• Tech billionaires are making a risky bet with humanity’s future

    “The best way to predict the future is to invent it,” the famed computer scientist Alan Kay once said. Uttered more out of exasperation than as inspiration, his remark has nevertheless attained gospel-like status among Silicon Valley entrepreneurs, in particular a handful of tech billionaires who fancy themselves the chief architects of humanity’s future. 

    Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals and ambitions in the near term, but their grand visions for the next decade and beyond are remarkably similar. Framed less as technological objectives and more as existential imperatives, they include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality; establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos.

    While there’s a sprawling patchwork of ideas and philosophies powering these visions, three features play a central role, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits. In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker calls this triumvirate of beliefs the “ideology of technological salvation” and warns that tech titans are using it to steer humanity in a dangerous direction. 

    “In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress.”

    “The credence that tech billionaires give to these specific science-fictional futures validates their pursuit of more—to portray the growth of their businesses as a moral imperative, to reduce the complex problems of the world to simple questions of technology,to justify nearly any action they might want to take,” he writes. Becker argues that the only way to break free of these visions is to see them for what they are: a convenient excuse to continue destroying the environment, skirt regulations, amass more power and control, and dismiss the very real problems of today to focus on the imagined ones of tomorrow. 

    A lot of critics, academics, and journalists have tried to define or distill the Silicon Valley ethos over the years. There was the “Californian Ideology” in the mid-’90s, the “Move fast and break things” era of the early 2000s, and more recently the “Libertarianism for me, feudalism for thee”  or “techno-­authoritarian” views. How do you see the “ideology of technological salvation” fitting in? 

    I’d say it’s very much of a piece with those earlier attempts to describe the Silicon Valley mindset. I mean, you can draw a pretty straight line from Max More’s principles of transhumanism in the ’90s to the Californian Ideologyand through to what I call the ideology of technological salvation. The fact is, many of the ideas that define or animate Silicon Valley thinking have never been much of a ­mystery—libertarianism, an antipathy toward the government and regulation, the boundless faith in technology, the obsession with optimization. 

    What can be difficult is to parse where all these ideas come from and how they fit together—or if they fit together at all. I came up with the ideology of technological salvation as a way to name and give shape to a group of interrelated concepts and philosophies that can seem sprawling and ill-defined at first, but that actually sit at the center of a worldview shared by venture capitalists, executives, and other thought leaders in the tech industry. 

    Readers will likely be familiar with the tech billionaires featured in your book and at least some of their ambitions. I’m guessing they’ll be less familiar with the various “isms” that you argue have influenced or guided their thinking. Effective altruism, rationalism, long­termism, extropianism, effective accelerationism, futurism, singularitarianism, ­transhumanism—there are a lot of them. Is there something that they all share? 

    They’re definitely connected. In a sense, you could say they’re all versions or instantiations of the ideology of technological salvation, but there are also some very deep historical connections between the people in these groups and their aims and beliefs. The Extropians in the late ’80s believed in self-­transformation through technology and freedom from limitations of any kind—ideas that Ray Kurzweil eventually helped popularize and legitimize for a larger audience with the Singularity. 

    In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress. I should say that AI researcher Timnit Gebru and philosopher Émile Torres have also done a lot of great work linking these ideologies to one another and showing how they all have ties to racism, misogyny, and eugenics.

    You argue that the Singularity is the purest expression of the ideology of technological salvation. How so?

    Well, for one thing, it’s just this very simple, straightforward idea—the Singularity is coming and will occur when we merge our brains with the cloud and expand our intelligence a millionfold. This will then deepen our awareness and consciousness and everything will be amazing. In many ways, it’s a fantastical vision of a perfect technological utopia. We’re all going to live as long as we want in an eternal paradise, watched over by machines of loving grace, and everything will just get exponentially better forever. The end.

    The other isms I talk about in the book have a little more … heft isn’t the right word—they just have more stuff going on. There’s more to them, right? The rationalists and the effective altruists and the longtermists—they think that something like a singularity will happen, or could happen, but that there’s this really big danger between where we are now and that potential event. We have to address the fact that an all-powerful AI might destroy humanity—the so-called alignment problem—before any singularity can happen. 

    Then you’ve got the effective accelerationists, who are more like Kurzweil, but they’ve got more of a tech-bro spin on things. They’ve taken some of the older transhumanist ideas from the Singularity and updated them for startup culture. Marc Andreessen’s “Techno-Optimist Manifesto”is a good example. You could argue that all of these other philosophies that have gained purchase in Silicon Valley are just twists on Kurzweil’s Singularity, each one building on top of the core ideas of transcendence, techno­-optimism, and exponential growth. 

    Early on in the book you take aim at that idea of exponential growth—specifically, Kurzweil’s “Law of Accelerating Returns.” Could you explain what that is and why you think it’s flawed?

    Kurzweil thinks there’s this immutable “Law of Accelerating Returns” at work in the affairs of the universe, especially when it comes to technology. It’s the idea that technological progress isn’t linear but exponential. Advancements in one technology fuel even more rapid advancements in the future, which in turn lead to greater complexity and greater technological power, and on and on. This is just a mistake. Kurzweil uses the Law of Accelerating Returns to explain why the Singularity is inevitable, but to be clear, he’s far from the only one who believes in this so-called law.

    “I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear.”

    My sense is that it’s an idea that comes from staring at Moore’s Law for too long. Moore’s Law is of course the famous prediction that the number of transistors on a chip will double roughly every two years, with a minimal increase in cost. Now, that has in fact happened for the last 50 years or so, but not because of some fundamental law in the universe. It’s because the tech industry made a choice and some very sizable investments to make it happen. Moore’s Law was ultimately this really interesting observation or projection of a historical trend, but even Gordon Mooreknew that it wouldn’t and couldn’t last forever. In fact, some think it’s already over. 

    These ideologies take inspiration from some pretty unsavory characters. Transhumanism, you say, was first popularized by the eugenicist Julian Huxley in a speech in 1951. Marc Andreessen’s “Techno-Optimist Manifesto” name-checks the noted fascist Filippo Tommaso Marinetti and his futurist manifesto. Did you get the sense while researching the book that the tech titans who champion these ideas understand their dangerous origins?

    You’re assuming in the framing of that question that there’s any rigorous thought going on here at all. As I say in the book, Andreessen’s manifesto runs almost entirely on vibes, not logic. I think someone may have told him about the futurist manifesto at some point, and he just sort of liked the general vibe, which is why he paraphrases a part of it. Maybe he learned something about Marinetti and forgot it. Maybe he didn’t care. 

    I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear. For many of these billionaires, the vibes of fascism, authoritarianism, and colonialism are attractive because they’re fundamentally about creating a fantasy of control. 

    You argue that these visions of the future are being used to hasten environmental destruction, increase authoritarianism, and exacerbate inequalities. You also admit that they appeal to lots of people who aren’t billionaires. Why do you think that is? 

    I think a lot of us are also attracted to these ideas for the same reasons the tech billionaires are—they offer this fantasy of knowing what the future holds, of transcending death, and a sense that someone or something out there is in control. It’s hard to overstate how comforting a simple, coherent narrative can be in an increasingly complex and fast-moving world. This is of course what religion offers for many of us, and I don’t think it’s an accident that a sizable number of people in the rationalist and effective altruist communities are actually ex-evangelicals.

    More than any one specific technology, it seems like the most consequential thing these billionaires have invented is a sense of inevitability—that their visions for the future are somehow predestined. How does one fight against that?

    It’s a difficult question. For me, the answer was to write this book. I guess I’d also say this: Silicon Valley enjoyed well over a decade with little to no pushback on anything. That’s definitely a big part of how we ended up in this mess. There was no regulation, very little critical coverage in the press, and a lot of self-mythologizing going on. Things have started to change, especially as the social and environmental damage that tech companies and industry leaders have helped facilitate has become more clear. That understanding is an essential part of deflating the power of these tech billionaires and breaking free of their visions. When we understand that these dreams of the future are actually nightmares for the rest of us, I think you’ll see that senseof inevitability vanish pretty fast. 

    This interview was edited for length and clarity.

    Bryan Gardiner is a writer based in Oakland, California. 
    #tech #billionaires #are #making #risky
    Tech billionaires are making a risky bet with humanity’s future
    “The best way to predict the future is to invent it,” the famed computer scientist Alan Kay once said. Uttered more out of exasperation than as inspiration, his remark has nevertheless attained gospel-like status among Silicon Valley entrepreneurs, in particular a handful of tech billionaires who fancy themselves the chief architects of humanity’s future.  Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals and ambitions in the near term, but their grand visions for the next decade and beyond are remarkably similar. Framed less as technological objectives and more as existential imperatives, they include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality; establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos. While there’s a sprawling patchwork of ideas and philosophies powering these visions, three features play a central role, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits. In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker calls this triumvirate of beliefs the “ideology of technological salvation” and warns that tech titans are using it to steer humanity in a dangerous direction.  “In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress.” “The credence that tech billionaires give to these specific science-fictional futures validates their pursuit of more—to portray the growth of their businesses as a moral imperative, to reduce the complex problems of the world to simple questions of technology,to justify nearly any action they might want to take,” he writes. Becker argues that the only way to break free of these visions is to see them for what they are: a convenient excuse to continue destroying the environment, skirt regulations, amass more power and control, and dismiss the very real problems of today to focus on the imagined ones of tomorrow.  A lot of critics, academics, and journalists have tried to define or distill the Silicon Valley ethos over the years. There was the “Californian Ideology” in the mid-’90s, the “Move fast and break things” era of the early 2000s, and more recently the “Libertarianism for me, feudalism for thee”  or “techno-­authoritarian” views. How do you see the “ideology of technological salvation” fitting in?  I’d say it’s very much of a piece with those earlier attempts to describe the Silicon Valley mindset. I mean, you can draw a pretty straight line from Max More’s principles of transhumanism in the ’90s to the Californian Ideologyand through to what I call the ideology of technological salvation. The fact is, many of the ideas that define or animate Silicon Valley thinking have never been much of a ­mystery—libertarianism, an antipathy toward the government and regulation, the boundless faith in technology, the obsession with optimization.  What can be difficult is to parse where all these ideas come from and how they fit together—or if they fit together at all. I came up with the ideology of technological salvation as a way to name and give shape to a group of interrelated concepts and philosophies that can seem sprawling and ill-defined at first, but that actually sit at the center of a worldview shared by venture capitalists, executives, and other thought leaders in the tech industry.  Readers will likely be familiar with the tech billionaires featured in your book and at least some of their ambitions. I’m guessing they’ll be less familiar with the various “isms” that you argue have influenced or guided their thinking. Effective altruism, rationalism, long­termism, extropianism, effective accelerationism, futurism, singularitarianism, ­transhumanism—there are a lot of them. Is there something that they all share?  They’re definitely connected. In a sense, you could say they’re all versions or instantiations of the ideology of technological salvation, but there are also some very deep historical connections between the people in these groups and their aims and beliefs. The Extropians in the late ’80s believed in self-­transformation through technology and freedom from limitations of any kind—ideas that Ray Kurzweil eventually helped popularize and legitimize for a larger audience with the Singularity.  In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress. I should say that AI researcher Timnit Gebru and philosopher Émile Torres have also done a lot of great work linking these ideologies to one another and showing how they all have ties to racism, misogyny, and eugenics. You argue that the Singularity is the purest expression of the ideology of technological salvation. How so? Well, for one thing, it’s just this very simple, straightforward idea—the Singularity is coming and will occur when we merge our brains with the cloud and expand our intelligence a millionfold. This will then deepen our awareness and consciousness and everything will be amazing. In many ways, it’s a fantastical vision of a perfect technological utopia. We’re all going to live as long as we want in an eternal paradise, watched over by machines of loving grace, and everything will just get exponentially better forever. The end. The other isms I talk about in the book have a little more … heft isn’t the right word—they just have more stuff going on. There’s more to them, right? The rationalists and the effective altruists and the longtermists—they think that something like a singularity will happen, or could happen, but that there’s this really big danger between where we are now and that potential event. We have to address the fact that an all-powerful AI might destroy humanity—the so-called alignment problem—before any singularity can happen.  Then you’ve got the effective accelerationists, who are more like Kurzweil, but they’ve got more of a tech-bro spin on things. They’ve taken some of the older transhumanist ideas from the Singularity and updated them for startup culture. Marc Andreessen’s “Techno-Optimist Manifesto”is a good example. You could argue that all of these other philosophies that have gained purchase in Silicon Valley are just twists on Kurzweil’s Singularity, each one building on top of the core ideas of transcendence, techno­-optimism, and exponential growth.  Early on in the book you take aim at that idea of exponential growth—specifically, Kurzweil’s “Law of Accelerating Returns.” Could you explain what that is and why you think it’s flawed? Kurzweil thinks there’s this immutable “Law of Accelerating Returns” at work in the affairs of the universe, especially when it comes to technology. It’s the idea that technological progress isn’t linear but exponential. Advancements in one technology fuel even more rapid advancements in the future, which in turn lead to greater complexity and greater technological power, and on and on. This is just a mistake. Kurzweil uses the Law of Accelerating Returns to explain why the Singularity is inevitable, but to be clear, he’s far from the only one who believes in this so-called law. “I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear.” My sense is that it’s an idea that comes from staring at Moore’s Law for too long. Moore’s Law is of course the famous prediction that the number of transistors on a chip will double roughly every two years, with a minimal increase in cost. Now, that has in fact happened for the last 50 years or so, but not because of some fundamental law in the universe. It’s because the tech industry made a choice and some very sizable investments to make it happen. Moore’s Law was ultimately this really interesting observation or projection of a historical trend, but even Gordon Mooreknew that it wouldn’t and couldn’t last forever. In fact, some think it’s already over.  These ideologies take inspiration from some pretty unsavory characters. Transhumanism, you say, was first popularized by the eugenicist Julian Huxley in a speech in 1951. Marc Andreessen’s “Techno-Optimist Manifesto” name-checks the noted fascist Filippo Tommaso Marinetti and his futurist manifesto. Did you get the sense while researching the book that the tech titans who champion these ideas understand their dangerous origins? You’re assuming in the framing of that question that there’s any rigorous thought going on here at all. As I say in the book, Andreessen’s manifesto runs almost entirely on vibes, not logic. I think someone may have told him about the futurist manifesto at some point, and he just sort of liked the general vibe, which is why he paraphrases a part of it. Maybe he learned something about Marinetti and forgot it. Maybe he didn’t care.  I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear. For many of these billionaires, the vibes of fascism, authoritarianism, and colonialism are attractive because they’re fundamentally about creating a fantasy of control.  You argue that these visions of the future are being used to hasten environmental destruction, increase authoritarianism, and exacerbate inequalities. You also admit that they appeal to lots of people who aren’t billionaires. Why do you think that is?  I think a lot of us are also attracted to these ideas for the same reasons the tech billionaires are—they offer this fantasy of knowing what the future holds, of transcending death, and a sense that someone or something out there is in control. It’s hard to overstate how comforting a simple, coherent narrative can be in an increasingly complex and fast-moving world. This is of course what religion offers for many of us, and I don’t think it’s an accident that a sizable number of people in the rationalist and effective altruist communities are actually ex-evangelicals. More than any one specific technology, it seems like the most consequential thing these billionaires have invented is a sense of inevitability—that their visions for the future are somehow predestined. How does one fight against that? It’s a difficult question. For me, the answer was to write this book. I guess I’d also say this: Silicon Valley enjoyed well over a decade with little to no pushback on anything. That’s definitely a big part of how we ended up in this mess. There was no regulation, very little critical coverage in the press, and a lot of self-mythologizing going on. Things have started to change, especially as the social and environmental damage that tech companies and industry leaders have helped facilitate has become more clear. That understanding is an essential part of deflating the power of these tech billionaires and breaking free of their visions. When we understand that these dreams of the future are actually nightmares for the rest of us, I think you’ll see that senseof inevitability vanish pretty fast.  This interview was edited for length and clarity. Bryan Gardiner is a writer based in Oakland, California.  #tech #billionaires #are #making #risky
    Tech billionaires are making a risky bet with humanity’s future
    www.technologyreview.com
    “The best way to predict the future is to invent it,” the famed computer scientist Alan Kay once said. Uttered more out of exasperation than as inspiration, his remark has nevertheless attained gospel-like status among Silicon Valley entrepreneurs, in particular a handful of tech billionaires who fancy themselves the chief architects of humanity’s future.  Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals and ambitions in the near term, but their grand visions for the next decade and beyond are remarkably similar. Framed less as technological objectives and more as existential imperatives, they include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality (or something close to it); establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos. While there’s a sprawling patchwork of ideas and philosophies powering these visions, three features play a central role, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits. In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker calls this triumvirate of beliefs the “ideology of technological salvation” and warns that tech titans are using it to steer humanity in a dangerous direction.  “In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress.” “The credence that tech billionaires give to these specific science-fictional futures validates their pursuit of more—to portray the growth of their businesses as a moral imperative, to reduce the complex problems of the world to simple questions of technology, [and] to justify nearly any action they might want to take,” he writes. Becker argues that the only way to break free of these visions is to see them for what they are: a convenient excuse to continue destroying the environment, skirt regulations, amass more power and control, and dismiss the very real problems of today to focus on the imagined ones of tomorrow.  A lot of critics, academics, and journalists have tried to define or distill the Silicon Valley ethos over the years. There was the “Californian Ideology” in the mid-’90s, the “Move fast and break things” era of the early 2000s, and more recently the “Libertarianism for me, feudalism for thee”  or “techno-­authoritarian” views. How do you see the “ideology of technological salvation” fitting in?  I’d say it’s very much of a piece with those earlier attempts to describe the Silicon Valley mindset. I mean, you can draw a pretty straight line from Max More’s principles of transhumanism in the ’90s to the Californian Ideology [a mashup of countercultural, libertarian, and neoliberal values] and through to what I call the ideology of technological salvation. The fact is, many of the ideas that define or animate Silicon Valley thinking have never been much of a ­mystery—libertarianism, an antipathy toward the government and regulation, the boundless faith in technology, the obsession with optimization.  What can be difficult is to parse where all these ideas come from and how they fit together—or if they fit together at all. I came up with the ideology of technological salvation as a way to name and give shape to a group of interrelated concepts and philosophies that can seem sprawling and ill-defined at first, but that actually sit at the center of a worldview shared by venture capitalists, executives, and other thought leaders in the tech industry.  Readers will likely be familiar with the tech billionaires featured in your book and at least some of their ambitions. I’m guessing they’ll be less familiar with the various “isms” that you argue have influenced or guided their thinking. Effective altruism, rationalism, long­termism, extropianism, effective accelerationism, futurism, singularitarianism, ­transhumanism—there are a lot of them. Is there something that they all share?  They’re definitely connected. In a sense, you could say they’re all versions or instantiations of the ideology of technological salvation, but there are also some very deep historical connections between the people in these groups and their aims and beliefs. The Extropians in the late ’80s believed in self-­transformation through technology and freedom from limitations of any kind—ideas that Ray Kurzweil eventually helped popularize and legitimize for a larger audience with the Singularity.  In most of these isms you’ll find the idea of escape and transcendence, as well as the promise of an amazing future, full of unimaginable wonders—so long as we don’t get in the way of technological progress. I should say that AI researcher Timnit Gebru and philosopher Émile Torres have also done a lot of great work linking these ideologies to one another and showing how they all have ties to racism, misogyny, and eugenics. You argue that the Singularity is the purest expression of the ideology of technological salvation. How so? Well, for one thing, it’s just this very simple, straightforward idea—the Singularity is coming and will occur when we merge our brains with the cloud and expand our intelligence a millionfold. This will then deepen our awareness and consciousness and everything will be amazing. In many ways, it’s a fantastical vision of a perfect technological utopia. We’re all going to live as long as we want in an eternal paradise, watched over by machines of loving grace, and everything will just get exponentially better forever. The end. The other isms I talk about in the book have a little more … heft isn’t the right word—they just have more stuff going on. There’s more to them, right? The rationalists and the effective altruists and the longtermists—they think that something like a singularity will happen, or could happen, but that there’s this really big danger between where we are now and that potential event. We have to address the fact that an all-powerful AI might destroy humanity—the so-called alignment problem—before any singularity can happen.  Then you’ve got the effective accelerationists, who are more like Kurzweil, but they’ve got more of a tech-bro spin on things. They’ve taken some of the older transhumanist ideas from the Singularity and updated them for startup culture. Marc Andreessen’s “Techno-Optimist Manifesto” [from 2023] is a good example. You could argue that all of these other philosophies that have gained purchase in Silicon Valley are just twists on Kurzweil’s Singularity, each one building on top of the core ideas of transcendence, techno­-optimism, and exponential growth.  Early on in the book you take aim at that idea of exponential growth—specifically, Kurzweil’s “Law of Accelerating Returns.” Could you explain what that is and why you think it’s flawed? Kurzweil thinks there’s this immutable “Law of Accelerating Returns” at work in the affairs of the universe, especially when it comes to technology. It’s the idea that technological progress isn’t linear but exponential. Advancements in one technology fuel even more rapid advancements in the future, which in turn lead to greater complexity and greater technological power, and on and on. This is just a mistake. Kurzweil uses the Law of Accelerating Returns to explain why the Singularity is inevitable, but to be clear, he’s far from the only one who believes in this so-called law. “I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear.” My sense is that it’s an idea that comes from staring at Moore’s Law for too long. Moore’s Law is of course the famous prediction that the number of transistors on a chip will double roughly every two years, with a minimal increase in cost. Now, that has in fact happened for the last 50 years or so, but not because of some fundamental law in the universe. It’s because the tech industry made a choice and some very sizable investments to make it happen. Moore’s Law was ultimately this really interesting observation or projection of a historical trend, but even Gordon Moore [who first articulated it] knew that it wouldn’t and couldn’t last forever. In fact, some think it’s already over.  These ideologies take inspiration from some pretty unsavory characters. Transhumanism, you say, was first popularized by the eugenicist Julian Huxley in a speech in 1951. Marc Andreessen’s “Techno-Optimist Manifesto” name-checks the noted fascist Filippo Tommaso Marinetti and his futurist manifesto. Did you get the sense while researching the book that the tech titans who champion these ideas understand their dangerous origins? You’re assuming in the framing of that question that there’s any rigorous thought going on here at all. As I say in the book, Andreessen’s manifesto runs almost entirely on vibes, not logic. I think someone may have told him about the futurist manifesto at some point, and he just sort of liked the general vibe, which is why he paraphrases a part of it. Maybe he learned something about Marinetti and forgot it. Maybe he didn’t care.  I really believe that when you get as rich as some of these guys are, you can just do things that seem like thinking and no one is really going to correct you or tell you things you don’t want to hear. For many of these billionaires, the vibes of fascism, authoritarianism, and colonialism are attractive because they’re fundamentally about creating a fantasy of control.  You argue that these visions of the future are being used to hasten environmental destruction, increase authoritarianism, and exacerbate inequalities. You also admit that they appeal to lots of people who aren’t billionaires. Why do you think that is?  I think a lot of us are also attracted to these ideas for the same reasons the tech billionaires are—they offer this fantasy of knowing what the future holds, of transcending death, and a sense that someone or something out there is in control. It’s hard to overstate how comforting a simple, coherent narrative can be in an increasingly complex and fast-moving world. This is of course what religion offers for many of us, and I don’t think it’s an accident that a sizable number of people in the rationalist and effective altruist communities are actually ex-evangelicals. More than any one specific technology, it seems like the most consequential thing these billionaires have invented is a sense of inevitability—that their visions for the future are somehow predestined. How does one fight against that? It’s a difficult question. For me, the answer was to write this book. I guess I’d also say this: Silicon Valley enjoyed well over a decade with little to no pushback on anything. That’s definitely a big part of how we ended up in this mess. There was no regulation, very little critical coverage in the press, and a lot of self-mythologizing going on. Things have started to change, especially as the social and environmental damage that tech companies and industry leaders have helped facilitate has become more clear. That understanding is an essential part of deflating the power of these tech billionaires and breaking free of their visions. When we understand that these dreams of the future are actually nightmares for the rest of us, I think you’ll see that senseof inevitability vanish pretty fast.  This interview was edited for length and clarity. Bryan Gardiner is a writer based in Oakland, California. 
    Like
    Love
    Wow
    Sad
    Angry
    535
    · 2 Comments ·0 Shares ·0 Reviews
  • The Download: gambling with humanity’s future, and the FDA under Trump

    This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.Tech billionaires are making a risky bet with humanity’s future

    Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals, but their grand visions for the next decade and beyond are remarkably similar.They include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality; establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos.Three features play a central role with powering these visions, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits.In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker reveals how these fantastical visions conceal a darker agenda. Read the full story.

    —Bryan Gardiner

    This story is from the next print edition of MIT Technology Review, which explores power—who has it, and who wants it. It’s set to go live on Wednesday June 25, so subscribe & save 25% to read it and get a copy of the issue when it lands!

    Here’s what food and drug regulation might look like under the Trump administration

    Earlier this week, two new leaders of the US Food and Drug Administration published a list of priorities for the agency. Both Marty Makary and Vinay Prasad are controversial figures in the science community. They were generally highly respected academics until the covid pandemic, when their contrarian opinions on masking, vaccines, and lockdowns turned many of their colleagues off them.

    Given all this, along with recent mass firings of FDA employees, lots of people were pretty anxious to see what this list might include—and what we might expect the future of food and drug regulation in the US to look like. So let’s dive into the pair’s plans for new investigations, speedy approvals, and the “unleashing” of AI.

    —Jessica Hamzelou

    This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

    The must-reads

    I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.

    1 NASA is investigating leaks on the ISSIt’s postponed launching private astronauts to the station while it evaluates.+ Its core component has been springing small air leaks for months.+ Meanwhile, this Chinese probe is en route to a near-Earth asteroid.2 Undocumented migrants are using social media to warn of ICE raidsThe DIY networks are anonymously reporting police presences across LA.+ Platforms’ relationships with protest activism has changed drastically. 

    3 Google’s AI Overviews is hallucinating about the fatal Air India crashIt incorrectly stated that it involved an Airbus plane, not a Boeing 787.+ Why Google’s AI Overviews gets things wrong.4 Chinese engineers are sneaking suitcases of hard drives into the countryTo covertly train advanced AI models.+ The US is cracking down on Huawei’s ability to produce chips.+ What the US-China AI race overlooks.5 The National Hurricane Center is joining forces with DeepMindIt’s the first time the center has used AI to predict nature’s worst storms.+ Here’s what we know about hurricanes and climate change.6 OpenAI is working on a product with toymaker MattelAI-powered Barbies?!+ Nothing is safe from the creep of AI, not even playtime.+ OpenAI has ambitions to reach billions of users.7 Chatbots posing as licensed therapists may be breaking the lawDigital rights organizations have filed a complaint to the FTC.+ How do you teach an AI model to give therapy?8 Major companies are abandoning their climate commitmentsBut some experts argue this may not be entirely bad.+ Google, Amazon and the problem with Big Tech’s climate claims.9 Vibe coding is shaking up software engineeringEven though AI-generated code is inherently unreliable.+ What is vibe coding, exactly?10 TikTok really loves hotdogs And who can blame it?Quote of the day

    “It kind of jams two years of work into two months.”

    —Andrew Butcher, president of the Maine Connectivity Authority, tells Ars Technica why it’s so difficult to meet the Trump administration’s new plans to increase broadband access in certain states.

    One more thing

    The surprising barrier that keeps us from building the housing we needIt’s a tough time to try and buy a home in America. From the beginning of the pandemic to early 2024, US home prices rose by 47%. In large swaths of the country, buying a home is no longer a possibility even for those with middle-class incomes. For many, that marks the end of an American dream built around owning a house. Over the same time, rents have gone up 26%.The reason for the current rise in the cost of housing is clear to most economists: a lack of supply. Simply put, we don’t build enough houses and apartments, and we haven’t for years.

    But the reality is that even if we ease the endless permitting delays and begin cutting red tape, we will still be faced with a distressing fact: The construction industry is not very efficient when it comes to building stuff. Read the full story.

    —David Rotman

    We can still have nice things

    A place for comfort, fun and distraction to brighten up your day.+ If you’re one of the unlucky people who has triskaidekaphobia, look away now.+ 15-year old Nicholas is preparing to head from his home in the UK to Japan to become a professional sumo wrestler.+ Earlier this week, London played host to 20,000 women in bald caps. But why?+ Why do dads watch TV standing up? I need to know.
    #download #gambling #with #humanitys #future
    The Download: gambling with humanity’s future, and the FDA under Trump
    This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.Tech billionaires are making a risky bet with humanity’s future Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals, but their grand visions for the next decade and beyond are remarkably similar.They include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality; establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos.Three features play a central role with powering these visions, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits.In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker reveals how these fantastical visions conceal a darker agenda. Read the full story. —Bryan Gardiner This story is from the next print edition of MIT Technology Review, which explores power—who has it, and who wants it. It’s set to go live on Wednesday June 25, so subscribe & save 25% to read it and get a copy of the issue when it lands! Here’s what food and drug regulation might look like under the Trump administration Earlier this week, two new leaders of the US Food and Drug Administration published a list of priorities for the agency. Both Marty Makary and Vinay Prasad are controversial figures in the science community. They were generally highly respected academics until the covid pandemic, when their contrarian opinions on masking, vaccines, and lockdowns turned many of their colleagues off them. Given all this, along with recent mass firings of FDA employees, lots of people were pretty anxious to see what this list might include—and what we might expect the future of food and drug regulation in the US to look like. So let’s dive into the pair’s plans for new investigations, speedy approvals, and the “unleashing” of AI. —Jessica Hamzelou This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here. The must-reads I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology. 1 NASA is investigating leaks on the ISSIt’s postponed launching private astronauts to the station while it evaluates.+ Its core component has been springing small air leaks for months.+ Meanwhile, this Chinese probe is en route to a near-Earth asteroid.2 Undocumented migrants are using social media to warn of ICE raidsThe DIY networks are anonymously reporting police presences across LA.+ Platforms’ relationships with protest activism has changed drastically.  3 Google’s AI Overviews is hallucinating about the fatal Air India crashIt incorrectly stated that it involved an Airbus plane, not a Boeing 787.+ Why Google’s AI Overviews gets things wrong.4 Chinese engineers are sneaking suitcases of hard drives into the countryTo covertly train advanced AI models.+ The US is cracking down on Huawei’s ability to produce chips.+ What the US-China AI race overlooks.5 The National Hurricane Center is joining forces with DeepMindIt’s the first time the center has used AI to predict nature’s worst storms.+ Here’s what we know about hurricanes and climate change.6 OpenAI is working on a product with toymaker MattelAI-powered Barbies?!+ Nothing is safe from the creep of AI, not even playtime.+ OpenAI has ambitions to reach billions of users.7 Chatbots posing as licensed therapists may be breaking the lawDigital rights organizations have filed a complaint to the FTC.+ How do you teach an AI model to give therapy?8 Major companies are abandoning their climate commitmentsBut some experts argue this may not be entirely bad.+ Google, Amazon and the problem with Big Tech’s climate claims.9 Vibe coding is shaking up software engineeringEven though AI-generated code is inherently unreliable.+ What is vibe coding, exactly?10 TikTok really loves hotdogs And who can blame it?Quote of the day “It kind of jams two years of work into two months.” —Andrew Butcher, president of the Maine Connectivity Authority, tells Ars Technica why it’s so difficult to meet the Trump administration’s new plans to increase broadband access in certain states. One more thing The surprising barrier that keeps us from building the housing we needIt’s a tough time to try and buy a home in America. From the beginning of the pandemic to early 2024, US home prices rose by 47%. In large swaths of the country, buying a home is no longer a possibility even for those with middle-class incomes. For many, that marks the end of an American dream built around owning a house. Over the same time, rents have gone up 26%.The reason for the current rise in the cost of housing is clear to most economists: a lack of supply. Simply put, we don’t build enough houses and apartments, and we haven’t for years. But the reality is that even if we ease the endless permitting delays and begin cutting red tape, we will still be faced with a distressing fact: The construction industry is not very efficient when it comes to building stuff. Read the full story. —David Rotman We can still have nice things A place for comfort, fun and distraction to brighten up your day.+ If you’re one of the unlucky people who has triskaidekaphobia, look away now.+ 15-year old Nicholas is preparing to head from his home in the UK to Japan to become a professional sumo wrestler.+ Earlier this week, London played host to 20,000 women in bald caps. But why?+ Why do dads watch TV standing up? I need to know. #download #gambling #with #humanitys #future
    The Download: gambling with humanity’s future, and the FDA under Trump
    www.technologyreview.com
    This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.Tech billionaires are making a risky bet with humanity’s future Sam Altman, Jeff Bezos, Elon Musk, and others may have slightly different goals, but their grand visions for the next decade and beyond are remarkably similar.They include aligning AI with the interests of humanity; creating an artificial superintelligence that will solve all the world’s most pressing problems; merging with that superintelligence to achieve immortality (or something close to it); establishing a permanent, self-­sustaining colony on Mars; and, ultimately, spreading out across the cosmos.Three features play a central role with powering these visions, says Adam Becker, a science writer and astrophysicist: an unshakable certainty that technology can solve any problem, a belief in the necessity of perpetual growth, and a quasi-religious obsession with transcending our physical and biological limits.In his timely new book, More Everything Forever: AI Overlords, Space Empires, and Silicon Valley’s Crusade to Control the Fate of Humanity, Becker reveals how these fantastical visions conceal a darker agenda. Read the full story. —Bryan Gardiner This story is from the next print edition of MIT Technology Review, which explores power—who has it, and who wants it. It’s set to go live on Wednesday June 25, so subscribe & save 25% to read it and get a copy of the issue when it lands! Here’s what food and drug regulation might look like under the Trump administration Earlier this week, two new leaders of the US Food and Drug Administration published a list of priorities for the agency. Both Marty Makary and Vinay Prasad are controversial figures in the science community. They were generally highly respected academics until the covid pandemic, when their contrarian opinions on masking, vaccines, and lockdowns turned many of their colleagues off them. Given all this, along with recent mass firings of FDA employees, lots of people were pretty anxious to see what this list might include—and what we might expect the future of food and drug regulation in the US to look like. So let’s dive into the pair’s plans for new investigations, speedy approvals, and the “unleashing” of AI. —Jessica Hamzelou This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here. The must-reads I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology. 1 NASA is investigating leaks on the ISSIt’s postponed launching private astronauts to the station while it evaluates. (WP $)+ Its core component has been springing small air leaks for months. (Reuters)+ Meanwhile, this Chinese probe is en route to a near-Earth asteroid. (Wired $) 2 Undocumented migrants are using social media to warn of ICE raidsThe DIY networks are anonymously reporting police presences across LA. (Wired $)+ Platforms’ relationships with protest activism has changed drastically. (NY Mag $)  3 Google’s AI Overviews is hallucinating about the fatal Air India crashIt incorrectly stated that it involved an Airbus plane, not a Boeing 787. (Ars Technica)+ Why Google’s AI Overviews gets things wrong. (MIT Technology Review) 4 Chinese engineers are sneaking suitcases of hard drives into the countryTo covertly train advanced AI models. (WSJ $)+ The US is cracking down on Huawei’s ability to produce chips. (Bloomberg $)+ What the US-China AI race overlooks. (Rest of World) 5 The National Hurricane Center is joining forces with DeepMindIt’s the first time the center has used AI to predict nature’s worst storms. (NYT $)+ Here’s what we know about hurricanes and climate change. (MIT Technology Review) 6 OpenAI is working on a product with toymaker MattelAI-powered Barbies?! (FT $)+ Nothing is safe from the creep of AI, not even playtime. (LA Times $)+ OpenAI has ambitions to reach billions of users. (Bloomberg $) 7 Chatbots posing as licensed therapists may be breaking the lawDigital rights organizations have filed a complaint to the FTC. (404 Media)+ How do you teach an AI model to give therapy? (MIT Technology Review) 8 Major companies are abandoning their climate commitmentsBut some experts argue this may not be entirely bad. (Bloomberg $)+ Google, Amazon and the problem with Big Tech’s climate claims. (MIT Technology Review) 9 Vibe coding is shaking up software engineeringEven though AI-generated code is inherently unreliable. (Wired $)+ What is vibe coding, exactly? (MIT Technology Review) 10 TikTok really loves hotdogs And who can blame it? (Insider $) Quote of the day “It kind of jams two years of work into two months.” —Andrew Butcher, president of the Maine Connectivity Authority, tells Ars Technica why it’s so difficult to meet the Trump administration’s new plans to increase broadband access in certain states. One more thing The surprising barrier that keeps us from building the housing we needIt’s a tough time to try and buy a home in America. From the beginning of the pandemic to early 2024, US home prices rose by 47%. In large swaths of the country, buying a home is no longer a possibility even for those with middle-class incomes. For many, that marks the end of an American dream built around owning a house. Over the same time, rents have gone up 26%.The reason for the current rise in the cost of housing is clear to most economists: a lack of supply. Simply put, we don’t build enough houses and apartments, and we haven’t for years. But the reality is that even if we ease the endless permitting delays and begin cutting red tape, we will still be faced with a distressing fact: The construction industry is not very efficient when it comes to building stuff. Read the full story. —David Rotman We can still have nice things A place for comfort, fun and distraction to brighten up your day. (Got any ideas? Drop me a line or skeet ’em at me.) + If you’re one of the unlucky people who has triskaidekaphobia, look away now.+ 15-year old Nicholas is preparing to head from his home in the UK to Japan to become a professional sumo wrestler.+ Earlier this week, London played host to 20,000 women in bald caps. But why? ($)+ Why do dads watch TV standing up? I need to know.
    0 Comments ·0 Shares ·0 Reviews
  • Can imagining a better future really make it come true?

    Brett Ryder / Alamy
    First popularised by the bestselling New Age book The Secret, manifestation has remained a cultural phenomenon for decades, championed by people from Oprah Winfrey to Deepak Chopra. Advocates claim you can attract whatever you want — whether that’s a romantic partner, a new business opportunity or even a material object — by asking the universe for it and believing that it can deliver. Some practitioners propose physics-defying explanations that evoke mysterious vibrational forces to explain its effectiveness.

    This article is part of a special series exploring the radical potential of the human imagination. here.

    This is clearly nonsense, but neuroscientist Sabina Brennan was nevertheless intrigued. What might be the real reason that the practices involved in manifesting can benefit people’s lives? She realised that there were several fascinating, evidence-based explanations for why such interventions can rewire the brain in ways that help you achieve what you desire. In her new book, The Neuroscience of Manifesting, Brennan unpacks some of the mechanisms behind this enduring practice.
    Helen Thomson: Can you start by telling me what manifestation is? 
    Sabina Brennan: Manifesting is the practice of transforming thought into reality by visualising your goal and then developing the discipline to stay focused on and take action to achieve that goal. You can’t magically make things happen — you can’t defy physics — but you can change your reality and your future through focused action.
    Manifestation is easy to disregard as unscientific nonsense – why did you think differently? 
    There are a few reasons why manifesting is dismissed by some academics. One is the misconception that manifesting is just wishful thinking rather than the…
    #can #imagining #better #future #really
    Can imagining a better future really make it come true?
    Brett Ryder / Alamy First popularised by the bestselling New Age book The Secret, manifestation has remained a cultural phenomenon for decades, championed by people from Oprah Winfrey to Deepak Chopra. Advocates claim you can attract whatever you want — whether that’s a romantic partner, a new business opportunity or even a material object — by asking the universe for it and believing that it can deliver. Some practitioners propose physics-defying explanations that evoke mysterious vibrational forces to explain its effectiveness. This article is part of a special series exploring the radical potential of the human imagination. here. This is clearly nonsense, but neuroscientist Sabina Brennan was nevertheless intrigued. What might be the real reason that the practices involved in manifesting can benefit people’s lives? She realised that there were several fascinating, evidence-based explanations for why such interventions can rewire the brain in ways that help you achieve what you desire. In her new book, The Neuroscience of Manifesting, Brennan unpacks some of the mechanisms behind this enduring practice. Helen Thomson: Can you start by telling me what manifestation is?  Sabina Brennan: Manifesting is the practice of transforming thought into reality by visualising your goal and then developing the discipline to stay focused on and take action to achieve that goal. You can’t magically make things happen — you can’t defy physics — but you can change your reality and your future through focused action. Manifestation is easy to disregard as unscientific nonsense – why did you think differently?  There are a few reasons why manifesting is dismissed by some academics. One is the misconception that manifesting is just wishful thinking rather than the… #can #imagining #better #future #really
    Can imagining a better future really make it come true?
    www.newscientist.com
    Brett Ryder / Alamy First popularised by the bestselling New Age book The Secret, manifestation has remained a cultural phenomenon for decades, championed by people from Oprah Winfrey to Deepak Chopra. Advocates claim you can attract whatever you want — whether that’s a romantic partner, a new business opportunity or even a material object — by asking the universe for it and believing that it can deliver. Some practitioners propose physics-defying explanations that evoke mysterious vibrational forces to explain its effectiveness. This article is part of a special series exploring the radical potential of the human imagination. Read more here. This is clearly nonsense, but neuroscientist Sabina Brennan was nevertheless intrigued. What might be the real reason that the practices involved in manifesting can benefit people’s lives? She realised that there were several fascinating, evidence-based explanations for why such interventions can rewire the brain in ways that help you achieve what you desire. In her new book, The Neuroscience of Manifesting, Brennan unpacks some of the mechanisms behind this enduring practice. Helen Thomson: Can you start by telling me what manifestation is?  Sabina Brennan: Manifesting is the practice of transforming thought into reality by visualising your goal and then developing the discipline to stay focused on and take action to achieve that goal. You can’t magically make things happen — you can’t defy physics — but you can change your reality and your future through focused action. Manifestation is easy to disregard as unscientific nonsense – why did you think differently?  There are a few reasons why manifesting is dismissed by some academics. One is the misconception that manifesting is just wishful thinking rather than the…
    0 Comments ·0 Shares ·0 Reviews
  • June 2025 Opportunities: Open Calls, Residencies, and Grants for Artists

    Michalina Janoszanka, “Motyl”. Image courtesy of Public Domain Review
    June 2025 Opportunities: Open Calls, Residencies, and Grants for Artists
    May 30, 2025
    Opportunities
    Colossal

    Every month, we share opportunities for artists and designers, including open calls, grants, fellowships, and residencies. Make sure you never miss out by joining our monthly Opportunities Newsletter.
    Innovate Grant awards two grants each quarter to one visual artist and one photographer. In addition, twelve applicants will receive honorable mentions, be featured on the website, and join a growing community. International artists and photographers working in any medium are eligible.Deadline: 11:59 p.m. PST on June 26, 2025.Open Calls
    Artadia AwardsArtists receive unrestricted funds of and honoraria will also be provided to finalists.Deadline: June 1, 2025.Artists are welcome to submit proposals for temporary, site-specific public art projects to be showcased throughout Nashville during the Artville festival weekend, September 26 to 28, 2025. Selected artists will be invited to accept a grant to bring their creative visions to life, plus the chance for a cash prize. Total cash prizes equal Deadline: June 4, 2025.Women in Watercolor International Juried CompetitionDeadline: June 8, 2025.
    The Vilcek Foundation will award six prizes to young immigrants working in fashion curation, material innovation, makeup, hair, writing, curation, styling, design, and photography. on Colossal.Deadline: June 9, 2025.Art Renewal Center Salon CompetitionDeadline: 11:59 p.m. PST on June 12, 2025.
    Weather Photographer of the YearHosted by the Royal Meteorological Society, this competition showcases the world’s most striking weather and climate photographs and raises awareness about the environmental issues putting our planet at risk. Open to photographers of all ages and abilities, the contest offers a £5,000 cash prize.Deadline: June 19, 2025.AAP Magazine #49 B&W Photography Open CallThe contest is open to any interpretation of black-and-white photography. Winners will receive and their winning imageor full portfolio published in AAP Magazine, vol. 49, There is a entry fee for the first three images, plus for each additional image.Deadline: June 24, 2025.Midwest OpenThe Midwest Open is Woman Made Gallery’s annual exhibition highlighting women and nonbinary artists living in the Midwest. All media and subject matter are eligible, and cash prizes range from to There is a submission fee.Deadline: June 28, 2025.Makers, artists, and crafters are eligible to submit works that demonstrate technical mastery and a connection to cultural tradition through a singular, one-of-a-kind handcrafted piece. The winner will receive and four finalists will also receive grant funding.Deadline: June 30, 2025.16th Epson International Pano AwardsThis panoramic photography contest is open for entries and offering more than in cash and prizes. There is an entry fee.Deadline: July 21, 2025.Grants
    Art Fluent Evolution GrantArt Fluent awards a grant to one visual artist each cycle. The unrestricted funds may be applied toward any expense to enhance the artist’s ability to create work. There is a entry fee.Deadline: June 6, 2025.Get Ready Grants provide craft artists with up to for activities to safeguard their studios, protect their practices, and prepare for emergencies. Priority is given to applicants who have been underrepresented in the craft community, including BIPOC and folk/traditional artists.Deadline: June 10, 2025.Ian Potter Cultural Trust Emerging Artist GrantsTwo funding rounds annually are open to individual artists working across disciplines who can apply for grants of up to AUD This round funds travel or projects that commence after September 19, 2025.Deadline: June 17, 2025.Grants for Artists’ ProgressThis program offers 65 unrestricted grants of for artists working in all disciplines across Washington State.Deadline: June 23, 2025.This grant is designed to highlight an existing body of work by a Black trans woman visual artist. Four finalists will also receive Deadline: July 2, 2025.Liu Shiming Art Foundation’s Artist GrantsEach year, the Liu Shiming Art Foundation selects up to five artists to receive a grant. Visual artists working for at least two yearsare invited to apply for a grant in support of a current or new project.Deadline: August 21, 2025.Vital Impacts offers one grant to an established environmental photographer, along with six grants to emerging photographers from around the world. These funds are specifically earmarked for the development of documentary projects focusing on environmental stories.Deadline: September 15, 2025.The Adolf and Esther Gottlieb Emergency GrantThis program provides one-time financial assistance to qualified painters, printmakers, and sculptors whose needs resulted from an unforeseen catastrophic incident and who lack the resources to meet that situation. Awardees typically receive up to Deadline: Rolling.This fund commissions visual artists to create company projects on a rolling basis. Awardees will receive between and Deadline: Rolling.Pollock-Krasner Foundation GrantThe foundation welcomes applications from painters, sculptors, and artists working on paper, including printmakers. Grants are intended for one year and range up to The artist’s circumstances determine the size of the grant, and professional exhibition history will be considered.Deadline: Rolling.Residencies, Fellowships, & More
    The Farm Margaret River ResidencyThis five- to eight-week residency is geared toward site-responsive projects and engagement with the land. Residents receive a stipend, studio space, accommodations, and travel assistance.Deadline: 5 p.m. AWST on June 2, 2025.Wassaic Project 2026 Residency ProgramWassaic Project is accepting proposals for the 2026 summer and winter residencies. Artists receive a semi-private studio space; private room in a shared house; access to a wood shop, print shop, and kiln; staff support; and programming such as our visiting artist program, artist talks, studio visits, open studios, artist presentations, etc. The residency fee is and fellowships are available. There is a entry fee.Deadline: June 2, 2025.Headlands Center for the Art Artist-in-ResidenceResidencies of four to ten weeks include studio space, chef-prepared meals, housing, travel, and living expenses. Artists selected for this program are at all career stages and work in all media, including drawing, painting, sculpture, photography, film, video, new media, installation, fiction and nonfiction writing, poetry, dance, music, interdisciplinary, social practice, arts professions, and architecture. There is a application fee.Deadline: June 2, 2025.Banff Centre Artist in Residence – Winter 2026Individual and duo visual artists at any stage of their career are eligible for this residency, which offers focus in a supportive learning environment. During five weeks, participants are encouraged to self-direct their research and time and cultivate new directions. Studio space is provided.Deadline: June 11, 2025.Prairie Ronde Artist ResidencyThese five- to six-week residencies offer a stipend, travel grant, and housing to artists interested in interacting with the former Lee Paper Company mill in Vicksburg, Michigan. There is a application fee.Deadline: June 15, 2025.Stove Works ResidencyThis program invites eight residents for one to three months. Six studios are designed for artists who require significant space in their practice, while the other two are for writers, curators, and academics. There is a application fee. Deadline: June 15, 2025.Women’s Studio WorkshopWSW is accepting applications for two programs: A studio residency open to artists working in intaglio, letterpress, papermaking, screenprinting, darkroom photography, or ceramics; and an education residency for artists interested in working with local students. Both tracks offer studio space and housing.Deadline: June 15, 2025.Artists, ecological scientists, and scholars wanting to explore connections to nature, land conservation, historic preservation, agriculture, and community building are invited to apply for this program. Studio space, accommodations, a per week stipend, and more are provided.Deadline: 5 p.m. PST on June 20, 2025.Peters Valley School of Craft ResidencyThis program is open to artists working in blacksmithing, ceramics, fibers, jewelry and fine metals, wood, and printmaking. Residents spend two weeks or one month in fully equipped studios, receive a or stipend, and are offered housing. There is a application fee.Deadline: July 1, 2025.Penland School of CraftDeadline: July 2, 2025.
    The Kyoto RetreatArtists, curators, and writers are eligible for this four-week retreat in Kyoto for research, exploration, and inspiration. Chosen applicants receive a round-trip flight, a private bedroom, and to supplement meals and local transportation.Deadline: July 15, 2025.If you’d like to list an opportunity, please contact .
    Next article
    #june #opportunities #open #calls #residencies
    June 2025 Opportunities: Open Calls, Residencies, and Grants for Artists
    Michalina Janoszanka, “Motyl”. Image courtesy of Public Domain Review June 2025 Opportunities: Open Calls, Residencies, and Grants for Artists May 30, 2025 Opportunities Colossal Every month, we share opportunities for artists and designers, including open calls, grants, fellowships, and residencies. Make sure you never miss out by joining our monthly Opportunities Newsletter. Innovate Grant awards two grants each quarter to one visual artist and one photographer. In addition, twelve applicants will receive honorable mentions, be featured on the website, and join a growing community. International artists and photographers working in any medium are eligible.Deadline: 11:59 p.m. PST on June 26, 2025.Open Calls Artadia AwardsArtists receive unrestricted funds of and honoraria will also be provided to finalists.Deadline: June 1, 2025.Artists are welcome to submit proposals for temporary, site-specific public art projects to be showcased throughout Nashville during the Artville festival weekend, September 26 to 28, 2025. Selected artists will be invited to accept a grant to bring their creative visions to life, plus the chance for a cash prize. Total cash prizes equal Deadline: June 4, 2025.Women in Watercolor International Juried CompetitionDeadline: June 8, 2025. The Vilcek Foundation will award six prizes to young immigrants working in fashion curation, material innovation, makeup, hair, writing, curation, styling, design, and photography. on Colossal.Deadline: June 9, 2025.Art Renewal Center Salon CompetitionDeadline: 11:59 p.m. PST on June 12, 2025. Weather Photographer of the YearHosted by the Royal Meteorological Society, this competition showcases the world’s most striking weather and climate photographs and raises awareness about the environmental issues putting our planet at risk. Open to photographers of all ages and abilities, the contest offers a £5,000 cash prize.Deadline: June 19, 2025.AAP Magazine #49 B&W Photography Open CallThe contest is open to any interpretation of black-and-white photography. Winners will receive and their winning imageor full portfolio published in AAP Magazine, vol. 49, There is a entry fee for the first three images, plus for each additional image.Deadline: June 24, 2025.Midwest OpenThe Midwest Open is Woman Made Gallery’s annual exhibition highlighting women and nonbinary artists living in the Midwest. All media and subject matter are eligible, and cash prizes range from to There is a submission fee.Deadline: June 28, 2025.Makers, artists, and crafters are eligible to submit works that demonstrate technical mastery and a connection to cultural tradition through a singular, one-of-a-kind handcrafted piece. The winner will receive and four finalists will also receive grant funding.Deadline: June 30, 2025.16th Epson International Pano AwardsThis panoramic photography contest is open for entries and offering more than in cash and prizes. There is an entry fee.Deadline: July 21, 2025.Grants Art Fluent Evolution GrantArt Fluent awards a grant to one visual artist each cycle. The unrestricted funds may be applied toward any expense to enhance the artist’s ability to create work. There is a entry fee.Deadline: June 6, 2025.Get Ready Grants provide craft artists with up to for activities to safeguard their studios, protect their practices, and prepare for emergencies. Priority is given to applicants who have been underrepresented in the craft community, including BIPOC and folk/traditional artists.Deadline: June 10, 2025.Ian Potter Cultural Trust Emerging Artist GrantsTwo funding rounds annually are open to individual artists working across disciplines who can apply for grants of up to AUD This round funds travel or projects that commence after September 19, 2025.Deadline: June 17, 2025.Grants for Artists’ ProgressThis program offers 65 unrestricted grants of for artists working in all disciplines across Washington State.Deadline: June 23, 2025.This grant is designed to highlight an existing body of work by a Black trans woman visual artist. Four finalists will also receive Deadline: July 2, 2025.Liu Shiming Art Foundation’s Artist GrantsEach year, the Liu Shiming Art Foundation selects up to five artists to receive a grant. Visual artists working for at least two yearsare invited to apply for a grant in support of a current or new project.Deadline: August 21, 2025.Vital Impacts offers one grant to an established environmental photographer, along with six grants to emerging photographers from around the world. These funds are specifically earmarked for the development of documentary projects focusing on environmental stories.Deadline: September 15, 2025.The Adolf and Esther Gottlieb Emergency GrantThis program provides one-time financial assistance to qualified painters, printmakers, and sculptors whose needs resulted from an unforeseen catastrophic incident and who lack the resources to meet that situation. Awardees typically receive up to Deadline: Rolling.This fund commissions visual artists to create company projects on a rolling basis. Awardees will receive between and Deadline: Rolling.Pollock-Krasner Foundation GrantThe foundation welcomes applications from painters, sculptors, and artists working on paper, including printmakers. Grants are intended for one year and range up to The artist’s circumstances determine the size of the grant, and professional exhibition history will be considered.Deadline: Rolling.Residencies, Fellowships, & More The Farm Margaret River ResidencyThis five- to eight-week residency is geared toward site-responsive projects and engagement with the land. Residents receive a stipend, studio space, accommodations, and travel assistance.Deadline: 5 p.m. AWST on June 2, 2025.Wassaic Project 2026 Residency ProgramWassaic Project is accepting proposals for the 2026 summer and winter residencies. Artists receive a semi-private studio space; private room in a shared house; access to a wood shop, print shop, and kiln; staff support; and programming such as our visiting artist program, artist talks, studio visits, open studios, artist presentations, etc. The residency fee is and fellowships are available. There is a entry fee.Deadline: June 2, 2025.Headlands Center for the Art Artist-in-ResidenceResidencies of four to ten weeks include studio space, chef-prepared meals, housing, travel, and living expenses. Artists selected for this program are at all career stages and work in all media, including drawing, painting, sculpture, photography, film, video, new media, installation, fiction and nonfiction writing, poetry, dance, music, interdisciplinary, social practice, arts professions, and architecture. There is a application fee.Deadline: June 2, 2025.Banff Centre Artist in Residence – Winter 2026Individual and duo visual artists at any stage of their career are eligible for this residency, which offers focus in a supportive learning environment. During five weeks, participants are encouraged to self-direct their research and time and cultivate new directions. Studio space is provided.Deadline: June 11, 2025.Prairie Ronde Artist ResidencyThese five- to six-week residencies offer a stipend, travel grant, and housing to artists interested in interacting with the former Lee Paper Company mill in Vicksburg, Michigan. There is a application fee.Deadline: June 15, 2025.Stove Works ResidencyThis program invites eight residents for one to three months. Six studios are designed for artists who require significant space in their practice, while the other two are for writers, curators, and academics. There is a application fee. Deadline: June 15, 2025.Women’s Studio WorkshopWSW is accepting applications for two programs: A studio residency open to artists working in intaglio, letterpress, papermaking, screenprinting, darkroom photography, or ceramics; and an education residency for artists interested in working with local students. Both tracks offer studio space and housing.Deadline: June 15, 2025.Artists, ecological scientists, and scholars wanting to explore connections to nature, land conservation, historic preservation, agriculture, and community building are invited to apply for this program. Studio space, accommodations, a per week stipend, and more are provided.Deadline: 5 p.m. PST on June 20, 2025.Peters Valley School of Craft ResidencyThis program is open to artists working in blacksmithing, ceramics, fibers, jewelry and fine metals, wood, and printmaking. Residents spend two weeks or one month in fully equipped studios, receive a or stipend, and are offered housing. There is a application fee.Deadline: July 1, 2025.Penland School of CraftDeadline: July 2, 2025. The Kyoto RetreatArtists, curators, and writers are eligible for this four-week retreat in Kyoto for research, exploration, and inspiration. Chosen applicants receive a round-trip flight, a private bedroom, and to supplement meals and local transportation.Deadline: July 15, 2025.If you’d like to list an opportunity, please contact . Next article #june #opportunities #open #calls #residencies
    June 2025 Opportunities: Open Calls, Residencies, and Grants for Artists
    www.thisiscolossal.com
    Michalina Janoszanka, “Motyl (Butterfly)” (ca. 1920s). Image courtesy of Public Domain Review June 2025 Opportunities: Open Calls, Residencies, and Grants for Artists May 30, 2025 Opportunities Colossal Every month, we share opportunities for artists and designers, including open calls, grants, fellowships, and residencies. Make sure you never miss out by joining our monthly Opportunities Newsletter. Innovate Grant awards two $1,800 grants each quarter to one visual artist and one photographer. In addition, twelve applicants will receive honorable mentions, be featured on the website, and join a growing community. International artists and photographers working in any medium are eligible.Deadline: 11:59 p.m. PST on June 26, 2025.Open Calls Artadia Awards (San Francisco Bay area) Artists receive unrestricted funds of $15,000, and honoraria will also be provided to finalists.Deadline: June 1, 2025.Artists are welcome to submit proposals for temporary, site-specific public art projects to be showcased throughout Nashville during the Artville festival weekend, September 26 to 28, 2025. Selected artists will be invited to accept a grant to bring their creative visions to life, plus the chance for a cash prize. Total cash prizes equal $10,000.Deadline: June 4, 2025.Women in Watercolor International Juried Competition (International)Deadline: June 8, 2025. The Vilcek Foundation will award six $50,000 prizes to young immigrants working in fashion curation, material innovation, makeup, hair, writing, curation, styling, design, and photography. Read more on Colossal.Deadline: June 9, 2025.Art Renewal Center Salon Competition (International)Deadline: 11:59 p.m. PST on June 12, 2025. Weather Photographer of the Year (International) Hosted by the Royal Meteorological Society, this competition showcases the world’s most striking weather and climate photographs and raises awareness about the environmental issues putting our planet at risk. Open to photographers of all ages and abilities, the contest offers a £5,000 cash prize.Deadline: June 19, 2025.AAP Magazine #49 B&W Photography Open Call (International) The contest is open to any interpretation of black-and-white photography. Winners will receive $1,000 and their winning image(s) or full portfolio published in AAP Magazine, vol. 49, There is a $35 entry fee for the first three images, plus $5 for each additional image.Deadline: June 24, 2025.Midwest Open (Illinois, Indiana, Michigan, Ohio, Wisconsin, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota) The Midwest Open is Woman Made Gallery’s annual exhibition highlighting women and nonbinary artists living in the Midwest. All media and subject matter are eligible, and cash prizes range from $100 to $300. There is a $35 submission fee.Deadline: June 28, 2025.Makers, artists, and crafters are eligible to submit works that demonstrate technical mastery and a connection to cultural tradition through a singular, one-of-a-kind handcrafted piece. The winner will receive $25,000, and four finalists will also receive grant funding.Deadline: June 30, 2025.16th Epson International Pano Awards (International) This panoramic photography contest is open for entries and offering more than $50,000 in cash and prizes. There is an $18 entry fee.Deadline: July 21, 2025.Grants Art Fluent Evolution Grant (International) Art Fluent awards a $1,000 grant to one visual artist each cycle. The unrestricted funds may be applied toward any expense to enhance the artist’s ability to create work. There is a $35 entry fee.Deadline: June 6, 2025.Get Ready Grants provide craft artists with up to $1,000 for activities to safeguard their studios, protect their practices, and prepare for emergencies. Priority is given to applicants who have been underrepresented in the craft community, including BIPOC and folk/traditional artists.Deadline: June 10, 2025.Ian Potter Cultural Trust Emerging Artist Grants (Australia) Two funding rounds annually are open to individual artists working across disciplines who can apply for grants of up to AUD $15,000. This round funds travel or projects that commence after September 19, 2025.Deadline: June 17, 2025.Grants for Artists’ Progress (Washington State) This program offers 65 unrestricted grants of $1,500 for artists working in all disciplines across Washington State.Deadline: June 23, 2025.This $10,000 grant is designed to highlight an existing body of work by a Black trans woman visual artist. Four finalists will also receive $1,250.Deadline: July 2, 2025.Liu Shiming Art Foundation’s Artist Grants (International) Each year, the Liu Shiming Art Foundation selects up to five artists to receive a $5,000 grant. Visual artists working for at least two years (but not more than 10) are invited to apply for a grant in support of a current or new project.Deadline: August 21, 2025.Vital Impacts offers one $20,000 grant to an established environmental photographer, along with six $5,000 grants to emerging photographers from around the world. These funds are specifically earmarked for the development of documentary projects focusing on environmental stories.Deadline: September 15, 2025.The Adolf and Esther Gottlieb Emergency Grant (International) This program provides one-time financial assistance to qualified painters, printmakers, and sculptors whose needs resulted from an unforeseen catastrophic incident and who lack the resources to meet that situation. Awardees typically receive $5,000, up to $15,000.Deadline: Rolling.This fund commissions visual artists to create company projects on a rolling basis. Awardees will receive between $500 and $5,000.Deadline: Rolling.Pollock-Krasner Foundation Grant (International) The foundation welcomes applications from painters, sculptors, and artists working on paper, including printmakers. Grants are intended for one year and range up to $50,000. The artist’s circumstances determine the size of the grant, and professional exhibition history will be considered.Deadline: Rolling.Residencies, Fellowships, & More The Farm Margaret River Residency (International) This five- to eight-week residency is geared toward site-responsive projects and engagement with the land. Residents receive a $7,500 stipend, studio space, accommodations, and travel assistance.Deadline: 5 p.m. AWST on June 2, 2025.Wassaic Project 2026 Residency Program (International) Wassaic Project is accepting proposals for the 2026 summer and winter residencies. Artists receive a semi-private studio space; private room in a shared house (the Family program receives a private house); access to a wood shop, print shop, and kiln; staff support; and programming such as our visiting artist program, artist talks, studio visits, open studios, artist presentations, etc. The residency fee is $900, and fellowships are available. There is a $25 entry fee.Deadline: June 2, 2025.Headlands Center for the Art Artist-in-Residence (International) Residencies of four to ten weeks include studio space, chef-prepared meals, housing, travel, and living expenses. Artists selected for this program are at all career stages and work in all media, including drawing, painting, sculpture, photography, film, video, new media, installation, fiction and nonfiction writing, poetry, dance, music, interdisciplinary, social practice, arts professions, and architecture. There is a $45 application fee.Deadline: June 2, 2025.Banff Centre Artist in Residence – Winter 2026 (International) Individual and duo visual artists at any stage of their career are eligible for this residency, which offers focus in a supportive learning environment. During five weeks, participants are encouraged to self-direct their research and time and cultivate new directions. Studio space is provided.Deadline: June 11, 2025.Prairie Ronde Artist Residency (International) These five- to six-week residencies offer a $2,000 stipend, $500 travel grant, and housing to artists interested in interacting with the former Lee Paper Company mill in Vicksburg, Michigan. There is a $25 application fee.Deadline: June 15, 2025.Stove Works Residency (International) This program invites eight residents for one to three months. Six studios are designed for artists who require significant space in their practice, while the other two are for writers, curators, and academics. There is a $30 application fee. Deadline: June 15, 2025.Women’s Studio Workshop (International) WSW is accepting applications for two programs: A studio residency open to artists working in intaglio, letterpress, papermaking, screenprinting, darkroom photography, or ceramics; and an education residency for artists interested in working with local students. Both tracks offer studio space and housing.Deadline: June 15, 2025.Artists, ecological scientists, and scholars wanting to explore connections to nature, land conservation, historic preservation, agriculture, and community building are invited to apply for this program. Studio space, accommodations, a $200 per week stipend, and more are provided.Deadline: 5 p.m. PST on June 20, 2025.Peters Valley School of Craft Residency (International) This program is open to artists working in blacksmithing, ceramics, fibers, jewelry and fine metals, wood, and printmaking. Residents spend two weeks or one month in fully equipped studios, receive a $500 or $1,000 stipend, and are offered housing. There is a $10 application fee.Deadline: July 1, 2025.Penland School of Craft (International)Deadline: July 2, 2025. The Kyoto Retreat (International) Artists, curators, and writers are eligible for this four-week retreat in Kyoto for research, exploration, and inspiration. Chosen applicants receive a round-trip flight, a private bedroom, and $800 to supplement meals and local transportation.Deadline: July 15, 2025.If you’d like to list an opportunity, please contact [email protected]. Next article
    0 Comments ·0 Shares ·0 Reviews
  • Forge Your Legacy in EA SPORTS™ College Football 26 With True College Football Gameplay

    May 29, 2025

    Enhanced Gameplay, Deeper Immersion in Fan-Favorite Modes, and 300+ Real-World Coaches Bring Players Authentic College Football Like Never Before

    REDWOOD CITY, Calif.----
    Electronic Arts Inc.and EA SPORTS™ today released the official reveal trailer and game details of EA SPORTS™ College Football 26, which delivers more than 2,700 new plays, thousands of real college athletes, and authentic coaching styles from more than 300 real-world coaches. From iconic traditions to heart-pounding road game environments at all 136 FBS schools, every day feels like game day. Fans can rise from high school recruit to Heisman legend in Road to Glory, or lead their dream program to dominance in Dynasty mode when College Football 26 launches worldwide on July 10 for PlayStation®5 and Xbox Series X|S.EA SPORTS Celebrates Enhanced Gameplay, Deeper Immersion in Fan-Favorite Modes, and 300+ Real-World Coaches Bring Players Authentic College Football Like Never Before in its Feature Reveal“The return of EA SPORTS College Football struck a chord with fans last year by capturing the heart of college football—its authenticity, passion, and unforgettable game day energy,” said Daryl Holt, SVP and Group GM, EA SPORTS. “With EA SPORTS College Football 26, we’ve deepened that experience, delivering more dynamic gameplay, vibrant stadium atmospheres, and modes that let players craft their own stories. From classic rivalries to the chase for championship glory, this game celebrates what fans love most about the sport and takes it to new heights.”College Football 26 empowers fans to strategize like never before with authentic college gameplay, delivering unmatched realism to prove their program’s dominance on the field. With over 2,700 new plays, thousands of athletes, and more than 300 real-world coaches bringing their true-to-life schemes, players can master enhanced offensive and defensive mechanics, execute new stunts and twists, and make dynamic substitutions when it counts. Dive into the action with these game-changing features:Over 300 Real-World Coaches: Suit up for Dan Lanning. Compete against Kirby Smart. Recruit as or against James Franklin. Go toe-to-toe with current coaches who bring distinctive playstyles to the field. Strategize like they would with their unique playbooks for a more authentic coaching experience.Expanded Player Types & Abilities: Recruit and develop athletes with 84 abilities and 10 new archetypes, giving you more ways to dominate on either side of the ball.Wear & Tear Everywhere: Manage fatigue and injuries dynamically with no need to pause the action. Customize the system to match your playstyle and save your stars for when it matters most.Foundational Football Advancements: Enhanced AI, dynamic play-calling adjustments, improved blocking and coverages plus new features like Dynamic Substitutions and custom zones give you more control on both sides of the ball, so you can show your opponent what your program is made of.From the roar of Death Valley to the lights in Tuscaloosa, the pageantry and chaos of college football Saturdays come alive with unprecedented depth. Be immersed in the authentic traditions, customized PA tracks, team-specific chants, and atmospheric upgrades that capture the pulse of every game.Next-Level Homefield Advantage: The revamped Stadium Pulse system introduces new crowd-based challenges like clock distortion, extreme screen shake, and rattled HUDs in rivalry and playoff games.More Like Saturday: With over 160 new school-specific chants, 10 new PA tracks including Metallica’s electric “Enter Sandman”, and tradition-rich visuals like Texas Tech’s Double T Saddle Monument and Coastal Carolina’s King of Turnovers, every school’s spirit is alive and unique.Broadcast & Commentary: Legendary voices return—Chris Fowler, Kirk Herbstreit, Rece Davis, Jesse Palmer, Desmond Howard, and David Pollack—bringing dynamic, situation-specific commentary tailored to your season.College Football 26 delivers an immersive experience with a variety of dynamic game modes that embody the spirit of college football. From building a legendary program in Dynasty to rising as a student-athlete in Road to Glory, each mode offers unique challenges and deep customization. Compete for playoff glory, assemble dream rosters, and navigate the modern landscape of college football with the following exciting modes:Dynasty: Build a coaching powerhouse from the ground up. Recruit based on location, fit your roster to your scheme, and navigate today’s college football world—from the high school pipeline to the transfer portal. Customize playbooks and staff archetypes, then chase glory in the expanded College Football Playoff with cross-play support in Online Dynasty across Xbox Series X|S and PlayStation®5†. Keep your promises with all-new Dynamic Dealbreakers to avoid transfers and preserve team chemistry, and upload your program using advanced Team Builder customization tools.Road to Glory: The unmatched student-athlete experience returns. Start in high school, build your highlight tape, and secure offers from your top schools. Make key decisions about your academics, NIL opportunities, playing time, and even when to decommit. Rise to become a Heisman winner—and easily continue your football journey into the NFL inEA SPORTS™ Madden NFL 26.Road to the College Football Playoff: Compete across consoles in a new online progression format where every win matters. Represent your university or take over a powerhouse program, climb the polls, and earn your way into the playoff bracket.College Football Ultimate Team: Build your dream roster with Legends from the past and current college stars. Lead your Ultimate Team to greatness by taking on the competition in H2H matchups and themed challenges meant to put your skills to the test.Fans can pre-order their copy of EA SPORTS College Football 26 now or connect their football journeys with the EA SPORTS™ MVP Bundle on PlayStation®5 and Xbox Series X|S, which includes the deluxe editions of EA SPORTS College Football 26 and Madden NFL 26 with 3-day early access and an array of benefits across both titles‡.EA Play members can Bring Glory Home in EA SPORTS™ College Football 26 with the EA Play* 10-hour early access trial, starting July 7, 2025. Members also score member rewards including monthly College Football Loyalist Ultimate Team™ Packs, as well as receive 10% off EA digital content including pre-orders, game downloads, Season Passes, College Football Points, and DLC. For more information on EA Play please visit tuned for more on Instagram, X, Facebook, TikTok, and YouTube as College Football 26 news unfolds in the coming months.†Internet connection, all game updates, EA Account, and platform account required.
    ‡Conditions & restrictions apply. See for details.
    *Conditions, limitations and exclusions apply. See EA Play Terms for details.For College Football 26 assets, visit: EAPressPortal.com.EA SPORTS™ College Football 26 is developed in Orlando, Florida and Madrid, Spain by EA Tiburon and will be available worldwide July 10 for PlayStation®5 and Xbox Series X|S.About Electronic ArtsElectronic Artsis a global leader in digital interactive entertainment. The Company develops and delivers games, content and online services for Internet-connected consoles, mobile devices and personal computers.In fiscal year 2025, EA posted GAAP net revenue of approximately billion. Headquartered in Redwood City, California, EA is recognized for a portfolio of critically acclaimed, high-quality brands such as EA SPORTS FC™, Battlefield™, Apex Legends™, The Sims™, EA SPORTS™ Madden NFL, EA SPORTS™ College Football, Need for Speed™, Dragon Age™, Titanfall™, Plants vs. Zombies™ and EA SPORTS F1®. More information about EA is available at www.ea.com/news.EA, EA SPORTS, EA SPORTS FC, Battlefield, Need for Speed, Apex Legends, The Sims, Dragon Age, Titanfall, and Plants vs. Zombies are trademarks of Electronic Arts Inc. John Madden, NFL, and F1 are the property of their respective owners and used with permission.Category: EA Sports

    Erin Exum
    Director, Integrated CommsSource: Electronic Arts Inc.

    Multimedia Files:
    #forge #your #legacy #sports #college
    Forge Your Legacy in EA SPORTS™ College Football 26 With True College Football Gameplay
    May 29, 2025 Enhanced Gameplay, Deeper Immersion in Fan-Favorite Modes, and 300+ Real-World Coaches Bring Players Authentic College Football Like Never Before REDWOOD CITY, Calif.---- Electronic Arts Inc.and EA SPORTS™ today released the official reveal trailer and game details of EA SPORTS™ College Football 26, which delivers more than 2,700 new plays, thousands of real college athletes, and authentic coaching styles from more than 300 real-world coaches. From iconic traditions to heart-pounding road game environments at all 136 FBS schools, every day feels like game day. Fans can rise from high school recruit to Heisman legend in Road to Glory, or lead their dream program to dominance in Dynasty mode when College Football 26 launches worldwide on July 10 for PlayStation®5 and Xbox Series X|S.EA SPORTS Celebrates Enhanced Gameplay, Deeper Immersion in Fan-Favorite Modes, and 300+ Real-World Coaches Bring Players Authentic College Football Like Never Before in its Feature Reveal“The return of EA SPORTS College Football struck a chord with fans last year by capturing the heart of college football—its authenticity, passion, and unforgettable game day energy,” said Daryl Holt, SVP and Group GM, EA SPORTS. “With EA SPORTS College Football 26, we’ve deepened that experience, delivering more dynamic gameplay, vibrant stadium atmospheres, and modes that let players craft their own stories. From classic rivalries to the chase for championship glory, this game celebrates what fans love most about the sport and takes it to new heights.”College Football 26 empowers fans to strategize like never before with authentic college gameplay, delivering unmatched realism to prove their program’s dominance on the field. With over 2,700 new plays, thousands of athletes, and more than 300 real-world coaches bringing their true-to-life schemes, players can master enhanced offensive and defensive mechanics, execute new stunts and twists, and make dynamic substitutions when it counts. Dive into the action with these game-changing features:Over 300 Real-World Coaches: Suit up for Dan Lanning. Compete against Kirby Smart. Recruit as or against James Franklin. Go toe-to-toe with current coaches who bring distinctive playstyles to the field. Strategize like they would with their unique playbooks for a more authentic coaching experience.Expanded Player Types & Abilities: Recruit and develop athletes with 84 abilities and 10 new archetypes, giving you more ways to dominate on either side of the ball.Wear & Tear Everywhere: Manage fatigue and injuries dynamically with no need to pause the action. Customize the system to match your playstyle and save your stars for when it matters most.Foundational Football Advancements: Enhanced AI, dynamic play-calling adjustments, improved blocking and coverages plus new features like Dynamic Substitutions and custom zones give you more control on both sides of the ball, so you can show your opponent what your program is made of.From the roar of Death Valley to the lights in Tuscaloosa, the pageantry and chaos of college football Saturdays come alive with unprecedented depth. Be immersed in the authentic traditions, customized PA tracks, team-specific chants, and atmospheric upgrades that capture the pulse of every game.Next-Level Homefield Advantage: The revamped Stadium Pulse system introduces new crowd-based challenges like clock distortion, extreme screen shake, and rattled HUDs in rivalry and playoff games.More Like Saturday: With over 160 new school-specific chants, 10 new PA tracks including Metallica’s electric “Enter Sandman”, and tradition-rich visuals like Texas Tech’s Double T Saddle Monument and Coastal Carolina’s King of Turnovers, every school’s spirit is alive and unique.Broadcast & Commentary: Legendary voices return—Chris Fowler, Kirk Herbstreit, Rece Davis, Jesse Palmer, Desmond Howard, and David Pollack—bringing dynamic, situation-specific commentary tailored to your season.College Football 26 delivers an immersive experience with a variety of dynamic game modes that embody the spirit of college football. From building a legendary program in Dynasty to rising as a student-athlete in Road to Glory, each mode offers unique challenges and deep customization. Compete for playoff glory, assemble dream rosters, and navigate the modern landscape of college football with the following exciting modes:Dynasty: Build a coaching powerhouse from the ground up. Recruit based on location, fit your roster to your scheme, and navigate today’s college football world—from the high school pipeline to the transfer portal. Customize playbooks and staff archetypes, then chase glory in the expanded College Football Playoff with cross-play support in Online Dynasty across Xbox Series X|S and PlayStation®5†. Keep your promises with all-new Dynamic Dealbreakers to avoid transfers and preserve team chemistry, and upload your program using advanced Team Builder customization tools.Road to Glory: The unmatched student-athlete experience returns. Start in high school, build your highlight tape, and secure offers from your top schools. Make key decisions about your academics, NIL opportunities, playing time, and even when to decommit. Rise to become a Heisman winner—and easily continue your football journey into the NFL inEA SPORTS™ Madden NFL 26.Road to the College Football Playoff: Compete across consoles in a new online progression format where every win matters. Represent your university or take over a powerhouse program, climb the polls, and earn your way into the playoff bracket.College Football Ultimate Team: Build your dream roster with Legends from the past and current college stars. Lead your Ultimate Team to greatness by taking on the competition in H2H matchups and themed challenges meant to put your skills to the test.Fans can pre-order their copy of EA SPORTS College Football 26 now or connect their football journeys with the EA SPORTS™ MVP Bundle on PlayStation®5 and Xbox Series X|S, which includes the deluxe editions of EA SPORTS College Football 26 and Madden NFL 26 with 3-day early access and an array of benefits across both titles‡.EA Play members can Bring Glory Home in EA SPORTS™ College Football 26 with the EA Play* 10-hour early access trial, starting July 7, 2025. Members also score member rewards including monthly College Football Loyalist Ultimate Team™ Packs, as well as receive 10% off EA digital content including pre-orders, game downloads, Season Passes, College Football Points, and DLC. For more information on EA Play please visit tuned for more on Instagram, X, Facebook, TikTok, and YouTube as College Football 26 news unfolds in the coming months.†Internet connection, all game updates, EA Account, and platform account required. ‡Conditions & restrictions apply. See for details. *Conditions, limitations and exclusions apply. See EA Play Terms for details.For College Football 26 assets, visit: EAPressPortal.com.EA SPORTS™ College Football 26 is developed in Orlando, Florida and Madrid, Spain by EA Tiburon and will be available worldwide July 10 for PlayStation®5 and Xbox Series X|S.About Electronic ArtsElectronic Artsis a global leader in digital interactive entertainment. The Company develops and delivers games, content and online services for Internet-connected consoles, mobile devices and personal computers.In fiscal year 2025, EA posted GAAP net revenue of approximately billion. Headquartered in Redwood City, California, EA is recognized for a portfolio of critically acclaimed, high-quality brands such as EA SPORTS FC™, Battlefield™, Apex Legends™, The Sims™, EA SPORTS™ Madden NFL, EA SPORTS™ College Football, Need for Speed™, Dragon Age™, Titanfall™, Plants vs. Zombies™ and EA SPORTS F1®. More information about EA is available at www.ea.com/news.EA, EA SPORTS, EA SPORTS FC, Battlefield, Need for Speed, Apex Legends, The Sims, Dragon Age, Titanfall, and Plants vs. Zombies are trademarks of Electronic Arts Inc. John Madden, NFL, and F1 are the property of their respective owners and used with permission.Category: EA Sports Erin Exum Director, Integrated CommsSource: Electronic Arts Inc. Multimedia Files: #forge #your #legacy #sports #college
    Forge Your Legacy in EA SPORTS™ College Football 26 With True College Football Gameplay
    news.ea.com
    May 29, 2025 Enhanced Gameplay, Deeper Immersion in Fan-Favorite Modes, and 300+ Real-World Coaches Bring Players Authentic College Football Like Never Before REDWOOD CITY, Calif.--(BUSINESS WIRE)-- Electronic Arts Inc. (NASDAQ: EA) and EA SPORTS™ today released the official reveal trailer and game details of EA SPORTS™ College Football 26, which delivers more than 2,700 new plays, thousands of real college athletes, and authentic coaching styles from more than 300 real-world coaches. From iconic traditions to heart-pounding road game environments at all 136 FBS schools, every day feels like game day. Fans can rise from high school recruit to Heisman legend in Road to Glory, or lead their dream program to dominance in Dynasty mode when College Football 26 launches worldwide on July 10 for PlayStation®5 and Xbox Series X|S.EA SPORTS Celebrates Enhanced Gameplay, Deeper Immersion in Fan-Favorite Modes, and 300+ Real-World Coaches Bring Players Authentic College Football Like Never Before in its Feature Reveal“The return of EA SPORTS College Football struck a chord with fans last year by capturing the heart of college football—its authenticity, passion, and unforgettable game day energy,” said Daryl Holt, SVP and Group GM, EA SPORTS. “With EA SPORTS College Football 26, we’ve deepened that experience, delivering more dynamic gameplay, vibrant stadium atmospheres, and modes that let players craft their own stories. From classic rivalries to the chase for championship glory, this game celebrates what fans love most about the sport and takes it to new heights.”College Football 26 empowers fans to strategize like never before with authentic college gameplay, delivering unmatched realism to prove their program’s dominance on the field. With over 2,700 new plays, thousands of athletes, and more than 300 real-world coaches bringing their true-to-life schemes, players can master enhanced offensive and defensive mechanics, execute new stunts and twists, and make dynamic substitutions when it counts. Dive into the action with these game-changing features:Over 300 Real-World Coaches: Suit up for Dan Lanning. Compete against Kirby Smart. Recruit as or against James Franklin. Go toe-to-toe with current coaches who bring distinctive playstyles to the field. Strategize like they would with their unique playbooks for a more authentic coaching experience.Expanded Player Types & Abilities: Recruit and develop athletes with 84 abilities and 10 new archetypes, giving you more ways to dominate on either side of the ball.Wear & Tear Everywhere: Manage fatigue and injuries dynamically with no need to pause the action. Customize the system to match your playstyle and save your stars for when it matters most.Foundational Football Advancements: Enhanced AI, dynamic play-calling adjustments, improved blocking and coverages plus new features like Dynamic Substitutions and custom zones give you more control on both sides of the ball, so you can show your opponent what your program is made of.From the roar of Death Valley to the lights in Tuscaloosa, the pageantry and chaos of college football Saturdays come alive with unprecedented depth. Be immersed in the authentic traditions, customized PA tracks, team-specific chants, and atmospheric upgrades that capture the pulse of every game.Next-Level Homefield Advantage: The revamped Stadium Pulse system introduces new crowd-based challenges like clock distortion, extreme screen shake, and rattled HUDs in rivalry and playoff games.More Like Saturday: With over 160 new school-specific chants, 10 new PA tracks including Metallica’s electric “Enter Sandman”, and tradition-rich visuals like Texas Tech’s Double T Saddle Monument and Coastal Carolina’s King of Turnovers, every school’s spirit is alive and unique.Broadcast & Commentary: Legendary voices return—Chris Fowler, Kirk Herbstreit, Rece Davis, Jesse Palmer, Desmond Howard, and David Pollack—bringing dynamic, situation-specific commentary tailored to your season.College Football 26 delivers an immersive experience with a variety of dynamic game modes that embody the spirit of college football. From building a legendary program in Dynasty to rising as a student-athlete in Road to Glory, each mode offers unique challenges and deep customization. Compete for playoff glory, assemble dream rosters, and navigate the modern landscape of college football with the following exciting modes:Dynasty: Build a coaching powerhouse from the ground up. Recruit based on location, fit your roster to your scheme, and navigate today’s college football world—from the high school pipeline to the transfer portal. Customize playbooks and staff archetypes, then chase glory in the expanded College Football Playoff with cross-play support in Online Dynasty across Xbox Series X|S and PlayStation®5†. Keep your promises with all-new Dynamic Dealbreakers to avoid transfers and preserve team chemistry, and upload your program using advanced Team Builder customization tools.Road to Glory: The unmatched student-athlete experience returns. Start in high school, build your highlight tape, and secure offers from your top schools. Make key decisions about your academics, NIL opportunities, playing time, and even when to decommit. Rise to become a Heisman winner—and easily continue your football journey into the NFL inEA SPORTS™ Madden NFL 26.Road to the College Football Playoff: Compete across consoles in a new online progression format where every win matters. Represent your university or take over a powerhouse program, climb the polls, and earn your way into the playoff bracket.College Football Ultimate Team: Build your dream roster with Legends from the past and current college stars. Lead your Ultimate Team to greatness by taking on the competition in H2H matchups and themed challenges meant to put your skills to the test.Fans can pre-order their copy of EA SPORTS College Football 26 now or connect their football journeys with the EA SPORTS™ MVP Bundle on PlayStation®5 and Xbox Series X|S, which includes the deluxe editions of EA SPORTS College Football 26 and Madden NFL 26 with 3-day early access and an array of benefits across both titles‡.EA Play members can Bring Glory Home in EA SPORTS™ College Football 26 with the EA Play* 10-hour early access trial, starting July 7, 2025. Members also score member rewards including monthly College Football Loyalist Ultimate Team™ Packs, as well as receive 10% off EA digital content including pre-orders, game downloads, Season Passes, College Football Points, and DLC. For more information on EA Play please visit https://www.ea.com/ea-play.Stay tuned for more on Instagram, X, Facebook, TikTok, and YouTube as College Football 26 news unfolds in the coming months.†Internet connection, all game updates, EA Account, and platform account required. ‡Conditions & restrictions apply. See https://www.ea.com/games/madden-nfl/madden-nfl-26/legal-disclaimers for details. *Conditions, limitations and exclusions apply. See EA Play Terms for details.For College Football 26 assets, visit: EAPressPortal.com.EA SPORTS™ College Football 26 is developed in Orlando, Florida and Madrid, Spain by EA Tiburon and will be available worldwide July 10 for PlayStation®5 and Xbox Series X|S.About Electronic ArtsElectronic Arts (NASDAQ: EA) is a global leader in digital interactive entertainment. The Company develops and delivers games, content and online services for Internet-connected consoles, mobile devices and personal computers.In fiscal year 2025, EA posted GAAP net revenue of approximately $7.5 billion. Headquartered in Redwood City, California, EA is recognized for a portfolio of critically acclaimed, high-quality brands such as EA SPORTS FC™, Battlefield™, Apex Legends™, The Sims™, EA SPORTS™ Madden NFL, EA SPORTS™ College Football, Need for Speed™, Dragon Age™, Titanfall™, Plants vs. Zombies™ and EA SPORTS F1®. More information about EA is available at www.ea.com/news.EA, EA SPORTS, EA SPORTS FC, Battlefield, Need for Speed, Apex Legends, The Sims, Dragon Age, Titanfall, and Plants vs. Zombies are trademarks of Electronic Arts Inc. John Madden, NFL, and F1 are the property of their respective owners and used with permission.Category: EA Sports Erin Exum Director, Integrated Comms [email protected] Source: Electronic Arts Inc. Multimedia Files:
    13 Comments ·0 Shares ·0 Reviews
  • What AI’s impact on individuals means for the health workforce and industry

    Transcript    
    PETER LEE: “In American primary care, the missing workforce is stunning in magnitude, the shortfall estimated to reach up to 48,000 doctors within the next dozen years. China and other countries with aging populations can expect drastic shortfalls, as well. Just last month, I asked a respected colleague retiring from primary care who he would recommend as a replacement; he told me bluntly that, other than expensive concierge care practices, he could not think of anyone, even for himself. This mismatch between need and supply will only grow, and the US is far from alone among developed countries in facing it.”      
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.     The book passage I read at the top is from “Chapter 4: Trust but Verify,” which was written by Zak.
    You know, it’s no secret that in the US and elsewhere shortages in medical staff and the rise of clinician burnout are affecting the quality of patient care for the worse. In our book, we predicted that generative AI would be something that might help address these issues.
    So in this episode, we’ll delve into how individual performance gains that our previous guests have described might affect the healthcare workforce as a whole, and on the patient side, we’ll look into the influence of generative AI on the consumerization of healthcare. Now, since all of this consumes such a huge fraction of the overall economy, we’ll also get into what a general-purpose technology as disruptive as generative AI might mean in the context of labor markets and beyond.  
    To help us do that, I’m pleased to welcome Ethan Mollick and Azeem Azhar.
    Ethan Mollick is the Ralph J. Roberts Distinguished Faculty Scholar, a Rowan Fellow, and an associate professor at the Wharton School of the University of Pennsylvania. His research into the effects of AI on work, entrepreneurship, and education is applied by organizations around the world, leading him to be named one of Time magazine’s most influential people in AI for 2024. He’s also the author of the New York Times best-selling book Co-Intelligence.
    Azeem Azhar is an author, founder, investor, and one of the most thoughtful and influential voices on the interplay between disruptive emerging technologies and business and society. In his best-selling book, The Exponential Age, and in his highly regarded newsletter and podcast, Exponential View, he explores how technologies like AI are reshaping everything from healthcare to geopolitics.
    Ethan and Azeem are two leading thinkers on the ways that disruptive technologies—and especially AI—affect our work, our jobs, our business enterprises, and whole industries. As economists, they are trying to work out whether we are in the midst of an economic revolution as profound as the shift from an agrarian to an industrial society.Here is my interview with Ethan Mollick:
    LEE: Ethan, welcome.
    ETHAN MOLLICK: So happy to be here, thank you.
    LEE: I described you as a professor at Wharton, which I think most of the people who listen to this podcast series know of as an elite business school. So it might surprise some people that you study AI. And beyond that, you know, that I would seek you out to talk about AI in medicine.So to get started, how and why did it happen that you’ve become one of the leading experts on AI?
    MOLLICK: It’s actually an interesting story. I’ve been AI-adjacent my whole career. When I wasmy PhD at MIT, I worked with Marvin Minskyand the MITMedia Labs AI group. But I was never the technical AI guy. I was the person who was trying to explain AI to everybody else who didn’t understand it.
    And then I became very interested in, how do you train and teach? And AI was always a part of that. I was building games for teaching, teaching tools that were used in hospitals and elsewhere, simulations. So when LLMs burst into the scene, I had already been using them and had a good sense of what they could do. And between that and, kind of, being practically oriented and getting some of the first research projects underway, especially under education and AI and performance, I became sort of a go-to person in the field.
    And once you’re in a field where nobody knows what’s going on and we’re all making it up as we go along—I thought it’s funny that you led with the idea that you have a couple of months head start for GPT-4, right. Like that’s all we have at this point, is a few months’ head start.So being a few months ahead is good enough to be an expert at this point. Whether it should be or not is a different question.
    LEE: Well, if I understand correctly, leading AI companies like OpenAI, Anthropic, and others have now sought you out as someone who should get early access to really start to do early assessments and gauge early reactions. How has that been?
    MOLLICK: So, I mean, I think the bigger picture is less about me than about two things that tells us about the state of AI right now.
    One, nobody really knows what’s going on, right. So in a lot of ways, if it wasn’t for your work, Peter, like, I don’t think people would be thinking about medicine as much because these systems weren’t built for medicine. They weren’t built to change education. They weren’t built to write memos. They, like, they weren’t built to do any of these things. They weren’t really built to do anything in particular. It turns out they’re just good at many things.
    And to the extent that the labs work on them, they care about their coding ability above everything else and maybe math and science secondarily. They don’t think about the fact that it expresses high empathy. They don’t think about its accuracy and diagnosis or where it’s inaccurate. They don’t think about how it’s changing education forever.
    So one part of this is the fact that they go to my Twitter feed or ask me for advice is an indicator of where they are, too, which is they’re not thinking about this. And the fact that a few months’ head start continues to give you a lead tells you that we are at the very cutting edge. These labs aren’t sitting on projects for two years and then releasing them. Months after a project is complete or sooner, it’s out the door. Like, there’s very little delay. So we’re kind of all in the same boat here, which is a very unusual space for a new technology.
    LEE: And I, you know, explained that you’re at Wharton. Are you an odd fit as a faculty member at Wharton, or is this a trend now even in business schools that AI experts are becoming key members of the faculty?
    MOLLICK: I mean, it’s a little of both, right. It’s faculty, so everybody does everything. I’m a professor of innovation-entrepreneurship. I’ve launched startups before and working on that and education means I think about, how do organizations redesign themselves? How do they take advantage of these kinds of problems? So medicine’s always been very central to that, right. A lot of people in my MBA class have been MDs either switching, you know, careers or else looking to advance from being sort of individual contributors to running teams. So I don’t think that’s that bad a fit. But I also think this is general-purpose technology; it’s going to touch everything. The focus on this is medicine, but Microsoft does far more than medicine, right. It’s … there’s transformation happening in literally every field, in every country. This is a widespread effect.
    So I don’t think we should be surprised that business schools matter on this because we care about management. There’s a long tradition of management and medicine going together. There’s actually a great academic paper that shows that teaching hospitals that also have MBA programs associated with them have higher management scores and perform better. So I think that these are not as foreign concepts, especially as medicine continues to get more complicated.
    LEE: Yeah. Well, in fact, I want to dive a little deeper on these issues of management, of entrepreneurship, um, education. But before doing that, if I could just stay focused on you. There is always something interesting to hear from people about their first encounters with AI. And throughout this entire series, I’ve been doing that both pre-generative AI and post-generative AI. So you, sort of, hinted at the pre-generative AI. You were in Minsky’s lab. Can you say a little bit more about that early encounter? And then tell us about your first encounters with generative AI.
    MOLLICK: Yeah. Those are great questions. So first of all, when I was at the media lab, that was pre-the current boom in sort of, you know, even in the old-school machine learning kind of space. So there was a lot of potential directions to head in. While I was there, there were projects underway, for example, to record every interaction small children had. One of the professors was recording everything their baby interacted with in the hope that maybe that would give them a hint about how to build an AI system.
    There was a bunch of projects underway that were about labeling every concept and how they relate to other concepts. So, like, it was very much Wild West of, like, how do we make an AI work—which has been this repeated problem in AI, which is, what is this thing?
    The fact that it was just like brute force over the corpus of all human knowledge turns out to be a little bit of like a, you know, it’s a miracle and a little bit of a disappointment in some wayscompared to how elaborate some of this was. So, you know, I think that, that was sort of my first encounters in sort of the intellectual way.
    The generative AI encounters actually started with the original, sort of, GPT-3, or, you know, earlier versions. And it was actually game-based. So I played games like AI Dungeon. And as an educator, I realized, oh my gosh, this stuff could write essays at a fourth-grade level. That’s really going to change the way, like, middle school works, was my thinking at the time. And I was posting about that back in, you know, 2021 that this is a big deal. But I think everybody was taken surprise, including the AI companies themselves, by, you know, ChatGPT, by GPT-3.5. The difference in degree turned out to be a difference in kind.
    LEE: Yeah, you know, if I think back, even with GPT-3, and certainly this was the case with GPT-2, it was, at least, you know, from where I was sitting, it was hard to get people to really take this seriously and pay attention.
    MOLLICK: Yes.
    LEE: You know, it’s remarkable. Within Microsoft, I think a turning point was the use of GPT-3 to do code completions. And that was actually productized as GitHub Copilot, the very first version. That, I think, is where there was widespread belief. But, you know, in a way, I think there is, even for me early on, a sense of denial and skepticism. Did you have those initially at any point?
    MOLLICK: Yeah, I mean, it still happens today, right. Like, this is a weird technology. You know, the original denial and skepticism was, I couldn’t see where this was going. It didn’t seem like a miracle because, you know, of course computers can complete code for you. Like, what else are they supposed to do? Of course, computers can give you answers to questions and write fun things. So there’s difference of moving into a world of generative AI. I think a lot of people just thought that’s what computers could do. So it made the conversations a little weird. But even today, faced with these, you know, with very strong reasoner models that operate at the level of PhD students, I think a lot of people have issues with it, right.
    I mean, first of all, they seem intuitive to use, but they’re not always intuitive to use because the first use case that everyone puts AI to, it fails at because they use it like Google or some other use case. And then it’s genuinely upsetting in a lot of ways. I think, you know, I write in my book about the idea of three sleepless nights. That hasn’t changed. Like, you have to have an intellectual crisis to some extent, you know, and I think people do a lot to avoid having that existential angst of like, “Oh my god, what does it mean that a machine could think—apparently think—like a person?”
    So, I mean, I see resistance now. I saw resistance then. And then on top of all of that, there’s the fact that the curve of the technology is quite great. I mean, the price of GPT-4 level intelligence from, you know, when it was released has dropped 99.97% at this point, right.
    LEE: Yes. Mm-hmm.
    MOLLICK: I mean, I could run a GPT-4 class system basically on my phone. Microsoft’s releasing things that can almost run on like, you know, like it fits in almost no space, that are almost as good as the original GPT-4 models. I mean, I don’t think people have a sense of how fast the trajectory is moving either.
    LEE: Yeah, you know, there’s something that I think about often. There is this existential dread, or will this technology replace me? But I think the first people to feel that are researchers—people encountering this for the first time. You know, if you were working, let’s say, in Bayesian reasoning or in traditional, let’s say, Gaussian mixture model based, you know, speech recognition, you do get this feeling, Oh, my god, this technology has just solved the problem that I’ve dedicated my life to. And there is this really difficult period where you have to cope with that. And I think this is going to be spreading, you know, in more and more walks of life. And so this … at what point does that sort of sense of dread hit you, if ever?
    MOLLICK: I mean, you know, it’s not even dread as much as like, you know, Tyler Cowen wrote that it’s impossible to not feel a little bit of sadness as you use these AI systems, too. Because, like, I was talking to a friend, just as the most minor example, and his talent that he was very proud of was he was very good at writing limericks for birthday cards. He’d write these limericks. Everyone was always amused by them.And now, you know, GPT-4 and GPT-4.5, they made limericks obsolete. Like, anyone can write a good limerick, right. So this was a talent, and it was a little sad. Like, this thing that you cared about mattered.
    You know, as academics, we’re a little used to dead ends, right, and like, you know, some getting the lap. But the idea that entire fields are hitting that way. Like in medicine, there’s a lot of support systems that are now obsolete. And the question is how quickly you change that. In education, a lot of our techniques are obsolete.
    What do you do to change that? You know, it’s like the fact that this brute force technology is good enough to solve so many problems is weird, right. And it’s not just the end of, you know, of our research angles that matter, too. Like, for example, I ran this, you know, 14-person-plus, multimillion-dollar effort at Wharton to build these teaching simulations, and we’re very proud of them. It took years of work to build one.
    Now we’ve built a system that can build teaching simulations on demand by you talking to it with one team member. And, you know, you literally can create any simulation by having a discussion with the AI. I mean, you know, there’s a switch to a new form of excitement, but there is a little bit of like, this mattered to me, and, you know, now I have to change how I do things. I mean, adjustment happens. But if you haven’t had that displacement, I think that’s a good indicator that you haven’t really faced AI yet.
    LEE: Yeah, what’s so interesting just listening to you is you use words like sadness, and yet I can see the—and hear the—excitement in your voice and your body language. So, you know, that’s also kind of an interesting aspect of all of this. 
    MOLLICK: Yeah, I mean, I think there’s something on the other side, right. But, like, I can’t say that I haven’t had moments where like, ughhhh, but then there’s joy and basically like also, you know, freeing stuff up. I mean, I think about doctors or professors, right. These are jobs that bundle together lots of different tasks that you would never have put together, right. If you’re a doctor, you would never have expected the same person to be good at keeping up with the research and being a good diagnostician and being a good manager and being good with people and being good with hand skills.
    Like, who would ever want that kind of bundle? That’s not something you’re all good at, right. And a lot of our stress of our job comes from the fact that we suck at some of it. And so to the extent that AI steps in for that, you kind of feel bad about some of the stuff that it’s doing that you wanted to do. But it’s much more uplifting to be like, I don’t have to do this stuff I’m bad anymore, or I get the support to make myself good at it. And the stuff that I really care about, I can focus on more. Well, because we are at kind of a unique moment where whatever you’re best at, you’re still better than AI. And I think it’s an ongoing question about how long that lasts. But for right now, like you’re not going to say, OK, AI replaces me entirely in my job in medicine. It’s very unlikely.
    But you will say it replaces these 17 things I’m bad at, but I never liked that anyway. So it’s a period of both excitement and a little anxiety.
    LEE: Yeah, I’m going to want to get back to this question about in what ways AI may or may not replace doctors or some of what doctors and nurses and other clinicians do. But before that, let’s get into, I think, the real meat of this conversation. In previous episodes of this podcast, we talked to clinicians and healthcare administrators and technology developers that are very rapidly injecting AI today to do various forms of workforce automation, you know, automatically writing a clinical encounter note, automatically filling out a referral letter or request for prior authorization for some reimbursement to an insurance company.
    And so these sorts of things are intended not only to make things more efficient and lower costs but also to reduce various forms of drudgery, cognitive burden on frontline health workers. So how do you think about the impact of AI on that aspect of workforce, and, you know, what would you expect will happen over the next few years in terms of impact on efficiency and costs?
    MOLLICK: So I mean, this is a case where I think we’re facing the big bright problem in AI in a lot of ways, which is that this is … at the individual level, there’s lots of performance gains to be gained, right. The problem, though, is that we as individuals fit into systems, in medicine as much as anywhere else or more so, right. Which is that you could individually boost your performance, but it’s also about systems that fit along with this, right.
    So, you know, if you could automatically, you know, record an encounter, if you could automatically make notes, does that change what you should be expecting for notes or the value of those notes or what they’re for? How do we take what one person does and validate it across the organization and roll it out for everybody without making it a 10-year process that it feels like IT in medicine often is? Like, so we’re in this really interesting period where there’s incredible amounts of individual innovation in productivity and performance improvements in this field, like very high levels of it, but not necessarily seeing that same thing translate to organizational efficiency or gains.
    And one of my big concerns is seeing that happen. We’re seeing that in nonmedical problems, the same kind of thing, which is, you know, we’ve got research showing 20 and 40% performance improvements, like not uncommon to see those things. But then the organization doesn’t capture it; the system doesn’t capture it. Because the individuals are doing their own work and the systems don’t have the ability to, kind of, learn or adapt as a result.
    LEE: You know, where are those productivity gains going, then, when you get to the organizational level?
    MOLLICK: Well, they’re dying for a few reasons. One is, there’s a tendency for individual contributors to underestimate the power of management, right.
    Practices associated with good management increase happiness, decrease, you know, issues, increase success rates. In the same way, about 40%, as far as we can tell, of the US advantage over other companies, of US firms, has to do with management ability. Like, management is a big deal. Organizing is a big deal. Thinking about how you coordinate is a big deal.
    At the individual level, when things get stuck there, right, you can’t start bringing them up to how systems work together. It becomes, How do I deal with a doctor that has a 60% performance improvement? We really only have one thing in our playbook for doing that right now, which is, OK, we could fire 40% of the other doctors and still have a performance gain, which is not the answer you want to see happen.
    So because of that, people are hiding their use. They’re actually hiding their use for lots of reasons.
    And it’s a weird case because the people who are able to figure out best how to use these systems, for a lot of use cases, they’re actually clinicians themselves because they’re experimenting all the time. Like, they have to take those encounter notes. And if they figure out a better way to do it, they figure that out. You don’t want to wait for, you know, a med tech company to figure that out and then sell that back to you when it can be done by the physicians themselves.
    So we’re just not used to a period where everybody’s innovating and where the management structure isn’t in place to take advantage of that. And so we’re seeing things stalled at the individual level, and people are often, especially in risk-averse organizations or organizations where there’s lots of regulatory hurdles, people are so afraid of the regulatory piece that they don’t even bother trying to make change.
    LEE: If you are, you know, the leader of a hospital or a clinic or a whole health system, how should you approach this? You know, how should you be trying to extract positive success out of AI?
    MOLLICK: So I think that you need to embrace the right kind of risk, right. We don’t want to put risk on our patients … like, we don’t want to put uninformed risk. But innovation involves risk to how organizations operate. They involve change. So I think part of this is embracing the idea that R&D has to happen in organizations again.
    What’s happened over the last 20 years or so has been organizations giving that up. Partially, that’s a trend to focus on what you’re good at and not try and do this other stuff. Partially, it’s because it’s outsourced now to software companies that, like, Salesforce tells you how to organize your sales team. Workforce tells you how to organize your organization. Consultants come in and will tell you how to make change based on the average of what other people are doing in your field.
    So companies and organizations and hospital systems have all started to give up their ability to create their own organizational change. And when I talk to organizations, I often say they have to have two approaches. They have to think about the crowd and the lab.
    So the crowd is the idea of how to empower clinicians and administrators and supporter networks to start using AI and experimenting in ethical, legal ways and then sharing that information with each other. And the lab is, how are we doing R&D about the approach of how toAI to work, not just in direct patient care, right. But also fundamentally, like, what paperwork can you cut out? How can we better explain procedures? Like, what management role can this fill?
    And we need to be doing active experimentation on that. We can’t just wait for, you know, Microsoft to solve the problems. It has to be at the level of the organizations themselves.
    LEE: So let’s shift a little bit to the patient. You know, one of the things that we see, and I think everyone is seeing, is that people are turning to chatbots, like ChatGPT, actually to seek healthcare information for, you know, their own health or the health of their loved ones.
    And there was already, prior to all of this, a trend towards, let’s call it, consumerization of healthcare. So just in the business of healthcare delivery, do you think AI is going to hasten these kinds of trends, or from the consumer’s perspective, what … ?
    MOLLICK: I mean, absolutely, right. Like, all the early data that we have suggests that for most common medical problems, you should just consult AI, too, right. In fact, there is a real question to ask: at what point does it become unethical for doctors themselves to not ask for a second opinion from the AI because it’s cheap, right? You could overrule it or whatever you want, but like not asking seems foolish.
    I think the two places where there’s a burning almost, you know, moral imperative is … let’s say, you know, I’m in Philadelphia, I’m a professor, I have access to really good healthcare through the Hospital University of Pennsylvania system. I know doctors. You know, I’m lucky. I’m well connected. If, you know, something goes wrong, I have friends who I can talk to. I have specialists. I’m, you know, pretty well educated in this space.
    But for most people on the planet, they don’t have access to good medical care, they don’t have good health. It feels like it’s absolutely imperative to say when should you use AI and when not. Are there blind spots? What are those things?
    And I worry that, like, to me, that would be the crash project I’d be invoking because I’m doing the same thing in education, which is this system is not as good as being in a room with a great teacher who also uses AI to help you, but it’s better than not getting an, you know, to the level of education people get in many cases. Where should we be using it? How do we guide usage in the right way? Because the AI labs aren’t thinking about this. We have to.
    So, to me, there is a burning need here to understand this. And I worry that people will say, you know, everything that’s true—AI can hallucinate, AI can be biased. All of these things are absolutely true, but people are going to use it. The early indications are that it is quite useful. And unless we take the active role of saying, here’s when to use it, here’s when not to use it, we don’t have a right to say, don’t use this system. And I think, you know, we have to be exploring that.
    LEE: What do people need to understand about AI? And what should schools, universities, and so on be teaching?
    MOLLICK: Those are, kind of, two separate questions in lot of ways. I think a lot of people want to teach AI skills, and I will tell you, as somebody who works in this space a lot, there isn’t like an easy, sort of, AI skill, right. I could teach you prompt engineering in two to three classes, but every indication we have is that for most people under most circumstances, the value of prompting, you know, any one case is probably not that useful.
    A lot of the tricks are disappearing because the AI systems are just starting to use them themselves. So asking good questions, being a good manager, being a good thinker tend to be important, but like magic tricks around making, you know, the AI do something because you use the right phrase used to be something that was real but is rapidly disappearing.
    So I worry when people say teach AI skills. No one’s been able to articulate to me as somebody who knows AI very well and teaches classes on AI, what those AI skills that everyone should learn are, right.
    I mean, there’s value in learning a little bit how the models work. There’s a value in working with these systems. A lot of it’s just hands on keyboard kind of work. But, like, we don’t have an easy slam dunk “this is what you learn in the world of AI” because the systems are getting better, and as they get better, they get less sensitive to these prompting techniques. They get better prompting themselves. They solve problems spontaneously and start being agentic. So it’s a hard problem to ask about, like, what do you train someone on? I think getting people experience in hands-on-keyboards, getting them to … there’s like four things I could teach you about AI, and two of them are already starting to disappear.
    But, like, one is be direct. Like, tell the AI exactly what you want. That’s very helpful. Second, provide as much context as possible. That can include things like acting as a doctor, but also all the information you have. The third is give it step-by-step directions—that’s becoming less important. And the fourth is good and bad examples of the kind of output you want. Those four, that’s like, that’s it as far as the research telling you what to do, and the rest is building intuition.
    LEE: I’m really impressed that you didn’t give the answer, “Well, everyone should be teaching my book, Co-Intelligence.”MOLLICK: Oh, no, sorry! Everybody should be teaching my book Co-Intelligence. I apologize.LEE: It’s good to chuckle about that, but actually, I can’t think of a better book, like, if you were to assign a textbook in any professional education space, I think Co-Intelligence would be number one on my list. Are there other things that you think are essential reading?
    MOLLICK: That’s a really good question. I think that a lot of things are evolving very quickly. I happen to, kind of, hit a sweet spot with Co-Intelligence to some degree because I talk about how I used it, and I was, sort of, an advanced user of these systems.
    So, like, it’s, sort of, like my Twitter feed, my online newsletter. I’m just trying to, kind of, in some ways, it’s about trying to make people aware of what these systems can do by just showing a lot, right. Rather than picking one thing, and, like, this is a general-purpose technology. Let’s use it for this. And, like, everybody gets a light bulb for a different reason. So more than reading, it is using, you know, and that can be Copilot or whatever your favorite tool is.
    But using it. Voice modes help a lot. In terms of readings, I mean, I think that there is a couple of good guides to understanding AI that were originally blog posts. I think Tim Lee has one called Understanding AI, and it had a good overview …
    LEE: Yeah, that’s a great one.
    MOLLICK: … of that topic that I think explains how transformers work, which can give you some mental sense. I thinkKarpathyhas some really nice videos of use that I would recommend.
    Like on the medical side, I think the book that you did, if you’re in medicine, you should read that. I think that that’s very valuable. But like all we can offer are hints in some ways. Like there isn’t … if you’re looking for the instruction manual, I think it can be very frustrating because it’s like you want the best practices and procedures laid out, and we cannot do that, right. That’s not how a system like this works.
    LEE: Yeah.
    MOLLICK: It’s not a person, but thinking about it like a person can be helpful, right.
    LEE: One of the things that has been sort of a fun project for me for the last few years is I have been a founding board member of a new medical school at Kaiser Permanente. And, you know, that medical school curriculum is being formed in this era. But it’s been perplexing to understand, you know, what this means for a medical school curriculum. And maybe even more perplexing for me, at least, is the accrediting bodies, which are extremely important in US medical schools; how accreditors should think about what’s necessary here.
    Besides the things that you’ve … the, kind of, four key ideas you mentioned, if you were talking to the board of directors of the LCMEaccrediting body, what’s the one thing you would want them to really internalize?
    MOLLICK: This is both a fast-moving and vital area. This can’t be viewed like a usual change, which, “Let’s see how this works.” Because it’s, like, the things that make medical technologies hard to do, which is like unclear results, limited, you know, expensive use cases where it rolls out slowly. So one or two, you know, advanced medical facilities get access to, you know, proton beams or something else at multi-billion dollars of cost, and that takes a while to diffuse out. That’s not happening here. This is all happening at the same time, all at once. This is now … AI is part of medicine.
    I mean, there’s a minor point that I’d make that actually is a really important one, which is large language models, generative AI overall, work incredibly differently than other forms of AI. So the other worry I have with some of these accreditors is they blend together algorithmic forms of AI, which medicine has been trying for long time—decision support, algorithmic methods, like, medicine more so than other places has been thinking about those issues. Generative AI, even though it uses the same underlying techniques, is a completely different beast.
    So, like, even just take the most simple thing of algorithmic aversion, which is a well-understood problem in medicine, right. Which is, so you have a tool that could tell you as a radiologist, you know, the chance of this being cancer; you don’t like it, you overrule it, right.
    We don’t find algorithmic aversion happening with LLMs in the same way. People actually enjoy using them because it’s more like working with a person. The flaws are different. The approach is different. So you need to both view this as universal applicable today, which makes it urgent, but also as something that is not the same as your other form of AI, and your AI working group that is thinking about how to solve this problem is not the right people here.
    LEE: You know, I think the world has been trained because of the magic of web search to view computers as question-answering machines. Ask a question, get an answer.
    MOLLICK: Yes. Yes.
    LEE: Write a query, get results. And as I have interacted with medical professionals, you can see that medical professionals have that model of a machine in mind. And I think that’s partly, I think psychologically, why hallucination is so alarming. Because you have a mental model of a computer as a machine that has absolutely rock-solid perfect memory recall.
    But the thing that was so powerful in Co-Intelligence, and we tried to get at this in our book also, is that’s not the sweet spot. It’s this sort of deeper interaction, more of a collaboration. And I thought your use of the term Co-Intelligence really just even in the title of the book tried to capture this. When I think about education, it seems like that’s the first step, to get past this concept of a machine being just a question-answering machine. Do you have a reaction to that idea?
    MOLLICK: I think that’s very powerful. You know, we’ve been trained over so many years at both using computers but also in science fiction, right. Computers are about cold logic, right. They will give you the right answer, but if you ask it what love is, they explode, right. Like that’s the classic way you defeat the evil robot in Star Trek, right. “Love does not compute.”Instead, we have a system that makes mistakes, is warm, beats doctors in empathy in almost every controlled study on the subject, right. Like, absolutely can outwrite you in a sonnet but will absolutely struggle with giving you the right answer every time. And I think our mental models are just broken for this. And I think you’re absolutely right. And that’s part of what I thought your book does get at really well is, like, this is a different thing. It’s also generally applicable. Again, the model in your head should be kind of like a person even though it isn’t, right.
    There’s a lot of warnings and caveats to it, but if you start from person, smart person you’re talking to, your mental model will be more accurate than smart machine, even though both are flawed examples, right. So it will make mistakes; it will make errors. The question is, what do you trust it on? What do you not trust it? As you get to know a model, you’ll get to understand, like, I totally don’t trust it for this, but I absolutely trust it for that, right.
    LEE: All right. So we’re getting to the end of the time we have together. And so I’d just like to get now into something a little bit more provocative. And I get the question all the time. You know, will AI replace doctors? In medicine and other advanced knowledge work, project out five to 10 years. What do think happens?
    MOLLICK: OK, so first of all, let’s acknowledge systems change much more slowly than individual use. You know, doctors are not individual actors; they’re part of systems, right. So not just the system of a patient who like may or may not want to talk to a machine instead of a person but also legal systems and administrative systems and systems that allocate labor and systems that train people.
    So, like, it’s hard to imagine that in five to 10 years medicine being so upended that even if AI was better than doctors at every single thing doctors do, that we’d actually see as radical a change in medicine as you might in other fields. I think you will see faster changes happen in consulting and law and, you know, coding, other spaces than medicine.
    But I do think that there is good reason to suspect that AI will outperform people while still having flaws, right. That’s the difference. We’re already seeing that for common medical questions in enough randomized controlled trials that, you know, best doctors beat AI, but the AI beats the mean doctor, right. Like, that’s just something we should acknowledge is happening at this point.
    Now, will that work in your specialty? No. Will that work with all the contingent social knowledge that you have in your space? Probably not.
    Like, these are vignettes, right. But, like, that’s kind of where things are. So let’s assume, right … you’re asking two questions. One is, how good will AI get?
    LEE: Yeah.
    MOLLICK: And we don’t know the answer to that question. I will tell you that your colleagues at Microsoft and increasingly the labs, the AI labs themselves, are all saying they think they’ll have a machine smarter than a human at every intellectual task in the next two to three years. If that doesn’t happen, that makes it easier to assume the future, but let’s just assume that that’s the case. I think medicine starts to change with the idea that people feel obligated to use this to help for everything.
    Your patients will be using it, and it will be your advisor and helper at the beginning phases, right. And I think that I expect people to be better at empathy. I expect better bedside manner. I expect management tasks to become easier. I think administrative burden might lighten if we handle this right way or much worse if we handle it badly. Diagnostic accuracy will increase, right.
    And then there’s a set of discovery pieces happening, too, right. One of the core goals of all the AI companies is to accelerate medical research. How does that happen and how does that affect us is a, kind of, unknown question. So I think clinicians are in both the eye of the storm and surrounded by it, right. Like, they can resist AI use for longer than most other fields, but everything around them is going to be affected by it.
    LEE: Well, Ethan, this has been really a fantastic conversation. And, you know, I think in contrast to all the other conversations we’ve had, this one gives especially the leaders in healthcare, you know, people actually trying to lead their organizations into the future, whether it’s in education or in delivery, a lot to think about. So I really appreciate you joining.
    MOLLICK: Thank you.  
    I’m a computing researcher who works with people who are right in the middle of today’s bleeding-edge developments in AI. And because of that, I often lose sight of how to talk to a broader audience about what it’s all about. And so I think one of Ethan’s superpowers is that he has this knack for explaining complex topics in AI in a really accessible way, getting right to the most important points without making it so simple as to be useless. That’s why I rarely miss an opportunity to read up on his latest work.
    One of the first things I learned from Ethan is the intuition that you can, sort of, think of AI as a very knowledgeable intern. In other words, think of it as a persona that you can interact with, but you also need to be a manager for it and to always assess the work that it does.
    In our discussion, Ethan went further to stress that there is, because of that, a serious education gap. You know, over the last decade or two, we’ve all been trained, mainly by search engines, to think of computers as question-answering machines. In medicine, in fact, there’s a question-answering application that is really popular called UpToDate. Doctors use it all the time. But generative AI systems like ChatGPT are different. There’s therefore a challenge in how to break out of the old-fashioned mindset of search to get the full value out of generative AI.
    The other big takeaway for me was that Ethan pointed out while it’s easy to see productivity gains from AI at the individual level, those same gains, at least today, don’t often translate automatically to organization-wide or system-wide gains. And one, of course, has to conclude that it takes more than just making individuals more productive; the whole system also has to adjust to the realities of AI.
    Here’s now my interview with Azeem Azhar:
    LEE: Azeem, welcome.
    AZEEM AZHAR: Peter, thank you so much for having me. 
    LEE: You know, I think you’re extremely well known in the world. But still, some of the listeners of this podcast series might not have encountered you before.
    And so one of the ways I like to ask people to introduce themselves is, how do you explain to your parents what you do every day?
    AZHAR: Well, I’m very lucky in that way because my mother was the person who got me into computers more than 40 years ago. And I still have that first computer, a ZX81 with a Z80 chip …
    LEE: Oh wow.
    AZHAR: … to this day. It sits in my study, all seven and a half thousand transistors and Bakelite plastic that it is. And my parents were both economists, and economics is deeply connected with technology in some sense. And I grew up in the late ’70s and the early ’80s. And that was a time of tremendous optimism around technology. It was space opera, science fiction, robots, and of course, the personal computer and, you know, Bill Gates and Steve Jobs. So that’s where I started.
    And so, in a way, my mother and my dad, who passed away a few years ago, had always known me as someone who was fiddling with computers but also thinking about economics and society. And so, in a way, it’s easier to explain to them because they’re the ones who nurtured the environment that allowed me to research technology and AI and think about what it means to firms and to the economy at large.
    LEE: I always like to understand the origin story. And what I mean by that is, you know, what was your first encounter with generative AI? And what was that like? What did you go through?
    AZHAR: The first real moment was when Midjourney and Stable Diffusion emerged in that summer of 2022. I’d been away on vacation, and I came back—and I’d been off grid, in fact—and the world had really changed.
    Now, I’d been aware of GPT-3 and GPT-2, which I played around with and with BERT, the original transformer paper about seven or eight years ago, but it was the moment where I could talk to my computer, and it could produce these images, and it could be refined in natural language that really made me think we’ve crossed into a new domain. We’ve gone from AI being highly discriminative to AI that’s able to explore the world in particular ways. And then it was a few months later that ChatGPT came out—November, the 30th.
    And I think it was the next day or the day after that I said to my team, everyone has to use this, and we have to meet every morning and discuss how we experimented the day before. And we did that for three or four months. And, you know, it was really clear to me in that interface at that point that, you know, we’d absolutely pass some kind of threshold.
    LEE: And who’s the we that you were experimenting with?
    AZHAR: So I have a team of four who support me. They’re mostly researchers of different types. I mean, it’s almost like one of those jokes. You know, I have a sociologist, an economist, and an astrophysicist. And, you know, they walk into the bar,or they walk into our virtual team room, and we try to solve problems.
    LEE: Well, so let’s get now into brass tacks here. And I think I want to start maybe just with an exploration of the economics of all this and economic realities. Because I think in a lot of your work—for example, in your book—you look pretty deeply at how automation generally and AI specifically are transforming certain sectors like finance, manufacturing, and you have a really, kind of, insightful focus on what this means for productivity and which ways, you know, efficiencies are found.  
    And then you, sort of, balance that with risks, things that can and do go wrong. And so as you take that background and looking at all those other sectors, in what ways are the same patterns playing out or likely to play out in healthcare and medicine?
    AZHAR: I’m sure we will see really remarkable parallels but also new things going on. I mean, medicine has a particular quality compared to other sectors in the sense that it’s highly regulated, market structure is very different country to country, and it’s an incredibly broad field. I mean, just think about taking a Tylenol and going through laparoscopic surgery. Having an MRI and seeing a physio. I mean, this is all medicine. I mean, it’s hard to imagine a sector that ismore broad than that.
    So I think we can start to break it down, and, you know, where we’re seeing things with generative AI will be that the, sort of, softest entry point, which is the medical scribing. And I’m sure many of us have been with clinicians who have a medical scribe running alongside—they’re all on Surface Pros I noticed, right?They’re on the tablet computers, and they’re scribing away.
    And what that’s doing is, in the words of my friend Eric Topol, it’s giving the clinician time back, right. They have time back from days that are extremely busy and, you know, full of administrative overload. So I think you can obviously do a great deal with reducing that overload.
    And within my team, we have a view, which is if you do something five times in a week, you should be writing an automation for it. And if you’re a doctor, you’re probably reviewing your notes, writing the prescriptions, and so on several times a day. So those are things that can clearly be automated, and the human can be in the loop. But I think there are so many other ways just within the clinic that things can help.
    So, one of my friends, my friend from my junior school—I’ve known him since I was 9—is an oncologist who’s also deeply into machine learning, and he’s in Cambridge in the UK. And he built with Microsoft Research a suite of imaging AI tools from his own discipline, which they then open sourced.
    So that’s another way that you have an impact, which is that you actually enable the, you know, generalist, specialist, polymath, whatever they are in health systems to be able to get this technology, to tune it to their requirements, to use it, to encourage some grassroots adoption in a system that’s often been very, very heavily centralized.
    LEE: Yeah.
    AZHAR: And then I think there are some other things that are going on that I find really, really exciting. So one is the consumerization of healthcare. So I have one of those sleep tracking rings, the Oura.
    LEE: Yup.
    AZHAR: That is building a data stream that we’ll be able to apply more and more AI to. I mean, right now, it’s applying traditional, I suspect, machine learning, but you can imagine that as we start to get more data, we start to get more used to measuring ourselves, we create this sort of pot, a personal asset that we can turn AI to.
    And there’s still another category. And that other category is one of the completely novel ways in which we can enable patient care and patient pathway. And there’s a fantastic startup in the UK called Neko Health, which, I mean, does physicals, MRI scans, and blood tests, and so on.
    It’s hard to imagine Neko existing without the sort of advanced data, machine learning, AI that we’ve seen emerge over the last decade. So, I mean, I think that there are so many ways in which the temperature is slowly being turned up to encourage a phase change within the healthcare sector.
    And last but not least, I do think that these tools can also be very, very supportive of a clinician’s life cycle. I think we, as patients, we’re a bit …  I don’t know if we’re as grateful as we should be for our clinicians who are putting in 90-hour weeks.But you can imagine a world where AI is able to support not just the clinicians’ workload but also their sense of stress, their sense of burnout.
    So just in those five areas, Peter, I sort of imagine we could start to fundamentally transform over the course of many years, of course, the way in which people think about their health and their interactions with healthcare systems
    LEE: I love how you break that down. And I want to press on a couple of things.
    You also touched on the fact that medicine is, at least in most of the world, is a highly regulated industry. I guess finance is the same way, but they also feel different because the, like, finance sector has to be very responsive to consumers, and consumers are sensitive to, you know, an abundance of choice; they are sensitive to price. Is there something unique about medicine besides being regulated?
    AZHAR: I mean, there absolutely is. And in finance, as well, you have much clearer end states. So if you’re not in the consumer space, but you’re in the, you know, asset management space, you have to essentially deliver returns against the volatility or risk boundary, right. That’s what you have to go out and do. And I think if you’re in the consumer industry, you can come back to very, very clear measures, net promoter score being a very good example.
    In the case of medicine and healthcare, it is much more complicated because as far as the clinician is concerned, people are individuals, and we have our own parts and our own responses. If we didn’t, there would never be a need for a differential diagnosis. There’d never be a need for, you know, Let’s try azithromycin first, and then if that doesn’t work, we’ll go to vancomycin, or, you know, whatever it happens to be. You would just know. But ultimately, you know, people are quite different. The symptoms that they’re showing are quite different, and also their compliance is really, really different.
    I had a back problem that had to be dealt with by, you know, a physio and extremely boring exercises four times a week, but I was ruthless in complying, and my physio was incredibly surprised. He’d say well no one ever does this, and I said, well you know the thing is that I kind of just want to get this thing to go away.
    LEE: Yeah.
    AZHAR: And I think that that’s why medicine is and healthcare is so different and more complex. But I also think that’s why AI can be really, really helpful. I mean, we didn’t talk about, you know, AI in its ability to potentially do this, which is to extend the clinician’s presence throughout the week.
    LEE: Right. Yeah.
    AZHAR: The idea that maybe some part of what the clinician would do if you could talk to them on Wednesday, Thursday, and Friday could be delivered through an app or a chatbot just as a way of encouraging the compliance, which is often, especially with older patients, one reason why conditions, you know, linger on for longer.
    LEE: You know, just staying on the regulatory thing, as I’ve thought about this, the one regulated sector that I think seems to have some parallels to healthcare is energy delivery, energy distribution.
    Because like healthcare, as a consumer, I don’t have choice in who delivers electricity to my house. And even though I care about it being cheap or at least not being overcharged, I don’t have an abundance of choice. I can’t do price comparisons.
    And there’s something about that, just speaking as a consumer of both energy and a consumer of healthcare, that feels similar. Whereas other regulated industries, you know, somehow, as a consumer, I feel like I have a lot more direct influence and power. Does that make any sense to someone, you know, like you, who’s really much more expert in how economic systems work?
    AZHAR: I mean, in a sense, one part of that is very, very true. You have a limited panel of energy providers you can go to, and in the US, there may be places where you have no choice.
    I think the area where it’s slightly different is that as a consumer or a patient, you can actually make meaningful choices and changes yourself using these technologies, and people used to joke about you know asking Dr. Google. But Dr. Google is not terrible, particularly if you go to WebMD. And, you know, when I look at long-range change, many of the regulations that exist around healthcare delivery were formed at a point before people had access to good quality information at the touch of their fingertips or when educational levels in general were much, much lower. And many regulations existed because of the incumbent power of particular professional sectors.
    I’ll give you an example from the United Kingdom. So I have had asthma all of my life. That means I’ve been taking my inhaler, Ventolin, and maybe a steroid inhaler for nearly 50 years. That means that I know … actually, I’ve got more experience, and I—in some sense—know more about it than a general practitioner.
    LEE: Yeah.
    AZHAR: And until a few years ago, I would have to go to a general practitioner to get this drug that I’ve been taking for five decades, and there they are, age 30 or whatever it is. And a few years ago, the regulations changed. And now pharmacies can … or pharmacists can prescribe those types of drugs under certain conditions directly.
    LEE: Right.
    AZHAR: That was not to do with technology. That was to do with incumbent lock-in. So when we look at the medical industry, the healthcare space, there are some parallels with energy, but there are a few little things that the ability that the consumer has to put in some effort to learn about their condition, but also the fact that some of the regulations that exist just exist because certain professions are powerful.
    LEE: Yeah, one last question while we’re still on economics. There seems to be a conundrum about productivity and efficiency in healthcare delivery because I’ve never encountered a doctor or a nurse that wants to be able to handle even more patients than they’re doing on a daily basis.
    And so, you know, if productivity means simply, well, your rounds can now handle 16 patients instead of eight patients, that doesn’t seem necessarily to be a desirable thing. So how can we or should we be thinking about efficiency and productivity since obviously costs are, in most of the developed world, are a huge, huge problem?
    AZHAR: Yes, and when you described doubling the number of patients on the round, I imagined you buying them all roller skates so they could just whizz aroundthe hospital faster and faster than ever before.
    We can learn from what happened with the introduction of electricity. Electricity emerged at the end of the 19th century, around the same time that cars were emerging as a product, and car makers were very small and very artisanal. And in the early 1900s, some really smart car makers figured out that electricity was going to be important. And they bought into this technology by putting pendant lights in their workshops so they could “visit more patients.” Right?
    LEE: Yeah, yeah.
    AZHAR: They could effectively spend more hours working, and that was a productivity enhancement, and it was noticeable. But, of course, electricity fundamentally changed the productivity by orders of magnitude of people who made cars starting with Henry Ford because he was able to reorganize his factories around the electrical delivery of power and to therefore have the moving assembly line, which 10xed the productivity of that system.
    So when we think about how AI will affect the clinician, the nurse, the doctor, it’s much easier for us to imagine it as the pendant light that just has them working later …
    LEE: Right.
    AZHAR: … than it is to imagine a reconceptualization of the relationship between the clinician and the people they care for.
    And I’m not sure. I don’t think anybody knows what that looks like. But, you know, I do think that there will be a way that this changes, and you can see that scale out factor. And it may be, Peter, that what we end up doing is we end up saying, OK, because we have these brilliant AIs, there’s a lower level of training and cost and expense that’s required for a broader range of conditions that need treating. And that expands the market, right. That expands the market hugely. It’s what has happened in the market for taxis or ride sharing. The introduction of Uber and the GPS system …
    LEE: Yup.
    AZHAR: … has meant many more people now earn their living driving people around in their cars. And at least in London, you had to be reasonably highly trained to do that.
    So I can see a reorganization is possible. Of course, entrenched interests, the economic flow … and there are many entrenched interests, particularly in the US between the health systems and the, you know, professional bodies that might slow things down. But I think a reimagining is possible.
    And if I may, I’ll give you one example of that, which is, if you go to countries outside of the US where there are many more sick people per doctor, they have incentives to change the way they deliver their healthcare. And well before there was AI of this quality around, there was a few cases of health systems in India—Aravind Eye Carewas one, and Narayana Hrudayalayawas another. And in the latter, they were a cardiac care unit where you couldn’t get enough heart surgeons.
    LEE: Yeah, yep.
    AZHAR: So specially trained nurses would operate under the supervision of a single surgeon who would supervise many in parallel. So there are ways of increasing the quality of care, reducing the cost, but it does require a systems change. And we can’t expect a single bright algorithm to do it on its own.
    LEE: Yeah, really, really interesting. So now let’s get into regulation. And let me start with this question. You know, there are several startup companies I’m aware of that are pushing on, I think, a near-term future possibility that a medical AI for consumer might be allowed, say, to prescribe a medication for you, something that would normally require a doctor or a pharmacist, you know, that is certified in some way, licensed to do. Do you think we’ll get to a point where for certain regulated activities, humans are more or less cut out of the loop?
    AZHAR: Well, humans would have been in the loop because they would have provided the training data, they would have done the oversight, the quality control. But to your question in general, would we delegate an important decision entirely to a tested set of algorithms? I’m sure we will. We already do that. I delegate less important decisions like, What time should I leave for the airport to Waze. I delegate more important decisions to the automated braking in my car. We will do this at certain levels of risk and threshold.
    If I come back to my example of prescribing Ventolin. It’s really unclear to me that the prescription of Ventolin, this incredibly benign bronchodilator that is only used by people who’ve been through the asthma process, needs to be prescribed by someone who’s gone through 10 years or 12 years of medical training. And why that couldn’t be prescribed by an algorithm or an AI system.
    LEE: Right. Yep. Yep.
    AZHAR: So, you know, I absolutely think that that will be the case and could be the case. I can’t really see what the objections are. And the real issue is where do you draw the line of where you say, “Listen, this is too important,” or “The cost is too great,” or “The side effects are too high,” and therefore this is a point at which we want to have some, you know, human taking personal responsibility, having a liability framework in place, having a sense that there is a person with legal agency who signed off on this decision. And that line I suspect will start fairly low, and what we’d expect to see would be that that would rise progressively over time.
    LEE: What you just said, that scenario of your personal asthma medication, is really interesting because your personal AI might have the benefit of 50 years of your own experience with that medication. So, in a way, there is at least the data potential for, let’s say, the next prescription to be more personalized and more tailored specifically for you.
    AZHAR: Yes. Well, let’s dig into this because I think this is super interesting, and we can look at how things have changed. So 15 years ago, if I had a bad asthma attack, which I might have once a year, I would have needed to go and see my general physician.
    In the UK, it’s very difficult to get an appointment. I would have had to see someone privately who didn’t know me at all because I’ve just walked in off the street, and I would explain my situation. It would take me half a day. Productivity lost. I’ve been miserable for a couple of days with severe wheezing. Then a few years ago the system changed, a protocol changed, and now I have a thing called a rescue pack, which includes prednisolone steroids. It includes something else I’ve just forgotten, and an antibiotic in case I get an upper respiratory tract infection, and I have an “algorithm.” It’s called a protocol. It’s printed out. It’s a flowchart
    I answer various questions, and then I say, “I’m going to prescribe this to myself.” You know, UK doctors don’t prescribe prednisolone, or prednisone as you may call it in the US, at the drop of a hat, right. It’s a powerful steroid. I can self-administer, and I can now get that repeat prescription without seeing a physician a couple of times a year. And the algorithm, the “AI” is, it’s obviously been done in PowerPoint naturally, and it’s a bunch of arrows.Surely, surely, an AI system is going to be more sophisticated, more nuanced, and give me more assurance that I’m making the right decision around something like that.
    LEE: Yeah. Well, at a minimum, the AI should be able to make that PowerPoint the next time.AZHAR: Yeah, yeah. Thank god for Clippy. Yes.
    LEE: So, you know, I think in our book, we had a lot of certainty about most of the things we’ve discussed here, but one chapter where I felt we really sort of ran out of ideas, frankly, was on regulation. And, you know, what we ended up doing for that chapter is … I can’t remember if it was Carey’s or Zak’s idea, but we asked GPT-4 to have a conversation, a debate with itself, about regulation. And we made some minor commentary on that.
    And really, I think we took that approach because we just didn’t have much to offer. By the way, in our defense, I don’t think anyone else had any better ideas anyway.
    AZHAR: Right.
    LEE: And so now two years later, do we have better ideas about the need for regulation, the frameworks around which those regulations should be developed, and, you know, what should this look like?
    AZHAR: So regulation is going to be in some cases very helpful because it provides certainty for the clinician that they’re doing the right thing, that they are still insured for what they’re doing, and it provides some degree of confidence for the patient. And we need to make sure that the claims that are made stand up to quite rigorous levels, where ideally there are RCTs, and there are the classic set of processes you go through.
    You do also want to be able to experiment, and so the question is: as a regulator, how can you enable conditions for there to be experimentation? And what is experimentation? Experimentation is learning so that every element of the system can learn from this experience.
    So finding that space where there can be bit of experimentation, I think, becomes very, very important. And a lot of this is about experience, so I think the first digital therapeutics have received FDA approval, which means there are now people within the FDA who understand how you go about running an approvals process for that, and what that ends up looking like—and of course what we’re very good at doing in this sort of modern hyper-connected world—is we can share that expertise, that knowledge, that experience very, very quickly.
    So you go from one approval a year to a hundred approvals a year to a thousand approvals a year. So we will then actually, I suspect, need to think about what is it to approve digital therapeutics because, unlike big biological molecules, we can generate these digital therapeutics at the rate of knots.
    LEE: Yes.
    AZHAR: Every road in Hayes Valley in San Francisco, right, is churning out new startups who will want to do things like this. So then, I think about, what does it mean to get approved if indeed it gets approved? But we can also go really far with things that don’t require approval.
    I come back to my sleep tracking ring. So I’ve been wearing this for a few years, and when I go and see my doctor or I have my annual checkup, one of the first things that he asks is how have I been sleeping. And in fact, I even sync my sleep tracking data to their medical record system, so he’s saying … hearing what I’m saying, but he’s actually pulling up the real data going, This patient’s lying to me again. Of course, I’m very truthful with my doctor, as we should all be.LEE: You know, actually, that brings up a point that consumer-facing health AI has to deal with pop science, bad science, you know, weird stuff that you hear on Reddit. And because one of the things that consumers want to know always is, you know, what’s the truth?
    AZHAR: Right.
    LEE: What can I rely on? And I think that somehow feels different than an AI that you actually put in the hands of, let’s say, a licensed practitioner. And so the regulatory issues seem very, very different for these two cases somehow.
    AZHAR: I agree, they’re very different. And I think for a lot of areas, you will want to build AI systems that are first and foremost for the clinician, even if they have patient extensions, that idea that the clinician can still be with a patient during the week.
    And you’ll do that anyway because you need the data, and you also need a little bit of a liability shield to have like a sensible person who’s been trained around that. And I think that’s going to be a very important pathway for many AI medical crossovers. We’re going to go through the clinician.
    LEE: Yeah.
    AZHAR: But I also do recognize what you say about the, kind of, kooky quackery that exists on Reddit. Although on Creatine, Reddit may yet prove to have been right.LEE: Yeah, that’s right. Yes, yeah, absolutely. Yeah.
    AZHAR: Sometimes it’s right. And I think that it serves a really good role as a field of extreme experimentation. So if you’re somebody who makes a continuous glucose monitor traditionally given to diabetics but now lots of people will wear them—and sports people will wear them—you probably gathered a lot of extreme tail distribution data by reading the Reddit/biohackers …
    LEE: Yes.
    AZHAR: … for the last few years, where people were doing things that you would never want them to really do with the CGM. And so I think we shouldn’t understate how important that petri dish can be for helping us learn what could happen next.
    LEE: Oh, I think it’s absolutely going to be essential and a bigger thing in the future. So I think I just want to close here then with one last question. And I always try to be a little bit provocative with this.
    And so as you look ahead to what doctors and nurses and patients might be doing two years from now, five years from now, 10 years from now, do you have any kind of firm predictions?
    AZHAR: I’m going to push the boat out, and I’m going to go further out than closer in.
    LEE: OK.AZHAR: As patients, we will have many, many more touch points and interaction with our biomarkers and our health. We’ll be reading how well we feel through an array of things. And some of them we’ll be wearing directly, like sleep trackers and watches.
    And so we’ll have a better sense of what’s happening in our lives. It’s like the moment you go from paper bank statements that arrive every month to being able to see your account in real time.
    LEE: Yes.
    AZHAR: And I suspect we’ll have … we’ll still have interactions with clinicians because societies that get richer see doctors more, societies that get older see doctors more, and we’re going to be doing both of those over the coming 10 years. But there will be a sense, I think, of continuous health engagement, not in an overbearing way, but just in a sense that we know it’s there, we can check in with it, it’s likely to be data that is compiled on our behalf somewhere centrally and delivered through a user experience that reinforces agency rather than anxiety.
    And we’re learning how to do that slowly. I don’t think the health apps on our phones and devices have yet quite got that right. And that could help us personalize problems before they arise, and again, I use my experience for things that I’ve tracked really, really well. And I know from my data and from how I’m feeling when I’m on the verge of one of those severe asthma attacks that hits me once a year, and I can take a little bit of preemptive measure, so I think that that will become progressively more common and that sense that we will know our baselines.
    I mean, when you think about being an athlete, which is something I think about, but I could never ever do,but what happens is you start with your detailed baselines, and that’s what your health coach looks at every three or four months. For most of us, we have no idea of our baselines. You we get our blood pressure measured once a year. We will have baselines, and that will help us on an ongoing basis to better understand and be in control of our health. And then if the product designers get it right, it will be done in a way that doesn’t feel invasive, but it’ll be done in a way that feels enabling. We’ll still be engaging with clinicians augmented by AI systems more and more because they will also have gone up the stack. They won’t be spending their time on just “take two Tylenol and have a lie down” type of engagements because that will be dealt with earlier on in the system. And so we will be there in a very, very different set of relationships. And they will feel that they have different ways of looking after our health.
    LEE: Azeem, it’s so comforting to hear such a wonderfully optimistic picture of the future of healthcare. And I actually agree with everything you’ve said.
    Let me just thank you again for joining this conversation. I think it’s been really fascinating. And I think somehow the systemic issues, the systemic issues that you tend to just see with such clarity, I think are going to be the most, kind of, profound drivers of change in the future. So thank you so much.
    AZHAR: Well, thank you, it’s been my pleasure, Peter, thank you.  
    I always think of Azeem as a systems thinker. He’s always able to take the experiences of new technologies at an individual level and then project out to what this could mean for whole organizations and whole societies.
    In our conversation, I felt that Azeem really connected some of what we learned in a previous episode—for example, from Chrissy Farr—on the evolving consumerization of healthcare to the broader workforce and economic impacts that we’ve heard about from Ethan Mollick.  
    Azeem’s personal story about managing his asthma was also a great example. You know, he imagines a future, as do I, where personal AI might assist and remember decades of personal experience with a condition like asthma and thereby know more than any human being could possibly know in a deeply personalized and effective way, leading to better care. Azeem’s relentless optimism about our AI future was also so heartening to hear.
    Both of these conversations leave me really optimistic about the future of AI in medicine. At the same time, it is pretty sobering to realize just how much we’ll all need to change in pretty fundamental and maybe even in radical ways. I think a big insight I got from these conversations is how we interact with machines is going to have to be altered not only at the individual level, but at the company level and maybe even at the societal level.
    Since my conversation with Ethan and Azeem, there have been some pretty important developments that speak directly to this. Just last week at Build, which is Microsoft’s yearly developer conference, we announced a slew of AI agent technologies. Our CEO, Satya Nadella, in fact, started his keynote by going online in a GitHub developer environment and then assigning a coding task to an AI agent, basically treating that AI as a full-fledged member of a development team. Other agents, for example, a meeting facilitator, a data analyst, a business researcher, travel agent, and more were also shown during the conference.
    But pertinent to healthcare specifically, what really blew me away was the demonstration of a healthcare orchestrator agent. And the specific thing here was in Stanford’s cancer treatment center, when they are trying to decide on potentially experimental treatments for cancer patients, they convene a meeting of experts. That is typically called a tumor board. And so this AI healthcare orchestrator agent actually participated as a full-fledged member of a tumor board meeting to help bring data together, make sure that the latest medical knowledge was brought to bear, and to assist in the decision-making around a patient’s cancer treatment. It was pretty amazing.A big thank-you again to Ethan and Azeem for sharing their knowledge and understanding of the dynamics between AI and society more broadly. And to our listeners, thank you for joining us. I’m really excited for the upcoming episodes, including discussions on medical students’ experiences with AI and AI’s influence on the operation of health systems and public health departments. We hope you’ll continue to tune in.
    Until next time.
    #what #ais #impact #individuals #means
    What AI’s impact on individuals means for the health workforce and industry
    Transcript     PETER LEE: “In American primary care, the missing workforce is stunning in magnitude, the shortfall estimated to reach up to 48,000 doctors within the next dozen years. China and other countries with aging populations can expect drastic shortfalls, as well. Just last month, I asked a respected colleague retiring from primary care who he would recommend as a replacement; he told me bluntly that, other than expensive concierge care practices, he could not think of anyone, even for himself. This mismatch between need and supply will only grow, and the US is far from alone among developed countries in facing it.”       This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.     The book passage I read at the top is from “Chapter 4: Trust but Verify,” which was written by Zak. You know, it’s no secret that in the US and elsewhere shortages in medical staff and the rise of clinician burnout are affecting the quality of patient care for the worse. In our book, we predicted that generative AI would be something that might help address these issues. So in this episode, we’ll delve into how individual performance gains that our previous guests have described might affect the healthcare workforce as a whole, and on the patient side, we’ll look into the influence of generative AI on the consumerization of healthcare. Now, since all of this consumes such a huge fraction of the overall economy, we’ll also get into what a general-purpose technology as disruptive as generative AI might mean in the context of labor markets and beyond.   To help us do that, I’m pleased to welcome Ethan Mollick and Azeem Azhar. Ethan Mollick is the Ralph J. Roberts Distinguished Faculty Scholar, a Rowan Fellow, and an associate professor at the Wharton School of the University of Pennsylvania. His research into the effects of AI on work, entrepreneurship, and education is applied by organizations around the world, leading him to be named one of Time magazine’s most influential people in AI for 2024. He’s also the author of the New York Times best-selling book Co-Intelligence. Azeem Azhar is an author, founder, investor, and one of the most thoughtful and influential voices on the interplay between disruptive emerging technologies and business and society. In his best-selling book, The Exponential Age, and in his highly regarded newsletter and podcast, Exponential View, he explores how technologies like AI are reshaping everything from healthcare to geopolitics. Ethan and Azeem are two leading thinkers on the ways that disruptive technologies—and especially AI—affect our work, our jobs, our business enterprises, and whole industries. As economists, they are trying to work out whether we are in the midst of an economic revolution as profound as the shift from an agrarian to an industrial society.Here is my interview with Ethan Mollick: LEE: Ethan, welcome. ETHAN MOLLICK: So happy to be here, thank you. LEE: I described you as a professor at Wharton, which I think most of the people who listen to this podcast series know of as an elite business school. So it might surprise some people that you study AI. And beyond that, you know, that I would seek you out to talk about AI in medicine.So to get started, how and why did it happen that you’ve become one of the leading experts on AI? MOLLICK: It’s actually an interesting story. I’ve been AI-adjacent my whole career. When I wasmy PhD at MIT, I worked with Marvin Minskyand the MITMedia Labs AI group. But I was never the technical AI guy. I was the person who was trying to explain AI to everybody else who didn’t understand it. And then I became very interested in, how do you train and teach? And AI was always a part of that. I was building games for teaching, teaching tools that were used in hospitals and elsewhere, simulations. So when LLMs burst into the scene, I had already been using them and had a good sense of what they could do. And between that and, kind of, being practically oriented and getting some of the first research projects underway, especially under education and AI and performance, I became sort of a go-to person in the field. And once you’re in a field where nobody knows what’s going on and we’re all making it up as we go along—I thought it’s funny that you led with the idea that you have a couple of months head start for GPT-4, right. Like that’s all we have at this point, is a few months’ head start.So being a few months ahead is good enough to be an expert at this point. Whether it should be or not is a different question. LEE: Well, if I understand correctly, leading AI companies like OpenAI, Anthropic, and others have now sought you out as someone who should get early access to really start to do early assessments and gauge early reactions. How has that been? MOLLICK: So, I mean, I think the bigger picture is less about me than about two things that tells us about the state of AI right now. One, nobody really knows what’s going on, right. So in a lot of ways, if it wasn’t for your work, Peter, like, I don’t think people would be thinking about medicine as much because these systems weren’t built for medicine. They weren’t built to change education. They weren’t built to write memos. They, like, they weren’t built to do any of these things. They weren’t really built to do anything in particular. It turns out they’re just good at many things. And to the extent that the labs work on them, they care about their coding ability above everything else and maybe math and science secondarily. They don’t think about the fact that it expresses high empathy. They don’t think about its accuracy and diagnosis or where it’s inaccurate. They don’t think about how it’s changing education forever. So one part of this is the fact that they go to my Twitter feed or ask me for advice is an indicator of where they are, too, which is they’re not thinking about this. And the fact that a few months’ head start continues to give you a lead tells you that we are at the very cutting edge. These labs aren’t sitting on projects for two years and then releasing them. Months after a project is complete or sooner, it’s out the door. Like, there’s very little delay. So we’re kind of all in the same boat here, which is a very unusual space for a new technology. LEE: And I, you know, explained that you’re at Wharton. Are you an odd fit as a faculty member at Wharton, or is this a trend now even in business schools that AI experts are becoming key members of the faculty? MOLLICK: I mean, it’s a little of both, right. It’s faculty, so everybody does everything. I’m a professor of innovation-entrepreneurship. I’ve launched startups before and working on that and education means I think about, how do organizations redesign themselves? How do they take advantage of these kinds of problems? So medicine’s always been very central to that, right. A lot of people in my MBA class have been MDs either switching, you know, careers or else looking to advance from being sort of individual contributors to running teams. So I don’t think that’s that bad a fit. But I also think this is general-purpose technology; it’s going to touch everything. The focus on this is medicine, but Microsoft does far more than medicine, right. It’s … there’s transformation happening in literally every field, in every country. This is a widespread effect. So I don’t think we should be surprised that business schools matter on this because we care about management. There’s a long tradition of management and medicine going together. There’s actually a great academic paper that shows that teaching hospitals that also have MBA programs associated with them have higher management scores and perform better. So I think that these are not as foreign concepts, especially as medicine continues to get more complicated. LEE: Yeah. Well, in fact, I want to dive a little deeper on these issues of management, of entrepreneurship, um, education. But before doing that, if I could just stay focused on you. There is always something interesting to hear from people about their first encounters with AI. And throughout this entire series, I’ve been doing that both pre-generative AI and post-generative AI. So you, sort of, hinted at the pre-generative AI. You were in Minsky’s lab. Can you say a little bit more about that early encounter? And then tell us about your first encounters with generative AI. MOLLICK: Yeah. Those are great questions. So first of all, when I was at the media lab, that was pre-the current boom in sort of, you know, even in the old-school machine learning kind of space. So there was a lot of potential directions to head in. While I was there, there were projects underway, for example, to record every interaction small children had. One of the professors was recording everything their baby interacted with in the hope that maybe that would give them a hint about how to build an AI system. There was a bunch of projects underway that were about labeling every concept and how they relate to other concepts. So, like, it was very much Wild West of, like, how do we make an AI work—which has been this repeated problem in AI, which is, what is this thing? The fact that it was just like brute force over the corpus of all human knowledge turns out to be a little bit of like a, you know, it’s a miracle and a little bit of a disappointment in some wayscompared to how elaborate some of this was. So, you know, I think that, that was sort of my first encounters in sort of the intellectual way. The generative AI encounters actually started with the original, sort of, GPT-3, or, you know, earlier versions. And it was actually game-based. So I played games like AI Dungeon. And as an educator, I realized, oh my gosh, this stuff could write essays at a fourth-grade level. That’s really going to change the way, like, middle school works, was my thinking at the time. And I was posting about that back in, you know, 2021 that this is a big deal. But I think everybody was taken surprise, including the AI companies themselves, by, you know, ChatGPT, by GPT-3.5. The difference in degree turned out to be a difference in kind. LEE: Yeah, you know, if I think back, even with GPT-3, and certainly this was the case with GPT-2, it was, at least, you know, from where I was sitting, it was hard to get people to really take this seriously and pay attention. MOLLICK: Yes. LEE: You know, it’s remarkable. Within Microsoft, I think a turning point was the use of GPT-3 to do code completions. And that was actually productized as GitHub Copilot, the very first version. That, I think, is where there was widespread belief. But, you know, in a way, I think there is, even for me early on, a sense of denial and skepticism. Did you have those initially at any point? MOLLICK: Yeah, I mean, it still happens today, right. Like, this is a weird technology. You know, the original denial and skepticism was, I couldn’t see where this was going. It didn’t seem like a miracle because, you know, of course computers can complete code for you. Like, what else are they supposed to do? Of course, computers can give you answers to questions and write fun things. So there’s difference of moving into a world of generative AI. I think a lot of people just thought that’s what computers could do. So it made the conversations a little weird. But even today, faced with these, you know, with very strong reasoner models that operate at the level of PhD students, I think a lot of people have issues with it, right. I mean, first of all, they seem intuitive to use, but they’re not always intuitive to use because the first use case that everyone puts AI to, it fails at because they use it like Google or some other use case. And then it’s genuinely upsetting in a lot of ways. I think, you know, I write in my book about the idea of three sleepless nights. That hasn’t changed. Like, you have to have an intellectual crisis to some extent, you know, and I think people do a lot to avoid having that existential angst of like, “Oh my god, what does it mean that a machine could think—apparently think—like a person?” So, I mean, I see resistance now. I saw resistance then. And then on top of all of that, there’s the fact that the curve of the technology is quite great. I mean, the price of GPT-4 level intelligence from, you know, when it was released has dropped 99.97% at this point, right. LEE: Yes. Mm-hmm. MOLLICK: I mean, I could run a GPT-4 class system basically on my phone. Microsoft’s releasing things that can almost run on like, you know, like it fits in almost no space, that are almost as good as the original GPT-4 models. I mean, I don’t think people have a sense of how fast the trajectory is moving either. LEE: Yeah, you know, there’s something that I think about often. There is this existential dread, or will this technology replace me? But I think the first people to feel that are researchers—people encountering this for the first time. You know, if you were working, let’s say, in Bayesian reasoning or in traditional, let’s say, Gaussian mixture model based, you know, speech recognition, you do get this feeling, Oh, my god, this technology has just solved the problem that I’ve dedicated my life to. And there is this really difficult period where you have to cope with that. And I think this is going to be spreading, you know, in more and more walks of life. And so this … at what point does that sort of sense of dread hit you, if ever? MOLLICK: I mean, you know, it’s not even dread as much as like, you know, Tyler Cowen wrote that it’s impossible to not feel a little bit of sadness as you use these AI systems, too. Because, like, I was talking to a friend, just as the most minor example, and his talent that he was very proud of was he was very good at writing limericks for birthday cards. He’d write these limericks. Everyone was always amused by them.And now, you know, GPT-4 and GPT-4.5, they made limericks obsolete. Like, anyone can write a good limerick, right. So this was a talent, and it was a little sad. Like, this thing that you cared about mattered. You know, as academics, we’re a little used to dead ends, right, and like, you know, some getting the lap. But the idea that entire fields are hitting that way. Like in medicine, there’s a lot of support systems that are now obsolete. And the question is how quickly you change that. In education, a lot of our techniques are obsolete. What do you do to change that? You know, it’s like the fact that this brute force technology is good enough to solve so many problems is weird, right. And it’s not just the end of, you know, of our research angles that matter, too. Like, for example, I ran this, you know, 14-person-plus, multimillion-dollar effort at Wharton to build these teaching simulations, and we’re very proud of them. It took years of work to build one. Now we’ve built a system that can build teaching simulations on demand by you talking to it with one team member. And, you know, you literally can create any simulation by having a discussion with the AI. I mean, you know, there’s a switch to a new form of excitement, but there is a little bit of like, this mattered to me, and, you know, now I have to change how I do things. I mean, adjustment happens. But if you haven’t had that displacement, I think that’s a good indicator that you haven’t really faced AI yet. LEE: Yeah, what’s so interesting just listening to you is you use words like sadness, and yet I can see the—and hear the—excitement in your voice and your body language. So, you know, that’s also kind of an interesting aspect of all of this.  MOLLICK: Yeah, I mean, I think there’s something on the other side, right. But, like, I can’t say that I haven’t had moments where like, ughhhh, but then there’s joy and basically like also, you know, freeing stuff up. I mean, I think about doctors or professors, right. These are jobs that bundle together lots of different tasks that you would never have put together, right. If you’re a doctor, you would never have expected the same person to be good at keeping up with the research and being a good diagnostician and being a good manager and being good with people and being good with hand skills. Like, who would ever want that kind of bundle? That’s not something you’re all good at, right. And a lot of our stress of our job comes from the fact that we suck at some of it. And so to the extent that AI steps in for that, you kind of feel bad about some of the stuff that it’s doing that you wanted to do. But it’s much more uplifting to be like, I don’t have to do this stuff I’m bad anymore, or I get the support to make myself good at it. And the stuff that I really care about, I can focus on more. Well, because we are at kind of a unique moment where whatever you’re best at, you’re still better than AI. And I think it’s an ongoing question about how long that lasts. But for right now, like you’re not going to say, OK, AI replaces me entirely in my job in medicine. It’s very unlikely. But you will say it replaces these 17 things I’m bad at, but I never liked that anyway. So it’s a period of both excitement and a little anxiety. LEE: Yeah, I’m going to want to get back to this question about in what ways AI may or may not replace doctors or some of what doctors and nurses and other clinicians do. But before that, let’s get into, I think, the real meat of this conversation. In previous episodes of this podcast, we talked to clinicians and healthcare administrators and technology developers that are very rapidly injecting AI today to do various forms of workforce automation, you know, automatically writing a clinical encounter note, automatically filling out a referral letter or request for prior authorization for some reimbursement to an insurance company. And so these sorts of things are intended not only to make things more efficient and lower costs but also to reduce various forms of drudgery, cognitive burden on frontline health workers. So how do you think about the impact of AI on that aspect of workforce, and, you know, what would you expect will happen over the next few years in terms of impact on efficiency and costs? MOLLICK: So I mean, this is a case where I think we’re facing the big bright problem in AI in a lot of ways, which is that this is … at the individual level, there’s lots of performance gains to be gained, right. The problem, though, is that we as individuals fit into systems, in medicine as much as anywhere else or more so, right. Which is that you could individually boost your performance, but it’s also about systems that fit along with this, right. So, you know, if you could automatically, you know, record an encounter, if you could automatically make notes, does that change what you should be expecting for notes or the value of those notes or what they’re for? How do we take what one person does and validate it across the organization and roll it out for everybody without making it a 10-year process that it feels like IT in medicine often is? Like, so we’re in this really interesting period where there’s incredible amounts of individual innovation in productivity and performance improvements in this field, like very high levels of it, but not necessarily seeing that same thing translate to organizational efficiency or gains. And one of my big concerns is seeing that happen. We’re seeing that in nonmedical problems, the same kind of thing, which is, you know, we’ve got research showing 20 and 40% performance improvements, like not uncommon to see those things. But then the organization doesn’t capture it; the system doesn’t capture it. Because the individuals are doing their own work and the systems don’t have the ability to, kind of, learn or adapt as a result. LEE: You know, where are those productivity gains going, then, when you get to the organizational level? MOLLICK: Well, they’re dying for a few reasons. One is, there’s a tendency for individual contributors to underestimate the power of management, right. Practices associated with good management increase happiness, decrease, you know, issues, increase success rates. In the same way, about 40%, as far as we can tell, of the US advantage over other companies, of US firms, has to do with management ability. Like, management is a big deal. Organizing is a big deal. Thinking about how you coordinate is a big deal. At the individual level, when things get stuck there, right, you can’t start bringing them up to how systems work together. It becomes, How do I deal with a doctor that has a 60% performance improvement? We really only have one thing in our playbook for doing that right now, which is, OK, we could fire 40% of the other doctors and still have a performance gain, which is not the answer you want to see happen. So because of that, people are hiding their use. They’re actually hiding their use for lots of reasons. And it’s a weird case because the people who are able to figure out best how to use these systems, for a lot of use cases, they’re actually clinicians themselves because they’re experimenting all the time. Like, they have to take those encounter notes. And if they figure out a better way to do it, they figure that out. You don’t want to wait for, you know, a med tech company to figure that out and then sell that back to you when it can be done by the physicians themselves. So we’re just not used to a period where everybody’s innovating and where the management structure isn’t in place to take advantage of that. And so we’re seeing things stalled at the individual level, and people are often, especially in risk-averse organizations or organizations where there’s lots of regulatory hurdles, people are so afraid of the regulatory piece that they don’t even bother trying to make change. LEE: If you are, you know, the leader of a hospital or a clinic or a whole health system, how should you approach this? You know, how should you be trying to extract positive success out of AI? MOLLICK: So I think that you need to embrace the right kind of risk, right. We don’t want to put risk on our patients … like, we don’t want to put uninformed risk. But innovation involves risk to how organizations operate. They involve change. So I think part of this is embracing the idea that R&D has to happen in organizations again. What’s happened over the last 20 years or so has been organizations giving that up. Partially, that’s a trend to focus on what you’re good at and not try and do this other stuff. Partially, it’s because it’s outsourced now to software companies that, like, Salesforce tells you how to organize your sales team. Workforce tells you how to organize your organization. Consultants come in and will tell you how to make change based on the average of what other people are doing in your field. So companies and organizations and hospital systems have all started to give up their ability to create their own organizational change. And when I talk to organizations, I often say they have to have two approaches. They have to think about the crowd and the lab. So the crowd is the idea of how to empower clinicians and administrators and supporter networks to start using AI and experimenting in ethical, legal ways and then sharing that information with each other. And the lab is, how are we doing R&D about the approach of how toAI to work, not just in direct patient care, right. But also fundamentally, like, what paperwork can you cut out? How can we better explain procedures? Like, what management role can this fill? And we need to be doing active experimentation on that. We can’t just wait for, you know, Microsoft to solve the problems. It has to be at the level of the organizations themselves. LEE: So let’s shift a little bit to the patient. You know, one of the things that we see, and I think everyone is seeing, is that people are turning to chatbots, like ChatGPT, actually to seek healthcare information for, you know, their own health or the health of their loved ones. And there was already, prior to all of this, a trend towards, let’s call it, consumerization of healthcare. So just in the business of healthcare delivery, do you think AI is going to hasten these kinds of trends, or from the consumer’s perspective, what … ? MOLLICK: I mean, absolutely, right. Like, all the early data that we have suggests that for most common medical problems, you should just consult AI, too, right. In fact, there is a real question to ask: at what point does it become unethical for doctors themselves to not ask for a second opinion from the AI because it’s cheap, right? You could overrule it or whatever you want, but like not asking seems foolish. I think the two places where there’s a burning almost, you know, moral imperative is … let’s say, you know, I’m in Philadelphia, I’m a professor, I have access to really good healthcare through the Hospital University of Pennsylvania system. I know doctors. You know, I’m lucky. I’m well connected. If, you know, something goes wrong, I have friends who I can talk to. I have specialists. I’m, you know, pretty well educated in this space. But for most people on the planet, they don’t have access to good medical care, they don’t have good health. It feels like it’s absolutely imperative to say when should you use AI and when not. Are there blind spots? What are those things? And I worry that, like, to me, that would be the crash project I’d be invoking because I’m doing the same thing in education, which is this system is not as good as being in a room with a great teacher who also uses AI to help you, but it’s better than not getting an, you know, to the level of education people get in many cases. Where should we be using it? How do we guide usage in the right way? Because the AI labs aren’t thinking about this. We have to. So, to me, there is a burning need here to understand this. And I worry that people will say, you know, everything that’s true—AI can hallucinate, AI can be biased. All of these things are absolutely true, but people are going to use it. The early indications are that it is quite useful. And unless we take the active role of saying, here’s when to use it, here’s when not to use it, we don’t have a right to say, don’t use this system. And I think, you know, we have to be exploring that. LEE: What do people need to understand about AI? And what should schools, universities, and so on be teaching? MOLLICK: Those are, kind of, two separate questions in lot of ways. I think a lot of people want to teach AI skills, and I will tell you, as somebody who works in this space a lot, there isn’t like an easy, sort of, AI skill, right. I could teach you prompt engineering in two to three classes, but every indication we have is that for most people under most circumstances, the value of prompting, you know, any one case is probably not that useful. A lot of the tricks are disappearing because the AI systems are just starting to use them themselves. So asking good questions, being a good manager, being a good thinker tend to be important, but like magic tricks around making, you know, the AI do something because you use the right phrase used to be something that was real but is rapidly disappearing. So I worry when people say teach AI skills. No one’s been able to articulate to me as somebody who knows AI very well and teaches classes on AI, what those AI skills that everyone should learn are, right. I mean, there’s value in learning a little bit how the models work. There’s a value in working with these systems. A lot of it’s just hands on keyboard kind of work. But, like, we don’t have an easy slam dunk “this is what you learn in the world of AI” because the systems are getting better, and as they get better, they get less sensitive to these prompting techniques. They get better prompting themselves. They solve problems spontaneously and start being agentic. So it’s a hard problem to ask about, like, what do you train someone on? I think getting people experience in hands-on-keyboards, getting them to … there’s like four things I could teach you about AI, and two of them are already starting to disappear. But, like, one is be direct. Like, tell the AI exactly what you want. That’s very helpful. Second, provide as much context as possible. That can include things like acting as a doctor, but also all the information you have. The third is give it step-by-step directions—that’s becoming less important. And the fourth is good and bad examples of the kind of output you want. Those four, that’s like, that’s it as far as the research telling you what to do, and the rest is building intuition. LEE: I’m really impressed that you didn’t give the answer, “Well, everyone should be teaching my book, Co-Intelligence.”MOLLICK: Oh, no, sorry! Everybody should be teaching my book Co-Intelligence. I apologize.LEE: It’s good to chuckle about that, but actually, I can’t think of a better book, like, if you were to assign a textbook in any professional education space, I think Co-Intelligence would be number one on my list. Are there other things that you think are essential reading? MOLLICK: That’s a really good question. I think that a lot of things are evolving very quickly. I happen to, kind of, hit a sweet spot with Co-Intelligence to some degree because I talk about how I used it, and I was, sort of, an advanced user of these systems. So, like, it’s, sort of, like my Twitter feed, my online newsletter. I’m just trying to, kind of, in some ways, it’s about trying to make people aware of what these systems can do by just showing a lot, right. Rather than picking one thing, and, like, this is a general-purpose technology. Let’s use it for this. And, like, everybody gets a light bulb for a different reason. So more than reading, it is using, you know, and that can be Copilot or whatever your favorite tool is. But using it. Voice modes help a lot. In terms of readings, I mean, I think that there is a couple of good guides to understanding AI that were originally blog posts. I think Tim Lee has one called Understanding AI, and it had a good overview … LEE: Yeah, that’s a great one. MOLLICK: … of that topic that I think explains how transformers work, which can give you some mental sense. I thinkKarpathyhas some really nice videos of use that I would recommend. Like on the medical side, I think the book that you did, if you’re in medicine, you should read that. I think that that’s very valuable. But like all we can offer are hints in some ways. Like there isn’t … if you’re looking for the instruction manual, I think it can be very frustrating because it’s like you want the best practices and procedures laid out, and we cannot do that, right. That’s not how a system like this works. LEE: Yeah. MOLLICK: It’s not a person, but thinking about it like a person can be helpful, right. LEE: One of the things that has been sort of a fun project for me for the last few years is I have been a founding board member of a new medical school at Kaiser Permanente. And, you know, that medical school curriculum is being formed in this era. But it’s been perplexing to understand, you know, what this means for a medical school curriculum. And maybe even more perplexing for me, at least, is the accrediting bodies, which are extremely important in US medical schools; how accreditors should think about what’s necessary here. Besides the things that you’ve … the, kind of, four key ideas you mentioned, if you were talking to the board of directors of the LCMEaccrediting body, what’s the one thing you would want them to really internalize? MOLLICK: This is both a fast-moving and vital area. This can’t be viewed like a usual change, which, “Let’s see how this works.” Because it’s, like, the things that make medical technologies hard to do, which is like unclear results, limited, you know, expensive use cases where it rolls out slowly. So one or two, you know, advanced medical facilities get access to, you know, proton beams or something else at multi-billion dollars of cost, and that takes a while to diffuse out. That’s not happening here. This is all happening at the same time, all at once. This is now … AI is part of medicine. I mean, there’s a minor point that I’d make that actually is a really important one, which is large language models, generative AI overall, work incredibly differently than other forms of AI. So the other worry I have with some of these accreditors is they blend together algorithmic forms of AI, which medicine has been trying for long time—decision support, algorithmic methods, like, medicine more so than other places has been thinking about those issues. Generative AI, even though it uses the same underlying techniques, is a completely different beast. So, like, even just take the most simple thing of algorithmic aversion, which is a well-understood problem in medicine, right. Which is, so you have a tool that could tell you as a radiologist, you know, the chance of this being cancer; you don’t like it, you overrule it, right. We don’t find algorithmic aversion happening with LLMs in the same way. People actually enjoy using them because it’s more like working with a person. The flaws are different. The approach is different. So you need to both view this as universal applicable today, which makes it urgent, but also as something that is not the same as your other form of AI, and your AI working group that is thinking about how to solve this problem is not the right people here. LEE: You know, I think the world has been trained because of the magic of web search to view computers as question-answering machines. Ask a question, get an answer. MOLLICK: Yes. Yes. LEE: Write a query, get results. And as I have interacted with medical professionals, you can see that medical professionals have that model of a machine in mind. And I think that’s partly, I think psychologically, why hallucination is so alarming. Because you have a mental model of a computer as a machine that has absolutely rock-solid perfect memory recall. But the thing that was so powerful in Co-Intelligence, and we tried to get at this in our book also, is that’s not the sweet spot. It’s this sort of deeper interaction, more of a collaboration. And I thought your use of the term Co-Intelligence really just even in the title of the book tried to capture this. When I think about education, it seems like that’s the first step, to get past this concept of a machine being just a question-answering machine. Do you have a reaction to that idea? MOLLICK: I think that’s very powerful. You know, we’ve been trained over so many years at both using computers but also in science fiction, right. Computers are about cold logic, right. They will give you the right answer, but if you ask it what love is, they explode, right. Like that’s the classic way you defeat the evil robot in Star Trek, right. “Love does not compute.”Instead, we have a system that makes mistakes, is warm, beats doctors in empathy in almost every controlled study on the subject, right. Like, absolutely can outwrite you in a sonnet but will absolutely struggle with giving you the right answer every time. And I think our mental models are just broken for this. And I think you’re absolutely right. And that’s part of what I thought your book does get at really well is, like, this is a different thing. It’s also generally applicable. Again, the model in your head should be kind of like a person even though it isn’t, right. There’s a lot of warnings and caveats to it, but if you start from person, smart person you’re talking to, your mental model will be more accurate than smart machine, even though both are flawed examples, right. So it will make mistakes; it will make errors. The question is, what do you trust it on? What do you not trust it? As you get to know a model, you’ll get to understand, like, I totally don’t trust it for this, but I absolutely trust it for that, right. LEE: All right. So we’re getting to the end of the time we have together. And so I’d just like to get now into something a little bit more provocative. And I get the question all the time. You know, will AI replace doctors? In medicine and other advanced knowledge work, project out five to 10 years. What do think happens? MOLLICK: OK, so first of all, let’s acknowledge systems change much more slowly than individual use. You know, doctors are not individual actors; they’re part of systems, right. So not just the system of a patient who like may or may not want to talk to a machine instead of a person but also legal systems and administrative systems and systems that allocate labor and systems that train people. So, like, it’s hard to imagine that in five to 10 years medicine being so upended that even if AI was better than doctors at every single thing doctors do, that we’d actually see as radical a change in medicine as you might in other fields. I think you will see faster changes happen in consulting and law and, you know, coding, other spaces than medicine. But I do think that there is good reason to suspect that AI will outperform people while still having flaws, right. That’s the difference. We’re already seeing that for common medical questions in enough randomized controlled trials that, you know, best doctors beat AI, but the AI beats the mean doctor, right. Like, that’s just something we should acknowledge is happening at this point. Now, will that work in your specialty? No. Will that work with all the contingent social knowledge that you have in your space? Probably not. Like, these are vignettes, right. But, like, that’s kind of where things are. So let’s assume, right … you’re asking two questions. One is, how good will AI get? LEE: Yeah. MOLLICK: And we don’t know the answer to that question. I will tell you that your colleagues at Microsoft and increasingly the labs, the AI labs themselves, are all saying they think they’ll have a machine smarter than a human at every intellectual task in the next two to three years. If that doesn’t happen, that makes it easier to assume the future, but let’s just assume that that’s the case. I think medicine starts to change with the idea that people feel obligated to use this to help for everything. Your patients will be using it, and it will be your advisor and helper at the beginning phases, right. And I think that I expect people to be better at empathy. I expect better bedside manner. I expect management tasks to become easier. I think administrative burden might lighten if we handle this right way or much worse if we handle it badly. Diagnostic accuracy will increase, right. And then there’s a set of discovery pieces happening, too, right. One of the core goals of all the AI companies is to accelerate medical research. How does that happen and how does that affect us is a, kind of, unknown question. So I think clinicians are in both the eye of the storm and surrounded by it, right. Like, they can resist AI use for longer than most other fields, but everything around them is going to be affected by it. LEE: Well, Ethan, this has been really a fantastic conversation. And, you know, I think in contrast to all the other conversations we’ve had, this one gives especially the leaders in healthcare, you know, people actually trying to lead their organizations into the future, whether it’s in education or in delivery, a lot to think about. So I really appreciate you joining. MOLLICK: Thank you.   I’m a computing researcher who works with people who are right in the middle of today’s bleeding-edge developments in AI. And because of that, I often lose sight of how to talk to a broader audience about what it’s all about. And so I think one of Ethan’s superpowers is that he has this knack for explaining complex topics in AI in a really accessible way, getting right to the most important points without making it so simple as to be useless. That’s why I rarely miss an opportunity to read up on his latest work. One of the first things I learned from Ethan is the intuition that you can, sort of, think of AI as a very knowledgeable intern. In other words, think of it as a persona that you can interact with, but you also need to be a manager for it and to always assess the work that it does. In our discussion, Ethan went further to stress that there is, because of that, a serious education gap. You know, over the last decade or two, we’ve all been trained, mainly by search engines, to think of computers as question-answering machines. In medicine, in fact, there’s a question-answering application that is really popular called UpToDate. Doctors use it all the time. But generative AI systems like ChatGPT are different. There’s therefore a challenge in how to break out of the old-fashioned mindset of search to get the full value out of generative AI. The other big takeaway for me was that Ethan pointed out while it’s easy to see productivity gains from AI at the individual level, those same gains, at least today, don’t often translate automatically to organization-wide or system-wide gains. And one, of course, has to conclude that it takes more than just making individuals more productive; the whole system also has to adjust to the realities of AI. Here’s now my interview with Azeem Azhar: LEE: Azeem, welcome. AZEEM AZHAR: Peter, thank you so much for having me.  LEE: You know, I think you’re extremely well known in the world. But still, some of the listeners of this podcast series might not have encountered you before. And so one of the ways I like to ask people to introduce themselves is, how do you explain to your parents what you do every day? AZHAR: Well, I’m very lucky in that way because my mother was the person who got me into computers more than 40 years ago. And I still have that first computer, a ZX81 with a Z80 chip … LEE: Oh wow. AZHAR: … to this day. It sits in my study, all seven and a half thousand transistors and Bakelite plastic that it is. And my parents were both economists, and economics is deeply connected with technology in some sense. And I grew up in the late ’70s and the early ’80s. And that was a time of tremendous optimism around technology. It was space opera, science fiction, robots, and of course, the personal computer and, you know, Bill Gates and Steve Jobs. So that’s where I started. And so, in a way, my mother and my dad, who passed away a few years ago, had always known me as someone who was fiddling with computers but also thinking about economics and society. And so, in a way, it’s easier to explain to them because they’re the ones who nurtured the environment that allowed me to research technology and AI and think about what it means to firms and to the economy at large. LEE: I always like to understand the origin story. And what I mean by that is, you know, what was your first encounter with generative AI? And what was that like? What did you go through? AZHAR: The first real moment was when Midjourney and Stable Diffusion emerged in that summer of 2022. I’d been away on vacation, and I came back—and I’d been off grid, in fact—and the world had really changed. Now, I’d been aware of GPT-3 and GPT-2, which I played around with and with BERT, the original transformer paper about seven or eight years ago, but it was the moment where I could talk to my computer, and it could produce these images, and it could be refined in natural language that really made me think we’ve crossed into a new domain. We’ve gone from AI being highly discriminative to AI that’s able to explore the world in particular ways. And then it was a few months later that ChatGPT came out—November, the 30th. And I think it was the next day or the day after that I said to my team, everyone has to use this, and we have to meet every morning and discuss how we experimented the day before. And we did that for three or four months. And, you know, it was really clear to me in that interface at that point that, you know, we’d absolutely pass some kind of threshold. LEE: And who’s the we that you were experimenting with? AZHAR: So I have a team of four who support me. They’re mostly researchers of different types. I mean, it’s almost like one of those jokes. You know, I have a sociologist, an economist, and an astrophysicist. And, you know, they walk into the bar,or they walk into our virtual team room, and we try to solve problems. LEE: Well, so let’s get now into brass tacks here. And I think I want to start maybe just with an exploration of the economics of all this and economic realities. Because I think in a lot of your work—for example, in your book—you look pretty deeply at how automation generally and AI specifically are transforming certain sectors like finance, manufacturing, and you have a really, kind of, insightful focus on what this means for productivity and which ways, you know, efficiencies are found.   And then you, sort of, balance that with risks, things that can and do go wrong. And so as you take that background and looking at all those other sectors, in what ways are the same patterns playing out or likely to play out in healthcare and medicine? AZHAR: I’m sure we will see really remarkable parallels but also new things going on. I mean, medicine has a particular quality compared to other sectors in the sense that it’s highly regulated, market structure is very different country to country, and it’s an incredibly broad field. I mean, just think about taking a Tylenol and going through laparoscopic surgery. Having an MRI and seeing a physio. I mean, this is all medicine. I mean, it’s hard to imagine a sector that ismore broad than that. So I think we can start to break it down, and, you know, where we’re seeing things with generative AI will be that the, sort of, softest entry point, which is the medical scribing. And I’m sure many of us have been with clinicians who have a medical scribe running alongside—they’re all on Surface Pros I noticed, right?They’re on the tablet computers, and they’re scribing away. And what that’s doing is, in the words of my friend Eric Topol, it’s giving the clinician time back, right. They have time back from days that are extremely busy and, you know, full of administrative overload. So I think you can obviously do a great deal with reducing that overload. And within my team, we have a view, which is if you do something five times in a week, you should be writing an automation for it. And if you’re a doctor, you’re probably reviewing your notes, writing the prescriptions, and so on several times a day. So those are things that can clearly be automated, and the human can be in the loop. But I think there are so many other ways just within the clinic that things can help. So, one of my friends, my friend from my junior school—I’ve known him since I was 9—is an oncologist who’s also deeply into machine learning, and he’s in Cambridge in the UK. And he built with Microsoft Research a suite of imaging AI tools from his own discipline, which they then open sourced. So that’s another way that you have an impact, which is that you actually enable the, you know, generalist, specialist, polymath, whatever they are in health systems to be able to get this technology, to tune it to their requirements, to use it, to encourage some grassroots adoption in a system that’s often been very, very heavily centralized. LEE: Yeah. AZHAR: And then I think there are some other things that are going on that I find really, really exciting. So one is the consumerization of healthcare. So I have one of those sleep tracking rings, the Oura. LEE: Yup. AZHAR: That is building a data stream that we’ll be able to apply more and more AI to. I mean, right now, it’s applying traditional, I suspect, machine learning, but you can imagine that as we start to get more data, we start to get more used to measuring ourselves, we create this sort of pot, a personal asset that we can turn AI to. And there’s still another category. And that other category is one of the completely novel ways in which we can enable patient care and patient pathway. And there’s a fantastic startup in the UK called Neko Health, which, I mean, does physicals, MRI scans, and blood tests, and so on. It’s hard to imagine Neko existing without the sort of advanced data, machine learning, AI that we’ve seen emerge over the last decade. So, I mean, I think that there are so many ways in which the temperature is slowly being turned up to encourage a phase change within the healthcare sector. And last but not least, I do think that these tools can also be very, very supportive of a clinician’s life cycle. I think we, as patients, we’re a bit …  I don’t know if we’re as grateful as we should be for our clinicians who are putting in 90-hour weeks.But you can imagine a world where AI is able to support not just the clinicians’ workload but also their sense of stress, their sense of burnout. So just in those five areas, Peter, I sort of imagine we could start to fundamentally transform over the course of many years, of course, the way in which people think about their health and their interactions with healthcare systems LEE: I love how you break that down. And I want to press on a couple of things. You also touched on the fact that medicine is, at least in most of the world, is a highly regulated industry. I guess finance is the same way, but they also feel different because the, like, finance sector has to be very responsive to consumers, and consumers are sensitive to, you know, an abundance of choice; they are sensitive to price. Is there something unique about medicine besides being regulated? AZHAR: I mean, there absolutely is. And in finance, as well, you have much clearer end states. So if you’re not in the consumer space, but you’re in the, you know, asset management space, you have to essentially deliver returns against the volatility or risk boundary, right. That’s what you have to go out and do. And I think if you’re in the consumer industry, you can come back to very, very clear measures, net promoter score being a very good example. In the case of medicine and healthcare, it is much more complicated because as far as the clinician is concerned, people are individuals, and we have our own parts and our own responses. If we didn’t, there would never be a need for a differential diagnosis. There’d never be a need for, you know, Let’s try azithromycin first, and then if that doesn’t work, we’ll go to vancomycin, or, you know, whatever it happens to be. You would just know. But ultimately, you know, people are quite different. The symptoms that they’re showing are quite different, and also their compliance is really, really different. I had a back problem that had to be dealt with by, you know, a physio and extremely boring exercises four times a week, but I was ruthless in complying, and my physio was incredibly surprised. He’d say well no one ever does this, and I said, well you know the thing is that I kind of just want to get this thing to go away. LEE: Yeah. AZHAR: And I think that that’s why medicine is and healthcare is so different and more complex. But I also think that’s why AI can be really, really helpful. I mean, we didn’t talk about, you know, AI in its ability to potentially do this, which is to extend the clinician’s presence throughout the week. LEE: Right. Yeah. AZHAR: The idea that maybe some part of what the clinician would do if you could talk to them on Wednesday, Thursday, and Friday could be delivered through an app or a chatbot just as a way of encouraging the compliance, which is often, especially with older patients, one reason why conditions, you know, linger on for longer. LEE: You know, just staying on the regulatory thing, as I’ve thought about this, the one regulated sector that I think seems to have some parallels to healthcare is energy delivery, energy distribution. Because like healthcare, as a consumer, I don’t have choice in who delivers electricity to my house. And even though I care about it being cheap or at least not being overcharged, I don’t have an abundance of choice. I can’t do price comparisons. And there’s something about that, just speaking as a consumer of both energy and a consumer of healthcare, that feels similar. Whereas other regulated industries, you know, somehow, as a consumer, I feel like I have a lot more direct influence and power. Does that make any sense to someone, you know, like you, who’s really much more expert in how economic systems work? AZHAR: I mean, in a sense, one part of that is very, very true. You have a limited panel of energy providers you can go to, and in the US, there may be places where you have no choice. I think the area where it’s slightly different is that as a consumer or a patient, you can actually make meaningful choices and changes yourself using these technologies, and people used to joke about you know asking Dr. Google. But Dr. Google is not terrible, particularly if you go to WebMD. And, you know, when I look at long-range change, many of the regulations that exist around healthcare delivery were formed at a point before people had access to good quality information at the touch of their fingertips or when educational levels in general were much, much lower. And many regulations existed because of the incumbent power of particular professional sectors. I’ll give you an example from the United Kingdom. So I have had asthma all of my life. That means I’ve been taking my inhaler, Ventolin, and maybe a steroid inhaler for nearly 50 years. That means that I know … actually, I’ve got more experience, and I—in some sense—know more about it than a general practitioner. LEE: Yeah. AZHAR: And until a few years ago, I would have to go to a general practitioner to get this drug that I’ve been taking for five decades, and there they are, age 30 or whatever it is. And a few years ago, the regulations changed. And now pharmacies can … or pharmacists can prescribe those types of drugs under certain conditions directly. LEE: Right. AZHAR: That was not to do with technology. That was to do with incumbent lock-in. So when we look at the medical industry, the healthcare space, there are some parallels with energy, but there are a few little things that the ability that the consumer has to put in some effort to learn about their condition, but also the fact that some of the regulations that exist just exist because certain professions are powerful. LEE: Yeah, one last question while we’re still on economics. There seems to be a conundrum about productivity and efficiency in healthcare delivery because I’ve never encountered a doctor or a nurse that wants to be able to handle even more patients than they’re doing on a daily basis. And so, you know, if productivity means simply, well, your rounds can now handle 16 patients instead of eight patients, that doesn’t seem necessarily to be a desirable thing. So how can we or should we be thinking about efficiency and productivity since obviously costs are, in most of the developed world, are a huge, huge problem? AZHAR: Yes, and when you described doubling the number of patients on the round, I imagined you buying them all roller skates so they could just whizz aroundthe hospital faster and faster than ever before. We can learn from what happened with the introduction of electricity. Electricity emerged at the end of the 19th century, around the same time that cars were emerging as a product, and car makers were very small and very artisanal. And in the early 1900s, some really smart car makers figured out that electricity was going to be important. And they bought into this technology by putting pendant lights in their workshops so they could “visit more patients.” Right? LEE: Yeah, yeah. AZHAR: They could effectively spend more hours working, and that was a productivity enhancement, and it was noticeable. But, of course, electricity fundamentally changed the productivity by orders of magnitude of people who made cars starting with Henry Ford because he was able to reorganize his factories around the electrical delivery of power and to therefore have the moving assembly line, which 10xed the productivity of that system. So when we think about how AI will affect the clinician, the nurse, the doctor, it’s much easier for us to imagine it as the pendant light that just has them working later … LEE: Right. AZHAR: … than it is to imagine a reconceptualization of the relationship between the clinician and the people they care for. And I’m not sure. I don’t think anybody knows what that looks like. But, you know, I do think that there will be a way that this changes, and you can see that scale out factor. And it may be, Peter, that what we end up doing is we end up saying, OK, because we have these brilliant AIs, there’s a lower level of training and cost and expense that’s required for a broader range of conditions that need treating. And that expands the market, right. That expands the market hugely. It’s what has happened in the market for taxis or ride sharing. The introduction of Uber and the GPS system … LEE: Yup. AZHAR: … has meant many more people now earn their living driving people around in their cars. And at least in London, you had to be reasonably highly trained to do that. So I can see a reorganization is possible. Of course, entrenched interests, the economic flow … and there are many entrenched interests, particularly in the US between the health systems and the, you know, professional bodies that might slow things down. But I think a reimagining is possible. And if I may, I’ll give you one example of that, which is, if you go to countries outside of the US where there are many more sick people per doctor, they have incentives to change the way they deliver their healthcare. And well before there was AI of this quality around, there was a few cases of health systems in India—Aravind Eye Carewas one, and Narayana Hrudayalayawas another. And in the latter, they were a cardiac care unit where you couldn’t get enough heart surgeons. LEE: Yeah, yep. AZHAR: So specially trained nurses would operate under the supervision of a single surgeon who would supervise many in parallel. So there are ways of increasing the quality of care, reducing the cost, but it does require a systems change. And we can’t expect a single bright algorithm to do it on its own. LEE: Yeah, really, really interesting. So now let’s get into regulation. And let me start with this question. You know, there are several startup companies I’m aware of that are pushing on, I think, a near-term future possibility that a medical AI for consumer might be allowed, say, to prescribe a medication for you, something that would normally require a doctor or a pharmacist, you know, that is certified in some way, licensed to do. Do you think we’ll get to a point where for certain regulated activities, humans are more or less cut out of the loop? AZHAR: Well, humans would have been in the loop because they would have provided the training data, they would have done the oversight, the quality control. But to your question in general, would we delegate an important decision entirely to a tested set of algorithms? I’m sure we will. We already do that. I delegate less important decisions like, What time should I leave for the airport to Waze. I delegate more important decisions to the automated braking in my car. We will do this at certain levels of risk and threshold. If I come back to my example of prescribing Ventolin. It’s really unclear to me that the prescription of Ventolin, this incredibly benign bronchodilator that is only used by people who’ve been through the asthma process, needs to be prescribed by someone who’s gone through 10 years or 12 years of medical training. And why that couldn’t be prescribed by an algorithm or an AI system. LEE: Right. Yep. Yep. AZHAR: So, you know, I absolutely think that that will be the case and could be the case. I can’t really see what the objections are. And the real issue is where do you draw the line of where you say, “Listen, this is too important,” or “The cost is too great,” or “The side effects are too high,” and therefore this is a point at which we want to have some, you know, human taking personal responsibility, having a liability framework in place, having a sense that there is a person with legal agency who signed off on this decision. And that line I suspect will start fairly low, and what we’d expect to see would be that that would rise progressively over time. LEE: What you just said, that scenario of your personal asthma medication, is really interesting because your personal AI might have the benefit of 50 years of your own experience with that medication. So, in a way, there is at least the data potential for, let’s say, the next prescription to be more personalized and more tailored specifically for you. AZHAR: Yes. Well, let’s dig into this because I think this is super interesting, and we can look at how things have changed. So 15 years ago, if I had a bad asthma attack, which I might have once a year, I would have needed to go and see my general physician. In the UK, it’s very difficult to get an appointment. I would have had to see someone privately who didn’t know me at all because I’ve just walked in off the street, and I would explain my situation. It would take me half a day. Productivity lost. I’ve been miserable for a couple of days with severe wheezing. Then a few years ago the system changed, a protocol changed, and now I have a thing called a rescue pack, which includes prednisolone steroids. It includes something else I’ve just forgotten, and an antibiotic in case I get an upper respiratory tract infection, and I have an “algorithm.” It’s called a protocol. It’s printed out. It’s a flowchart I answer various questions, and then I say, “I’m going to prescribe this to myself.” You know, UK doctors don’t prescribe prednisolone, or prednisone as you may call it in the US, at the drop of a hat, right. It’s a powerful steroid. I can self-administer, and I can now get that repeat prescription without seeing a physician a couple of times a year. And the algorithm, the “AI” is, it’s obviously been done in PowerPoint naturally, and it’s a bunch of arrows.Surely, surely, an AI system is going to be more sophisticated, more nuanced, and give me more assurance that I’m making the right decision around something like that. LEE: Yeah. Well, at a minimum, the AI should be able to make that PowerPoint the next time.AZHAR: Yeah, yeah. Thank god for Clippy. Yes. LEE: So, you know, I think in our book, we had a lot of certainty about most of the things we’ve discussed here, but one chapter where I felt we really sort of ran out of ideas, frankly, was on regulation. And, you know, what we ended up doing for that chapter is … I can’t remember if it was Carey’s or Zak’s idea, but we asked GPT-4 to have a conversation, a debate with itself, about regulation. And we made some minor commentary on that. And really, I think we took that approach because we just didn’t have much to offer. By the way, in our defense, I don’t think anyone else had any better ideas anyway. AZHAR: Right. LEE: And so now two years later, do we have better ideas about the need for regulation, the frameworks around which those regulations should be developed, and, you know, what should this look like? AZHAR: So regulation is going to be in some cases very helpful because it provides certainty for the clinician that they’re doing the right thing, that they are still insured for what they’re doing, and it provides some degree of confidence for the patient. And we need to make sure that the claims that are made stand up to quite rigorous levels, where ideally there are RCTs, and there are the classic set of processes you go through. You do also want to be able to experiment, and so the question is: as a regulator, how can you enable conditions for there to be experimentation? And what is experimentation? Experimentation is learning so that every element of the system can learn from this experience. So finding that space where there can be bit of experimentation, I think, becomes very, very important. And a lot of this is about experience, so I think the first digital therapeutics have received FDA approval, which means there are now people within the FDA who understand how you go about running an approvals process for that, and what that ends up looking like—and of course what we’re very good at doing in this sort of modern hyper-connected world—is we can share that expertise, that knowledge, that experience very, very quickly. So you go from one approval a year to a hundred approvals a year to a thousand approvals a year. So we will then actually, I suspect, need to think about what is it to approve digital therapeutics because, unlike big biological molecules, we can generate these digital therapeutics at the rate of knots. LEE: Yes. AZHAR: Every road in Hayes Valley in San Francisco, right, is churning out new startups who will want to do things like this. So then, I think about, what does it mean to get approved if indeed it gets approved? But we can also go really far with things that don’t require approval. I come back to my sleep tracking ring. So I’ve been wearing this for a few years, and when I go and see my doctor or I have my annual checkup, one of the first things that he asks is how have I been sleeping. And in fact, I even sync my sleep tracking data to their medical record system, so he’s saying … hearing what I’m saying, but he’s actually pulling up the real data going, This patient’s lying to me again. Of course, I’m very truthful with my doctor, as we should all be.LEE: You know, actually, that brings up a point that consumer-facing health AI has to deal with pop science, bad science, you know, weird stuff that you hear on Reddit. And because one of the things that consumers want to know always is, you know, what’s the truth? AZHAR: Right. LEE: What can I rely on? And I think that somehow feels different than an AI that you actually put in the hands of, let’s say, a licensed practitioner. And so the regulatory issues seem very, very different for these two cases somehow. AZHAR: I agree, they’re very different. And I think for a lot of areas, you will want to build AI systems that are first and foremost for the clinician, even if they have patient extensions, that idea that the clinician can still be with a patient during the week. And you’ll do that anyway because you need the data, and you also need a little bit of a liability shield to have like a sensible person who’s been trained around that. And I think that’s going to be a very important pathway for many AI medical crossovers. We’re going to go through the clinician. LEE: Yeah. AZHAR: But I also do recognize what you say about the, kind of, kooky quackery that exists on Reddit. Although on Creatine, Reddit may yet prove to have been right.LEE: Yeah, that’s right. Yes, yeah, absolutely. Yeah. AZHAR: Sometimes it’s right. And I think that it serves a really good role as a field of extreme experimentation. So if you’re somebody who makes a continuous glucose monitor traditionally given to diabetics but now lots of people will wear them—and sports people will wear them—you probably gathered a lot of extreme tail distribution data by reading the Reddit/biohackers … LEE: Yes. AZHAR: … for the last few years, where people were doing things that you would never want them to really do with the CGM. And so I think we shouldn’t understate how important that petri dish can be for helping us learn what could happen next. LEE: Oh, I think it’s absolutely going to be essential and a bigger thing in the future. So I think I just want to close here then with one last question. And I always try to be a little bit provocative with this. And so as you look ahead to what doctors and nurses and patients might be doing two years from now, five years from now, 10 years from now, do you have any kind of firm predictions? AZHAR: I’m going to push the boat out, and I’m going to go further out than closer in. LEE: OK.AZHAR: As patients, we will have many, many more touch points and interaction with our biomarkers and our health. We’ll be reading how well we feel through an array of things. And some of them we’ll be wearing directly, like sleep trackers and watches. And so we’ll have a better sense of what’s happening in our lives. It’s like the moment you go from paper bank statements that arrive every month to being able to see your account in real time. LEE: Yes. AZHAR: And I suspect we’ll have … we’ll still have interactions with clinicians because societies that get richer see doctors more, societies that get older see doctors more, and we’re going to be doing both of those over the coming 10 years. But there will be a sense, I think, of continuous health engagement, not in an overbearing way, but just in a sense that we know it’s there, we can check in with it, it’s likely to be data that is compiled on our behalf somewhere centrally and delivered through a user experience that reinforces agency rather than anxiety. And we’re learning how to do that slowly. I don’t think the health apps on our phones and devices have yet quite got that right. And that could help us personalize problems before they arise, and again, I use my experience for things that I’ve tracked really, really well. And I know from my data and from how I’m feeling when I’m on the verge of one of those severe asthma attacks that hits me once a year, and I can take a little bit of preemptive measure, so I think that that will become progressively more common and that sense that we will know our baselines. I mean, when you think about being an athlete, which is something I think about, but I could never ever do,but what happens is you start with your detailed baselines, and that’s what your health coach looks at every three or four months. For most of us, we have no idea of our baselines. You we get our blood pressure measured once a year. We will have baselines, and that will help us on an ongoing basis to better understand and be in control of our health. And then if the product designers get it right, it will be done in a way that doesn’t feel invasive, but it’ll be done in a way that feels enabling. We’ll still be engaging with clinicians augmented by AI systems more and more because they will also have gone up the stack. They won’t be spending their time on just “take two Tylenol and have a lie down” type of engagements because that will be dealt with earlier on in the system. And so we will be there in a very, very different set of relationships. And they will feel that they have different ways of looking after our health. LEE: Azeem, it’s so comforting to hear such a wonderfully optimistic picture of the future of healthcare. And I actually agree with everything you’ve said. Let me just thank you again for joining this conversation. I think it’s been really fascinating. And I think somehow the systemic issues, the systemic issues that you tend to just see with such clarity, I think are going to be the most, kind of, profound drivers of change in the future. So thank you so much. AZHAR: Well, thank you, it’s been my pleasure, Peter, thank you.   I always think of Azeem as a systems thinker. He’s always able to take the experiences of new technologies at an individual level and then project out to what this could mean for whole organizations and whole societies. In our conversation, I felt that Azeem really connected some of what we learned in a previous episode—for example, from Chrissy Farr—on the evolving consumerization of healthcare to the broader workforce and economic impacts that we’ve heard about from Ethan Mollick.   Azeem’s personal story about managing his asthma was also a great example. You know, he imagines a future, as do I, where personal AI might assist and remember decades of personal experience with a condition like asthma and thereby know more than any human being could possibly know in a deeply personalized and effective way, leading to better care. Azeem’s relentless optimism about our AI future was also so heartening to hear. Both of these conversations leave me really optimistic about the future of AI in medicine. At the same time, it is pretty sobering to realize just how much we’ll all need to change in pretty fundamental and maybe even in radical ways. I think a big insight I got from these conversations is how we interact with machines is going to have to be altered not only at the individual level, but at the company level and maybe even at the societal level. Since my conversation with Ethan and Azeem, there have been some pretty important developments that speak directly to this. Just last week at Build, which is Microsoft’s yearly developer conference, we announced a slew of AI agent technologies. Our CEO, Satya Nadella, in fact, started his keynote by going online in a GitHub developer environment and then assigning a coding task to an AI agent, basically treating that AI as a full-fledged member of a development team. Other agents, for example, a meeting facilitator, a data analyst, a business researcher, travel agent, and more were also shown during the conference. But pertinent to healthcare specifically, what really blew me away was the demonstration of a healthcare orchestrator agent. And the specific thing here was in Stanford’s cancer treatment center, when they are trying to decide on potentially experimental treatments for cancer patients, they convene a meeting of experts. That is typically called a tumor board. And so this AI healthcare orchestrator agent actually participated as a full-fledged member of a tumor board meeting to help bring data together, make sure that the latest medical knowledge was brought to bear, and to assist in the decision-making around a patient’s cancer treatment. It was pretty amazing.A big thank-you again to Ethan and Azeem for sharing their knowledge and understanding of the dynamics between AI and society more broadly. And to our listeners, thank you for joining us. I’m really excited for the upcoming episodes, including discussions on medical students’ experiences with AI and AI’s influence on the operation of health systems and public health departments. We hope you’ll continue to tune in. Until next time. #what #ais #impact #individuals #means
    What AI’s impact on individuals means for the health workforce and industry
    www.microsoft.com
    Transcript [MUSIC]    [BOOK PASSAGE]  PETER LEE: “In American primary care, the missing workforce is stunning in magnitude, the shortfall estimated to reach up to 48,000 doctors within the next dozen years. China and other countries with aging populations can expect drastic shortfalls, as well. Just last month, I asked a respected colleague retiring from primary care who he would recommend as a replacement; he told me bluntly that, other than expensive concierge care practices, he could not think of anyone, even for himself. This mismatch between need and supply will only grow, and the US is far from alone among developed countries in facing it.” [END OF BOOK PASSAGE]    [THEME MUSIC]    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.      [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 4: Trust but Verify,” which was written by Zak. You know, it’s no secret that in the US and elsewhere shortages in medical staff and the rise of clinician burnout are affecting the quality of patient care for the worse. In our book, we predicted that generative AI would be something that might help address these issues. So in this episode, we’ll delve into how individual performance gains that our previous guests have described might affect the healthcare workforce as a whole, and on the patient side, we’ll look into the influence of generative AI on the consumerization of healthcare. Now, since all of this consumes such a huge fraction of the overall economy, we’ll also get into what a general-purpose technology as disruptive as generative AI might mean in the context of labor markets and beyond.   To help us do that, I’m pleased to welcome Ethan Mollick and Azeem Azhar. Ethan Mollick is the Ralph J. Roberts Distinguished Faculty Scholar, a Rowan Fellow, and an associate professor at the Wharton School of the University of Pennsylvania. His research into the effects of AI on work, entrepreneurship, and education is applied by organizations around the world, leading him to be named one of Time magazine’s most influential people in AI for 2024. He’s also the author of the New York Times best-selling book Co-Intelligence. Azeem Azhar is an author, founder, investor, and one of the most thoughtful and influential voices on the interplay between disruptive emerging technologies and business and society. In his best-selling book, The Exponential Age, and in his highly regarded newsletter and podcast, Exponential View, he explores how technologies like AI are reshaping everything from healthcare to geopolitics. Ethan and Azeem are two leading thinkers on the ways that disruptive technologies—and especially AI—affect our work, our jobs, our business enterprises, and whole industries. As economists, they are trying to work out whether we are in the midst of an economic revolution as profound as the shift from an agrarian to an industrial society. [TRANSITION MUSIC] Here is my interview with Ethan Mollick: LEE: Ethan, welcome. ETHAN MOLLICK: So happy to be here, thank you. LEE: I described you as a professor at Wharton, which I think most of the people who listen to this podcast series know of as an elite business school. So it might surprise some people that you study AI. And beyond that, you know, that I would seek you out to talk about AI in medicine. [LAUGHTER] So to get started, how and why did it happen that you’ve become one of the leading experts on AI? MOLLICK: It’s actually an interesting story. I’ve been AI-adjacent my whole career. When I was [getting] my PhD at MIT, I worked with Marvin Minsky (opens in new tab) and the MIT [Massachusetts Institute of Technology] Media Labs AI group. But I was never the technical AI guy. I was the person who was trying to explain AI to everybody else who didn’t understand it. And then I became very interested in, how do you train and teach? And AI was always a part of that. I was building games for teaching, teaching tools that were used in hospitals and elsewhere, simulations. So when LLMs burst into the scene, I had already been using them and had a good sense of what they could do. And between that and, kind of, being practically oriented and getting some of the first research projects underway, especially under education and AI and performance, I became sort of a go-to person in the field. And once you’re in a field where nobody knows what’s going on and we’re all making it up as we go along—I thought it’s funny that you led with the idea that you have a couple of months head start for GPT-4, right. Like that’s all we have at this point, is a few months’ head start. [LAUGHTER] So being a few months ahead is good enough to be an expert at this point. Whether it should be or not is a different question. LEE: Well, if I understand correctly, leading AI companies like OpenAI, Anthropic, and others have now sought you out as someone who should get early access to really start to do early assessments and gauge early reactions. How has that been? MOLLICK: So, I mean, I think the bigger picture is less about me than about two things that tells us about the state of AI right now. One, nobody really knows what’s going on, right. So in a lot of ways, if it wasn’t for your work, Peter, like, I don’t think people would be thinking about medicine as much because these systems weren’t built for medicine. They weren’t built to change education. They weren’t built to write memos. They, like, they weren’t built to do any of these things. They weren’t really built to do anything in particular. It turns out they’re just good at many things. And to the extent that the labs work on them, they care about their coding ability above everything else and maybe math and science secondarily. They don’t think about the fact that it expresses high empathy. They don’t think about its accuracy and diagnosis or where it’s inaccurate. They don’t think about how it’s changing education forever. So one part of this is the fact that they go to my Twitter feed or ask me for advice is an indicator of where they are, too, which is they’re not thinking about this. And the fact that a few months’ head start continues to give you a lead tells you that we are at the very cutting edge. These labs aren’t sitting on projects for two years and then releasing them. Months after a project is complete or sooner, it’s out the door. Like, there’s very little delay. So we’re kind of all in the same boat here, which is a very unusual space for a new technology. LEE: And I, you know, explained that you’re at Wharton. Are you an odd fit as a faculty member at Wharton, or is this a trend now even in business schools that AI experts are becoming key members of the faculty? MOLLICK: I mean, it’s a little of both, right. It’s faculty, so everybody does everything. I’m a professor of innovation-entrepreneurship. I’ve launched startups before and working on that and education means I think about, how do organizations redesign themselves? How do they take advantage of these kinds of problems? So medicine’s always been very central to that, right. A lot of people in my MBA class have been MDs either switching, you know, careers or else looking to advance from being sort of individual contributors to running teams. So I don’t think that’s that bad a fit. But I also think this is general-purpose technology; it’s going to touch everything. The focus on this is medicine, but Microsoft does far more than medicine, right. It’s … there’s transformation happening in literally every field, in every country. This is a widespread effect. So I don’t think we should be surprised that business schools matter on this because we care about management. There’s a long tradition of management and medicine going together. There’s actually a great academic paper that shows that teaching hospitals that also have MBA programs associated with them have higher management scores and perform better (opens in new tab). So I think that these are not as foreign concepts, especially as medicine continues to get more complicated. LEE: Yeah. Well, in fact, I want to dive a little deeper on these issues of management, of entrepreneurship, um, education. But before doing that, if I could just stay focused on you. There is always something interesting to hear from people about their first encounters with AI. And throughout this entire series, I’ve been doing that both pre-generative AI and post-generative AI. So you, sort of, hinted at the pre-generative AI. You were in Minsky’s lab. Can you say a little bit more about that early encounter? And then tell us about your first encounters with generative AI. MOLLICK: Yeah. Those are great questions. So first of all, when I was at the media lab, that was pre-the current boom in sort of, you know, even in the old-school machine learning kind of space. So there was a lot of potential directions to head in. While I was there, there were projects underway, for example, to record every interaction small children had. One of the professors was recording everything their baby interacted with in the hope that maybe that would give them a hint about how to build an AI system. There was a bunch of projects underway that were about labeling every concept and how they relate to other concepts. So, like, it was very much Wild West of, like, how do we make an AI work—which has been this repeated problem in AI, which is, what is this thing? The fact that it was just like brute force over the corpus of all human knowledge turns out to be a little bit of like a, you know, it’s a miracle and a little bit of a disappointment in some ways [LAUGHTER] compared to how elaborate some of this was. So, you know, I think that, that was sort of my first encounters in sort of the intellectual way. The generative AI encounters actually started with the original, sort of, GPT-3, or, you know, earlier versions. And it was actually game-based. So I played games like AI Dungeon. And as an educator, I realized, oh my gosh, this stuff could write essays at a fourth-grade level. That’s really going to change the way, like, middle school works, was my thinking at the time. And I was posting about that back in, you know, 2021 that this is a big deal. But I think everybody was taken surprise, including the AI companies themselves, by, you know, ChatGPT, by GPT-3.5. The difference in degree turned out to be a difference in kind. LEE: Yeah, you know, if I think back, even with GPT-3, and certainly this was the case with GPT-2, it was, at least, you know, from where I was sitting, it was hard to get people to really take this seriously and pay attention. MOLLICK: Yes. LEE: You know, it’s remarkable. Within Microsoft, I think a turning point was the use of GPT-3 to do code completions. And that was actually productized as GitHub Copilot (opens in new tab), the very first version. That, I think, is where there was widespread belief. But, you know, in a way, I think there is, even for me early on, a sense of denial and skepticism. Did you have those initially at any point? MOLLICK: Yeah, I mean, it still happens today, right. Like, this is a weird technology. You know, the original denial and skepticism was, I couldn’t see where this was going. It didn’t seem like a miracle because, you know, of course computers can complete code for you. Like, what else are they supposed to do? Of course, computers can give you answers to questions and write fun things. So there’s difference of moving into a world of generative AI. I think a lot of people just thought that’s what computers could do. So it made the conversations a little weird. But even today, faced with these, you know, with very strong reasoner models that operate at the level of PhD students, I think a lot of people have issues with it, right. I mean, first of all, they seem intuitive to use, but they’re not always intuitive to use because the first use case that everyone puts AI to, it fails at because they use it like Google or some other use case. And then it’s genuinely upsetting in a lot of ways. I think, you know, I write in my book about the idea of three sleepless nights. That hasn’t changed. Like, you have to have an intellectual crisis to some extent, you know, and I think people do a lot to avoid having that existential angst of like, “Oh my god, what does it mean that a machine could think—apparently think—like a person?” So, I mean, I see resistance now. I saw resistance then. And then on top of all of that, there’s the fact that the curve of the technology is quite great. I mean, the price of GPT-4 level intelligence from, you know, when it was released has dropped 99.97% at this point, right. LEE: Yes. Mm-hmm. MOLLICK: I mean, I could run a GPT-4 class system basically on my phone. Microsoft’s releasing things that can almost run on like, you know, like it fits in almost no space, that are almost as good as the original GPT-4 models. I mean, I don’t think people have a sense of how fast the trajectory is moving either. LEE: Yeah, you know, there’s something that I think about often. There is this existential dread, or will this technology replace me? But I think the first people to feel that are researchers—people encountering this for the first time. You know, if you were working, let’s say, in Bayesian reasoning or in traditional, let’s say, Gaussian mixture model based, you know, speech recognition, you do get this feeling, Oh, my god, this technology has just solved the problem that I’ve dedicated my life to. And there is this really difficult period where you have to cope with that. And I think this is going to be spreading, you know, in more and more walks of life. And so this … at what point does that sort of sense of dread hit you, if ever? MOLLICK: I mean, you know, it’s not even dread as much as like, you know, Tyler Cowen wrote that it’s impossible to not feel a little bit of sadness as you use these AI systems, too. Because, like, I was talking to a friend, just as the most minor example, and his talent that he was very proud of was he was very good at writing limericks for birthday cards. He’d write these limericks. Everyone was always amused by them. [LAUGHTER] And now, you know, GPT-4 and GPT-4.5, they made limericks obsolete. Like, anyone can write a good limerick, right. So this was a talent, and it was a little sad. Like, this thing that you cared about mattered. You know, as academics, we’re a little used to dead ends, right, and like, you know, some getting the lap. But the idea that entire fields are hitting that way. Like in medicine, there’s a lot of support systems that are now obsolete. And the question is how quickly you change that. In education, a lot of our techniques are obsolete. What do you do to change that? You know, it’s like the fact that this brute force technology is good enough to solve so many problems is weird, right. And it’s not just the end of, you know, of our research angles that matter, too. Like, for example, I ran this, you know, 14-person-plus, multimillion-dollar effort at Wharton to build these teaching simulations, and we’re very proud of them. It took years of work to build one. Now we’ve built a system that can build teaching simulations on demand by you talking to it with one team member. And, you know, you literally can create any simulation by having a discussion with the AI. I mean, you know, there’s a switch to a new form of excitement, but there is a little bit of like, this mattered to me, and, you know, now I have to change how I do things. I mean, adjustment happens. But if you haven’t had that displacement, I think that’s a good indicator that you haven’t really faced AI yet. LEE: Yeah, what’s so interesting just listening to you is you use words like sadness, and yet I can see the—and hear the—excitement in your voice and your body language. So, you know, that’s also kind of an interesting aspect of all of this.  MOLLICK: Yeah, I mean, I think there’s something on the other side, right. But, like, I can’t say that I haven’t had moments where like, ughhhh, but then there’s joy and basically like also, you know, freeing stuff up. I mean, I think about doctors or professors, right. These are jobs that bundle together lots of different tasks that you would never have put together, right. If you’re a doctor, you would never have expected the same person to be good at keeping up with the research and being a good diagnostician and being a good manager and being good with people and being good with hand skills. Like, who would ever want that kind of bundle? That’s not something you’re all good at, right. And a lot of our stress of our job comes from the fact that we suck at some of it. And so to the extent that AI steps in for that, you kind of feel bad about some of the stuff that it’s doing that you wanted to do. But it’s much more uplifting to be like, I don’t have to do this stuff I’m bad anymore, or I get the support to make myself good at it. And the stuff that I really care about, I can focus on more. Well, because we are at kind of a unique moment where whatever you’re best at, you’re still better than AI. And I think it’s an ongoing question about how long that lasts. But for right now, like you’re not going to say, OK, AI replaces me entirely in my job in medicine. It’s very unlikely. But you will say it replaces these 17 things I’m bad at, but I never liked that anyway. So it’s a period of both excitement and a little anxiety. LEE: Yeah, I’m going to want to get back to this question about in what ways AI may or may not replace doctors or some of what doctors and nurses and other clinicians do. But before that, let’s get into, I think, the real meat of this conversation. In previous episodes of this podcast, we talked to clinicians and healthcare administrators and technology developers that are very rapidly injecting AI today to do various forms of workforce automation, you know, automatically writing a clinical encounter note, automatically filling out a referral letter or request for prior authorization for some reimbursement to an insurance company. And so these sorts of things are intended not only to make things more efficient and lower costs but also to reduce various forms of drudgery, cognitive burden on frontline health workers. So how do you think about the impact of AI on that aspect of workforce, and, you know, what would you expect will happen over the next few years in terms of impact on efficiency and costs? MOLLICK: So I mean, this is a case where I think we’re facing the big bright problem in AI in a lot of ways, which is that this is … at the individual level, there’s lots of performance gains to be gained, right. The problem, though, is that we as individuals fit into systems, in medicine as much as anywhere else or more so, right. Which is that you could individually boost your performance, but it’s also about systems that fit along with this, right. So, you know, if you could automatically, you know, record an encounter, if you could automatically make notes, does that change what you should be expecting for notes or the value of those notes or what they’re for? How do we take what one person does and validate it across the organization and roll it out for everybody without making it a 10-year process that it feels like IT in medicine often is? Like, so we’re in this really interesting period where there’s incredible amounts of individual innovation in productivity and performance improvements in this field, like very high levels of it, but not necessarily seeing that same thing translate to organizational efficiency or gains. And one of my big concerns is seeing that happen. We’re seeing that in nonmedical problems, the same kind of thing, which is, you know, we’ve got research showing 20 and 40% performance improvements, like not uncommon to see those things. But then the organization doesn’t capture it; the system doesn’t capture it. Because the individuals are doing their own work and the systems don’t have the ability to, kind of, learn or adapt as a result. LEE: You know, where are those productivity gains going, then, when you get to the organizational level? MOLLICK: Well, they’re dying for a few reasons. One is, there’s a tendency for individual contributors to underestimate the power of management, right. Practices associated with good management increase happiness, decrease, you know, issues, increase success rates. In the same way, about 40%, as far as we can tell, of the US advantage over other companies, of US firms, has to do with management ability. Like, management is a big deal. Organizing is a big deal. Thinking about how you coordinate is a big deal. At the individual level, when things get stuck there, right, you can’t start bringing them up to how systems work together. It becomes, How do I deal with a doctor that has a 60% performance improvement? We really only have one thing in our playbook for doing that right now, which is, OK, we could fire 40% of the other doctors and still have a performance gain, which is not the answer you want to see happen. So because of that, people are hiding their use. They’re actually hiding their use for lots of reasons. And it’s a weird case because the people who are able to figure out best how to use these systems, for a lot of use cases, they’re actually clinicians themselves because they’re experimenting all the time. Like, they have to take those encounter notes. And if they figure out a better way to do it, they figure that out. You don’t want to wait for, you know, a med tech company to figure that out and then sell that back to you when it can be done by the physicians themselves. So we’re just not used to a period where everybody’s innovating and where the management structure isn’t in place to take advantage of that. And so we’re seeing things stalled at the individual level, and people are often, especially in risk-averse organizations or organizations where there’s lots of regulatory hurdles, people are so afraid of the regulatory piece that they don’t even bother trying to make change. LEE: If you are, you know, the leader of a hospital or a clinic or a whole health system, how should you approach this? You know, how should you be trying to extract positive success out of AI? MOLLICK: So I think that you need to embrace the right kind of risk, right. We don’t want to put risk on our patients … like, we don’t want to put uninformed risk. But innovation involves risk to how organizations operate. They involve change. So I think part of this is embracing the idea that R&D has to happen in organizations again. What’s happened over the last 20 years or so has been organizations giving that up. Partially, that’s a trend to focus on what you’re good at and not try and do this other stuff. Partially, it’s because it’s outsourced now to software companies that, like, Salesforce tells you how to organize your sales team. Workforce tells you how to organize your organization. Consultants come in and will tell you how to make change based on the average of what other people are doing in your field. So companies and organizations and hospital systems have all started to give up their ability to create their own organizational change. And when I talk to organizations, I often say they have to have two approaches. They have to think about the crowd and the lab. So the crowd is the idea of how to empower clinicians and administrators and supporter networks to start using AI and experimenting in ethical, legal ways and then sharing that information with each other. And the lab is, how are we doing R&D about the approach of how to [get] AI to work, not just in direct patient care, right. But also fundamentally, like, what paperwork can you cut out? How can we better explain procedures? Like, what management role can this fill? And we need to be doing active experimentation on that. We can’t just wait for, you know, Microsoft to solve the problems. It has to be at the level of the organizations themselves. LEE: So let’s shift a little bit to the patient. You know, one of the things that we see, and I think everyone is seeing, is that people are turning to chatbots, like ChatGPT, actually to seek healthcare information for, you know, their own health or the health of their loved ones. And there was already, prior to all of this, a trend towards, let’s call it, consumerization of healthcare. So just in the business of healthcare delivery, do you think AI is going to hasten these kinds of trends, or from the consumer’s perspective, what … ? MOLLICK: I mean, absolutely, right. Like, all the early data that we have suggests that for most common medical problems, you should just consult AI, too, right. In fact, there is a real question to ask: at what point does it become unethical for doctors themselves to not ask for a second opinion from the AI because it’s cheap, right? You could overrule it or whatever you want, but like not asking seems foolish. I think the two places where there’s a burning almost, you know, moral imperative is … let’s say, you know, I’m in Philadelphia, I’m a professor, I have access to really good healthcare through the Hospital University of Pennsylvania system. I know doctors. You know, I’m lucky. I’m well connected. If, you know, something goes wrong, I have friends who I can talk to. I have specialists. I’m, you know, pretty well educated in this space. But for most people on the planet, they don’t have access to good medical care, they don’t have good health. It feels like it’s absolutely imperative to say when should you use AI and when not. Are there blind spots? What are those things? And I worry that, like, to me, that would be the crash project I’d be invoking because I’m doing the same thing in education, which is this system is not as good as being in a room with a great teacher who also uses AI to help you, but it’s better than not getting an, you know, to the level of education people get in many cases. Where should we be using it? How do we guide usage in the right way? Because the AI labs aren’t thinking about this. We have to. So, to me, there is a burning need here to understand this. And I worry that people will say, you know, everything that’s true—AI can hallucinate, AI can be biased. All of these things are absolutely true, but people are going to use it. The early indications are that it is quite useful. And unless we take the active role of saying, here’s when to use it, here’s when not to use it, we don’t have a right to say, don’t use this system. And I think, you know, we have to be exploring that. LEE: What do people need to understand about AI? And what should schools, universities, and so on be teaching? MOLLICK: Those are, kind of, two separate questions in lot of ways. I think a lot of people want to teach AI skills, and I will tell you, as somebody who works in this space a lot, there isn’t like an easy, sort of, AI skill, right. I could teach you prompt engineering in two to three classes, but every indication we have is that for most people under most circumstances, the value of prompting, you know, any one case is probably not that useful. A lot of the tricks are disappearing because the AI systems are just starting to use them themselves. So asking good questions, being a good manager, being a good thinker tend to be important, but like magic tricks around making, you know, the AI do something because you use the right phrase used to be something that was real but is rapidly disappearing. So I worry when people say teach AI skills. No one’s been able to articulate to me as somebody who knows AI very well and teaches classes on AI, what those AI skills that everyone should learn are, right. I mean, there’s value in learning a little bit how the models work. There’s a value in working with these systems. A lot of it’s just hands on keyboard kind of work. But, like, we don’t have an easy slam dunk “this is what you learn in the world of AI” because the systems are getting better, and as they get better, they get less sensitive to these prompting techniques. They get better prompting themselves. They solve problems spontaneously and start being agentic. So it’s a hard problem to ask about, like, what do you train someone on? I think getting people experience in hands-on-keyboards, getting them to … there’s like four things I could teach you about AI, and two of them are already starting to disappear. But, like, one is be direct. Like, tell the AI exactly what you want. That’s very helpful. Second, provide as much context as possible. That can include things like acting as a doctor, but also all the information you have. The third is give it step-by-step directions—that’s becoming less important. And the fourth is good and bad examples of the kind of output you want. Those four, that’s like, that’s it as far as the research telling you what to do, and the rest is building intuition. LEE: I’m really impressed that you didn’t give the answer, “Well, everyone should be teaching my book, Co-Intelligence.” [LAUGHS] MOLLICK: Oh, no, sorry! Everybody should be teaching my book Co-Intelligence. I apologize. [LAUGHTER] LEE: It’s good to chuckle about that, but actually, I can’t think of a better book, like, if you were to assign a textbook in any professional education space, I think Co-Intelligence would be number one on my list. Are there other things that you think are essential reading? MOLLICK: That’s a really good question. I think that a lot of things are evolving very quickly. I happen to, kind of, hit a sweet spot with Co-Intelligence to some degree because I talk about how I used it, and I was, sort of, an advanced user of these systems. So, like, it’s, sort of, like my Twitter feed, my online newsletter. I’m just trying to, kind of, in some ways, it’s about trying to make people aware of what these systems can do by just showing a lot, right. Rather than picking one thing, and, like, this is a general-purpose technology. Let’s use it for this. And, like, everybody gets a light bulb for a different reason. So more than reading, it is using, you know, and that can be Copilot or whatever your favorite tool is. But using it. Voice modes help a lot. In terms of readings, I mean, I think that there is a couple of good guides to understanding AI that were originally blog posts. I think Tim Lee has one called Understanding AI (opens in new tab), and it had a good overview … LEE: Yeah, that’s a great one. MOLLICK: … of that topic that I think explains how transformers work, which can give you some mental sense. I think [Andrej] Karpathy (opens in new tab) has some really nice videos of use that I would recommend. Like on the medical side, I think the book that you did, if you’re in medicine, you should read that. I think that that’s very valuable. But like all we can offer are hints in some ways. Like there isn’t … if you’re looking for the instruction manual, I think it can be very frustrating because it’s like you want the best practices and procedures laid out, and we cannot do that, right. That’s not how a system like this works. LEE: Yeah. MOLLICK: It’s not a person, but thinking about it like a person can be helpful, right. LEE: One of the things that has been sort of a fun project for me for the last few years is I have been a founding board member of a new medical school at Kaiser Permanente. And, you know, that medical school curriculum is being formed in this era. But it’s been perplexing to understand, you know, what this means for a medical school curriculum. And maybe even more perplexing for me, at least, is the accrediting bodies, which are extremely important in US medical schools; how accreditors should think about what’s necessary here. Besides the things that you’ve … the, kind of, four key ideas you mentioned, if you were talking to the board of directors of the LCME [Liaison Committee on Medical Education] accrediting body, what’s the one thing you would want them to really internalize? MOLLICK: This is both a fast-moving and vital area. This can’t be viewed like a usual change, which [is], “Let’s see how this works.” Because it’s, like, the things that make medical technologies hard to do, which is like unclear results, limited, you know, expensive use cases where it rolls out slowly. So one or two, you know, advanced medical facilities get access to, you know, proton beams or something else at multi-billion dollars of cost, and that takes a while to diffuse out. That’s not happening here. This is all happening at the same time, all at once. This is now … AI is part of medicine. I mean, there’s a minor point that I’d make that actually is a really important one, which is large language models, generative AI overall, work incredibly differently than other forms of AI. So the other worry I have with some of these accreditors is they blend together algorithmic forms of AI, which medicine has been trying for long time—decision support, algorithmic methods, like, medicine more so than other places has been thinking about those issues. Generative AI, even though it uses the same underlying techniques, is a completely different beast. So, like, even just take the most simple thing of algorithmic aversion, which is a well-understood problem in medicine, right. Which is, so you have a tool that could tell you as a radiologist, you know, the chance of this being cancer; you don’t like it, you overrule it, right. We don’t find algorithmic aversion happening with LLMs in the same way. People actually enjoy using them because it’s more like working with a person. The flaws are different. The approach is different. So you need to both view this as universal applicable today, which makes it urgent, but also as something that is not the same as your other form of AI, and your AI working group that is thinking about how to solve this problem is not the right people here. LEE: You know, I think the world has been trained because of the magic of web search to view computers as question-answering machines. Ask a question, get an answer. MOLLICK: Yes. Yes. LEE: Write a query, get results. And as I have interacted with medical professionals, you can see that medical professionals have that model of a machine in mind. And I think that’s partly, I think psychologically, why hallucination is so alarming. Because you have a mental model of a computer as a machine that has absolutely rock-solid perfect memory recall. But the thing that was so powerful in Co-Intelligence, and we tried to get at this in our book also, is that’s not the sweet spot. It’s this sort of deeper interaction, more of a collaboration. And I thought your use of the term Co-Intelligence really just even in the title of the book tried to capture this. When I think about education, it seems like that’s the first step, to get past this concept of a machine being just a question-answering machine. Do you have a reaction to that idea? MOLLICK: I think that’s very powerful. You know, we’ve been trained over so many years at both using computers but also in science fiction, right. Computers are about cold logic, right. They will give you the right answer, but if you ask it what love is, they explode, right. Like that’s the classic way you defeat the evil robot in Star Trek, right. “Love does not compute.” [LAUGHTER] Instead, we have a system that makes mistakes, is warm, beats doctors in empathy in almost every controlled study on the subject, right. Like, absolutely can outwrite you in a sonnet but will absolutely struggle with giving you the right answer every time. And I think our mental models are just broken for this. And I think you’re absolutely right. And that’s part of what I thought your book does get at really well is, like, this is a different thing. It’s also generally applicable. Again, the model in your head should be kind of like a person even though it isn’t, right. There’s a lot of warnings and caveats to it, but if you start from person, smart person you’re talking to, your mental model will be more accurate than smart machine, even though both are flawed examples, right. So it will make mistakes; it will make errors. The question is, what do you trust it on? What do you not trust it? As you get to know a model, you’ll get to understand, like, I totally don’t trust it for this, but I absolutely trust it for that, right. LEE: All right. So we’re getting to the end of the time we have together. And so I’d just like to get now into something a little bit more provocative. And I get the question all the time. You know, will AI replace doctors? In medicine and other advanced knowledge work, project out five to 10 years. What do think happens? MOLLICK: OK, so first of all, let’s acknowledge systems change much more slowly than individual use. You know, doctors are not individual actors; they’re part of systems, right. So not just the system of a patient who like may or may not want to talk to a machine instead of a person but also legal systems and administrative systems and systems that allocate labor and systems that train people. So, like, it’s hard to imagine that in five to 10 years medicine being so upended that even if AI was better than doctors at every single thing doctors do, that we’d actually see as radical a change in medicine as you might in other fields. I think you will see faster changes happen in consulting and law and, you know, coding, other spaces than medicine. But I do think that there is good reason to suspect that AI will outperform people while still having flaws, right. That’s the difference. We’re already seeing that for common medical questions in enough randomized controlled trials that, you know, best doctors beat AI, but the AI beats the mean doctor, right. Like, that’s just something we should acknowledge is happening at this point. Now, will that work in your specialty? No. Will that work with all the contingent social knowledge that you have in your space? Probably not. Like, these are vignettes, right. But, like, that’s kind of where things are. So let’s assume, right … you’re asking two questions. One is, how good will AI get? LEE: Yeah. MOLLICK: And we don’t know the answer to that question. I will tell you that your colleagues at Microsoft and increasingly the labs, the AI labs themselves, are all saying they think they’ll have a machine smarter than a human at every intellectual task in the next two to three years. If that doesn’t happen, that makes it easier to assume the future, but let’s just assume that that’s the case. I think medicine starts to change with the idea that people feel obligated to use this to help for everything. Your patients will be using it, and it will be your advisor and helper at the beginning phases, right. And I think that I expect people to be better at empathy. I expect better bedside manner. I expect management tasks to become easier. I think administrative burden might lighten if we handle this right way or much worse if we handle it badly. Diagnostic accuracy will increase, right. And then there’s a set of discovery pieces happening, too, right. One of the core goals of all the AI companies is to accelerate medical research. How does that happen and how does that affect us is a, kind of, unknown question. So I think clinicians are in both the eye of the storm and surrounded by it, right. Like, they can resist AI use for longer than most other fields, but everything around them is going to be affected by it. LEE: Well, Ethan, this has been really a fantastic conversation. And, you know, I think in contrast to all the other conversations we’ve had, this one gives especially the leaders in healthcare, you know, people actually trying to lead their organizations into the future, whether it’s in education or in delivery, a lot to think about. So I really appreciate you joining. MOLLICK: Thank you. [TRANSITION MUSIC]   I’m a computing researcher who works with people who are right in the middle of today’s bleeding-edge developments in AI. And because of that, I often lose sight of how to talk to a broader audience about what it’s all about. And so I think one of Ethan’s superpowers is that he has this knack for explaining complex topics in AI in a really accessible way, getting right to the most important points without making it so simple as to be useless. That’s why I rarely miss an opportunity to read up on his latest work. One of the first things I learned from Ethan is the intuition that you can, sort of, think of AI as a very knowledgeable intern. In other words, think of it as a persona that you can interact with, but you also need to be a manager for it and to always assess the work that it does. In our discussion, Ethan went further to stress that there is, because of that, a serious education gap. You know, over the last decade or two, we’ve all been trained, mainly by search engines, to think of computers as question-answering machines. In medicine, in fact, there’s a question-answering application that is really popular called UpToDate (opens in new tab). Doctors use it all the time. But generative AI systems like ChatGPT are different. There’s therefore a challenge in how to break out of the old-fashioned mindset of search to get the full value out of generative AI. The other big takeaway for me was that Ethan pointed out while it’s easy to see productivity gains from AI at the individual level, those same gains, at least today, don’t often translate automatically to organization-wide or system-wide gains. And one, of course, has to conclude that it takes more than just making individuals more productive; the whole system also has to adjust to the realities of AI. Here’s now my interview with Azeem Azhar: LEE: Azeem, welcome. AZEEM AZHAR: Peter, thank you so much for having me.  LEE: You know, I think you’re extremely well known in the world. But still, some of the listeners of this podcast series might not have encountered you before. And so one of the ways I like to ask people to introduce themselves is, how do you explain to your parents what you do every day? AZHAR: Well, I’m very lucky in that way because my mother was the person who got me into computers more than 40 years ago. And I still have that first computer, a ZX81 with a Z80 chip … LEE: Oh wow. AZHAR: … to this day. It sits in my study, all seven and a half thousand transistors and Bakelite plastic that it is. And my parents were both economists, and economics is deeply connected with technology in some sense. And I grew up in the late ’70s and the early ’80s. And that was a time of tremendous optimism around technology. It was space opera, science fiction, robots, and of course, the personal computer and, you know, Bill Gates and Steve Jobs. So that’s where I started. And so, in a way, my mother and my dad, who passed away a few years ago, had always known me as someone who was fiddling with computers but also thinking about economics and society. And so, in a way, it’s easier to explain to them because they’re the ones who nurtured the environment that allowed me to research technology and AI and think about what it means to firms and to the economy at large. LEE: I always like to understand the origin story. And what I mean by that is, you know, what was your first encounter with generative AI? And what was that like? What did you go through? AZHAR: The first real moment was when Midjourney and Stable Diffusion emerged in that summer of 2022. I’d been away on vacation, and I came back—and I’d been off grid, in fact—and the world had really changed. Now, I’d been aware of GPT-3 and GPT-2, which I played around with and with BERT, the original transformer paper about seven or eight years ago, but it was the moment where I could talk to my computer, and it could produce these images, and it could be refined in natural language that really made me think we’ve crossed into a new domain. We’ve gone from AI being highly discriminative to AI that’s able to explore the world in particular ways. And then it was a few months later that ChatGPT came out—November, the 30th. And I think it was the next day or the day after that I said to my team, everyone has to use this, and we have to meet every morning and discuss how we experimented the day before. And we did that for three or four months. And, you know, it was really clear to me in that interface at that point that, you know, we’d absolutely pass some kind of threshold. LEE: And who’s the we that you were experimenting with? AZHAR: So I have a team of four who support me. They’re mostly researchers of different types. I mean, it’s almost like one of those jokes. You know, I have a sociologist, an economist, and an astrophysicist. And, you know, they walk into the bar, [LAUGHTER] or they walk into our virtual team room, and we try to solve problems. LEE: Well, so let’s get now into brass tacks here. And I think I want to start maybe just with an exploration of the economics of all this and economic realities. Because I think in a lot of your work—for example, in your book—you look pretty deeply at how automation generally and AI specifically are transforming certain sectors like finance, manufacturing, and you have a really, kind of, insightful focus on what this means for productivity and which ways, you know, efficiencies are found.   And then you, sort of, balance that with risks, things that can and do go wrong. And so as you take that background and looking at all those other sectors, in what ways are the same patterns playing out or likely to play out in healthcare and medicine? AZHAR: I’m sure we will see really remarkable parallels but also new things going on. I mean, medicine has a particular quality compared to other sectors in the sense that it’s highly regulated, market structure is very different country to country, and it’s an incredibly broad field. I mean, just think about taking a Tylenol and going through laparoscopic surgery. Having an MRI and seeing a physio. I mean, this is all medicine. I mean, it’s hard to imagine a sector that is [LAUGHS] more broad than that. So I think we can start to break it down, and, you know, where we’re seeing things with generative AI will be that the, sort of, softest entry point, which is the medical scribing. And I’m sure many of us have been with clinicians who have a medical scribe running alongside—they’re all on Surface Pros I noticed, right? [LAUGHTER] They’re on the tablet computers, and they’re scribing away. And what that’s doing is, in the words of my friend Eric Topol, it’s giving the clinician time back (opens in new tab), right. They have time back from days that are extremely busy and, you know, full of administrative overload. So I think you can obviously do a great deal with reducing that overload. And within my team, we have a view, which is if you do something five times in a week, you should be writing an automation for it. And if you’re a doctor, you’re probably reviewing your notes, writing the prescriptions, and so on several times a day. So those are things that can clearly be automated, and the human can be in the loop. But I think there are so many other ways just within the clinic that things can help. So, one of my friends, my friend from my junior school—I’ve known him since I was 9—is an oncologist who’s also deeply into machine learning, and he’s in Cambridge in the UK. And he built with Microsoft Research a suite of imaging AI tools from his own discipline, which they then open sourced. So that’s another way that you have an impact, which is that you actually enable the, you know, generalist, specialist, polymath, whatever they are in health systems to be able to get this technology, to tune it to their requirements, to use it, to encourage some grassroots adoption in a system that’s often been very, very heavily centralized. LEE: Yeah. AZHAR: And then I think there are some other things that are going on that I find really, really exciting. So one is the consumerization of healthcare. So I have one of those sleep tracking rings, the Oura (opens in new tab). LEE: Yup. AZHAR: That is building a data stream that we’ll be able to apply more and more AI to. I mean, right now, it’s applying traditional, I suspect, machine learning, but you can imagine that as we start to get more data, we start to get more used to measuring ourselves, we create this sort of pot, a personal asset that we can turn AI to. And there’s still another category. And that other category is one of the completely novel ways in which we can enable patient care and patient pathway. And there’s a fantastic startup in the UK called Neko Health (opens in new tab), which, I mean, does physicals, MRI scans, and blood tests, and so on. It’s hard to imagine Neko existing without the sort of advanced data, machine learning, AI that we’ve seen emerge over the last decade. So, I mean, I think that there are so many ways in which the temperature is slowly being turned up to encourage a phase change within the healthcare sector. And last but not least, I do think that these tools can also be very, very supportive of a clinician’s life cycle. I think we, as patients, we’re a bit …  I don’t know if we’re as grateful as we should be for our clinicians who are putting in 90-hour weeks. [LAUGHTER] But you can imagine a world where AI is able to support not just the clinicians’ workload but also their sense of stress, their sense of burnout. So just in those five areas, Peter, I sort of imagine we could start to fundamentally transform over the course of many years, of course, the way in which people think about their health and their interactions with healthcare systems LEE: I love how you break that down. And I want to press on a couple of things. You also touched on the fact that medicine is, at least in most of the world, is a highly regulated industry. I guess finance is the same way, but they also feel different because the, like, finance sector has to be very responsive to consumers, and consumers are sensitive to, you know, an abundance of choice; they are sensitive to price. Is there something unique about medicine besides being regulated? AZHAR: I mean, there absolutely is. And in finance, as well, you have much clearer end states. So if you’re not in the consumer space, but you’re in the, you know, asset management space, you have to essentially deliver returns against the volatility or risk boundary, right. That’s what you have to go out and do. And I think if you’re in the consumer industry, you can come back to very, very clear measures, net promoter score being a very good example. In the case of medicine and healthcare, it is much more complicated because as far as the clinician is concerned, people are individuals, and we have our own parts and our own responses. If we didn’t, there would never be a need for a differential diagnosis. There’d never be a need for, you know, Let’s try azithromycin first, and then if that doesn’t work, we’ll go to vancomycin, or, you know, whatever it happens to be. You would just know. But ultimately, you know, people are quite different. The symptoms that they’re showing are quite different, and also their compliance is really, really different. I had a back problem that had to be dealt with by, you know, a physio and extremely boring exercises four times a week, but I was ruthless in complying, and my physio was incredibly surprised. He’d say well no one ever does this, and I said, well you know the thing is that I kind of just want to get this thing to go away. LEE: Yeah. AZHAR: And I think that that’s why medicine is and healthcare is so different and more complex. But I also think that’s why AI can be really, really helpful. I mean, we didn’t talk about, you know, AI in its ability to potentially do this, which is to extend the clinician’s presence throughout the week. LEE: Right. Yeah. AZHAR: The idea that maybe some part of what the clinician would do if you could talk to them on Wednesday, Thursday, and Friday could be delivered through an app or a chatbot just as a way of encouraging the compliance, which is often, especially with older patients, one reason why conditions, you know, linger on for longer. LEE: You know, just staying on the regulatory thing, as I’ve thought about this, the one regulated sector that I think seems to have some parallels to healthcare is energy delivery, energy distribution. Because like healthcare, as a consumer, I don’t have choice in who delivers electricity to my house. And even though I care about it being cheap or at least not being overcharged, I don’t have an abundance of choice. I can’t do price comparisons. And there’s something about that, just speaking as a consumer of both energy and a consumer of healthcare, that feels similar. Whereas other regulated industries, you know, somehow, as a consumer, I feel like I have a lot more direct influence and power. Does that make any sense to someone, you know, like you, who’s really much more expert in how economic systems work? AZHAR: I mean, in a sense, one part of that is very, very true. You have a limited panel of energy providers you can go to, and in the US, there may be places where you have no choice. I think the area where it’s slightly different is that as a consumer or a patient, you can actually make meaningful choices and changes yourself using these technologies, and people used to joke about you know asking Dr. Google. But Dr. Google is not terrible, particularly if you go to WebMD. And, you know, when I look at long-range change, many of the regulations that exist around healthcare delivery were formed at a point before people had access to good quality information at the touch of their fingertips or when educational levels in general were much, much lower. And many regulations existed because of the incumbent power of particular professional sectors. I’ll give you an example from the United Kingdom. So I have had asthma all of my life. That means I’ve been taking my inhaler, Ventolin, and maybe a steroid inhaler for nearly 50 years. That means that I know … actually, I’ve got more experience, and I—in some sense—know more about it than a general practitioner. LEE: Yeah. AZHAR: And until a few years ago, I would have to go to a general practitioner to get this drug that I’ve been taking for five decades, and there they are, age 30 or whatever it is. And a few years ago, the regulations changed. And now pharmacies can … or pharmacists can prescribe those types of drugs under certain conditions directly. LEE: Right. AZHAR: That was not to do with technology. That was to do with incumbent lock-in. So when we look at the medical industry, the healthcare space, there are some parallels with energy, but there are a few little things that the ability that the consumer has to put in some effort to learn about their condition, but also the fact that some of the regulations that exist just exist because certain professions are powerful. LEE: Yeah, one last question while we’re still on economics. There seems to be a conundrum about productivity and efficiency in healthcare delivery because I’ve never encountered a doctor or a nurse that wants to be able to handle even more patients than they’re doing on a daily basis. And so, you know, if productivity means simply, well, your rounds can now handle 16 patients instead of eight patients, that doesn’t seem necessarily to be a desirable thing. So how can we or should we be thinking about efficiency and productivity since obviously costs are, in most of the developed world, are a huge, huge problem? AZHAR: Yes, and when you described doubling the number of patients on the round, I imagined you buying them all roller skates so they could just whizz around [LAUGHTER] the hospital faster and faster than ever before. We can learn from what happened with the introduction of electricity. Electricity emerged at the end of the 19th century, around the same time that cars were emerging as a product, and car makers were very small and very artisanal. And in the early 1900s, some really smart car makers figured out that electricity was going to be important. And they bought into this technology by putting pendant lights in their workshops so they could “visit more patients.” Right? LEE: Yeah, yeah. AZHAR: They could effectively spend more hours working, and that was a productivity enhancement, and it was noticeable. But, of course, electricity fundamentally changed the productivity by orders of magnitude of people who made cars starting with Henry Ford because he was able to reorganize his factories around the electrical delivery of power and to therefore have the moving assembly line, which 10xed the productivity of that system. So when we think about how AI will affect the clinician, the nurse, the doctor, it’s much easier for us to imagine it as the pendant light that just has them working later … LEE: Right. AZHAR: … than it is to imagine a reconceptualization of the relationship between the clinician and the people they care for. And I’m not sure. I don’t think anybody knows what that looks like. But, you know, I do think that there will be a way that this changes, and you can see that scale out factor. And it may be, Peter, that what we end up doing is we end up saying, OK, because we have these brilliant AIs, there’s a lower level of training and cost and expense that’s required for a broader range of conditions that need treating. And that expands the market, right. That expands the market hugely. It’s what has happened in the market for taxis or ride sharing. The introduction of Uber and the GPS system … LEE: Yup. AZHAR: … has meant many more people now earn their living driving people around in their cars. And at least in London, you had to be reasonably highly trained to do that. So I can see a reorganization is possible. Of course, entrenched interests, the economic flow … and there are many entrenched interests, particularly in the US between the health systems and the, you know, professional bodies that might slow things down. But I think a reimagining is possible. And if I may, I’ll give you one example of that, which is, if you go to countries outside of the US where there are many more sick people per doctor, they have incentives to change the way they deliver their healthcare. And well before there was AI of this quality around, there was a few cases of health systems in India—Aravind Eye Care (opens in new tab) was one, and Narayana Hrudayalaya [now known as Narayana Health (opens in new tab)] was another. And in the latter, they were a cardiac care unit where you couldn’t get enough heart surgeons. LEE: Yeah, yep. AZHAR: So specially trained nurses would operate under the supervision of a single surgeon who would supervise many in parallel. So there are ways of increasing the quality of care, reducing the cost, but it does require a systems change. And we can’t expect a single bright algorithm to do it on its own. LEE: Yeah, really, really interesting. So now let’s get into regulation. And let me start with this question. You know, there are several startup companies I’m aware of that are pushing on, I think, a near-term future possibility that a medical AI for consumer might be allowed, say, to prescribe a medication for you, something that would normally require a doctor or a pharmacist, you know, that is certified in some way, licensed to do. Do you think we’ll get to a point where for certain regulated activities, humans are more or less cut out of the loop? AZHAR: Well, humans would have been in the loop because they would have provided the training data, they would have done the oversight, the quality control. But to your question in general, would we delegate an important decision entirely to a tested set of algorithms? I’m sure we will. We already do that. I delegate less important decisions like, What time should I leave for the airport to Waze. I delegate more important decisions to the automated braking in my car. We will do this at certain levels of risk and threshold. If I come back to my example of prescribing Ventolin. It’s really unclear to me that the prescription of Ventolin, this incredibly benign bronchodilator that is only used by people who’ve been through the asthma process, needs to be prescribed by someone who’s gone through 10 years or 12 years of medical training. And why that couldn’t be prescribed by an algorithm or an AI system. LEE: Right. Yep. Yep. AZHAR: So, you know, I absolutely think that that will be the case and could be the case. I can’t really see what the objections are. And the real issue is where do you draw the line of where you say, “Listen, this is too important,” or “The cost is too great,” or “The side effects are too high,” and therefore this is a point at which we want to have some, you know, human taking personal responsibility, having a liability framework in place, having a sense that there is a person with legal agency who signed off on this decision. And that line I suspect will start fairly low, and what we’d expect to see would be that that would rise progressively over time. LEE: What you just said, that scenario of your personal asthma medication, is really interesting because your personal AI might have the benefit of 50 years of your own experience with that medication. So, in a way, there is at least the data potential for, let’s say, the next prescription to be more personalized and more tailored specifically for you. AZHAR: Yes. Well, let’s dig into this because I think this is super interesting, and we can look at how things have changed. So 15 years ago, if I had a bad asthma attack, which I might have once a year, I would have needed to go and see my general physician. In the UK, it’s very difficult to get an appointment. I would have had to see someone privately who didn’t know me at all because I’ve just walked in off the street, and I would explain my situation. It would take me half a day. Productivity lost. I’ve been miserable for a couple of days with severe wheezing. Then a few years ago the system changed, a protocol changed, and now I have a thing called a rescue pack, which includes prednisolone steroids. It includes something else I’ve just forgotten, and an antibiotic in case I get an upper respiratory tract infection, and I have an “algorithm.” It’s called a protocol. It’s printed out. It’s a flowchart I answer various questions, and then I say, “I’m going to prescribe this to myself.” You know, UK doctors don’t prescribe prednisolone, or prednisone as you may call it in the US, at the drop of a hat, right. It’s a powerful steroid. I can self-administer, and I can now get that repeat prescription without seeing a physician a couple of times a year. And the algorithm, the “AI” is, it’s obviously been done in PowerPoint naturally, and it’s a bunch of arrows. [LAUGHS] Surely, surely, an AI system is going to be more sophisticated, more nuanced, and give me more assurance that I’m making the right decision around something like that. LEE: Yeah. Well, at a minimum, the AI should be able to make that PowerPoint the next time. [LAUGHS] AZHAR: Yeah, yeah. Thank god for Clippy. Yes. LEE: So, you know, I think in our book, we had a lot of certainty about most of the things we’ve discussed here, but one chapter where I felt we really sort of ran out of ideas, frankly, was on regulation. And, you know, what we ended up doing for that chapter is … I can’t remember if it was Carey’s or Zak’s idea, but we asked GPT-4 to have a conversation, a debate with itself [LAUGHS], about regulation. And we made some minor commentary on that. And really, I think we took that approach because we just didn’t have much to offer. By the way, in our defense, I don’t think anyone else had any better ideas anyway. AZHAR: Right. LEE: And so now two years later, do we have better ideas about the need for regulation, the frameworks around which those regulations should be developed, and, you know, what should this look like? AZHAR: So regulation is going to be in some cases very helpful because it provides certainty for the clinician that they’re doing the right thing, that they are still insured for what they’re doing, and it provides some degree of confidence for the patient. And we need to make sure that the claims that are made stand up to quite rigorous levels, where ideally there are RCTs [randomized control trials], and there are the classic set of processes you go through. You do also want to be able to experiment, and so the question is: as a regulator, how can you enable conditions for there to be experimentation? And what is experimentation? Experimentation is learning so that every element of the system can learn from this experience. So finding that space where there can be bit of experimentation, I think, becomes very, very important. And a lot of this is about experience, so I think the first digital therapeutics have received FDA approval, which means there are now people within the FDA who understand how you go about running an approvals process for that, and what that ends up looking like—and of course what we’re very good at doing in this sort of modern hyper-connected world—is we can share that expertise, that knowledge, that experience very, very quickly. So you go from one approval a year to a hundred approvals a year to a thousand approvals a year. So we will then actually, I suspect, need to think about what is it to approve digital therapeutics because, unlike big biological molecules, we can generate these digital therapeutics at the rate of knots [very rapidly]. LEE: Yes. AZHAR: Every road in Hayes Valley in San Francisco, right, is churning out new startups who will want to do things like this. So then, I think about, what does it mean to get approved if indeed it gets approved? But we can also go really far with things that don’t require approval. I come back to my sleep tracking ring. So I’ve been wearing this for a few years, and when I go and see my doctor or I have my annual checkup, one of the first things that he asks is how have I been sleeping. And in fact, I even sync my sleep tracking data to their medical record system, so he’s saying … hearing what I’m saying, but he’s actually pulling up the real data going, This patient’s lying to me again. Of course, I’m very truthful with my doctor, as we should all be. [LAUGHTER] LEE: You know, actually, that brings up a point that consumer-facing health AI has to deal with pop science, bad science, you know, weird stuff that you hear on Reddit. And because one of the things that consumers want to know always is, you know, what’s the truth? AZHAR: Right. LEE: What can I rely on? And I think that somehow feels different than an AI that you actually put in the hands of, let’s say, a licensed practitioner. And so the regulatory issues seem very, very different for these two cases somehow. AZHAR: I agree, they’re very different. And I think for a lot of areas, you will want to build AI systems that are first and foremost for the clinician, even if they have patient extensions, that idea that the clinician can still be with a patient during the week. And you’ll do that anyway because you need the data, and you also need a little bit of a liability shield to have like a sensible person who’s been trained around that. And I think that’s going to be a very important pathway for many AI medical crossovers. We’re going to go through the clinician. LEE: Yeah. AZHAR: But I also do recognize what you say about the, kind of, kooky quackery that exists on Reddit. Although on Creatine, Reddit may yet prove to have been right. [LAUGHTER] LEE: Yeah, that’s right. Yes, yeah, absolutely. Yeah. AZHAR: Sometimes it’s right. And I think that it serves a really good role as a field of extreme experimentation. So if you’re somebody who makes a continuous glucose monitor traditionally given to diabetics but now lots of people will wear them—and sports people will wear them—you probably gathered a lot of extreme tail distribution data by reading the Reddit/biohackers … LEE: Yes. AZHAR: … for the last few years, where people were doing things that you would never want them to really do with the CGM [continuous glucose monitor]. And so I think we shouldn’t understate how important that petri dish can be for helping us learn what could happen next. LEE: Oh, I think it’s absolutely going to be essential and a bigger thing in the future. So I think I just want to close here then with one last question. And I always try to be a little bit provocative with this. And so as you look ahead to what doctors and nurses and patients might be doing two years from now, five years from now, 10 years from now, do you have any kind of firm predictions? AZHAR: I’m going to push the boat out, and I’m going to go further out than closer in. LEE: OK. [LAUGHS] AZHAR: As patients, we will have many, many more touch points and interaction with our biomarkers and our health. We’ll be reading how well we feel through an array of things. And some of them we’ll be wearing directly, like sleep trackers and watches. And so we’ll have a better sense of what’s happening in our lives. It’s like the moment you go from paper bank statements that arrive every month to being able to see your account in real time. LEE: Yes. AZHAR: And I suspect we’ll have … we’ll still have interactions with clinicians because societies that get richer see doctors more, societies that get older see doctors more, and we’re going to be doing both of those over the coming 10 years. But there will be a sense, I think, of continuous health engagement, not in an overbearing way, but just in a sense that we know it’s there, we can check in with it, it’s likely to be data that is compiled on our behalf somewhere centrally and delivered through a user experience that reinforces agency rather than anxiety. And we’re learning how to do that slowly. I don’t think the health apps on our phones and devices have yet quite got that right. And that could help us personalize problems before they arise, and again, I use my experience for things that I’ve tracked really, really well. And I know from my data and from how I’m feeling when I’m on the verge of one of those severe asthma attacks that hits me once a year, and I can take a little bit of preemptive measure, so I think that that will become progressively more common and that sense that we will know our baselines. I mean, when you think about being an athlete, which is something I think about, but I could never ever do, [LAUGHTER] but what happens is you start with your detailed baselines, and that’s what your health coach looks at every three or four months. For most of us, we have no idea of our baselines. You we get our blood pressure measured once a year. We will have baselines, and that will help us on an ongoing basis to better understand and be in control of our health. And then if the product designers get it right, it will be done in a way that doesn’t feel invasive, but it’ll be done in a way that feels enabling. We’ll still be engaging with clinicians augmented by AI systems more and more because they will also have gone up the stack. They won’t be spending their time on just “take two Tylenol and have a lie down” type of engagements because that will be dealt with earlier on in the system. And so we will be there in a very, very different set of relationships. And they will feel that they have different ways of looking after our health. LEE: Azeem, it’s so comforting to hear such a wonderfully optimistic picture of the future of healthcare. And I actually agree with everything you’ve said. Let me just thank you again for joining this conversation. I think it’s been really fascinating. And I think somehow the systemic issues, the systemic issues that you tend to just see with such clarity, I think are going to be the most, kind of, profound drivers of change in the future. So thank you so much. AZHAR: Well, thank you, it’s been my pleasure, Peter, thank you. [TRANSITION MUSIC]   I always think of Azeem as a systems thinker. He’s always able to take the experiences of new technologies at an individual level and then project out to what this could mean for whole organizations and whole societies. In our conversation, I felt that Azeem really connected some of what we learned in a previous episode—for example, from Chrissy Farr—on the evolving consumerization of healthcare to the broader workforce and economic impacts that we’ve heard about from Ethan Mollick.   Azeem’s personal story about managing his asthma was also a great example. You know, he imagines a future, as do I, where personal AI might assist and remember decades of personal experience with a condition like asthma and thereby know more than any human being could possibly know in a deeply personalized and effective way, leading to better care. Azeem’s relentless optimism about our AI future was also so heartening to hear. Both of these conversations leave me really optimistic about the future of AI in medicine. At the same time, it is pretty sobering to realize just how much we’ll all need to change in pretty fundamental and maybe even in radical ways. I think a big insight I got from these conversations is how we interact with machines is going to have to be altered not only at the individual level, but at the company level and maybe even at the societal level. Since my conversation with Ethan and Azeem, there have been some pretty important developments that speak directly to this. Just last week at Build (opens in new tab), which is Microsoft’s yearly developer conference, we announced a slew of AI agent technologies. Our CEO, Satya Nadella, in fact, started his keynote by going online in a GitHub developer environment and then assigning a coding task to an AI agent, basically treating that AI as a full-fledged member of a development team. Other agents, for example, a meeting facilitator, a data analyst, a business researcher, travel agent, and more were also shown during the conference. But pertinent to healthcare specifically, what really blew me away was the demonstration of a healthcare orchestrator agent. And the specific thing here was in Stanford’s cancer treatment center, when they are trying to decide on potentially experimental treatments for cancer patients, they convene a meeting of experts. That is typically called a tumor board. And so this AI healthcare orchestrator agent actually participated as a full-fledged member of a tumor board meeting to help bring data together, make sure that the latest medical knowledge was brought to bear, and to assist in the decision-making around a patient’s cancer treatment. It was pretty amazing. [THEME MUSIC] A big thank-you again to Ethan and Azeem for sharing their knowledge and understanding of the dynamics between AI and society more broadly. And to our listeners, thank you for joining us. I’m really excited for the upcoming episodes, including discussions on medical students’ experiences with AI and AI’s influence on the operation of health systems and public health departments. We hope you’ll continue to tune in. Until next time. [MUSIC FADES]
    11 Comments ·0 Shares ·0 Reviews
  • A New Study Reveals ChatGPT-4 And Other Advanced AI Models Outperform Humans In Emotional Intelligence, Opening New Paths In Education And Coaching

    Artificial intelligence keeps on taking the community at large by surprise, especially the large language models with the advanced capabilities they tend to offer, surpassing expectations. Tech giants like OpenAI are increasingly focused on bringing more efficient AI models and pushing the potential of the technology further to do many of the mundane tasks on consumers' behalf. While we have been hearing about the vast application of the tools in varied domains, a recent study evaluated how these models tend to perform on emotional intelligence, and the results are not something you would be expecting.
    A team of researchers conducted a study with findings suggesting that AI is capable of processing and understanding human emotions even better than humans
    Companies and researchers are increasingly invested in finding ways in which artificial intelligence can be used to bring more efficiency and different ways it can be used in institutions. OpenAI and many other tech giants are arduously working towards making their models feel more natural with capabilities like contextual understanding. A recent study has been conducted by University of Geneva and University of Bern researchers to find out about AI's empathetic capabilities.
    The study that has been published in Communications Psychology delivered some interesting findings that pointed towards generative AI models like ChatGPT not only demonstrating emotional intelligence but also outperforming humans in emotional intelligence tests. The study involved a series of tests with the six leading large language models, including ChatGPT-4, ChatGPT-o1, Gemini 1.5 Flash, Claude 3.5 Haiku, Copilot 365, and DeepSeek V3.
    The study further involved five emotional tests that were generally used in academics and professionally to see emotional understanding, regulation, and management. The situations presented were realistic and emotionally charged ones to see how the models would respond based on the emotional context provided. The results left the researchers baffled as all the LLM models outperformed the human participants significantly.
    The researchers even went a step ahead by asking ChatGPT-4 to create new EI test items, which were validated by human participants as well, and the results remarkably remained the same, with the AI models demonstrating a high level of contextual understanding. One of the Senior Researchers, Marcello Mortillaro,  had the following to say on the findings:
    LLMs are therefore not only capable of finding the best answer among the various available options, but also of generating new scenarios adapted to a desired context. This reinforces the idea that LLMs, such as ChatGPT, have emotional knowledge and can reason about emotions.
    These findings are vital, especially if we see how the technology is increasingly exceeding expectations in domains previously exclusive to humans. This could have great broader implications in terms of augmenting human skills in sensitive fields such as conflict management or coaching.

    Deal of the Day
    #new #study #reveals #chatgpt4 #other
    A New Study Reveals ChatGPT-4 And Other Advanced AI Models Outperform Humans In Emotional Intelligence, Opening New Paths In Education And Coaching
    Artificial intelligence keeps on taking the community at large by surprise, especially the large language models with the advanced capabilities they tend to offer, surpassing expectations. Tech giants like OpenAI are increasingly focused on bringing more efficient AI models and pushing the potential of the technology further to do many of the mundane tasks on consumers' behalf. While we have been hearing about the vast application of the tools in varied domains, a recent study evaluated how these models tend to perform on emotional intelligence, and the results are not something you would be expecting. A team of researchers conducted a study with findings suggesting that AI is capable of processing and understanding human emotions even better than humans Companies and researchers are increasingly invested in finding ways in which artificial intelligence can be used to bring more efficiency and different ways it can be used in institutions. OpenAI and many other tech giants are arduously working towards making their models feel more natural with capabilities like contextual understanding. A recent study has been conducted by University of Geneva and University of Bern researchers to find out about AI's empathetic capabilities. The study that has been published in Communications Psychology delivered some interesting findings that pointed towards generative AI models like ChatGPT not only demonstrating emotional intelligence but also outperforming humans in emotional intelligence tests. The study involved a series of tests with the six leading large language models, including ChatGPT-4, ChatGPT-o1, Gemini 1.5 Flash, Claude 3.5 Haiku, Copilot 365, and DeepSeek V3. The study further involved five emotional tests that were generally used in academics and professionally to see emotional understanding, regulation, and management. The situations presented were realistic and emotionally charged ones to see how the models would respond based on the emotional context provided. The results left the researchers baffled as all the LLM models outperformed the human participants significantly. The researchers even went a step ahead by asking ChatGPT-4 to create new EI test items, which were validated by human participants as well, and the results remarkably remained the same, with the AI models demonstrating a high level of contextual understanding. One of the Senior Researchers, Marcello Mortillaro,  had the following to say on the findings: LLMs are therefore not only capable of finding the best answer among the various available options, but also of generating new scenarios adapted to a desired context. This reinforces the idea that LLMs, such as ChatGPT, have emotional knowledge and can reason about emotions. These findings are vital, especially if we see how the technology is increasingly exceeding expectations in domains previously exclusive to humans. This could have great broader implications in terms of augmenting human skills in sensitive fields such as conflict management or coaching. Deal of the Day #new #study #reveals #chatgpt4 #other
    A New Study Reveals ChatGPT-4 And Other Advanced AI Models Outperform Humans In Emotional Intelligence, Opening New Paths In Education And Coaching
    wccftech.com
    Artificial intelligence keeps on taking the community at large by surprise, especially the large language models with the advanced capabilities they tend to offer, surpassing expectations. Tech giants like OpenAI are increasingly focused on bringing more efficient AI models and pushing the potential of the technology further to do many of the mundane tasks on consumers' behalf. While we have been hearing about the vast application of the tools in varied domains, a recent study evaluated how these models tend to perform on emotional intelligence, and the results are not something you would be expecting. A team of researchers conducted a study with findings suggesting that AI is capable of processing and understanding human emotions even better than humans Companies and researchers are increasingly invested in finding ways in which artificial intelligence can be used to bring more efficiency and different ways it can be used in institutions. OpenAI and many other tech giants are arduously working towards making their models feel more natural with capabilities like contextual understanding. A recent study has been conducted by University of Geneva and University of Bern researchers to find out about AI's empathetic capabilities. The study that has been published in Communications Psychology delivered some interesting findings that pointed towards generative AI models like ChatGPT not only demonstrating emotional intelligence but also outperforming humans in emotional intelligence tests. The study involved a series of tests with the six leading large language models, including ChatGPT-4, ChatGPT-o1, Gemini 1.5 Flash, Claude 3.5 Haiku, Copilot 365, and DeepSeek V3. The study further involved five emotional tests that were generally used in academics and professionally to see emotional understanding, regulation, and management. The situations presented were realistic and emotionally charged ones to see how the models would respond based on the emotional context provided. The results left the researchers baffled as all the LLM models outperformed the human participants significantly. The researchers even went a step ahead by asking ChatGPT-4 to create new EI test items, which were validated by human participants as well, and the results remarkably remained the same, with the AI models demonstrating a high level of contextual understanding. One of the Senior Researchers, Marcello Mortillaro,  had the following to say on the findings: LLMs are therefore not only capable of finding the best answer among the various available options, but also of generating new scenarios adapted to a desired context. This reinforces the idea that LLMs, such as ChatGPT, have emotional knowledge and can reason about emotions. These findings are vital, especially if we see how the technology is increasingly exceeding expectations in domains previously exclusive to humans. This could have great broader implications in terms of augmenting human skills in sensitive fields such as conflict management or coaching. Deal of the Day
    0 Comments ·0 Shares ·0 Reviews
  • GitLab Duo Vulnerability Enabled Attackers to Hijack AI Responses with Hidden Prompts

    May 23, 2025Ravie LakshmananArtificial Intelligence / Vulnerability

    Cybersecurity researchers have discovered an indirect prompt injection flaw in GitLab's artificial intelligenceassistant Duo that could have allowed attackers to steal source code and inject untrusted HTML into its responses, which could then be used to direct victims to malicious websites.
    GitLab Duo is an artificial intelligence-powered coding assistant that enables users to write, review, and edit code. Built using Anthropic's Claude models, the service was first launched in June 2023.
    But as Legit Security found, GitLab Duo Chat has been susceptible to an indirect prompt injection flaw that permits attackers to "steal source code from private projects, manipulate code suggestions shown to other users, and even exfiltrate confidential, undisclosed zero-day vulnerabilities."
    Prompt injection refers to a class of vulnerabilities common in AI systems that enable threat actors to weaponize large language modelsto manipulate responses to users' prompts and result in undesirable behavior.
    Indirect prompt injections are a lot more trickier in that instead of providing an AI-crafted input directly, the rogue instructions are embedded within another context, such as a document or a web page, which the model is designed to process.

    Recent studies have shown that LLMs are also vulnerable to jailbreak attack techniques that make it possible to trick AI-driven chatbots into generating harmful and illegal information that disregards their ethical and safety guardrails, effectively obviating the need for carefully crafted prompts.
    What's more, Prompt Leakagemethods could be used to inadvertently reveal the preset system prompts or instructions that are meant to be followed by the model.
    "For organizations, this means that private information such as internal rules, functionalities, filtering criteria, permissions, and user roles can be leaked," Trend Micro said in a report published earlier this month. "This could give attackers opportunities to exploit system weaknesses, potentially leading to data breaches, disclosure of trade secrets, regulatory violations, and other unfavorable outcomes."
    PLeak attack demonstration - Credential Excess / Exposure of Sensitive Functionality
    The latest findings from the Israeli software supply chain security firm show that a hidden comment placed anywhere within merge requests, commit messages, issue descriptions or comments, and source code was enough to leak sensitive data or inject HTML into GitLab Duo's responses.
    These prompts could be concealed further using encoding tricks like Base16-encoding, Unicode smuggling, and KaTeX rendering in white text in order to make them less detectable. The lack of input sanitization and the fact that GitLab did not treat any of these scenarios with any more scrutiny than it did source code could have enabled a bad actor to plant the prompts across the site.

    "Duo analyzes the entire context of the page, including comments, descriptions, and the source code — making it vulnerable to injected instructions hidden anywhere in that context," security researcher Omer Mayraz said.
    This also means that an attacker could deceive the AI system into including a malicious JavaScript package in a piece of synthesized code, or present a malicious URL as safe, causing the victim to be redirected to a fake login page that harvests their credentials.
    On top of that, by taking advantage of GitLab Duo Chat's ability to access information about specific merge requests and the code changes inside of them, Legit Security found that it's possible to insert a hidden prompt in a merge request description for a project that, when processed by Duo, causes the private source code to be exfiltrated to an attacker-controlled server.
    This, in turn, is made possible owing to its use of streaming markdown rendering to interpret and render the responses into HTML as the output is generated. In other words, feeding it HTML code via indirect prompt injection could cause the code segment to be executed on the user's browser.
    Following responsible disclosure on February 12, 2025, the issues have been addressed by GitLab.
    "This vulnerability highlights the double-edged nature of AI assistants like GitLab Duo: when deeply integrated into development workflows, they inherit not just context — but risk," Mayraz said.
    "By embedding hidden instructions in seemingly harmless project content, we were able to manipulate Duo's behavior, exfiltrate private source code, and demonstrate how AI responses can be leveraged for unintended and harmful outcomes."

    The disclosure comes as Pen Test Partners revealed how Microsoft Copilot for SharePoint, or SharePoint Agents, could be exploited by local attackers to access sensitive data and documentation, even from files that have the "Restricted View" privilege.
    "One of the primary benefits is that we can search and trawl through massive datasets, such as the SharePoint sites of large organisations, in a short amount of time," the company said. "This can drastically increase the chances of finding information that will be useful to us."
    The attack techniques follow new research that ElizaOS, a nascent decentralized AI agent framework for automated Web3 operations, could be manipulated by injecting malicious instructions into prompts or historical interaction records, effectively corrupting the stored context and leading to unintended asset transfers.
    "The implications of this vulnerability are particularly severe given that ElizaOSagents are designed to interact with multiple users simultaneously, relying on shared contextual inputs from all participants," a group of academics from Princeton University wrote in a paper.

    "A single successful manipulation by a malicious actor can compromise the integrity of the entire system, creating cascading effects that are both difficult to detect and mitigate."
    Prompt injections and jailbreaks aside, another significant issue ailing LLMs today is hallucination, which occurs when the models generate responses that are not based on the input data or are simply fabricated.
    According to a new study published by AI testing company Giskard, instructing LLMs to be concise in their answers can negatively affect factuality and worsen hallucinations.
    "This effect seems to occur because effective rebuttals generally require longer explanations," it said. "When forced to be concise, models face an impossible choice between fabricating short but inaccurate answers or appearing unhelpful by rejecting the question entirely."

    Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post.

    SHARE




    #gitlab #duo #vulnerability #enabled #attackers
    GitLab Duo Vulnerability Enabled Attackers to Hijack AI Responses with Hidden Prompts
    May 23, 2025Ravie LakshmananArtificial Intelligence / Vulnerability Cybersecurity researchers have discovered an indirect prompt injection flaw in GitLab's artificial intelligenceassistant Duo that could have allowed attackers to steal source code and inject untrusted HTML into its responses, which could then be used to direct victims to malicious websites. GitLab Duo is an artificial intelligence-powered coding assistant that enables users to write, review, and edit code. Built using Anthropic's Claude models, the service was first launched in June 2023. But as Legit Security found, GitLab Duo Chat has been susceptible to an indirect prompt injection flaw that permits attackers to "steal source code from private projects, manipulate code suggestions shown to other users, and even exfiltrate confidential, undisclosed zero-day vulnerabilities." Prompt injection refers to a class of vulnerabilities common in AI systems that enable threat actors to weaponize large language modelsto manipulate responses to users' prompts and result in undesirable behavior. Indirect prompt injections are a lot more trickier in that instead of providing an AI-crafted input directly, the rogue instructions are embedded within another context, such as a document or a web page, which the model is designed to process. Recent studies have shown that LLMs are also vulnerable to jailbreak attack techniques that make it possible to trick AI-driven chatbots into generating harmful and illegal information that disregards their ethical and safety guardrails, effectively obviating the need for carefully crafted prompts. What's more, Prompt Leakagemethods could be used to inadvertently reveal the preset system prompts or instructions that are meant to be followed by the model. "For organizations, this means that private information such as internal rules, functionalities, filtering criteria, permissions, and user roles can be leaked," Trend Micro said in a report published earlier this month. "This could give attackers opportunities to exploit system weaknesses, potentially leading to data breaches, disclosure of trade secrets, regulatory violations, and other unfavorable outcomes." PLeak attack demonstration - Credential Excess / Exposure of Sensitive Functionality The latest findings from the Israeli software supply chain security firm show that a hidden comment placed anywhere within merge requests, commit messages, issue descriptions or comments, and source code was enough to leak sensitive data or inject HTML into GitLab Duo's responses. These prompts could be concealed further using encoding tricks like Base16-encoding, Unicode smuggling, and KaTeX rendering in white text in order to make them less detectable. The lack of input sanitization and the fact that GitLab did not treat any of these scenarios with any more scrutiny than it did source code could have enabled a bad actor to plant the prompts across the site. "Duo analyzes the entire context of the page, including comments, descriptions, and the source code — making it vulnerable to injected instructions hidden anywhere in that context," security researcher Omer Mayraz said. This also means that an attacker could deceive the AI system into including a malicious JavaScript package in a piece of synthesized code, or present a malicious URL as safe, causing the victim to be redirected to a fake login page that harvests their credentials. On top of that, by taking advantage of GitLab Duo Chat's ability to access information about specific merge requests and the code changes inside of them, Legit Security found that it's possible to insert a hidden prompt in a merge request description for a project that, when processed by Duo, causes the private source code to be exfiltrated to an attacker-controlled server. This, in turn, is made possible owing to its use of streaming markdown rendering to interpret and render the responses into HTML as the output is generated. In other words, feeding it HTML code via indirect prompt injection could cause the code segment to be executed on the user's browser. Following responsible disclosure on February 12, 2025, the issues have been addressed by GitLab. "This vulnerability highlights the double-edged nature of AI assistants like GitLab Duo: when deeply integrated into development workflows, they inherit not just context — but risk," Mayraz said. "By embedding hidden instructions in seemingly harmless project content, we were able to manipulate Duo's behavior, exfiltrate private source code, and demonstrate how AI responses can be leveraged for unintended and harmful outcomes." The disclosure comes as Pen Test Partners revealed how Microsoft Copilot for SharePoint, or SharePoint Agents, could be exploited by local attackers to access sensitive data and documentation, even from files that have the "Restricted View" privilege. "One of the primary benefits is that we can search and trawl through massive datasets, such as the SharePoint sites of large organisations, in a short amount of time," the company said. "This can drastically increase the chances of finding information that will be useful to us." The attack techniques follow new research that ElizaOS, a nascent decentralized AI agent framework for automated Web3 operations, could be manipulated by injecting malicious instructions into prompts or historical interaction records, effectively corrupting the stored context and leading to unintended asset transfers. "The implications of this vulnerability are particularly severe given that ElizaOSagents are designed to interact with multiple users simultaneously, relying on shared contextual inputs from all participants," a group of academics from Princeton University wrote in a paper. "A single successful manipulation by a malicious actor can compromise the integrity of the entire system, creating cascading effects that are both difficult to detect and mitigate." Prompt injections and jailbreaks aside, another significant issue ailing LLMs today is hallucination, which occurs when the models generate responses that are not based on the input data or are simply fabricated. According to a new study published by AI testing company Giskard, instructing LLMs to be concise in their answers can negatively affect factuality and worsen hallucinations. "This effect seems to occur because effective rebuttals generally require longer explanations," it said. "When forced to be concise, models face an impossible choice between fabricating short but inaccurate answers or appearing unhelpful by rejecting the question entirely." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE     #gitlab #duo #vulnerability #enabled #attackers
    GitLab Duo Vulnerability Enabled Attackers to Hijack AI Responses with Hidden Prompts
    thehackernews.com
    May 23, 2025Ravie LakshmananArtificial Intelligence / Vulnerability Cybersecurity researchers have discovered an indirect prompt injection flaw in GitLab's artificial intelligence (AI) assistant Duo that could have allowed attackers to steal source code and inject untrusted HTML into its responses, which could then be used to direct victims to malicious websites. GitLab Duo is an artificial intelligence (AI)-powered coding assistant that enables users to write, review, and edit code. Built using Anthropic's Claude models, the service was first launched in June 2023. But as Legit Security found, GitLab Duo Chat has been susceptible to an indirect prompt injection flaw that permits attackers to "steal source code from private projects, manipulate code suggestions shown to other users, and even exfiltrate confidential, undisclosed zero-day vulnerabilities." Prompt injection refers to a class of vulnerabilities common in AI systems that enable threat actors to weaponize large language models (LLMs) to manipulate responses to users' prompts and result in undesirable behavior. Indirect prompt injections are a lot more trickier in that instead of providing an AI-crafted input directly, the rogue instructions are embedded within another context, such as a document or a web page, which the model is designed to process. Recent studies have shown that LLMs are also vulnerable to jailbreak attack techniques that make it possible to trick AI-driven chatbots into generating harmful and illegal information that disregards their ethical and safety guardrails, effectively obviating the need for carefully crafted prompts. What's more, Prompt Leakage (PLeak) methods could be used to inadvertently reveal the preset system prompts or instructions that are meant to be followed by the model. "For organizations, this means that private information such as internal rules, functionalities, filtering criteria, permissions, and user roles can be leaked," Trend Micro said in a report published earlier this month. "This could give attackers opportunities to exploit system weaknesses, potentially leading to data breaches, disclosure of trade secrets, regulatory violations, and other unfavorable outcomes." PLeak attack demonstration - Credential Excess / Exposure of Sensitive Functionality The latest findings from the Israeli software supply chain security firm show that a hidden comment placed anywhere within merge requests, commit messages, issue descriptions or comments, and source code was enough to leak sensitive data or inject HTML into GitLab Duo's responses. These prompts could be concealed further using encoding tricks like Base16-encoding, Unicode smuggling, and KaTeX rendering in white text in order to make them less detectable. The lack of input sanitization and the fact that GitLab did not treat any of these scenarios with any more scrutiny than it did source code could have enabled a bad actor to plant the prompts across the site. "Duo analyzes the entire context of the page, including comments, descriptions, and the source code — making it vulnerable to injected instructions hidden anywhere in that context," security researcher Omer Mayraz said. This also means that an attacker could deceive the AI system into including a malicious JavaScript package in a piece of synthesized code, or present a malicious URL as safe, causing the victim to be redirected to a fake login page that harvests their credentials. On top of that, by taking advantage of GitLab Duo Chat's ability to access information about specific merge requests and the code changes inside of them, Legit Security found that it's possible to insert a hidden prompt in a merge request description for a project that, when processed by Duo, causes the private source code to be exfiltrated to an attacker-controlled server. This, in turn, is made possible owing to its use of streaming markdown rendering to interpret and render the responses into HTML as the output is generated. In other words, feeding it HTML code via indirect prompt injection could cause the code segment to be executed on the user's browser. Following responsible disclosure on February 12, 2025, the issues have been addressed by GitLab. "This vulnerability highlights the double-edged nature of AI assistants like GitLab Duo: when deeply integrated into development workflows, they inherit not just context — but risk," Mayraz said. "By embedding hidden instructions in seemingly harmless project content, we were able to manipulate Duo's behavior, exfiltrate private source code, and demonstrate how AI responses can be leveraged for unintended and harmful outcomes." The disclosure comes as Pen Test Partners revealed how Microsoft Copilot for SharePoint, or SharePoint Agents, could be exploited by local attackers to access sensitive data and documentation, even from files that have the "Restricted View" privilege. "One of the primary benefits is that we can search and trawl through massive datasets, such as the SharePoint sites of large organisations, in a short amount of time," the company said. "This can drastically increase the chances of finding information that will be useful to us." The attack techniques follow new research that ElizaOS (formerly Ai16z), a nascent decentralized AI agent framework for automated Web3 operations, could be manipulated by injecting malicious instructions into prompts or historical interaction records, effectively corrupting the stored context and leading to unintended asset transfers. "The implications of this vulnerability are particularly severe given that ElizaOSagents are designed to interact with multiple users simultaneously, relying on shared contextual inputs from all participants," a group of academics from Princeton University wrote in a paper. "A single successful manipulation by a malicious actor can compromise the integrity of the entire system, creating cascading effects that are both difficult to detect and mitigate." Prompt injections and jailbreaks aside, another significant issue ailing LLMs today is hallucination, which occurs when the models generate responses that are not based on the input data or are simply fabricated. According to a new study published by AI testing company Giskard, instructing LLMs to be concise in their answers can negatively affect factuality and worsen hallucinations. "This effect seems to occur because effective rebuttals generally require longer explanations," it said. "When forced to be concise, models face an impossible choice between fabricating short but inaccurate answers or appearing unhelpful by rejecting the question entirely." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE    
    0 Comments ·0 Shares ·0 Reviews
CGShares https://cgshares.com