changemakers through mentorship and hands-on projects. The Fellowship features two streams: the Design-Builders Stream, where students launch school chapters to tackle community design challenges, and the Learners Stream, which introduces students to city-building topics through structured learning activities.

    The next deadline for submissions is September 15, 2025.
    For more information, click here.
    The post Recipients of Public Awareness Sponsorship Program announced appeared first on Canadian Architect.
    #recipients #public #awareness #sponsorship #program
    Recipients of Public Awareness Sponsorship Program announced
    The latest recipients of the OAA’s Public Awareness Sponsorship program, held twice a year, have been announced. Under its five-year strategic plan, the OAA has identified public education as a key pillar with the goal to advance the public’s understanding and recognition that architecture is integral to the quality of life and well-being of society. As a result, the OAA offers Public Awareness Funding in amounts from to to applicants working to expand an awareness of the value of architecture in their communities. The Communications and Public Education Committeehas agreed to fund the following applicants. Toronto Public Space Committee and Cyan Station – To the Loo! Toronto Toilet Design Challenge The “To the Loo! Toronto Toilet Design Challenge” is a global call to reimagine public washrooms as vital elements of the urban landscape. A joint effort by the Toronto Public Space Committee and Cyan Station, the initiative emphasizes accessibility, public health, and innovative design. Featuring a summer 2025 public event and exhibition, the challenge invites architects, designers, and engaged citizens to explore creative solutions that transform how we experience these essential public spaces. Heritage Ottawa – 2025 Heritage Ottawa Walking Tours Heritage Ottawa is an advocate for the preservation and appreciation of Ottawa’s built heritage. For more than 50 years, its signature guided Walking Tours, offered in both English and French, have attracted diverse audiences and have highlighted the city’s architectural and cultural history. Kelvin Kung – Designing Dignity: Community-Driven Insights for Better Palliative and Long-Term Care Spaces “Designing Dignity: Community-Driven Insights for Better Palliative and Long-Term Care Spaces” focuses on enhancing the quality of life for aging populations by reimagining care spaces through thoughtful architectural design. By leveraging online engagement tools, AI-driven analysis, and stakeholder input, this initiative will develop data-driven reports and recommendations for the public, policymakers, and design professionals. The project aims to raise awareness about architecture’s crucial role in shaping compassionate care spaces, empowering communities to advocate for better design and influence future policies and practices. McEwen School of Architecture, Laurentian University – Archi-North Summer Camp Archi·North Summer Camp, offered by Laurentian University’s McEwen School of Architecture, is a bilingual and tricultural program designed for Northern Ontario high school students entering Grades 11 and 12. The week-long, immersive camp aims to provide an affordable introduction to architectural design through hands-on experience in drafting, model-making, and digital tools with an emphasis on sustainable materials. Led by faculty and recent graduates, the Sudbury-based camp encourages youth to be agents of change and reimagine their own communities. Moses Structural Engineers Inc. – TimberFever 2025 Now in its 11th year, TimberFever 2025, presented by Moses Structural Engineers, is a hands-on design-build competition that brings together architecture and engineering students from Canadian and U.S. universities to collaborate, create, and innovate. Under the guidance of professional mentors, carpenters, and industry leaders, participants tackle real-world challenges like affordable housing and climate resilience while refining both design and construction skills. RAW Design – Architectural and Design Summer Camp, “Diversity in Design” RAW Design’s “Diversity in Design” Summer Camp introduces underrepresented high school students to the architecture profession through an immersive, hands-on experience. Now in its fifth year, this free week-long mentorship program fosters creativity, critical thinking, and teamwork with activities like model-making, workshops, and urban exploration led by architects and volunteers. Urban Minds – 1UP Fellowship 2025-2026 Urban Minds’ 1UP Fellowship 2025-2026 aims to empower high school students across Ontario to become urban changemakers through mentorship and hands-on projects. The Fellowship features two streams: the Design-Builders Stream, where students launch school chapters to tackle community design challenges, and the Learners Stream, which introduces students to city-building topics through structured learning activities. The next deadline for submissions is September 15, 2025. For more information, click here. The post Recipients of Public Awareness Sponsorship Program announced appeared first on Canadian Architect. #recipients #public #awareness #sponsorship #program
    WWW.CANADIANARCHITECT.COM
    Recipients of Public Awareness Sponsorship Program announced
    The latest recipients of the OAA’s Public Awareness Sponsorship program, held twice a year, have been announced. Under its five-year strategic plan, the OAA has identified public education as a key pillar with the goal to advance the public’s understanding and recognition that architecture is integral to the quality of life and well-being of society. As a result, the OAA offers Public Awareness Funding in amounts from $500 to $10,000 to applicants working to expand an awareness of the value of architecture in their communities. The Communications and Public Education Committee (CPEC) has agreed to fund the following applicants. Toronto Public Space Committee and Cyan Station – To the Loo! Toronto Toilet Design Challenge The “To the Loo! Toronto Toilet Design Challenge” is a global call to reimagine public washrooms as vital elements of the urban landscape. A joint effort by the Toronto Public Space Committee and Cyan Station, the initiative emphasizes accessibility, public health, and innovative design. Featuring a summer 2025 public event and exhibition, the challenge invites architects, designers, and engaged citizens to explore creative solutions that transform how we experience these essential public spaces. Heritage Ottawa – 2025 Heritage Ottawa Walking Tours Heritage Ottawa is an advocate for the preservation and appreciation of Ottawa’s built heritage. For more than 50 years, its signature guided Walking Tours, offered in both English and French, have attracted diverse audiences and have highlighted the city’s architectural and cultural history. Kelvin Kung – Designing Dignity: Community-Driven Insights for Better Palliative and Long-Term Care Spaces “Designing Dignity: Community-Driven Insights for Better Palliative and Long-Term Care Spaces” focuses on enhancing the quality of life for aging populations by reimagining care spaces through thoughtful architectural design. By leveraging online engagement tools, AI-driven analysis, and stakeholder input, this initiative will develop data-driven reports and recommendations for the public, policymakers, and design professionals. The project aims to raise awareness about architecture’s crucial role in shaping compassionate care spaces, empowering communities to advocate for better design and influence future policies and practices. McEwen School of Architecture, Laurentian University – Archi-North Summer Camp Archi·North Summer Camp, offered by Laurentian University’s McEwen School of Architecture, is a bilingual and tricultural program designed for Northern Ontario high school students entering Grades 11 and 12. The week-long, immersive camp aims to provide an affordable introduction to architectural design through hands-on experience in drafting, model-making, and digital tools with an emphasis on sustainable materials. Led by faculty and recent graduates, the Sudbury-based camp encourages youth to be agents of change and reimagine their own communities. Moses Structural Engineers Inc. – TimberFever 2025 Now in its 11th year, TimberFever 2025, presented by Moses Structural Engineers, is a hands-on design-build competition that brings together architecture and engineering students from Canadian and U.S. universities to collaborate, create, and innovate. Under the guidance of professional mentors, carpenters, and industry leaders, participants tackle real-world challenges like affordable housing and climate resilience while refining both design and construction skills. RAW Design – Architectural and Design Summer Camp, “Diversity in Design” RAW Design’s “Diversity in Design” Summer Camp introduces underrepresented high school students to the architecture profession through an immersive, hands-on experience. Now in its fifth year, this free week-long mentorship program fosters creativity, critical thinking, and teamwork with activities like model-making, workshops, and urban exploration led by architects and volunteers. Urban Minds – 1UP Fellowship 2025-2026 Urban Minds’ 1UP Fellowship 2025-2026 aims to empower high school students across Ontario to become urban changemakers through mentorship and hands-on projects. The Fellowship features two streams: the Design-Builders Stream, where students launch school chapters to tackle community design challenges, and the Learners Stream, which introduces students to city-building topics through structured learning activities. The next deadline for submissions is September 15, 2025. For more information, click here. The post Recipients of Public Awareness Sponsorship Program announced appeared first on Canadian Architect.
    0 Comentários 0 Compartilhamentos
  • Hell is Us terrifies in all the best ways

    Hell is Us has been on my radar since it was first announced in April 2022, and I’ve finally been able to spend some time with it via its demo. The war-torn world of Hell is Us is immediately chilling and the demo’s brief glimpse of the gameplay, despite some minor hang-ups, has me eager for more.

    You play as Remi as he ventures to the fictional country of Hadea. A civil war has broken out, dividing and devastating Hadea’s people. Remi must travel through the war zone in search of his parents, and quickly comes across a farmer who exposition-dumps plenty of information that may or may not stick. Essentially, shit is bad, tragically so, and Remi is about to discover just how bad.

    You wander around a forest while an unsettling Returnal-esque score accompanies you. Eventually you gain access to ruins that turn out to have been some sort of dungeon for prisoners long ago. It’s here that Remi encounters the first of hopefully many “oh, shit!” moments. He comes across a creepy-ass enemy I can best describe as if Spot from Spider-Man: Across the Spider-Verse was designed to horrify — a pale white humanoid with a black circle for a face who contorts around the level like a marionette. A mask-wearing woman shows up out of nowhere to take down the creepy foe, but dies saving Remi. Without explanation, Remi decides to don her poncho, take her drone, and wield her BGS.

    Turns out he’s pretty good with a sword. Remi will encounter a couple dozen enemies throughout the demo; the combat is easy to pick up and is somewhat standard third-person-melee, though it does rely heavily on stamina management. Your max stamina is also reduced when you take damage, so you really don’t wanna get hit much.

    You can heal using consumable med kits as well as a pulse mechanic. Attacking enemies creates floating particles around Remi and once those particles form into a circle, you can press your controller’s right bumper to activate a healing pulse. It’s an interesting mechanic, and I like how Hell is Us is giving players a way to recoup health in the midst of combat. However, actually doing it is a bit clunky; keeping one eye on an enemy and the other on the particles around Remi is distracting, and timing the pulse is a challenge — you can only activate it during a brief window, and you’ll likely be in the middle of a combo when a pulse opportunity presents itself.

    While Hell is Us’ combat has surface similarities to Soulslikes — like parrying blows from creepy enemies — it felt less punishing and more forgiving than what you’d expect from a FromSoftware title. I only died once in the demo, compared to countless deaths in the opening hours of Soulslikes such as Lies of P or Elden Ring. Notably, enemies don’t respawn when you save your game, so you don’t have to worry about repeatedly striking down the same foes.

    Because dead enemies remain dead, exploration is encouraged in Hell is Us. Developer Rogue Factor boasts that the game has “no map, no compass, no quest markers,” so you’re free to wander around the game’s world without a guiding hand and discover its secrets. For example, that farmer I mentioned earlier told Remi about how three of his sons died in this war. Later on, when exploring the World War I-like trenches outside of the ruins, I found a note from a soldier on the other side of the conflict bragging about killing three brothers “cowering in a farmhouse.”

    The note also mentioned taking a gold watch from one of the boys, which I grabbed and returned to the farmer — without a quest marker to guide me or a journal entry saying “give this item to the farmer.” This completed a “Good Deed” and I was told a reward may come from it later in the game; I’m curious how these types of quests will play out in the full release. The prospect of doing good deeds in this torn-asunder country is especially appealing.

    A Soulslike-adjacent game placing greater emphasis on user-guided exploration than combat sounds enticing, and Hell is Us is delivering on that promise so far. Its demo is available on Steam through June 16 before the full game launches Sept. 4 for PC, PlayStation 5, and Xbox Series X.
    #hell #terrifies #all #best #ways
    Hell is Us terrifies in all the best ways
    Hell is Us has been on my radar since it was first announced in April 2022, and I’ve finally been able to spend some time with it via its demo. The war-torn world of Hell is Us is immediately chilling and the demo’s brief glimpse of the gameplay, despite some minor hang-ups, has me eager for more. You play as Remi as he ventures to the fictional country of Hadea. A civil war has broken out, dividing and devastating Hadea’s people. Remi must travel through the war zone in search of his parents, and quickly comes across a farmer who exposition-dumps plenty of information that may or may not stick. Essentially, shit is bad, tragically so, and Remi is about to discover just how bad. You wander around a forest while an unsettling Returnal-esque score accompanies you. Eventually you gain access to ruins that turn out to have been some sort of dungeon for prisoners long ago. It’s here that Remi encounters the first of hopefully many “oh, shit!” moments. He comes across a creepy-ass enemy I can best describe as if Spot from Spider-Man: Across the Spider-Verse was designed to horrify — a pale white humanoid with a black circle for a face who contorts around the level like a marionette. A mask-wearing woman shows up out of nowhere to take down the creepy foe, but dies saving Remi. Without explanation, Remi decides to don her poncho, take her drone, and wield her BGS. Turns out he’s pretty good with a sword. Remi will encounter a couple dozen enemies throughout the demo; the combat is easy to pick up and is somewhat standard third-person-melee, though it does rely heavily on stamina management. Your max stamina is also reduced when you take damage, so you really don’t wanna get hit much. You can heal using consumable med kits as well as a pulse mechanic. Attacking enemies creates floating particles around Remi and once those particles form into a circle, you can press your controller’s right bumper to activate a healing pulse. It’s an interesting mechanic, and I like how Hell is Us is giving players a way to recoup health in the midst of combat. However, actually doing it is a bit clunky; keeping one eye on an enemy and the other on the particles around Remi is distracting, and timing the pulse is a challenge — you can only activate it during a brief window, and you’ll likely be in the middle of a combo when a pulse opportunity presents itself. While Hell is Us’ combat has surface similarities to Soulslikes — like parrying blows from creepy enemies — it felt less punishing and more forgiving than what you’d expect from a FromSoftware title. I only died once in the demo, compared to countless deaths in the opening hours of Soulslikes such as Lies of P or Elden Ring. Notably, enemies don’t respawn when you save your game, so you don’t have to worry about repeatedly striking down the same foes. Because dead enemies remain dead, exploration is encouraged in Hell is Us. Developer Rogue Factor boasts that the game has “no map, no compass, no quest markers,” so you’re free to wander around the game’s world without a guiding hand and discover its secrets. For example, that farmer I mentioned earlier told Remi about how three of his sons died in this war. Later on, when exploring the World War I-like trenches outside of the ruins, I found a note from a soldier on the other side of the conflict bragging about killing three brothers “cowering in a farmhouse.” The note also mentioned taking a gold watch from one of the boys, which I grabbed and returned to the farmer — without a quest marker to guide me or a journal entry saying “give this item to the farmer.” This completed a “Good Deed” and I was told a reward may come from it later in the game; I’m curious how these types of quests will play out in the full release. The prospect of doing good deeds in this torn-asunder country is especially appealing. A Soulslike-adjacent game placing greater emphasis on user-guided exploration than combat sounds enticing, and Hell is Us is delivering on that promise so far. Its demo is available on Steam through June 16 before the full game launches Sept. 4 for PC, PlayStation 5, and Xbox Series X. #hell #terrifies #all #best #ways
    WWW.POLYGON.COM
    Hell is Us terrifies in all the best ways
    Hell is Us has been on my radar since it was first announced in April 2022, and I’ve finally been able to spend some time with it via its demo. The war-torn world of Hell is Us is immediately chilling and the demo’s brief glimpse of the gameplay, despite some minor hang-ups, has me eager for more. You play as Remi as he ventures to the fictional country of Hadea. A civil war has broken out, dividing and devastating Hadea’s people. Remi must travel through the war zone in search of his parents, and quickly comes across a farmer who exposition-dumps plenty of information that may or may not stick. Essentially, shit is bad, tragically so, and Remi is about to discover just how bad. You wander around a forest while an unsettling Returnal-esque score accompanies you. Eventually you gain access to ruins that turn out to have been some sort of dungeon for prisoners long ago. It’s here that Remi encounters the first of hopefully many “oh, shit!” moments. He comes across a creepy-ass enemy I can best describe as if Spot from Spider-Man: Across the Spider-Verse was designed to horrify — a pale white humanoid with a black circle for a face who contorts around the level like a marionette. A mask-wearing woman shows up out of nowhere to take down the creepy foe, but dies saving Remi. Without explanation, Remi decides to don her poncho, take her drone, and wield her BGS (big glowing sword). Turns out he’s pretty good with a sword. Remi will encounter a couple dozen enemies throughout the demo; the combat is easy to pick up and is somewhat standard third-person-melee, though it does rely heavily on stamina management. Your max stamina is also reduced when you take damage, so you really don’t wanna get hit much. You can heal using consumable med kits as well as a pulse mechanic. Attacking enemies creates floating particles around Remi and once those particles form into a circle, you can press your controller’s right bumper to activate a healing pulse. It’s an interesting mechanic, and I like how Hell is Us is giving players a way to recoup health in the midst of combat. However, actually doing it is a bit clunky; keeping one eye on an enemy and the other on the particles around Remi is distracting, and timing the pulse is a challenge — you can only activate it during a brief window, and you’ll likely be in the middle of a combo when a pulse opportunity presents itself. While Hell is Us’ combat has surface similarities to Soulslikes — like parrying blows from creepy enemies — it felt less punishing and more forgiving than what you’d expect from a FromSoftware title. I only died once in the demo, compared to countless deaths in the opening hours of Soulslikes such as Lies of P or Elden Ring. Notably, enemies don’t respawn when you save your game, so you don’t have to worry about repeatedly striking down the same foes. Because dead enemies remain dead, exploration is encouraged in Hell is Us. Developer Rogue Factor boasts that the game has “no map, no compass, no quest markers,” so you’re free to wander around the game’s world without a guiding hand and discover its secrets. For example, that farmer I mentioned earlier told Remi about how three of his sons died in this war. Later on, when exploring the World War I-like trenches outside of the ruins, I found a note from a soldier on the other side of the conflict bragging about killing three brothers “cowering in a farmhouse.” The note also mentioned taking a gold watch from one of the boys, which I grabbed and returned to the farmer — without a quest marker to guide me or a journal entry saying “give this item to the farmer.” This completed a “Good Deed” and I was told a reward may come from it later in the game; I’m curious how these types of quests will play out in the full release. The prospect of doing good deeds in this torn-asunder country is especially appealing. A Soulslike-adjacent game placing greater emphasis on user-guided exploration than combat sounds enticing, and Hell is Us is delivering on that promise so far. Its demo is available on Steam through June 16 before the full game launches Sept. 4 for PC, PlayStation 5, and Xbox Series X.
    0 Comentários 0 Compartilhamentos
Páginas Impulsionadas