• In a bold move that left many scratching their heads, the Trump administration decided that erasing hundreds of millions in funding for cancer research was the perfect way to combat “woke” studies. Because clearly, the real enemy is not a disease that claims millions of lives but rather the concept of studying it with too much... empathy? Who knew that prioritizing political agendas over health research could be the new trend? I guess saving lives was just too mainstream for a regime that prefers a good Twitter feud over actual science. Cheers to “innovative” governance!

    #Trump #CancerResearch #WokeCulture #HealthFunding #Satire
    In a bold move that left many scratching their heads, the Trump administration decided that erasing hundreds of millions in funding for cancer research was the perfect way to combat “woke” studies. Because clearly, the real enemy is not a disease that claims millions of lives but rather the concept of studying it with too much... empathy? Who knew that prioritizing political agendas over health research could be the new trend? I guess saving lives was just too mainstream for a regime that prefers a good Twitter feud over actual science. Cheers to “innovative” governance! #Trump #CancerResearch #WokeCulture #HealthFunding #Satire
    How Trump Killed Cancer Research
    Attempting to eliminate funding for certain kinds of “woke” studies, the Trump administration erased hundreds of millions of dollars being used for cancer research.
    1 Comments 0 Shares 0 Reviews
  • A recent study highlights that for algorithms, memory is actually more powerful than time. This finding, described as "stunning," marks the first significant progress in 50 years on a well-known question in computer science. It’s interesting, I guess, but also kind of dull. Memory vs. time isn’t exactly the most exciting topic, right? Anyway, it’s nice to see some movement in the field after so long.

    #Algorithms #ComputerScience #Memory #Time #Research
    A recent study highlights that for algorithms, memory is actually more powerful than time. This finding, described as "stunning," marks the first significant progress in 50 years on a well-known question in computer science. It’s interesting, I guess, but also kind of dull. Memory vs. time isn’t exactly the most exciting topic, right? Anyway, it’s nice to see some movement in the field after so long. #Algorithms #ComputerScience #Memory #Time #Research
    For Algorithms, Memory Is a Far More Powerful Resource Than Time
    One computer scientist’s “stunning” proof is the first progress in 50 years on one of the most famous questions in computer science.
    Like
    Love
    Wow
    Sad
    Angry
    127
    1 Comments 0 Shares 0 Reviews
  • So, Google has unleashed its shiny new Data Science Agent, and suddenly, everyone is acting like the skies have opened up and poured down the nectar of data analysis. Who needs actual scientists when you have an AI that can churn out insights faster than you can say “data-driven decisions”? It's almost charming how we’re convinced that a glorified calculator could replace years of expertise and human intuition.

    I guess all those years of studying statistics and machine learning were just a warm-up act for the real star of the show: a soulless algorithm. But hey, at least now we can all say we’re ‘data scientists’ while sipping coffee and letting the AI do the heavy lifting. Cheers to the future of data, where the humans are just
    So, Google has unleashed its shiny new Data Science Agent, and suddenly, everyone is acting like the skies have opened up and poured down the nectar of data analysis. Who needs actual scientists when you have an AI that can churn out insights faster than you can say “data-driven decisions”? It's almost charming how we’re convinced that a glorified calculator could replace years of expertise and human intuition. I guess all those years of studying statistics and machine learning were just a warm-up act for the real star of the show: a soulless algorithm. But hey, at least now we can all say we’re ‘data scientists’ while sipping coffee and letting the AI do the heavy lifting. Cheers to the future of data, where the humans are just
    El nuevo agente de Google y el futuro de la ciencia de datos
    El mundo del análisis de datos está atravesando una transformación sin precedentes. La irrupción de los Agentes de Inteligencia Artificial está remodelando radicalmente las tareas que antes eran exclusivas del científico de datos.
    1 Comments 0 Shares 0 Reviews
  • Take a Look at Procedural Ivy in This Dreamlike 3D Scene

    3D Artist Nick Carver, known for his outstanding stylized artwork, unveiled a new whimsical scene, showing fascinating procedural ivy.The artist stayed true to his signature style, with dreamlike colors and charming hand-painted aesthetics, featuring richly detailed set dressing and high-quality animation.Earlier, Nick Carver showcased this splendid character study, a peaceful 3D scene with a calm river, and more:Follow the artist on X/Twitter and don't forget to join our 80 Level Talent platform and our new Discord server, follow us on Instagram, Twitter, LinkedIn, Telegram, TikTok, and Threads, where we share breakdowns, the latest news, awesome artworks, and more.
    #take #look #procedural #ivy #this
    Take a Look at Procedural Ivy in This Dreamlike 3D Scene
    3D Artist Nick Carver, known for his outstanding stylized artwork, unveiled a new whimsical scene, showing fascinating procedural ivy.The artist stayed true to his signature style, with dreamlike colors and charming hand-painted aesthetics, featuring richly detailed set dressing and high-quality animation.Earlier, Nick Carver showcased this splendid character study, a peaceful 3D scene with a calm river, and more:Follow the artist on X/Twitter and don't forget to join our 80 Level Talent platform and our new Discord server, follow us on Instagram, Twitter, LinkedIn, Telegram, TikTok, and Threads, where we share breakdowns, the latest news, awesome artworks, and more. #take #look #procedural #ivy #this
    80.LV
    Take a Look at Procedural Ivy in This Dreamlike 3D Scene
    3D Artist Nick Carver, known for his outstanding stylized artwork, unveiled a new whimsical scene, showing fascinating procedural ivy.The artist stayed true to his signature style, with dreamlike colors and charming hand-painted aesthetics, featuring richly detailed set dressing and high-quality animation.Earlier, Nick Carver showcased this splendid character study, a peaceful 3D scene with a calm river, and more:Follow the artist on X/Twitter and don't forget to join our 80 Level Talent platform and our new Discord server, follow us on Instagram, Twitter, LinkedIn, Telegram, TikTok, and Threads, where we share breakdowns, the latest news, awesome artworks, and more.
    Like
    Love
    Wow
    Sad
    Angry
    472
    0 Comments 0 Shares 0 Reviews
  • Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon

    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey.

    Get the Popular Science daily newsletter
    Breakthroughs, discoveries, and DIY tips sent every weekday.

    South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations.
    Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered.
    Frontiers: What inspired you to become a researcher?
    Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved.
    F: Can you tell us about the research you’re currently working on?
    BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation.
    Local boating the Amazon River. CREDIT: Beatriz Cosendey.
    F: Could you tell us about one of the legends surrounding anacondas?
    BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty.
    F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity?
    BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently.
    A giant anaconda is being measured. Credit: Pedro Calazans.
    F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play?
    BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?”
    For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste.
    One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey.
    Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey.
    We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals.
    F: Are there any common misconceptions about this area of research? How would you address them?
    BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data.
    However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework.
    To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society.
    The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey.
    F: What are some of the areas of research you’d like to see tackled in the years ahead?
    BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere.
    F: How has open science benefited the reach and impact of your research?
    BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups.
    The Q&A can also be read here.
    #qampampa #how #anacondas #chickens #locals
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals, while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is herfavorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh, and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here. #qampampa #how #anacondas #chickens #locals
    WWW.POPSCI.COM
    Q&A: How anacondas, chickens, and locals may be able to coexist in the Amazon
    A coiled giant anaconda. They are the largest snake species in Brazil and play a major role in legends including the ‘Boiuna’ and the ‘Cobra Grande.’ CREDIT: Beatriz Cosendey. Get the Popular Science daily newsletter💡 Breakthroughs, discoveries, and DIY tips sent every weekday. South America’s lush Amazon region is a biodiversity hotspot, which means that every living thing must find a way to co-exist. Even some of the most feared snakes on the planet–anacondas. In a paper published June 16 in the journal Frontiers in Amphibian and Reptile Science, conservation biologists Beatriz Cosendey and Juarez Carlos Brito Pezzuti from the Federal University of Pará’s Center for Amazonian Studies in Brazil, analyze the key points behind the interactions between humans and the local anaconda populations. Ahead of the paper’s publication, the team at Frontiers conducted this wide-ranging Q&A with Conesday. It has not been altered. Frontiers: What inspired you to become a researcher? Beatriz Cosendey: As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved. F: Can you tell us about the research you’re currently working on? BC: My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation. Local boating the Amazon River. CREDIT: Beatriz Cosendey. F: Could you tell us about one of the legends surrounding anacondas? BC: One of the greatest myths is about the Great Snake—a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river’s waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals—including humans or cattle—without difficulty. F: What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity? BC: Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there’s a more practical, everyday concern—mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals (up to around 2–2.5 meters), while the larger ones—which may still carry the symbolic weight of the ‘Great Snake’—tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently. A giant anaconda is being measured. Credit: Pedro Calazans. F: Can you share some of the quotes you’ve collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play? BC: When talking about anacondas, one thing always comes up: chickens. “Chicken is her [the anaconda’s] favorite dish. If one clucks, she comes,” said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: “The biggest loss is that they keep taking chicks and chickens…” or “You raise the chicken—you can’t just let it be eaten for free, right?” For them, it’s a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: “We spend time feeding and raising the birds, and then the snake comes and takes them.” One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly—”it was still fresh,” he said—and used it for his meal, cooking the chicken for lunch so it wouldn’t go to waste. One of the Amazonas communities where the researchers conducted their research. CREDIT: Beatriz Cosendey. Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn’t get out afterwards because they ‘tufavam’ — a local term referring to the snake’s body swelling after ingesting prey. We saw chicken coops made with mesh, with nylon, some that worked and some that didn’t. Guided by the locals’ insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh (to block smaller animals), and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals. F: Are there any common misconceptions about this area of research? How would you address them? BC: Yes, very much. Although ethnobiology is an old science, it’s still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don’t always rely only on hard statistical data. However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework. To address these misconceptions, I believe it’s important to emphasize that ethnobiology produces solid and relevant knowledge—especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society. The study focused on the várzea regions of the Lower Amazon River. CREDIT: Beatriz Cosendey. F: What are some of the areas of research you’d like to see tackled in the years ahead? BC: I’d like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices—such as the use of natural compounds—could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere. F: How has open science benefited the reach and impact of your research? BC: Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge—important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups. The Q&A can also be read here.
    Like
    Love
    Wow
    Sad
    Angry
    443
    2 Comments 0 Shares 0 Reviews
  • Hungry Bacteria Hunt Their Neighbors With Tiny, Poison-Tipped Harpoons

    Starving bacteriause a microscopic harpoon—called the Type VI secretion system—to stab and kill neighboring cells. The prey burst, turning spherical and leaking nutrients, which the killers then use to survive and grow.NewsletterSign up for our email newsletter for the latest science newsBacteria are bad neighbors. And we’re not talking noisy, never-take-out-the-trash bad neighbors. We’re talking has-a-harpoon-gun-and-points-it-at-you bad neighbors. According to a new study in Science, some bacteria hunt nearby bacterial species when they’re hungry. Using a special weapon system called the Type VI Secretion System, these bacteria shoot, spill, and then absorb the nutrients from the microbes they harpoon. “The punchline is: When things get tough, you eat your neighbors,” said Glen D’Souza, a study author and an assistant professor at Arizona State University, according to a press release. “We’ve known bacteria kill each other, that’s textbook. But what we’re seeing is that it’s not just important that the bacteria have weapons to kill, but they are controlling when they use those weapons specifically for situations to eat others where they can’t grow themselves.” According to the study authors, the research doesn’t just have implications for bacterial neighborhoods; it also has implications for human health and medicine. By harnessing these bacterial weapons, it may be possible to build better targeted antibiotics, designed to overcome antibiotic resistance. Ruthless Bacteria Use HarpoonsResearchers have long known that some bacteria can be ruthless, using weapons like the T6SS to clear out their competition. A nasty tool, the T6SS is essentially a tiny harpoon gun with a poison-tipped needle. When a bacterium shoots the weapon into another bacterium from a separate species, the needle pierces the microbe without killing it. Then, it injects toxins into the microbe that cause its internal nutrients to spill out.Up until now, researchers thought that this weapon helped bacteria eliminate their competition for space and for food, but after watching bacteria use the T6SS to attack their neighbors when food was scarce, the study authors concluded that these tiny harpooners use the weapon not only to remove rivals, but also to consume their competitors’ leaked nutrients.“Watching these cells in action really drives home how resourceful bacteria can be,” said Astrid Stubbusch, another study author and a researcher who worked on the study while at ETH Zurich, according to the press release. “By slowly releasing nutrients from their neighbors, they maximize their nutrient harvesting when every molecule counts.” Absorbing Food From NeighborsTo show that the bacteria used this system to eat when there was no food around, the study authors compared their attacks in both nutrient-rich and nutrient-poor environments. When supplied with ample resources, the bacteria used their harpoons to kill their neighbors quickly, with the released nutrients leaking out and dissolving immediately. But when resources were few and far between, they used their harpoons to kill their neighbors slowly, with the nutrients seeping out and sticking around. “This difference in dissolution time could mean that the killer cells load their spears with different toxins,” D’Souza said in another press release. While one toxin could eliminate the competition for space and for food when nutrients are available, another could create a food source, allowing bacteria to “absorb as many nutrients as possible” when sustenance is in short supply.Because of all this, this weapon system is more than ruthless; it’s also smart, and important to some species’ survival. When genetically unedited T6SS bacteria were put in an environment without food, they survived on spilled nutrients. But when genetically edited T6SS bacteria were placed in a similar environment, they died, because their ability to find food in their neighbors had been “turned off.”Harnessing Bacterial HarpoonsAccording to the study authors, the T6SS system is widely used by bacteria, both in and outside the lab. “It’s present in many different environments,” D’Souza said in one of the press releases. “It’s operational and happening in nature, from the oceans to the human gut.” The study authors add that their research could change the way we think about bacteria and could help in our fight against antibiotic resistance. In fact, the T6SS could one day serve as a foundation for targeted drug delivery systems, which could mitigate the development of broader bacterial resistance to antibiotics. But before that can happen, however, researchers have to learn more about bacterial harpoons, and about when and how bacteria use them, both to beat and eat their neighbors.Article SourcesOur writers at Discovermagazine.com use peer-reviewed studies and high-quality sources for our articles, and our editors review for scientific accuracy and editorial standards. Review the sources used below for this article:Sam Walters is a journalist covering archaeology, paleontology, ecology, and evolution for Discover, along with an assortment of other topics. Before joining the Discover team as an assistant editor in 2022, Sam studied journalism at Northwestern University in Evanston, Illinois.1 free article leftWant More? Get unlimited access for as low as /monthSubscribeAlready a subscriber?Register or Log In1 free articleSubscribeWant more?Keep reading for as low as !SubscribeAlready a subscriber?Register or Log In
    #hungry #bacteria #hunt #their #neighbors
    Hungry Bacteria Hunt Their Neighbors With Tiny, Poison-Tipped Harpoons
    Starving bacteriause a microscopic harpoon—called the Type VI secretion system—to stab and kill neighboring cells. The prey burst, turning spherical and leaking nutrients, which the killers then use to survive and grow.NewsletterSign up for our email newsletter for the latest science newsBacteria are bad neighbors. And we’re not talking noisy, never-take-out-the-trash bad neighbors. We’re talking has-a-harpoon-gun-and-points-it-at-you bad neighbors. According to a new study in Science, some bacteria hunt nearby bacterial species when they’re hungry. Using a special weapon system called the Type VI Secretion System, these bacteria shoot, spill, and then absorb the nutrients from the microbes they harpoon. “The punchline is: When things get tough, you eat your neighbors,” said Glen D’Souza, a study author and an assistant professor at Arizona State University, according to a press release. “We’ve known bacteria kill each other, that’s textbook. But what we’re seeing is that it’s not just important that the bacteria have weapons to kill, but they are controlling when they use those weapons specifically for situations to eat others where they can’t grow themselves.” According to the study authors, the research doesn’t just have implications for bacterial neighborhoods; it also has implications for human health and medicine. By harnessing these bacterial weapons, it may be possible to build better targeted antibiotics, designed to overcome antibiotic resistance. Ruthless Bacteria Use HarpoonsResearchers have long known that some bacteria can be ruthless, using weapons like the T6SS to clear out their competition. A nasty tool, the T6SS is essentially a tiny harpoon gun with a poison-tipped needle. When a bacterium shoots the weapon into another bacterium from a separate species, the needle pierces the microbe without killing it. Then, it injects toxins into the microbe that cause its internal nutrients to spill out.Up until now, researchers thought that this weapon helped bacteria eliminate their competition for space and for food, but after watching bacteria use the T6SS to attack their neighbors when food was scarce, the study authors concluded that these tiny harpooners use the weapon not only to remove rivals, but also to consume their competitors’ leaked nutrients.“Watching these cells in action really drives home how resourceful bacteria can be,” said Astrid Stubbusch, another study author and a researcher who worked on the study while at ETH Zurich, according to the press release. “By slowly releasing nutrients from their neighbors, they maximize their nutrient harvesting when every molecule counts.” Absorbing Food From NeighborsTo show that the bacteria used this system to eat when there was no food around, the study authors compared their attacks in both nutrient-rich and nutrient-poor environments. When supplied with ample resources, the bacteria used their harpoons to kill their neighbors quickly, with the released nutrients leaking out and dissolving immediately. But when resources were few and far between, they used their harpoons to kill their neighbors slowly, with the nutrients seeping out and sticking around. “This difference in dissolution time could mean that the killer cells load their spears with different toxins,” D’Souza said in another press release. While one toxin could eliminate the competition for space and for food when nutrients are available, another could create a food source, allowing bacteria to “absorb as many nutrients as possible” when sustenance is in short supply.Because of all this, this weapon system is more than ruthless; it’s also smart, and important to some species’ survival. When genetically unedited T6SS bacteria were put in an environment without food, they survived on spilled nutrients. But when genetically edited T6SS bacteria were placed in a similar environment, they died, because their ability to find food in their neighbors had been “turned off.”Harnessing Bacterial HarpoonsAccording to the study authors, the T6SS system is widely used by bacteria, both in and outside the lab. “It’s present in many different environments,” D’Souza said in one of the press releases. “It’s operational and happening in nature, from the oceans to the human gut.” The study authors add that their research could change the way we think about bacteria and could help in our fight against antibiotic resistance. In fact, the T6SS could one day serve as a foundation for targeted drug delivery systems, which could mitigate the development of broader bacterial resistance to antibiotics. But before that can happen, however, researchers have to learn more about bacterial harpoons, and about when and how bacteria use them, both to beat and eat their neighbors.Article SourcesOur writers at Discovermagazine.com use peer-reviewed studies and high-quality sources for our articles, and our editors review for scientific accuracy and editorial standards. Review the sources used below for this article:Sam Walters is a journalist covering archaeology, paleontology, ecology, and evolution for Discover, along with an assortment of other topics. Before joining the Discover team as an assistant editor in 2022, Sam studied journalism at Northwestern University in Evanston, Illinois.1 free article leftWant More? Get unlimited access for as low as /monthSubscribeAlready a subscriber?Register or Log In1 free articleSubscribeWant more?Keep reading for as low as !SubscribeAlready a subscriber?Register or Log In #hungry #bacteria #hunt #their #neighbors
    WWW.DISCOVERMAGAZINE.COM
    Hungry Bacteria Hunt Their Neighbors With Tiny, Poison-Tipped Harpoons
    Starving bacteria (cyan) use a microscopic harpoon—called the Type VI secretion system—to stab and kill neighboring cells (magenta). The prey burst, turning spherical and leaking nutrients, which the killers then use to survive and grow. (Image Credit: Glen D'Souza/ASU/Screen shot from video)NewsletterSign up for our email newsletter for the latest science newsBacteria are bad neighbors. And we’re not talking noisy, never-take-out-the-trash bad neighbors. We’re talking has-a-harpoon-gun-and-points-it-at-you bad neighbors. According to a new study in Science, some bacteria hunt nearby bacterial species when they’re hungry. Using a special weapon system called the Type VI Secretion System (T6SS), these bacteria shoot, spill, and then absorb the nutrients from the microbes they harpoon. “The punchline is: When things get tough, you eat your neighbors,” said Glen D’Souza, a study author and an assistant professor at Arizona State University, according to a press release. “We’ve known bacteria kill each other, that’s textbook. But what we’re seeing is that it’s not just important that the bacteria have weapons to kill, but they are controlling when they use those weapons specifically for situations to eat others where they can’t grow themselves.” According to the study authors, the research doesn’t just have implications for bacterial neighborhoods; it also has implications for human health and medicine. By harnessing these bacterial weapons, it may be possible to build better targeted antibiotics, designed to overcome antibiotic resistance. Ruthless Bacteria Use HarpoonsResearchers have long known that some bacteria can be ruthless, using weapons like the T6SS to clear out their competition. A nasty tool, the T6SS is essentially a tiny harpoon gun with a poison-tipped needle. When a bacterium shoots the weapon into another bacterium from a separate species, the needle pierces the microbe without killing it. Then, it injects toxins into the microbe that cause its internal nutrients to spill out.Up until now, researchers thought that this weapon helped bacteria eliminate their competition for space and for food, but after watching bacteria use the T6SS to attack their neighbors when food was scarce, the study authors concluded that these tiny harpooners use the weapon not only to remove rivals, but also to consume their competitors’ leaked nutrients.“Watching these cells in action really drives home how resourceful bacteria can be,” said Astrid Stubbusch, another study author and a researcher who worked on the study while at ETH Zurich, according to the press release. “By slowly releasing nutrients from their neighbors, they maximize their nutrient harvesting when every molecule counts.” Absorbing Food From NeighborsTo show that the bacteria used this system to eat when there was no food around, the study authors compared their attacks in both nutrient-rich and nutrient-poor environments. When supplied with ample resources, the bacteria used their harpoons to kill their neighbors quickly, with the released nutrients leaking out and dissolving immediately. But when resources were few and far between, they used their harpoons to kill their neighbors slowly, with the nutrients seeping out and sticking around. “This difference in dissolution time could mean that the killer cells load their spears with different toxins,” D’Souza said in another press release. While one toxin could eliminate the competition for space and for food when nutrients are available, another could create a food source, allowing bacteria to “absorb as many nutrients as possible” when sustenance is in short supply.Because of all this, this weapon system is more than ruthless; it’s also smart, and important to some species’ survival. When genetically unedited T6SS bacteria were put in an environment without food, they survived on spilled nutrients. But when genetically edited T6SS bacteria were placed in a similar environment, they died, because their ability to find food in their neighbors had been “turned off.”Harnessing Bacterial HarpoonsAccording to the study authors, the T6SS system is widely used by bacteria, both in and outside the lab. “It’s present in many different environments,” D’Souza said in one of the press releases. “It’s operational and happening in nature, from the oceans to the human gut.” The study authors add that their research could change the way we think about bacteria and could help in our fight against antibiotic resistance. In fact, the T6SS could one day serve as a foundation for targeted drug delivery systems, which could mitigate the development of broader bacterial resistance to antibiotics. But before that can happen, however, researchers have to learn more about bacterial harpoons, and about when and how bacteria use them, both to beat and eat their neighbors.Article SourcesOur writers at Discovermagazine.com use peer-reviewed studies and high-quality sources for our articles, and our editors review for scientific accuracy and editorial standards. Review the sources used below for this article:Sam Walters is a journalist covering archaeology, paleontology, ecology, and evolution for Discover, along with an assortment of other topics. Before joining the Discover team as an assistant editor in 2022, Sam studied journalism at Northwestern University in Evanston, Illinois.1 free article leftWant More? Get unlimited access for as low as $1.99/monthSubscribeAlready a subscriber?Register or Log In1 free articleSubscribeWant more?Keep reading for as low as $1.99!SubscribeAlready a subscriber?Register or Log In
    Like
    Love
    Wow
    Sad
    Angry
    375
    2 Comments 0 Shares 0 Reviews
  • Four science-based rules that will make your conversations flow

    One of the four pillars of good conversation is levity. You needn’t be a comedian, you can but have some funTetra Images, LLC/Alamy
    Conversation lies at the heart of our relationships – yet many of us find it surprisingly hard to talk to others. We may feel anxious at the thought of making small talk with strangers and struggle to connect with the people who are closest to us. If that sounds familiar, Alison Wood Brooks hopes to help. She is a professor at Harvard Business School, where she teaches an oversubscribed course called “TALK: How to talk gooder in business and life”, and the author of a new book, Talk: The science of conversation and the art of being ourselves. Both offer four key principles for more meaningful exchanges. Conversations are inherently unpredictable, says Wood Brooks, but they follow certain rules – and knowing their architecture makes us more comfortable with what is outside of our control. New Scientist asked her about the best ways to apply this research to our own chats.
    David Robson: Talking about talking feels quite meta. Do you ever find yourself critiquing your own performance?
    Alison Wood Brooks: There are so many levels of “meta-ness”. I have often felt like I’m floating over the room, watching conversations unfold, even as I’m involved in them myself. I teach a course at Harvard, andall get to experience this feeling as well. There can be an uncomfortable period of hypervigilance, but I hope that dissipates over time as they develop better habits. There is a famous quote from Charlie Parker, who was a jazz saxophonist. He said something like, “Practise, practise, practise, and then when you get on stage, let it all go and just wail.” I think that’s my approach to conversation. Even when you’re hyper-aware of conversation dynamics, you have to remember the true delight of being with another human mind, and never lose the magic of being together. Think ahead, but once you’re talking, let it all go and just wail.

    Reading your book, I learned that a good way to enliven a conversation is to ask someone why they are passionate about what they do. So, where does your passion for conversation come from?
    I have two answers to this question. One is professional. Early in my professorship at Harvard, I had been studying emotions by exploring how people talk about their feelings and the balance between what we feel inside and how we express that to others. And I realised I just had this deep, profound interest in figuring out how people talk to each other about everything, not just their feelings. We now have scientific tools that allow us to capture conversations and analyse them at large scale. Natural language processing, machine learning, the advent of AI – all this allows us to take huge swathes of transcript data and process it much more efficiently.

    Receive a weekly dose of discovery in your inbox.

    Sign up to newsletter

    The personal answer is that I’m an identical twin, and I spent my whole life, from the moment I opened my newborn eyes, existing next to a person who’s an exact copy of myself. It was like observing myself at very close range, interacting with the world, interacting with other people. I could see when she said and did things well, and I could try to do that myself. And I saw when her jokes failed, or she stumbled over her words – I tried to avoid those mistakes. It was a very fortunate form of feedback that not a lot of people get. And then, as a twin, you’ve got this person sharing a bedroom, sharing all your clothes, going to all the same parties and playing on the same sports teams, so we were just constantly in conversation with each other. You reached this level of shared reality that is so incredible, and I’ve spent the rest of my life trying to help other people get there in their relationships, too.
    “TALK” cleverly captures your framework for better conversations: topics, asking, levity and kindness. Let’s start at the beginning. How should we decide what to talk about?
    My first piece of advice is to prepare. Some people do this naturally. They already think about the things that they should talk about with somebody before they see them. They should lean into this habit. Some of my students, however, think it’s crazy. They think preparation will make the conversation seem rigid and forced and overly scripted. But just because you’ve thought ahead about what you might talk about doesn’t mean you have to talk about those things once the conversation is underway. It does mean, however, that you always have an idea waiting for you when you’re not sure what to talk about next. Having just one topic in your back pocket can help you in those anxiety-ridden moments. It makes things more fluent, which is important for establishing a connection. Choosing a topic is not only important at the start of a conversation. We’re constantly making decisions about whether we should stay on one subject, drift to something else or totally shift gears and go somewhere wildly different.
    Sometimes the topic of conversation is obvious. Even then, knowing when to switch to a new one can be trickyMartin Parr/Magnum Photos
    What’s your advice when making these decisions?
    There are three very clear signs that suggest that it’s time to switch topics. The first is longer mutual pauses. The second is more uncomfortable laughter, which we use to fill the space that we would usually fill excitedly with good content. And the third sign is redundancy. Once you start repeating things that have already been said on the topic, it’s a sign that you should move to something else.
    After an average conversation, most people feel like they’ve covered the right number of topics. But if you ask people after conversations that didn’t go well, they’ll more often say that they didn’t talk about enough things, rather than that they talked about too many things. This suggests that a common mistake is lingering too long on a topic after you’ve squeezed all the juice out of it.
    The second element of TALK is asking questions. I think a lot of us have heard the advice to ask more questions, yet many people don’t apply it. Why do you think that is?
    Many years of research have shown that the human mind is remarkably egocentric. Often, we are so focused on our own perspective that we forget to even ask someone else to share what’s in their mind. Another reason is fear. You’re interested in the other person, and you know you should ask them questions, but you’re afraid of being too intrusive, or that you will reveal your own incompetence, because you feel you should know the answer already.

    What kinds of questions should we be asking – and avoiding?
    In the book, I talk about the power of follow-up questions that build on anything that your partner has just said. It shows that you heard them, that you care and that you want to know more. Even one follow-up question can springboard us away from shallow talk into something deeper and more meaningful.
    There are, however, some bad patterns of question asking, such as “boomerasking”. Michael Yeomansand I have a recent paper about this, and oh my gosh, it’s been such fun to study. It’s a play on the word boomerang: it comes back to the person who threw it. If I ask you what you had for breakfast, and you tell me you had Special K and banana, and then I say, “Well, let me tell you about my breakfast, because, boy, was it delicious” – that’s boomerasking. Sometimes it’s a thinly veiled way of bragging or complaining, but sometimes I think people are genuinely interested to hear from their partner, but then the partner’s answer reminds them so much of their own life that they can’t help but start sharing their perspective. In our research, we have found that this makes your partner feel like you weren’t interested in their perspective, so it seems very insincere. Sharing your own perspective is important. It’s okay at some point to bring the conversation back to yourself. But don’t do it so soon that it makes your partner feel like you didn’t hear their answer or care about it.
    Research by Alison Wood Brooks includes a recent study on “boomerasking”, a pitfall you should avoid to make conversations flowJanelle Bruno
    What are the benefits of levity?
    When we think of conversations that haven’t gone well, we often think of moments of hostility, anger or disagreement, but a quiet killer of conversation is boredom. Levity is the antidote. These small moments of sparkle or fizz can pull us back in and make us feel engaged with each other again.
    Our research has shown that we give status and respect to people who make us feel good, so much so that in a group of people, a person who can land even one appropriate joke is more likely to be voted as the leader. And the joke doesn’t even need to be very funny! It’s the fact that they were confident enough to try it and competent enough to read the room.
    Do you have any practical steps that people can apply to generate levity, even if they’re not a natural comedian?
    Levity is not just about being funny. In fact, aiming to be a comedian is not the right goal. When we watch stand-up on Netflix, comedians have rehearsed those jokes and honed them and practised them for a long time, and they’re delivering them in a monologue to an audience. It’s a completely different task from a live conversation. In real dialogue, what everybody is looking for is to feel engaged, and that doesn’t require particularly funny jokes or elaborate stories. When you see opportunities to make it fun or lighten the mood, that’s what you need to grab. It can come through a change to a new, fresh topic, or calling back to things that you talked about earlier in the conversation or earlier in your relationship. These callbacks – which sometimes do refer to something funny – are such a nice way of showing that you’ve listened and remembered. A levity move could also involve giving sincere compliments to other people. When you think nice things, when you admire someone, make sure you say it out loud.

    This brings us to the last element of TALK: kindness. Why do we so often fail to be as kind as we would like?
    Wobbles in kindness often come back to our egocentrism. Research shows that we underestimate how much other people’s perspectives differ from our own, and we forget that we have the tools to ask other people directly in conversation for their perspective. Being a kinder conversationalist is about trying to focus on your partner’s perspective and then figuring what they need and helping them to get it.
    Finally, what is your number one tip for readers to have a better conversation the next time they speak to someone?
    Every conversation is surprisingly tricky and complex. When things don’t go perfectly, give yourself and others more grace. There will be trips and stumbles and then a little grace can go very, very far.
    Topics:
    #four #sciencebased #rules #that #will
    Four science-based rules that will make your conversations flow
    One of the four pillars of good conversation is levity. You needn’t be a comedian, you can but have some funTetra Images, LLC/Alamy Conversation lies at the heart of our relationships – yet many of us find it surprisingly hard to talk to others. We may feel anxious at the thought of making small talk with strangers and struggle to connect with the people who are closest to us. If that sounds familiar, Alison Wood Brooks hopes to help. She is a professor at Harvard Business School, where she teaches an oversubscribed course called “TALK: How to talk gooder in business and life”, and the author of a new book, Talk: The science of conversation and the art of being ourselves. Both offer four key principles for more meaningful exchanges. Conversations are inherently unpredictable, says Wood Brooks, but they follow certain rules – and knowing their architecture makes us more comfortable with what is outside of our control. New Scientist asked her about the best ways to apply this research to our own chats. David Robson: Talking about talking feels quite meta. Do you ever find yourself critiquing your own performance? Alison Wood Brooks: There are so many levels of “meta-ness”. I have often felt like I’m floating over the room, watching conversations unfold, even as I’m involved in them myself. I teach a course at Harvard, andall get to experience this feeling as well. There can be an uncomfortable period of hypervigilance, but I hope that dissipates over time as they develop better habits. There is a famous quote from Charlie Parker, who was a jazz saxophonist. He said something like, “Practise, practise, practise, and then when you get on stage, let it all go and just wail.” I think that’s my approach to conversation. Even when you’re hyper-aware of conversation dynamics, you have to remember the true delight of being with another human mind, and never lose the magic of being together. Think ahead, but once you’re talking, let it all go and just wail. Reading your book, I learned that a good way to enliven a conversation is to ask someone why they are passionate about what they do. So, where does your passion for conversation come from? I have two answers to this question. One is professional. Early in my professorship at Harvard, I had been studying emotions by exploring how people talk about their feelings and the balance between what we feel inside and how we express that to others. And I realised I just had this deep, profound interest in figuring out how people talk to each other about everything, not just their feelings. We now have scientific tools that allow us to capture conversations and analyse them at large scale. Natural language processing, machine learning, the advent of AI – all this allows us to take huge swathes of transcript data and process it much more efficiently. Receive a weekly dose of discovery in your inbox. Sign up to newsletter The personal answer is that I’m an identical twin, and I spent my whole life, from the moment I opened my newborn eyes, existing next to a person who’s an exact copy of myself. It was like observing myself at very close range, interacting with the world, interacting with other people. I could see when she said and did things well, and I could try to do that myself. And I saw when her jokes failed, or she stumbled over her words – I tried to avoid those mistakes. It was a very fortunate form of feedback that not a lot of people get. And then, as a twin, you’ve got this person sharing a bedroom, sharing all your clothes, going to all the same parties and playing on the same sports teams, so we were just constantly in conversation with each other. You reached this level of shared reality that is so incredible, and I’ve spent the rest of my life trying to help other people get there in their relationships, too. “TALK” cleverly captures your framework for better conversations: topics, asking, levity and kindness. Let’s start at the beginning. How should we decide what to talk about? My first piece of advice is to prepare. Some people do this naturally. They already think about the things that they should talk about with somebody before they see them. They should lean into this habit. Some of my students, however, think it’s crazy. They think preparation will make the conversation seem rigid and forced and overly scripted. But just because you’ve thought ahead about what you might talk about doesn’t mean you have to talk about those things once the conversation is underway. It does mean, however, that you always have an idea waiting for you when you’re not sure what to talk about next. Having just one topic in your back pocket can help you in those anxiety-ridden moments. It makes things more fluent, which is important for establishing a connection. Choosing a topic is not only important at the start of a conversation. We’re constantly making decisions about whether we should stay on one subject, drift to something else or totally shift gears and go somewhere wildly different. Sometimes the topic of conversation is obvious. Even then, knowing when to switch to a new one can be trickyMartin Parr/Magnum Photos What’s your advice when making these decisions? There are three very clear signs that suggest that it’s time to switch topics. The first is longer mutual pauses. The second is more uncomfortable laughter, which we use to fill the space that we would usually fill excitedly with good content. And the third sign is redundancy. Once you start repeating things that have already been said on the topic, it’s a sign that you should move to something else. After an average conversation, most people feel like they’ve covered the right number of topics. But if you ask people after conversations that didn’t go well, they’ll more often say that they didn’t talk about enough things, rather than that they talked about too many things. This suggests that a common mistake is lingering too long on a topic after you’ve squeezed all the juice out of it. The second element of TALK is asking questions. I think a lot of us have heard the advice to ask more questions, yet many people don’t apply it. Why do you think that is? Many years of research have shown that the human mind is remarkably egocentric. Often, we are so focused on our own perspective that we forget to even ask someone else to share what’s in their mind. Another reason is fear. You’re interested in the other person, and you know you should ask them questions, but you’re afraid of being too intrusive, or that you will reveal your own incompetence, because you feel you should know the answer already. What kinds of questions should we be asking – and avoiding? In the book, I talk about the power of follow-up questions that build on anything that your partner has just said. It shows that you heard them, that you care and that you want to know more. Even one follow-up question can springboard us away from shallow talk into something deeper and more meaningful. There are, however, some bad patterns of question asking, such as “boomerasking”. Michael Yeomansand I have a recent paper about this, and oh my gosh, it’s been such fun to study. It’s a play on the word boomerang: it comes back to the person who threw it. If I ask you what you had for breakfast, and you tell me you had Special K and banana, and then I say, “Well, let me tell you about my breakfast, because, boy, was it delicious” – that’s boomerasking. Sometimes it’s a thinly veiled way of bragging or complaining, but sometimes I think people are genuinely interested to hear from their partner, but then the partner’s answer reminds them so much of their own life that they can’t help but start sharing their perspective. In our research, we have found that this makes your partner feel like you weren’t interested in their perspective, so it seems very insincere. Sharing your own perspective is important. It’s okay at some point to bring the conversation back to yourself. But don’t do it so soon that it makes your partner feel like you didn’t hear their answer or care about it. Research by Alison Wood Brooks includes a recent study on “boomerasking”, a pitfall you should avoid to make conversations flowJanelle Bruno What are the benefits of levity? When we think of conversations that haven’t gone well, we often think of moments of hostility, anger or disagreement, but a quiet killer of conversation is boredom. Levity is the antidote. These small moments of sparkle or fizz can pull us back in and make us feel engaged with each other again. Our research has shown that we give status and respect to people who make us feel good, so much so that in a group of people, a person who can land even one appropriate joke is more likely to be voted as the leader. And the joke doesn’t even need to be very funny! It’s the fact that they were confident enough to try it and competent enough to read the room. Do you have any practical steps that people can apply to generate levity, even if they’re not a natural comedian? Levity is not just about being funny. In fact, aiming to be a comedian is not the right goal. When we watch stand-up on Netflix, comedians have rehearsed those jokes and honed them and practised them for a long time, and they’re delivering them in a monologue to an audience. It’s a completely different task from a live conversation. In real dialogue, what everybody is looking for is to feel engaged, and that doesn’t require particularly funny jokes or elaborate stories. When you see opportunities to make it fun or lighten the mood, that’s what you need to grab. It can come through a change to a new, fresh topic, or calling back to things that you talked about earlier in the conversation or earlier in your relationship. These callbacks – which sometimes do refer to something funny – are such a nice way of showing that you’ve listened and remembered. A levity move could also involve giving sincere compliments to other people. When you think nice things, when you admire someone, make sure you say it out loud. This brings us to the last element of TALK: kindness. Why do we so often fail to be as kind as we would like? Wobbles in kindness often come back to our egocentrism. Research shows that we underestimate how much other people’s perspectives differ from our own, and we forget that we have the tools to ask other people directly in conversation for their perspective. Being a kinder conversationalist is about trying to focus on your partner’s perspective and then figuring what they need and helping them to get it. Finally, what is your number one tip for readers to have a better conversation the next time they speak to someone? Every conversation is surprisingly tricky and complex. When things don’t go perfectly, give yourself and others more grace. There will be trips and stumbles and then a little grace can go very, very far. Topics: #four #sciencebased #rules #that #will
    WWW.NEWSCIENTIST.COM
    Four science-based rules that will make your conversations flow
    One of the four pillars of good conversation is levity. You needn’t be a comedian, you can but have some funTetra Images, LLC/Alamy Conversation lies at the heart of our relationships – yet many of us find it surprisingly hard to talk to others. We may feel anxious at the thought of making small talk with strangers and struggle to connect with the people who are closest to us. If that sounds familiar, Alison Wood Brooks hopes to help. She is a professor at Harvard Business School, where she teaches an oversubscribed course called “TALK: How to talk gooder in business and life”, and the author of a new book, Talk: The science of conversation and the art of being ourselves. Both offer four key principles for more meaningful exchanges. Conversations are inherently unpredictable, says Wood Brooks, but they follow certain rules – and knowing their architecture makes us more comfortable with what is outside of our control. New Scientist asked her about the best ways to apply this research to our own chats. David Robson: Talking about talking feels quite meta. Do you ever find yourself critiquing your own performance? Alison Wood Brooks: There are so many levels of “meta-ness”. I have often felt like I’m floating over the room, watching conversations unfold, even as I’m involved in them myself. I teach a course at Harvard, and [my students] all get to experience this feeling as well. There can be an uncomfortable period of hypervigilance, but I hope that dissipates over time as they develop better habits. There is a famous quote from Charlie Parker, who was a jazz saxophonist. He said something like, “Practise, practise, practise, and then when you get on stage, let it all go and just wail.” I think that’s my approach to conversation. Even when you’re hyper-aware of conversation dynamics, you have to remember the true delight of being with another human mind, and never lose the magic of being together. Think ahead, but once you’re talking, let it all go and just wail. Reading your book, I learned that a good way to enliven a conversation is to ask someone why they are passionate about what they do. So, where does your passion for conversation come from? I have two answers to this question. One is professional. Early in my professorship at Harvard, I had been studying emotions by exploring how people talk about their feelings and the balance between what we feel inside and how we express that to others. And I realised I just had this deep, profound interest in figuring out how people talk to each other about everything, not just their feelings. We now have scientific tools that allow us to capture conversations and analyse them at large scale. Natural language processing, machine learning, the advent of AI – all this allows us to take huge swathes of transcript data and process it much more efficiently. Receive a weekly dose of discovery in your inbox. Sign up to newsletter The personal answer is that I’m an identical twin, and I spent my whole life, from the moment I opened my newborn eyes, existing next to a person who’s an exact copy of myself. It was like observing myself at very close range, interacting with the world, interacting with other people. I could see when she said and did things well, and I could try to do that myself. And I saw when her jokes failed, or she stumbled over her words – I tried to avoid those mistakes. It was a very fortunate form of feedback that not a lot of people get. And then, as a twin, you’ve got this person sharing a bedroom, sharing all your clothes, going to all the same parties and playing on the same sports teams, so we were just constantly in conversation with each other. You reached this level of shared reality that is so incredible, and I’ve spent the rest of my life trying to help other people get there in their relationships, too. “TALK” cleverly captures your framework for better conversations: topics, asking, levity and kindness. Let’s start at the beginning. How should we decide what to talk about? My first piece of advice is to prepare. Some people do this naturally. They already think about the things that they should talk about with somebody before they see them. They should lean into this habit. Some of my students, however, think it’s crazy. They think preparation will make the conversation seem rigid and forced and overly scripted. But just because you’ve thought ahead about what you might talk about doesn’t mean you have to talk about those things once the conversation is underway. It does mean, however, that you always have an idea waiting for you when you’re not sure what to talk about next. Having just one topic in your back pocket can help you in those anxiety-ridden moments. It makes things more fluent, which is important for establishing a connection. Choosing a topic is not only important at the start of a conversation. We’re constantly making decisions about whether we should stay on one subject, drift to something else or totally shift gears and go somewhere wildly different. Sometimes the topic of conversation is obvious. Even then, knowing when to switch to a new one can be trickyMartin Parr/Magnum Photos What’s your advice when making these decisions? There are three very clear signs that suggest that it’s time to switch topics. The first is longer mutual pauses. The second is more uncomfortable laughter, which we use to fill the space that we would usually fill excitedly with good content. And the third sign is redundancy. Once you start repeating things that have already been said on the topic, it’s a sign that you should move to something else. After an average conversation, most people feel like they’ve covered the right number of topics. But if you ask people after conversations that didn’t go well, they’ll more often say that they didn’t talk about enough things, rather than that they talked about too many things. This suggests that a common mistake is lingering too long on a topic after you’ve squeezed all the juice out of it. The second element of TALK is asking questions. I think a lot of us have heard the advice to ask more questions, yet many people don’t apply it. Why do you think that is? Many years of research have shown that the human mind is remarkably egocentric. Often, we are so focused on our own perspective that we forget to even ask someone else to share what’s in their mind. Another reason is fear. You’re interested in the other person, and you know you should ask them questions, but you’re afraid of being too intrusive, or that you will reveal your own incompetence, because you feel you should know the answer already. What kinds of questions should we be asking – and avoiding? In the book, I talk about the power of follow-up questions that build on anything that your partner has just said. It shows that you heard them, that you care and that you want to know more. Even one follow-up question can springboard us away from shallow talk into something deeper and more meaningful. There are, however, some bad patterns of question asking, such as “boomerasking”. Michael Yeomans [at Imperial College London] and I have a recent paper about this, and oh my gosh, it’s been such fun to study. It’s a play on the word boomerang: it comes back to the person who threw it. If I ask you what you had for breakfast, and you tell me you had Special K and banana, and then I say, “Well, let me tell you about my breakfast, because, boy, was it delicious” – that’s boomerasking. Sometimes it’s a thinly veiled way of bragging or complaining, but sometimes I think people are genuinely interested to hear from their partner, but then the partner’s answer reminds them so much of their own life that they can’t help but start sharing their perspective. In our research, we have found that this makes your partner feel like you weren’t interested in their perspective, so it seems very insincere. Sharing your own perspective is important. It’s okay at some point to bring the conversation back to yourself. But don’t do it so soon that it makes your partner feel like you didn’t hear their answer or care about it. Research by Alison Wood Brooks includes a recent study on “boomerasking”, a pitfall you should avoid to make conversations flowJanelle Bruno What are the benefits of levity? When we think of conversations that haven’t gone well, we often think of moments of hostility, anger or disagreement, but a quiet killer of conversation is boredom. Levity is the antidote. These small moments of sparkle or fizz can pull us back in and make us feel engaged with each other again. Our research has shown that we give status and respect to people who make us feel good, so much so that in a group of people, a person who can land even one appropriate joke is more likely to be voted as the leader. And the joke doesn’t even need to be very funny! It’s the fact that they were confident enough to try it and competent enough to read the room. Do you have any practical steps that people can apply to generate levity, even if they’re not a natural comedian? Levity is not just about being funny. In fact, aiming to be a comedian is not the right goal. When we watch stand-up on Netflix, comedians have rehearsed those jokes and honed them and practised them for a long time, and they’re delivering them in a monologue to an audience. It’s a completely different task from a live conversation. In real dialogue, what everybody is looking for is to feel engaged, and that doesn’t require particularly funny jokes or elaborate stories. When you see opportunities to make it fun or lighten the mood, that’s what you need to grab. It can come through a change to a new, fresh topic, or calling back to things that you talked about earlier in the conversation or earlier in your relationship. These callbacks – which sometimes do refer to something funny – are such a nice way of showing that you’ve listened and remembered. A levity move could also involve giving sincere compliments to other people. When you think nice things, when you admire someone, make sure you say it out loud. This brings us to the last element of TALK: kindness. Why do we so often fail to be as kind as we would like? Wobbles in kindness often come back to our egocentrism. Research shows that we underestimate how much other people’s perspectives differ from our own, and we forget that we have the tools to ask other people directly in conversation for their perspective. Being a kinder conversationalist is about trying to focus on your partner’s perspective and then figuring what they need and helping them to get it. Finally, what is your number one tip for readers to have a better conversation the next time they speak to someone? Every conversation is surprisingly tricky and complex. When things don’t go perfectly, give yourself and others more grace. There will be trips and stumbles and then a little grace can go very, very far. Topics:
    Like
    Love
    Wow
    Sad
    Angry
    522
    2 Comments 0 Shares 0 Reviews
  • MillerKnoll opens new design archive showcasing over one million objects from the company’s history

    In a 12,000-square-foot warehouse in Zeeland, Michigan, hundreds of chairs, sofas, and loveseats rest on open storage racks. Their bold colors and elegant forms stand in striking contrast to the industrial setting. A plush recliner, seemingly made for sinking into, sits beside a mesh desk chair like those found in generic office cubicles. Nearby, a rare prototype of the Knoll Womb® Chair, gifted by Eero Saarinen to his mother, blooms open like a flower–inviting someone to sit. There’s also mahogany furniture designed by Gilbert Rohde for Herman Miller, originally unveiled at the 1933 World’s Fair; early office pieces by Florence Knoll; and a sculptural paper lamp by Isamu Noguchi. This is the newly unveiled MillerKnoll Archive, a space that honors the distinct legacies of its formerly rival brands. In collaboration with New York–based design firm Standard Issue, MillerKnoll has created a permanent display of its most iconic designs at the company’s Michigan Design Yard headquarters.

    In the early 1920s, Dutch-born businessman Herman Miller became the majority stakeholder in a Zeeland, Michigan, company where his son-in-law served as president. Following the acquisition, Star Furniture Co. was renamed the Herman Miller Furniture Company. Meanwhile, across the Atlantic in Stuttgart, Germany, Walter Knoll joined his family’s furniture business and formed close ties with modernist pioneers Ludwig Mies van der Rohe and Walter Gropius, immersing himself in the Bauhaus movement as Germany edged toward war. 
    Just before the outbreak of World War II, Walter Knoll relocated to the United States and established his own furniture company in New York City. Around the same time, Michigan native Florence Schust was studying at the Cranbrook Academy of Art under Eliel Saarinen. There, she met Eero Saarinen and Charles Eames. Schust, who later married Walter Knoll, and Saarinen would go on to become key designers for the company, while Eames would play a similarly pivotal role at Herman Miller—setting both firms on parallel paths in the world of modern design.
    The facility was designed in collaboration with New York-based design firm Standard Issue. The archive, located in MillerKnoll’s Design Yard Headquarters, is 12,000 square feet and holds over one million objects.Formerly seen as competitors, Herman Miller acquired Knoll four years ago in a billion merger that formed MillerKnoll. The deal united two of the most influential names in American furniture, merging their storied design legacies and the iconic pieces that helped define modern design. Now, MillerKnoll is honoring the distinct histories of each brand through this new archive. The archive is a permanent home for the brands’ archival collections and also exhibits the evolution of modern design. The facility is organized into three distinct areas: an exhibition space, open storage, and a reading room. 

    The facility’s first exhibition, Manufacturing Modern, explores the intertwined histories of Knoll and Herman Miller. It showcases designs from the individuals who helped shape each company. The open storage area displays over 300 pieces of modern furniture, featuring both original works from Knoll and Herman Miller as well as contemporary designs. In addition to viewing the furniture pieces, visitors can kick back in the reading room, which offers access to a collection of archival materials, including correspondence, photography, drawings, and textiles.
    The facility is organized into three distinct areas: an exhibition space, open storage, and a reading room and will be open for tours in partnership with the Cranbrook Art Academy this summer.“The debut of the MillerKnoll Archives invites our communities to experience design history – and imagine its future– in one dynamic space,” said MillerKnoll’s chief creative and product officer Ben Watson. “The ability to not only understand how iconic designs came to be, but how design solutions evolved over time, is a never-ending source of inspiration.”
    Exclusive tours of the archive will be available in July and August in partnership with the Cranbrook Art Museum and in October in partnership with Docomomo.
    #millerknoll #opens #new #design #archive
    MillerKnoll opens new design archive showcasing over one million objects from the company’s history
    In a 12,000-square-foot warehouse in Zeeland, Michigan, hundreds of chairs, sofas, and loveseats rest on open storage racks. Their bold colors and elegant forms stand in striking contrast to the industrial setting. A plush recliner, seemingly made for sinking into, sits beside a mesh desk chair like those found in generic office cubicles. Nearby, a rare prototype of the Knoll Womb® Chair, gifted by Eero Saarinen to his mother, blooms open like a flower–inviting someone to sit. There’s also mahogany furniture designed by Gilbert Rohde for Herman Miller, originally unveiled at the 1933 World’s Fair; early office pieces by Florence Knoll; and a sculptural paper lamp by Isamu Noguchi. This is the newly unveiled MillerKnoll Archive, a space that honors the distinct legacies of its formerly rival brands. In collaboration with New York–based design firm Standard Issue, MillerKnoll has created a permanent display of its most iconic designs at the company’s Michigan Design Yard headquarters. In the early 1920s, Dutch-born businessman Herman Miller became the majority stakeholder in a Zeeland, Michigan, company where his son-in-law served as president. Following the acquisition, Star Furniture Co. was renamed the Herman Miller Furniture Company. Meanwhile, across the Atlantic in Stuttgart, Germany, Walter Knoll joined his family’s furniture business and formed close ties with modernist pioneers Ludwig Mies van der Rohe and Walter Gropius, immersing himself in the Bauhaus movement as Germany edged toward war.  Just before the outbreak of World War II, Walter Knoll relocated to the United States and established his own furniture company in New York City. Around the same time, Michigan native Florence Schust was studying at the Cranbrook Academy of Art under Eliel Saarinen. There, she met Eero Saarinen and Charles Eames. Schust, who later married Walter Knoll, and Saarinen would go on to become key designers for the company, while Eames would play a similarly pivotal role at Herman Miller—setting both firms on parallel paths in the world of modern design. The facility was designed in collaboration with New York-based design firm Standard Issue. The archive, located in MillerKnoll’s Design Yard Headquarters, is 12,000 square feet and holds over one million objects.Formerly seen as competitors, Herman Miller acquired Knoll four years ago in a billion merger that formed MillerKnoll. The deal united two of the most influential names in American furniture, merging their storied design legacies and the iconic pieces that helped define modern design. Now, MillerKnoll is honoring the distinct histories of each brand through this new archive. The archive is a permanent home for the brands’ archival collections and also exhibits the evolution of modern design. The facility is organized into three distinct areas: an exhibition space, open storage, and a reading room.  The facility’s first exhibition, Manufacturing Modern, explores the intertwined histories of Knoll and Herman Miller. It showcases designs from the individuals who helped shape each company. The open storage area displays over 300 pieces of modern furniture, featuring both original works from Knoll and Herman Miller as well as contemporary designs. In addition to viewing the furniture pieces, visitors can kick back in the reading room, which offers access to a collection of archival materials, including correspondence, photography, drawings, and textiles. The facility is organized into three distinct areas: an exhibition space, open storage, and a reading room and will be open for tours in partnership with the Cranbrook Art Academy this summer.“The debut of the MillerKnoll Archives invites our communities to experience design history – and imagine its future– in one dynamic space,” said MillerKnoll’s chief creative and product officer Ben Watson. “The ability to not only understand how iconic designs came to be, but how design solutions evolved over time, is a never-ending source of inspiration.” Exclusive tours of the archive will be available in July and August in partnership with the Cranbrook Art Museum and in October in partnership with Docomomo. #millerknoll #opens #new #design #archive
    WWW.ARCHPAPER.COM
    MillerKnoll opens new design archive showcasing over one million objects from the company’s history
    In a 12,000-square-foot warehouse in Zeeland, Michigan, hundreds of chairs, sofas, and loveseats rest on open storage racks. Their bold colors and elegant forms stand in striking contrast to the industrial setting. A plush recliner, seemingly made for sinking into, sits beside a mesh desk chair like those found in generic office cubicles. Nearby, a rare prototype of the Knoll Womb® Chair, gifted by Eero Saarinen to his mother, blooms open like a flower–inviting someone to sit. There’s also mahogany furniture designed by Gilbert Rohde for Herman Miller, originally unveiled at the 1933 World’s Fair; early office pieces by Florence Knoll; and a sculptural paper lamp by Isamu Noguchi. This is the newly unveiled MillerKnoll Archive, a space that honors the distinct legacies of its formerly rival brands. In collaboration with New York–based design firm Standard Issue, MillerKnoll has created a permanent display of its most iconic designs at the company’s Michigan Design Yard headquarters. In the early 1920s, Dutch-born businessman Herman Miller became the majority stakeholder in a Zeeland, Michigan, company where his son-in-law served as president. Following the acquisition, Star Furniture Co. was renamed the Herman Miller Furniture Company. Meanwhile, across the Atlantic in Stuttgart, Germany, Walter Knoll joined his family’s furniture business and formed close ties with modernist pioneers Ludwig Mies van der Rohe and Walter Gropius, immersing himself in the Bauhaus movement as Germany edged toward war.  Just before the outbreak of World War II, Walter Knoll relocated to the United States and established his own furniture company in New York City. Around the same time, Michigan native Florence Schust was studying at the Cranbrook Academy of Art under Eliel Saarinen. There, she met Eero Saarinen and Charles Eames. Schust, who later married Walter Knoll, and Saarinen would go on to become key designers for the company, while Eames would play a similarly pivotal role at Herman Miller—setting both firms on parallel paths in the world of modern design. The facility was designed in collaboration with New York-based design firm Standard Issue. The archive, located in MillerKnoll’s Design Yard Headquarters, is 12,000 square feet and holds over one million objects. (Nicholas Calcott/Courtesy MillerKnoll) Formerly seen as competitors, Herman Miller acquired Knoll four years ago in a $1.8 billion merger that formed MillerKnoll. The deal united two of the most influential names in American furniture, merging their storied design legacies and the iconic pieces that helped define modern design. Now, MillerKnoll is honoring the distinct histories of each brand through this new archive. The archive is a permanent home for the brands’ archival collections and also exhibits the evolution of modern design. The facility is organized into three distinct areas: an exhibition space, open storage, and a reading room.  The facility’s first exhibition, Manufacturing Modern, explores the intertwined histories of Knoll and Herman Miller. It showcases designs from the individuals who helped shape each company. The open storage area displays over 300 pieces of modern furniture, featuring both original works from Knoll and Herman Miller as well as contemporary designs. In addition to viewing the furniture pieces, visitors can kick back in the reading room, which offers access to a collection of archival materials, including correspondence, photography, drawings, and textiles. The facility is organized into three distinct areas: an exhibition space, open storage, and a reading room and will be open for tours in partnership with the Cranbrook Art Academy this summer. (Nicholas Calcott/Courtesy MillerKnoll) “The debut of the MillerKnoll Archives invites our communities to experience design history – and imagine its future– in one dynamic space,” said MillerKnoll’s chief creative and product officer Ben Watson. “The ability to not only understand how iconic designs came to be, but how design solutions evolved over time, is a never-ending source of inspiration.” Exclusive tours of the archive will be available in July and August in partnership with the Cranbrook Art Museum and in October in partnership with Docomomo.
    Like
    Love
    Wow
    Sad
    Angry
    490
    0 Comments 0 Shares 0 Reviews
  • Scientists Detect Unusual Airborne Toxin in the United States for the First Time

    Researchers unexpectedly discovered toxic airborne pollutants in Oklahoma. The image above depicts a field in Oklahoma. Credit: Shutterstock
    University of Colorado Boulder researchers made the first-ever airborne detection of Medium Chain Chlorinated Paraffinsin the Western Hemisphere.
    Sometimes, scientific research feels a lot like solving a mystery. Scientists head into the field with a clear goal and a solid hypothesis, but then the data reveals something surprising. That’s when the real detective work begins.
    This is exactly what happened to a team from the University of Colorado Boulder during a recent field study in rural Oklahoma. They were using a state-of-the-art instrument to track how tiny particles form and grow in the air. But instead of just collecting expected data, they uncovered something completely new: the first-ever airborne detection of Medium Chain Chlorinated Paraffins, a kind of toxic organic pollutant, in the Western Hemisphere. The teams findings were published in ACS Environmental Au.
    “It’s very exciting as a scientist to find something unexpected like this that we weren’t looking for,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. “We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better.”
    MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals. While the toxic pollutants have been measured in Antarctica and Asia, researchers haven’t been sure how to document them in the Western Hemisphere’s atmosphere until now.
    From Wastewater to Farmlands
    MCCPs are used in fluids for metal working and in the construction of PVC and textiles. They are often found in wastewater and as a result, can end up in biosolid fertilizer, also called sewage sludge, which is created when liquid is removed from wastewater in a treatment plant. In Oklahoma, researchers suspect the MCCPs they identified came from biosolid fertilizer in the fields near where they set up their instrument.
    “When sewage sludges are spread across the fields, those toxic compounds could be released into the air,” Katz said. “We can’t show directly that that’s happening, but we think it’s a reasonable way that they could be winding up in the air. Sewage sludge fertilizers have been shown to release similar compounds.”
    MCCPs little cousins, Short Chain Chlorinated Paraffins, are currently regulated by the Stockholm Convention, and since 2009, by the EPA here in the United States. Regulation came after studies found the toxic pollutants, which travel far and last a long time in the atmosphere, were harmful to human health. But researchers hypothesize that the regulation of SCCPs may have increased MCCPs in the environment.
    “We always have these unintended consequences of regulation, where you regulate something, and then there’s still a need for the products that those were in,” said Ellie Browne, CU Boulder chemistry professor, CIRES Fellow, and co-author of the study. “So they get replaced by something.”
    Measurement of aerosols led to a new and surprising discovery
    Using a nitrate chemical ionization mass spectrometer, which allows scientists to identify chemical compounds in the air, the team measured air at the agricultural site 24 hours a day for one month. As Katz cataloged the data, he documented the different isotopic patterns in the compounds. The compounds measured by the team had distinct patterns, and he noticed new patterns that he immediately identified as different from the known chemical compounds. With some additional research, he identified them as chlorinated paraffins found in MCCPs.
    Katz says the makeup of MCCPs are similar to PFAS, long-lasting toxic chemicals that break down slowly over time. Known as “forever chemicals,” their presence in soils recently led the Oklahoma Senate to ban biosolid fertilizer.
    Now that researchers know how to measure MCCPs, the next step might be to measure the pollutants at different times throughout the year to understand how levels change each season. Many unknowns surrounding MCCPs remain, and there’s much more to learn about their environmental impacts.
    “We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s important that we continue to have governmental agencies that are capable of evaluating the science and regulating these chemicals as necessary for public health and safety.”
    Reference: “Real-Time Measurements of Gas-Phase Medium-Chain Chlorinated Paraffins Reveal Daily Changes in Gas-Particle Partitioning Controlled by Ambient Temperature” by Daniel John Katz, Bri Dobson, Mitchell Alton, Harald Stark, Douglas R. Worsnop, Manjula R. Canagaratna and Eleanor C. Browne, 5 June 2025, ACS Environmental Au.
    DOI: 10.1021/acsenvironau.5c00038
    Never miss a breakthrough: Join the SciTechDaily newsletter.
    #scientists #detect #unusual #airborne #toxin
    Scientists Detect Unusual Airborne Toxin in the United States for the First Time
    Researchers unexpectedly discovered toxic airborne pollutants in Oklahoma. The image above depicts a field in Oklahoma. Credit: Shutterstock University of Colorado Boulder researchers made the first-ever airborne detection of Medium Chain Chlorinated Paraffinsin the Western Hemisphere. Sometimes, scientific research feels a lot like solving a mystery. Scientists head into the field with a clear goal and a solid hypothesis, but then the data reveals something surprising. That’s when the real detective work begins. This is exactly what happened to a team from the University of Colorado Boulder during a recent field study in rural Oklahoma. They were using a state-of-the-art instrument to track how tiny particles form and grow in the air. But instead of just collecting expected data, they uncovered something completely new: the first-ever airborne detection of Medium Chain Chlorinated Paraffins, a kind of toxic organic pollutant, in the Western Hemisphere. The teams findings were published in ACS Environmental Au. “It’s very exciting as a scientist to find something unexpected like this that we weren’t looking for,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. “We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better.” MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals. While the toxic pollutants have been measured in Antarctica and Asia, researchers haven’t been sure how to document them in the Western Hemisphere’s atmosphere until now. From Wastewater to Farmlands MCCPs are used in fluids for metal working and in the construction of PVC and textiles. They are often found in wastewater and as a result, can end up in biosolid fertilizer, also called sewage sludge, which is created when liquid is removed from wastewater in a treatment plant. In Oklahoma, researchers suspect the MCCPs they identified came from biosolid fertilizer in the fields near where they set up their instrument. “When sewage sludges are spread across the fields, those toxic compounds could be released into the air,” Katz said. “We can’t show directly that that’s happening, but we think it’s a reasonable way that they could be winding up in the air. Sewage sludge fertilizers have been shown to release similar compounds.” MCCPs little cousins, Short Chain Chlorinated Paraffins, are currently regulated by the Stockholm Convention, and since 2009, by the EPA here in the United States. Regulation came after studies found the toxic pollutants, which travel far and last a long time in the atmosphere, were harmful to human health. But researchers hypothesize that the regulation of SCCPs may have increased MCCPs in the environment. “We always have these unintended consequences of regulation, where you regulate something, and then there’s still a need for the products that those were in,” said Ellie Browne, CU Boulder chemistry professor, CIRES Fellow, and co-author of the study. “So they get replaced by something.” Measurement of aerosols led to a new and surprising discovery Using a nitrate chemical ionization mass spectrometer, which allows scientists to identify chemical compounds in the air, the team measured air at the agricultural site 24 hours a day for one month. As Katz cataloged the data, he documented the different isotopic patterns in the compounds. The compounds measured by the team had distinct patterns, and he noticed new patterns that he immediately identified as different from the known chemical compounds. With some additional research, he identified them as chlorinated paraffins found in MCCPs. Katz says the makeup of MCCPs are similar to PFAS, long-lasting toxic chemicals that break down slowly over time. Known as “forever chemicals,” their presence in soils recently led the Oklahoma Senate to ban biosolid fertilizer. Now that researchers know how to measure MCCPs, the next step might be to measure the pollutants at different times throughout the year to understand how levels change each season. Many unknowns surrounding MCCPs remain, and there’s much more to learn about their environmental impacts. “We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s important that we continue to have governmental agencies that are capable of evaluating the science and regulating these chemicals as necessary for public health and safety.” Reference: “Real-Time Measurements of Gas-Phase Medium-Chain Chlorinated Paraffins Reveal Daily Changes in Gas-Particle Partitioning Controlled by Ambient Temperature” by Daniel John Katz, Bri Dobson, Mitchell Alton, Harald Stark, Douglas R. Worsnop, Manjula R. Canagaratna and Eleanor C. Browne, 5 June 2025, ACS Environmental Au. DOI: 10.1021/acsenvironau.5c00038 Never miss a breakthrough: Join the SciTechDaily newsletter. #scientists #detect #unusual #airborne #toxin
    SCITECHDAILY.COM
    Scientists Detect Unusual Airborne Toxin in the United States for the First Time
    Researchers unexpectedly discovered toxic airborne pollutants in Oklahoma. The image above depicts a field in Oklahoma. Credit: Shutterstock University of Colorado Boulder researchers made the first-ever airborne detection of Medium Chain Chlorinated Paraffins (MCCPs) in the Western Hemisphere. Sometimes, scientific research feels a lot like solving a mystery. Scientists head into the field with a clear goal and a solid hypothesis, but then the data reveals something surprising. That’s when the real detective work begins. This is exactly what happened to a team from the University of Colorado Boulder during a recent field study in rural Oklahoma. They were using a state-of-the-art instrument to track how tiny particles form and grow in the air. But instead of just collecting expected data, they uncovered something completely new: the first-ever airborne detection of Medium Chain Chlorinated Paraffins (MCCPs), a kind of toxic organic pollutant, in the Western Hemisphere. The teams findings were published in ACS Environmental Au. “It’s very exciting as a scientist to find something unexpected like this that we weren’t looking for,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. “We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better.” MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals. While the toxic pollutants have been measured in Antarctica and Asia, researchers haven’t been sure how to document them in the Western Hemisphere’s atmosphere until now. From Wastewater to Farmlands MCCPs are used in fluids for metal working and in the construction of PVC and textiles. They are often found in wastewater and as a result, can end up in biosolid fertilizer, also called sewage sludge, which is created when liquid is removed from wastewater in a treatment plant. In Oklahoma, researchers suspect the MCCPs they identified came from biosolid fertilizer in the fields near where they set up their instrument. “When sewage sludges are spread across the fields, those toxic compounds could be released into the air,” Katz said. “We can’t show directly that that’s happening, but we think it’s a reasonable way that they could be winding up in the air. Sewage sludge fertilizers have been shown to release similar compounds.” MCCPs little cousins, Short Chain Chlorinated Paraffins (SCCPs), are currently regulated by the Stockholm Convention, and since 2009, by the EPA here in the United States. Regulation came after studies found the toxic pollutants, which travel far and last a long time in the atmosphere, were harmful to human health. But researchers hypothesize that the regulation of SCCPs may have increased MCCPs in the environment. “We always have these unintended consequences of regulation, where you regulate something, and then there’s still a need for the products that those were in,” said Ellie Browne, CU Boulder chemistry professor, CIRES Fellow, and co-author of the study. “So they get replaced by something.” Measurement of aerosols led to a new and surprising discovery Using a nitrate chemical ionization mass spectrometer, which allows scientists to identify chemical compounds in the air, the team measured air at the agricultural site 24 hours a day for one month. As Katz cataloged the data, he documented the different isotopic patterns in the compounds. The compounds measured by the team had distinct patterns, and he noticed new patterns that he immediately identified as different from the known chemical compounds. With some additional research, he identified them as chlorinated paraffins found in MCCPs. Katz says the makeup of MCCPs are similar to PFAS, long-lasting toxic chemicals that break down slowly over time. Known as “forever chemicals,” their presence in soils recently led the Oklahoma Senate to ban biosolid fertilizer. Now that researchers know how to measure MCCPs, the next step might be to measure the pollutants at different times throughout the year to understand how levels change each season. Many unknowns surrounding MCCPs remain, and there’s much more to learn about their environmental impacts. “We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s important that we continue to have governmental agencies that are capable of evaluating the science and regulating these chemicals as necessary for public health and safety.” Reference: “Real-Time Measurements of Gas-Phase Medium-Chain Chlorinated Paraffins Reveal Daily Changes in Gas-Particle Partitioning Controlled by Ambient Temperature” by Daniel John Katz, Bri Dobson, Mitchell Alton, Harald Stark, Douglas R. Worsnop, Manjula R. Canagaratna and Eleanor C. Browne, 5 June 2025, ACS Environmental Au. DOI: 10.1021/acsenvironau.5c00038 Never miss a breakthrough: Join the SciTechDaily newsletter.
    Like
    Love
    Wow
    Sad
    Angry
    411
    2 Comments 0 Shares 0 Reviews
CGShares https://cgshares.com