• NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI

    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions.
    Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges.
    To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure.
    Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations.
    Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint.

    NVIDIA Omniverse Blueprint for Smart City AI 
    The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes:

    NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale.
    NVIDIA Cosmos to generate synthetic data at scale for post-training AI models.
    NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language modelsand large language models.
    NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization, helping process vast amounts of video data and provide critical insights to optimize business processes.

    The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint.
    NVIDIA Partner Ecosystem Powers Smart Cities Worldwide
    The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own.
    SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning.
    This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management.
    Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption.

    The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second.
    Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events.
    To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second.

    Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance.
    Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases.
    The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems.

    Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins.
    Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%.

    Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance.
    Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities.
    Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents.
    Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available.
    Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    #nvidia #brings #physical #european #cities
    NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI
    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions. Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges. To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure. Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations. Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint. NVIDIA Omniverse Blueprint for Smart City AI  The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes: NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale. NVIDIA Cosmos to generate synthetic data at scale for post-training AI models. NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language modelsand large language models. NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization, helping process vast amounts of video data and provide critical insights to optimize business processes. The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint. NVIDIA Partner Ecosystem Powers Smart Cities Worldwide The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own. SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning. This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management. Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption. The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second. Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events. To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second. Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance. Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases. The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems. Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins. Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%. Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance. Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities. Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents. Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions. #nvidia #brings #physical #european #cities
    BLOGS.NVIDIA.COM
    NVIDIA Brings Physical AI to European Cities With New Blueprint for Smart City AI
    Urban populations are expected to double by 2050, which means around 2.5 billion people could be added to urban areas by the middle of the century, driving the need for more sustainable urban planning and public services. Cities across the globe are turning to digital twins and AI agents for urban planning scenario analysis and data-driven operational decisions. Building a digital twin of a city and testing smart city AI agents within it, however, is a complex and resource-intensive endeavor, fraught with technical and operational challenges. To address those challenges, NVIDIA today announced the NVIDIA Omniverse Blueprint for smart city AI, a reference framework that combines the NVIDIA Omniverse, Cosmos, NeMo and Metropolis platforms to bring the benefits of physical AI to entire cities and their critical infrastructure. Using the blueprint, developers can build simulation-ready, or SimReady, photorealistic digital twins of cities to build and test AI agents that can help monitor and optimize city operations. Leading companies including XXII, AVES Reality, Akila, Blyncsy, Bentley, Cesium, K2K, Linker Vision, Milestone Systems, Nebius, SNCF Gares&Connexions, Trimble and Younite AI are among the first to use the new blueprint. NVIDIA Omniverse Blueprint for Smart City AI  The NVIDIA Omniverse Blueprint for smart city AI provides the complete software stack needed to accelerate the development and testing of AI agents in physically accurate digital twins of cities. It includes: NVIDIA Omniverse to build physically accurate digital twins and run simulations at city scale. NVIDIA Cosmos to generate synthetic data at scale for post-training AI models. NVIDIA NeMo to curate high-quality data and use that data to train and fine-tune vision language models (VLMs) and large language models. NVIDIA Metropolis to build and deploy video analytics AI agents based on the NVIDIA AI Blueprint for video search and summarization (VSS), helping process vast amounts of video data and provide critical insights to optimize business processes. The blueprint workflow comprises three key steps. First, developers create a SimReady digital twin of locations and facilities using aerial, satellite or map data with Omniverse and Cosmos. Second, they can train and fine-tune AI models, like computer vision models and VLMs, using NVIDIA TAO and NeMo Curator to improve accuracy for vision AI use cases​. Finally, real-time AI agents powered by these customized models are deployed to alert, summarize and query camera and sensor data using the Metropolis VSS blueprint. NVIDIA Partner Ecosystem Powers Smart Cities Worldwide The blueprint for smart city AI enables a large ecosystem of partners to use a single workflow to build and activate digital twins for smart city use cases, tapping into a combination of NVIDIA’s technologies and their own. SNCF Gares&Connexions, which operates a network of 3,000 train stations across France and Monaco, has deployed a digital twin and AI agents to enable real-time operational monitoring, emergency response simulations and infrastructure upgrade planning. This helps each station analyze operational data such as energy and water use, and enables predictive maintenance capabilities, automated reporting and GDPR-compliant video analytics for incident detection and crowd management. Powered by Omniverse, Metropolis and solutions from ecosystem partners Akila and XXII, SNCF Gares&Connexions’ physical AI deployment at the Monaco-Monte-Carlo and Marseille stations has helped SNCF Gares&Connexions achieve a 100% on-time preventive maintenance completion rate, a 50% reduction in downtime and issue response time, and a 20% reduction in energy consumption. https://blogs.nvidia.com/wp-content/uploads/2025/06/01-Monaco-Akila.mp4 The city of Palermo in Sicily is using AI agents and digital twins from its partner K2K to improve public health and safety by helping city operators process and analyze footage from over 1,000 public video streams at a rate of nearly 50 billion pixels per second. Tapped by Sicily, K2K’s AI agents — built with the NVIDIA AI Blueprint for VSS and cloud solutions from Nebius — can interpret and act on video data to provide real-time alerts on public events. To accurately predict and resolve traffic incidents, K2K is generating synthetic data with Cosmos world foundation models to simulate different driving conditions. Then, K2K uses the data to fine-tune the VLMs powering the AI agents with NeMo Curator. These simulations enable K2K’s AI agents to create over 100,000 predictions per second. https://blogs.nvidia.com/wp-content/uploads/2025/06/02-K2K-Polermo-1600x900-1.mp4 Milestone Systems — in collaboration with NVIDIA and European cities — has launched Project Hafnia, an initiative to build an anonymized, ethically sourced video data platform for cities to develop and train AI models and applications while maintaining regulatory compliance. Using a combination of Cosmos and NeMo Curator on NVIDIA DGX Cloud and Nebius’ sovereign European cloud infrastructure, Project Hafnia scales up and enables European-compliant training and fine-tuning of video-centric AI models, including VLMs, for a variety of smart city use cases. The project’s initial rollout, taking place in Genoa, Italy, features one of the world’s first VLM models for intelligent transportation systems. https://blogs.nvidia.com/wp-content/uploads/2025/06/03-Milestone.mp4 Linker Vision was among the first to partner with NVIDIA to deploy smart city digital twins and AI agents for Kaohsiung City, Taiwan — powered by Omniverse, Cosmos and Metropolis. Linker Vision worked with AVES Reality, a digital twin company, to bring aerial imagery of cities and infrastructure into 3D geometry and ultimately into SimReady Omniverse digital twins. Linker Vision’s AI-powered application then built, trained and tested visual AI agents in a digital twin before deployment in the physical city. Now, it’s scaling to analyze 50,000 video streams in real time with generative AI to understand and narrate complex urban events like floods and traffic accidents. Linker Vision delivers timely insights to a dozen city departments through a single integrated AI-powered platform, breaking silos and reducing incident response times by up to 80%. https://blogs.nvidia.com/wp-content/uploads/2025/06/02-Linker-Vision-1280x680-1.mp4 Bentley Systems is joining the effort to bring physical AI to cities with the NVIDIA blueprint. Cesium, the open 3D geospatial platform, provides the foundation for visualizing, analyzing and managing infrastructure projects and ports digital twins to Omniverse. The company’s AI platform Blyncsy uses synthetic data generation and Metropolis to analyze road conditions and improve maintenance. Trimble, a global technology company that enables essential industries including construction, geospatial and transportation, is exploring ways to integrate components of the Omniverse blueprint into its reality capture workflows and Trimble Connect digital twin platform for surveying and mapping applications for smart cities. Younite AI, a developer of AI and 3D digital twin solutions, is adopting the blueprint to accelerate its development pipeline, enabling the company to quickly move from operational digital twins to large-scale urban simulations, improve synthetic data generation, integrate real-time IoT sensor data and deploy AI agents. Learn more about the NVIDIA Omniverse Blueprint for smart city AI by attending this GTC Paris session or watching the on-demand video after the event. Sign up to be notified when the blueprint is available. Watch the NVIDIA GTC Paris keynote from NVIDIA founder and CEO Jensen Huang at VivaTech, and explore GTC Paris sessions.
    Like
    Love
    Wow
    34
    0 Yorumlar 0 hisse senetleri
  • Tech billionaires are making a risky bet with humanity’s future

    “The best way to predict the future is to invent it,” the famed computer scientist Alan Kay once said. Uttered more out of exasperation than as inspiration, his remark has nevertheless attained gospel-like status among Silicon Valley entrepreneurs, in particular a handful of tech billionaires who fancy themselves the chief architects of humanity’s future. 

    Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals and ambitions in the near term, but their grand visions for the next decade and beyond are remarkably similar. Framed less as technological objectives and more as existential imperatives, they include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality; establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos.

    While there’s a sprawling patchwork of ideas and philosophies powering these visions, three features play a central role, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits. In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker calls this triumvirate of beliefs the “ideology of technological salvation” and warns that tech titans are using it to steer humanity in a dangerous direction. 

    “In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress.”

    “The credence that tech billionaires give to these specific science-fictional futures validates their pursuit of more—to portray the growth of their businesses as a moral imperative, to reduce the complex problems of the world to simple questions of technology,to justify nearly any action they might want to take,” he writes. Becker argues that the only way to break free of these visions is to see them for what they are: a convenient excuse to continue destroying the environment, skirt regulations, amass more power and control, and dismiss the very real problems of today to focus on the imagined ones of tomorrow. 

    A lot of critics, academics, and journalists have tried to define or distill the Silicon Valley ethos over the years. There was the “Californian Ideology” in the mid-’90s, the “Move fast and break things” era of the early 2000s, and more recently the “Libertarianism for me, feudalism for thee”  or “techno-­authoritarian” views. How do you see the “ideology of technological salvation” fitting in? 

    I’d say it’s very much of a piece with those earlier attempts to describe the Silicon Valley mindset. I mean, you can draw a pretty straight line from Max More’s principles of transhumanism in the ’90s to the Californian Ideologyand through to what I call the ideology of technological salvation. The fact is, many of the ideas that define or animate Silicon Valley thinking have never been much of a ­mystery—libertarianism, an antipathy toward the government and regulation, the boundless faith in technology, the obsession with optimization. 

    What can be difficult is to parse where all these ideas come from and how they fit together—or if they fit together at all. I came up with the ideology of technological salvation as a way to name and give shape to a group of interrelated concepts and philosophies that can seem sprawling and ill-defined at first, but that actually sit at the center of a worldview shared by venture capitalists, executives, and other thought leaders in the tech industry. 

    Readers will likely be familiar with the tech billionaires featured in your book and at least some of their ambitions. I’m guessing they’ll be less familiar with the various “isms” that you argue have influenced or guided their thinking. Effective altruism, rationalism, long­termism, extropianism, effective accelerationism, futurism, singularitarianism, ­transhumanism—there are a lot of them. Is there something that they all share? 

    They’re definitely connected. In a sense, you could say they’re all versions or instantiations of the ideology of technological salvation, but there are also some very deep historical connections between the people in these groups and their aims and beliefs. The Extropians in the late ’80s believed in self-­transformation through technology and freedom from limitations of any kind—ideas that Ray Kurzweil eventually helped popularize and legitimize for a larger audience with the Singularity. 

    In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress. I should say that AI researcher Timnit Gebru and philosopher Émile Torres have also done a lot of great work linking these ideologies to one another and showing how they all have ties to racism, misogyny, and eugenics.

    You argue that the Singularity is the purest expression of the ideology of technological salvation. How so?

    Well, for one thing, it’s just this very simple, straightforward idea—the Singularity is coming and will occur when we merge our brains with the cloud and expand our intelligence a millionfold. This will then deepen our awareness and consciousness and everything will be amazing. In many ways, it’s a fantastical vision of a perfect technological utopia. We’re all going to live as long as we want in an eternal paradise, watched over by machines of loving grace, and everything will just get exponentially better forever. The end.

    The other isms I talk about in the book have a little more … heft isn’t the right word—they just have more stuff going on. There’s more to them, right? The rationalists and the effective altruists and the longtermists—they think that something like a singularity will happen, or could happen, but that there’s this really big danger between where we are now and that potential event. We have to address the fact that an all-powerful AI might destroy humanity—the so-called alignment problem—before any singularity can happen. 

    Then you’ve got the effective accelerationists, who are more like Kurzweil, but they’ve got more of a tech-bro spin on things. They’ve taken some of the older transhumanist ideas from the Singularity and updated them for startup culture. Marc Andreessen’s “Techno-Optimist Manifesto”is a good example. You could argue that all of these other philosophies that have gained purchase in Silicon Valley are just twists on Kurzweil’s Singularity, each one building on top of the core ideas of transcendence, techno­-optimism, and exponential growth. 

    Early on in the book you take aim at that idea of exponential growth—specifically, Kurzweil’s “Law of Accelerating Returns.” Could you explain what that is and why you think it’s flawed?

    Kurzweil thinks there’s this immutable “Law of Accelerating Returns” at work in the affairs of the universe, especially when it comes to technology. It’s the idea that technological progress isn’t linear but exponential. Advancements in one technology fuel even more rapid advancements in the future, which in turn lead to greater complexity and greater technological power, and on and on. This is just a mistake. Kurzweil uses the Law of Accelerating Returns to explain why the Singularity is inevitable, but to be clear, he’s far from the only one who believes in this so-called law.

    “I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear.”

    My sense is that it’s an idea that comes from staring at Moore’s Law for too long. Moore’s Law is of course the famous prediction that the number of transistors on a chip will double roughly every two years, with a minimal increase in cost. Now, that has in fact happened for the last 50 years or so, but not because of some fundamental law in the universe. It’s because the tech industry made a choice and some very sizable investments to make it happen. Moore’s Law was ultimately this really interesting observation or projection of a historical trend, but even Gordon Mooreknew that it wouldn’t and couldn’t last forever. In fact, some think it’s already over. 

    These ideologies take inspiration from some pretty unsavory characters. Transhumanism, you say, was first popularized by the eugenicist Julian Huxley in a speech in 1951. Marc Andreessen’s “Techno-Optimist Manifesto” name-checks the noted fascist Filippo Tommaso Marinetti and his futurist manifesto. Did you get the sense while researching the book that the tech titans who champion these ideas understand their dangerous origins?

    You’re assuming in the framing of that question that there’s any rigorous thought going on here at all. As I say in the book, Andreessen’s manifesto runs almost entirely on vibes, not logic. I think someone may have told him about the futurist manifesto at some point, and he just sort of liked the general vibe, which is why he paraphrases a part of it. Maybe he learned something about Marinetti and forgot it. Maybe he didn’t care. 

    I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear. For many of these billionaires, the vibes of fascism, authoritarianism, and colonialism are attractive because they’re fundamentally about creating a fantasy of control. 

    You argue that these visions of the future are being used to hasten environmental destruction, increase authoritarianism, and exacerbate inequalities. You also admit that they appeal to lots of people who aren’t billionaires. Why do you think that is? 

    I think a lot of us are also attracted to these ideas for the same reasons the tech billionaires are—they offer this fantasy of knowing what the future holds, of transcending death, and a sense that someone or something out there is in control. It’s hard to overstate how comforting a simple, coherent narrative can be in an increasingly complex and fast-moving world. This is of course what religion offers for many of us, and I don’t think it’s an accident that a sizable number of people in the rationalist and effective altruist communities are actually ex-evangelicals.

    More than any one specific technology, it seems like the most consequential thing these billionaires have invented is a sense of inevitability—that their visions for the future are somehow predestined. How does one fight against that?

    It’s a difficult question. For me, the answer was to write this book. I guess I’d also say this: Silicon Valley enjoyed well over a decade with little to no pushback on anything. That’s definitely a big part of how we ended up in this mess. There was no regulation, very little critical coverage in the press, and a lot of self-mythologizing going on. Things have started to change, especially as the social and environmental damage that tech companies and industry leaders have helped facilitate has become more clear. That understanding is an essential part of deflating the power of these tech billionaires and breaking free of their visions. When we understand that these dreams of the future are actually nightmares for the rest of us, I think you’ll see that senseof inevitability vanish pretty fast. 

    This interview was edited for length and clarity.

    Bryan Gardiner is a writer based in Oakland, California. 
    #tech #billionaires #are #making #risky
    Tech billionaires are making a risky bet with humanity’s future
    “The best way to predict the future is to invent it,” the famed computer scientist Alan Kay once said. Uttered more out of exasperation than as inspiration, his remark has nevertheless attained gospel-like status among Silicon Valley entrepreneurs, in particular a handful of tech billionaires who fancy themselves the chief architects of humanity’s future.  Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals and ambitions in the near term, but their grand visions for the next decade and beyond are remarkably similar. Framed less as technological objectives and more as existential imperatives, they include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality; establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos. While there’s a sprawling patchwork of ideas and philosophies powering these visions, three features play a central role, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits. In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker calls this triumvirate of beliefs the “ideology of technological salvation” and warns that tech titans are using it to steer humanity in a dangerous direction.  “In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress.” “The credence that tech billionaires give to these specific science-fictional futures validates their pursuit of more—to portray the growth of their businesses as a moral imperative, to reduce the complex problems of the world to simple questions of technology,to justify nearly any action they might want to take,” he writes. Becker argues that the only way to break free of these visions is to see them for what they are: a convenient excuse to continue destroying the environment, skirt regulations, amass more power and control, and dismiss the very real problems of today to focus on the imagined ones of tomorrow.  A lot of critics, academics, and journalists have tried to define or distill the Silicon Valley ethos over the years. There was the “Californian Ideology” in the mid-’90s, the “Move fast and break things” era of the early 2000s, and more recently the “Libertarianism for me, feudalism for thee”  or “techno-­authoritarian” views. How do you see the “ideology of technological salvation” fitting in?  I’d say it’s very much of a piece with those earlier attempts to describe the Silicon Valley mindset. I mean, you can draw a pretty straight line from Max More’s principles of transhumanism in the ’90s to the Californian Ideologyand through to what I call the ideology of technological salvation. The fact is, many of the ideas that define or animate Silicon Valley thinking have never been much of a ­mystery—libertarianism, an antipathy toward the government and regulation, the boundless faith in technology, the obsession with optimization.  What can be difficult is to parse where all these ideas come from and how they fit together—or if they fit together at all. I came up with the ideology of technological salvation as a way to name and give shape to a group of interrelated concepts and philosophies that can seem sprawling and ill-defined at first, but that actually sit at the center of a worldview shared by venture capitalists, executives, and other thought leaders in the tech industry.  Readers will likely be familiar with the tech billionaires featured in your book and at least some of their ambitions. I’m guessing they’ll be less familiar with the various “isms” that you argue have influenced or guided their thinking. Effective altruism, rationalism, long­termism, extropianism, effective accelerationism, futurism, singularitarianism, ­transhumanism—there are a lot of them. Is there something that they all share?  They’re definitely connected. In a sense, you could say they’re all versions or instantiations of the ideology of technological salvation, but there are also some very deep historical connections between the people in these groups and their aims and beliefs. The Extropians in the late ’80s believed in self-­transformation through technology and freedom from limitations of any kind—ideas that Ray Kurzweil eventually helped popularize and legitimize for a larger audience with the Singularity.  In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress. I should say that AI researcher Timnit Gebru and philosopher Émile Torres have also done a lot of great work linking these ideologies to one another and showing how they all have ties to racism, misogyny, and eugenics. You argue that the Singularity is the purest expression of the ideology of technological salvation. How so? Well, for one thing, it’s just this very simple, straightforward idea—the Singularity is coming and will occur when we merge our brains with the cloud and expand our intelligence a millionfold. This will then deepen our awareness and consciousness and everything will be amazing. In many ways, it’s a fantastical vision of a perfect technological utopia. We’re all going to live as long as we want in an eternal paradise, watched over by machines of loving grace, and everything will just get exponentially better forever. The end. The other isms I talk about in the book have a little more … heft isn’t the right word—they just have more stuff going on. There’s more to them, right? The rationalists and the effective altruists and the longtermists—they think that something like a singularity will happen, or could happen, but that there’s this really big danger between where we are now and that potential event. We have to address the fact that an all-powerful AI might destroy humanity—the so-called alignment problem—before any singularity can happen.  Then you’ve got the effective accelerationists, who are more like Kurzweil, but they’ve got more of a tech-bro spin on things. They’ve taken some of the older transhumanist ideas from the Singularity and updated them for startup culture. Marc Andreessen’s “Techno-Optimist Manifesto”is a good example. You could argue that all of these other philosophies that have gained purchase in Silicon Valley are just twists on Kurzweil’s Singularity, each one building on top of the core ideas of transcendence, techno­-optimism, and exponential growth.  Early on in the book you take aim at that idea of exponential growth—specifically, Kurzweil’s “Law of Accelerating Returns.” Could you explain what that is and why you think it’s flawed? Kurzweil thinks there’s this immutable “Law of Accelerating Returns” at work in the affairs of the universe, especially when it comes to technology. It’s the idea that technological progress isn’t linear but exponential. Advancements in one technology fuel even more rapid advancements in the future, which in turn lead to greater complexity and greater technological power, and on and on. This is just a mistake. Kurzweil uses the Law of Accelerating Returns to explain why the Singularity is inevitable, but to be clear, he’s far from the only one who believes in this so-called law. “I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear.” My sense is that it’s an idea that comes from staring at Moore’s Law for too long. Moore’s Law is of course the famous prediction that the number of transistors on a chip will double roughly every two years, with a minimal increase in cost. Now, that has in fact happened for the last 50 years or so, but not because of some fundamental law in the universe. It’s because the tech industry made a choice and some very sizable investments to make it happen. Moore’s Law was ultimately this really interesting observation or projection of a historical trend, but even Gordon Mooreknew that it wouldn’t and couldn’t last forever. In fact, some think it’s already over.  These ideologies take inspiration from some pretty unsavory characters. Transhumanism, you say, was first popularized by the eugenicist Julian Huxley in a speech in 1951. Marc Andreessen’s “Techno-Optimist Manifesto” name-checks the noted fascist Filippo Tommaso Marinetti and his futurist manifesto. Did you get the sense while researching the book that the tech titans who champion these ideas understand their dangerous origins? You’re assuming in the framing of that question that there’s any rigorous thought going on here at all. As I say in the book, Andreessen’s manifesto runs almost entirely on vibes, not logic. I think someone may have told him about the futurist manifesto at some point, and he just sort of liked the general vibe, which is why he paraphrases a part of it. Maybe he learned something about Marinetti and forgot it. Maybe he didn’t care.  I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear. For many of these billionaires, the vibes of fascism, authoritarianism, and colonialism are attractive because they’re fundamentally about creating a fantasy of control.  You argue that these visions of the future are being used to hasten environmental destruction, increase authoritarianism, and exacerbate inequalities. You also admit that they appeal to lots of people who aren’t billionaires. Why do you think that is?  I think a lot of us are also attracted to these ideas for the same reasons the tech billionaires are—they offer this fantasy of knowing what the future holds, of transcending death, and a sense that someone or something out there is in control. It’s hard to overstate how comforting a simple, coherent narrative can be in an increasingly complex and fast-moving world. This is of course what religion offers for many of us, and I don’t think it’s an accident that a sizable number of people in the rationalist and effective altruist communities are actually ex-evangelicals. More than any one specific technology, it seems like the most consequential thing these billionaires have invented is a sense of inevitability—that their visions for the future are somehow predestined. How does one fight against that? It’s a difficult question. For me, the answer was to write this book. I guess I’d also say this: Silicon Valley enjoyed well over a decade with little to no pushback on anything. That’s definitely a big part of how we ended up in this mess. There was no regulation, very little critical coverage in the press, and a lot of self-mythologizing going on. Things have started to change, especially as the social and environmental damage that tech companies and industry leaders have helped facilitate has become more clear. That understanding is an essential part of deflating the power of these tech billionaires and breaking free of their visions. When we understand that these dreams of the future are actually nightmares for the rest of us, I think you’ll see that senseof inevitability vanish pretty fast.  This interview was edited for length and clarity. Bryan Gardiner is a writer based in Oakland, California.  #tech #billionaires #are #making #risky
    WWW.TECHNOLOGYREVIEW.COM
    Tech billionaires are making a risky bet with humanity’s future
    “The best way to predict the future is to invent it,” the famed computer scientist Alan Kay once said. Uttered more out of exasperation than as inspiration, his remark has nevertheless attained gospel-like status among Silicon Valley entrepreneurs, in particular a handful of tech billionaires who fancy themselves the chief architects of humanity’s future.  Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals and ambitions in the near term, but their grand visions for the next decade and beyond are remarkably similar. Framed less as technological objectives and more as existential imperatives, they include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality (or something close to it); establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos. While there’s a sprawling patchwork of ideas and philosophies powering these visions, three features play a central role, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits. In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker calls this triumvirate of beliefs the “ideology of technological salvation” and warns that tech titans are using it to steer humanity in a dangerous direction.  “In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress.” “The credence that tech billionaires give to these specific science-fictional futures validates their pursuit of more—to portray the growth of their businesses as a moral imperative, to reduce the complex problems of the world to simple questions of technology, [and] to justify nearly any action they might want to take,” he writes. Becker argues that the only way to break free of these visions is to see them for what they are: a convenient excuse to continue destroying the environment, skirt regulations, amass more power and control, and dismiss the very real problems of today to focus on the imagined ones of tomorrow.  A lot of critics, academics, and journalists have tried to define or distill the Silicon Valley ethos over the years. There was the “Californian Ideology” in the mid-’90s, the “Move fast and break things” era of the early 2000s, and more recently the “Libertarianism for me, feudalism for thee”  or “techno-­authoritarian” views. How do you see the “ideology of technological salvation” fitting in?  I’d say it’s very much of a piece with those earlier attempts to describe the Silicon Valley mindset. I mean, you can draw a pretty straight line from Max More’s principles of transhumanism in the ’90s to the Californian Ideology [a mashup of countercultural, libertarian, and neoliberal values] and through to what I call the ideology of technological salvation. The fact is, many of the ideas that define or animate Silicon Valley thinking have never been much of a ­mystery—libertarianism, an antipathy toward the government and regulation, the boundless faith in technology, the obsession with optimization.  What can be difficult is to parse where all these ideas come from and how they fit together—or if they fit together at all. I came up with the ideology of technological salvation as a way to name and give shape to a group of interrelated concepts and philosophies that can seem sprawling and ill-defined at first, but that actually sit at the center of a worldview shared by venture capitalists, executives, and other thought leaders in the tech industry.  Readers will likely be familiar with the tech billionaires featured in your book and at least some of their ambitions. I’m guessing they’ll be less familiar with the various “isms” that you argue have influenced or guided their thinking. Effective altruism, rationalism, long­termism, extropianism, effective accelerationism, futurism, singularitarianism, ­transhumanism—there are a lot of them. Is there something that they all share?  They’re definitely connected. In a sense, you could say they’re all versions or instantiations of the ideology of technological salvation, but there are also some very deep historical connections between the people in these groups and their aims and beliefs. The Extropians in the late ’80s believed in self-­transformation through technology and freedom from limitations of any kind—ideas that Ray Kurzweil eventually helped popularize and legitimize for a larger audience with the Singularity.  In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress. I should say that AI researcher Timnit Gebru and philosopher Émile Torres have also done a lot of great work linking these ideologies to one another and showing how they all have ties to racism, misogyny, and eugenics. You argue that the Singularity is the purest expression of the ideology of technological salvation. How so? Well, for one thing, it’s just this very simple, straightforward idea—the Singularity is coming and will occur when we merge our brains with the cloud and expand our intelligence a millionfold. This will then deepen our awareness and consciousness and everything will be amazing. In many ways, it’s a fantastical vision of a perfect technological utopia. We’re all going to live as long as we want in an eternal paradise, watched over by machines of loving grace, and everything will just get exponentially better forever. The end. The other isms I talk about in the book have a little more … heft isn’t the right word—they just have more stuff going on. There’s more to them, right? The rationalists and the effective altruists and the longtermists—they think that something like a singularity will happen, or could happen, but that there’s this really big danger between where we are now and that potential event. We have to address the fact that an all-powerful AI might destroy humanity—the so-called alignment problem—before any singularity can happen.  Then you’ve got the effective accelerationists, who are more like Kurzweil, but they’ve got more of a tech-bro spin on things. They’ve taken some of the older transhumanist ideas from the Singularity and updated them for startup culture. Marc Andreessen’s “Techno-Optimist Manifesto” [from 2023] is a good example. You could argue that all of these other philosophies that have gained purchase in Silicon Valley are just twists on Kurzweil’s Singularity, each one building on top of the core ideas of transcendence, techno­-optimism, and exponential growth.  Early on in the book you take aim at that idea of exponential growth—specifically, Kurzweil’s “Law of Accelerating Returns.” Could you explain what that is and why you think it’s flawed? Kurzweil thinks there’s this immutable “Law of Accelerating Returns” at work in the affairs of the universe, especially when it comes to technology. It’s the idea that technological progress isn’t linear but exponential. Advancements in one technology fuel even more rapid advancements in the future, which in turn lead to greater complexity and greater technological power, and on and on. This is just a mistake. Kurzweil uses the Law of Accelerating Returns to explain why the Singularity is inevitable, but to be clear, he’s far from the only one who believes in this so-called law. “I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear.” My sense is that it’s an idea that comes from staring at Moore’s Law for too long. Moore’s Law is of course the famous prediction that the number of transistors on a chip will double roughly every two years, with a minimal increase in cost. Now, that has in fact happened for the last 50 years or so, but not because of some fundamental law in the universe. It’s because the tech industry made a choice and some very sizable investments to make it happen. Moore’s Law was ultimately this really interesting observation or projection of a historical trend, but even Gordon Moore [who first articulated it] knew that it wouldn’t and couldn’t last forever. In fact, some think it’s already over.  These ideologies take inspiration from some pretty unsavory characters. Transhumanism, you say, was first popularized by the eugenicist Julian Huxley in a speech in 1951. Marc Andreessen’s “Techno-Optimist Manifesto” name-checks the noted fascist Filippo Tommaso Marinetti and his futurist manifesto. Did you get the sense while researching the book that the tech titans who champion these ideas understand their dangerous origins? You’re assuming in the framing of that question that there’s any rigorous thought going on here at all. As I say in the book, Andreessen’s manifesto runs almost entirely on vibes, not logic. I think someone may have told him about the futurist manifesto at some point, and he just sort of liked the general vibe, which is why he paraphrases a part of it. Maybe he learned something about Marinetti and forgot it. Maybe he didn’t care.  I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear. For many of these billionaires, the vibes of fascism, authoritarianism, and colonialism are attractive because they’re fundamentally about creating a fantasy of control.  You argue that these visions of the future are being used to hasten environmental destruction, increase authoritarianism, and exacerbate inequalities. You also admit that they appeal to lots of people who aren’t billionaires. Why do you think that is?  I think a lot of us are also attracted to these ideas for the same reasons the tech billionaires are—they offer this fantasy of knowing what the future holds, of transcending death, and a sense that someone or something out there is in control. It’s hard to overstate how comforting a simple, coherent narrative can be in an increasingly complex and fast-moving world. This is of course what religion offers for many of us, and I don’t think it’s an accident that a sizable number of people in the rationalist and effective altruist communities are actually ex-evangelicals. More than any one specific technology, it seems like the most consequential thing these billionaires have invented is a sense of inevitability—that their visions for the future are somehow predestined. How does one fight against that? It’s a difficult question. For me, the answer was to write this book. I guess I’d also say this: Silicon Valley enjoyed well over a decade with little to no pushback on anything. That’s definitely a big part of how we ended up in this mess. There was no regulation, very little critical coverage in the press, and a lot of self-mythologizing going on. Things have started to change, especially as the social and environmental damage that tech companies and industry leaders have helped facilitate has become more clear. That understanding is an essential part of deflating the power of these tech billionaires and breaking free of their visions. When we understand that these dreams of the future are actually nightmares for the rest of us, I think you’ll see that senseof inevitability vanish pretty fast.  This interview was edited for length and clarity. Bryan Gardiner is a writer based in Oakland, California. 
    Like
    Love
    Wow
    Sad
    Angry
    535
    2 Yorumlar 0 hisse senetleri
  • Nvidia CEO slams Anthropic's chief over his claims of AI taking half of jobs and being unsafe — ‘Don’t do it in a dark room and tell me it’s safe’

    Nvidia CEO Jensen Huang disagrees with Anthropic CEO Dario Amodei's prediction that AI will wipe out nearly 50% of white-collar jobs.
    #nvidia #ceo #slams #anthropic039s #chief
    Nvidia CEO slams Anthropic's chief over his claims of AI taking half of jobs and being unsafe — ‘Don’t do it in a dark room and tell me it’s safe’
    Nvidia CEO Jensen Huang disagrees with Anthropic CEO Dario Amodei's prediction that AI will wipe out nearly 50% of white-collar jobs. #nvidia #ceo #slams #anthropic039s #chief
    WWW.TOMSHARDWARE.COM
    Nvidia CEO slams Anthropic's chief over his claims of AI taking half of jobs and being unsafe — ‘Don’t do it in a dark room and tell me it’s safe’
    Nvidia CEO Jensen Huang disagrees with Anthropic CEO Dario Amodei's prediction that AI will wipe out nearly 50% of white-collar jobs.
    0 Yorumlar 0 hisse senetleri
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Yorumlar 0 hisse senetleri
  • From Networks to Business Models, AI Is Rewiring Telecom

    Artificial intelligence is already rewriting the rules of wireless and telecom — powering predictive maintenance, streamlining network operations, and enabling more innovative services.
    As AI scales, the disruption will be faster, deeper, and harder to reverse than any prior shift in the industry.
    Compared to the sweeping changes AI is set to unleash, past telecom innovations look incremental.
    AI is redefining how networks operate, services are delivered, and data is secured — across every device and digital touchpoint.
    AI Is Reshaping Wireless Networks Already
    Artificial intelligence is already transforming wireless through smarter private networks, fixed wireless access, and intelligent automation across the stack.
    AI detects and resolves network issues before they impact service, improving uptime and customer satisfaction. It’s also opening the door to entirely new revenue streams and business models.
    Each wireless generation brought new capabilities. AI, however, marks a more profound shift — networks that think, respond, and evolve in real time.
    AI Acceleration Will Outpace Past Tech Shifts
    Many may underestimate the speed and magnitude of AI-driven change.
    The shift from traditional voice and data systems to AI-driven network intelligence is already underway.
    Although predictions abound, the true scope remains unclear.
    It’s tempting to assume we understand AI’s trajectory, but history suggests otherwise.

    Today, AI is already automating maintenance and optimizing performance without user disruption. The technologies we’ll rely on in the near future may still be on the drawing board.
    Few predicted that smartphones would emerge from analog beginnings—a reminder of how quickly foundational technologies can be reimagined.
    History shows that disruptive technologies rarely follow predictable paths — and AI is no exception. It’s already upending business models across industries.
    Technological shifts bring both new opportunities and complex trade-offs.
    AI Disruption Will Move Faster Than Ever
    The same cycle of reinvention is happening now — but with AI, it’s moving at unprecedented speed.
    Despite all the discussion, many still treat AI as a future concern — yet the shift is already well underway.
    As with every major technological leap, there will be gains and losses. The AI transition brings clear trade-offs: efficiency and innovation on one side, job displacement, and privacy erosion on the other.
    Unlike past tech waves that unfolded over decades, the AI shift will reshape industries in just a few years — and that change wave will only continue to move forward.
    AI Will Reshape All Sectors and Companies
    This shift will unfold faster than most organizations or individuals are prepared to handle.
    Today’s industries will likely look very different tomorrow. Entirely new sectors will emerge as legacy models become obsolete — redefining market leadership across industries.
    Telecom’s past holds a clear warning: market dominance can vanish quickly when companies ignore disruption.
    Eventually, the Baby Bells moved into long-distance service, while AT&T remained barred from selling local access — undermining its advantage.
    As the market shifted and competitors gained ground, AT&T lost its dominance and became vulnerable enough that SBC, a former regional Bell, acquired it and took on its name.

    It’s a case study of how incumbents fall when they fail to adapt — precisely the kind of pressure AI is now exerting across industries.
    SBC’s acquisition of AT&T flipped the power dynamic — proof that size doesn’t protect against disruption.
    The once-crowded telecom field has consolidated into just a few dominant players — each facing new threats from AI-native challengers.
    Legacy telecom models are being steadily displaced by faster, more flexible wireless, broadband, and streaming alternatives.
    No Industry Is Immune From AI Disruption
    AI will accelerate the next wave of industrial evolution — bringing innovations and consequences we’re only beginning to grasp.
    New winners will emerge as past leaders struggle to hang on — a shift that will also reshape the investment landscape. Startups leveraging AI will likely redefine leadership in sectors where incumbents have grown complacent.
    Nvidia’s rise is part of a broader trend: the next market leaders will emerge wherever AI creates a clear competitive advantage — whether in chips, code, or entirely new markets.
    The AI-driven future is arriving faster than most organizations are ready for. Adapting to this accelerating wave of change is no longer optional — it’s essential. Companies that act decisively today will define the winners of tomorrow.
    #networks #business #models #rewiring #telecom
    From Networks to Business Models, AI Is Rewiring Telecom
    Artificial intelligence is already rewriting the rules of wireless and telecom — powering predictive maintenance, streamlining network operations, and enabling more innovative services. As AI scales, the disruption will be faster, deeper, and harder to reverse than any prior shift in the industry. Compared to the sweeping changes AI is set to unleash, past telecom innovations look incremental. AI is redefining how networks operate, services are delivered, and data is secured — across every device and digital touchpoint. AI Is Reshaping Wireless Networks Already Artificial intelligence is already transforming wireless through smarter private networks, fixed wireless access, and intelligent automation across the stack. AI detects and resolves network issues before they impact service, improving uptime and customer satisfaction. It’s also opening the door to entirely new revenue streams and business models. Each wireless generation brought new capabilities. AI, however, marks a more profound shift — networks that think, respond, and evolve in real time. AI Acceleration Will Outpace Past Tech Shifts Many may underestimate the speed and magnitude of AI-driven change. The shift from traditional voice and data systems to AI-driven network intelligence is already underway. Although predictions abound, the true scope remains unclear. It’s tempting to assume we understand AI’s trajectory, but history suggests otherwise. Today, AI is already automating maintenance and optimizing performance without user disruption. The technologies we’ll rely on in the near future may still be on the drawing board. Few predicted that smartphones would emerge from analog beginnings—a reminder of how quickly foundational technologies can be reimagined. History shows that disruptive technologies rarely follow predictable paths — and AI is no exception. It’s already upending business models across industries. Technological shifts bring both new opportunities and complex trade-offs. AI Disruption Will Move Faster Than Ever The same cycle of reinvention is happening now — but with AI, it’s moving at unprecedented speed. Despite all the discussion, many still treat AI as a future concern — yet the shift is already well underway. As with every major technological leap, there will be gains and losses. The AI transition brings clear trade-offs: efficiency and innovation on one side, job displacement, and privacy erosion on the other. Unlike past tech waves that unfolded over decades, the AI shift will reshape industries in just a few years — and that change wave will only continue to move forward. AI Will Reshape All Sectors and Companies This shift will unfold faster than most organizations or individuals are prepared to handle. Today’s industries will likely look very different tomorrow. Entirely new sectors will emerge as legacy models become obsolete — redefining market leadership across industries. Telecom’s past holds a clear warning: market dominance can vanish quickly when companies ignore disruption. Eventually, the Baby Bells moved into long-distance service, while AT&T remained barred from selling local access — undermining its advantage. As the market shifted and competitors gained ground, AT&T lost its dominance and became vulnerable enough that SBC, a former regional Bell, acquired it and took on its name. It’s a case study of how incumbents fall when they fail to adapt — precisely the kind of pressure AI is now exerting across industries. SBC’s acquisition of AT&T flipped the power dynamic — proof that size doesn’t protect against disruption. The once-crowded telecom field has consolidated into just a few dominant players — each facing new threats from AI-native challengers. Legacy telecom models are being steadily displaced by faster, more flexible wireless, broadband, and streaming alternatives. No Industry Is Immune From AI Disruption AI will accelerate the next wave of industrial evolution — bringing innovations and consequences we’re only beginning to grasp. New winners will emerge as past leaders struggle to hang on — a shift that will also reshape the investment landscape. Startups leveraging AI will likely redefine leadership in sectors where incumbents have grown complacent. Nvidia’s rise is part of a broader trend: the next market leaders will emerge wherever AI creates a clear competitive advantage — whether in chips, code, or entirely new markets. The AI-driven future is arriving faster than most organizations are ready for. Adapting to this accelerating wave of change is no longer optional — it’s essential. Companies that act decisively today will define the winners of tomorrow. #networks #business #models #rewiring #telecom
    From Networks to Business Models, AI Is Rewiring Telecom
    Artificial intelligence is already rewriting the rules of wireless and telecom — powering predictive maintenance, streamlining network operations, and enabling more innovative services. As AI scales, the disruption will be faster, deeper, and harder to reverse than any prior shift in the industry. Compared to the sweeping changes AI is set to unleash, past telecom innovations look incremental. AI is redefining how networks operate, services are delivered, and data is secured — across every device and digital touchpoint. AI Is Reshaping Wireless Networks Already Artificial intelligence is already transforming wireless through smarter private networks, fixed wireless access (FWA), and intelligent automation across the stack. AI detects and resolves network issues before they impact service, improving uptime and customer satisfaction. It’s also opening the door to entirely new revenue streams and business models. Each wireless generation brought new capabilities. AI, however, marks a more profound shift — networks that think, respond, and evolve in real time. AI Acceleration Will Outpace Past Tech Shifts Many may underestimate the speed and magnitude of AI-driven change. The shift from traditional voice and data systems to AI-driven network intelligence is already underway. Although predictions abound, the true scope remains unclear. It’s tempting to assume we understand AI’s trajectory, but history suggests otherwise. Today, AI is already automating maintenance and optimizing performance without user disruption. The technologies we’ll rely on in the near future may still be on the drawing board. Few predicted that smartphones would emerge from analog beginnings—a reminder of how quickly foundational technologies can be reimagined. History shows that disruptive technologies rarely follow predictable paths — and AI is no exception. It’s already upending business models across industries. Technological shifts bring both new opportunities and complex trade-offs. AI Disruption Will Move Faster Than Ever The same cycle of reinvention is happening now — but with AI, it’s moving at unprecedented speed. Despite all the discussion, many still treat AI as a future concern — yet the shift is already well underway. As with every major technological leap, there will be gains and losses. The AI transition brings clear trade-offs: efficiency and innovation on one side, job displacement, and privacy erosion on the other. Unlike past tech waves that unfolded over decades, the AI shift will reshape industries in just a few years — and that change wave will only continue to move forward. AI Will Reshape All Sectors and Companies This shift will unfold faster than most organizations or individuals are prepared to handle. Today’s industries will likely look very different tomorrow. Entirely new sectors will emerge as legacy models become obsolete — redefining market leadership across industries. Telecom’s past holds a clear warning: market dominance can vanish quickly when companies ignore disruption. Eventually, the Baby Bells moved into long-distance service, while AT&T remained barred from selling local access — undermining its advantage. As the market shifted and competitors gained ground, AT&T lost its dominance and became vulnerable enough that SBC, a former regional Bell, acquired it and took on its name. It’s a case study of how incumbents fall when they fail to adapt — precisely the kind of pressure AI is now exerting across industries. SBC’s acquisition of AT&T flipped the power dynamic — proof that size doesn’t protect against disruption. The once-crowded telecom field has consolidated into just a few dominant players — each facing new threats from AI-native challengers. Legacy telecom models are being steadily displaced by faster, more flexible wireless, broadband, and streaming alternatives. No Industry Is Immune From AI Disruption AI will accelerate the next wave of industrial evolution — bringing innovations and consequences we’re only beginning to grasp. New winners will emerge as past leaders struggle to hang on — a shift that will also reshape the investment landscape. Startups leveraging AI will likely redefine leadership in sectors where incumbents have grown complacent. Nvidia’s rise is part of a broader trend: the next market leaders will emerge wherever AI creates a clear competitive advantage — whether in chips, code, or entirely new markets. The AI-driven future is arriving faster than most organizations are ready for. Adapting to this accelerating wave of change is no longer optional — it’s essential. Companies that act decisively today will define the winners of tomorrow.
    0 Yorumlar 0 hisse senetleri