• Le RX 9070 XT a surpris tout le monde en dépassant le RTX 5080, mais seulement dans certains tests. Pas vraiment une révolution, mais c'est ce qu'on a. Il semble que les benchmarks aient révélé des résultats intéressants, même si ça ne change pas grand-chose à la situation générale. La compétition continue, mais bon, c'est juste une autre carte graphique parmi tant d'autres.

    #RX9070XT
    #RTX5080
    #CartesGraphiques
    #Technologie
    #Benchmarks
    Le RX 9070 XT a surpris tout le monde en dépassant le RTX 5080, mais seulement dans certains tests. Pas vraiment une révolution, mais c'est ce qu'on a. Il semble que les benchmarks aient révélé des résultats intéressants, même si ça ne change pas grand-chose à la situation générale. La compétition continue, mais bon, c'est juste une autre carte graphique parmi tant d'autres. #RX9070XT #RTX5080 #CartesGraphiques #Technologie #Benchmarks
    ARABHARDWARE.NET
    كارت RX 9070 XT يفاجئنا ويتفوق على RTX 5080، لكن في اختبارات مُعينة!
    The post كارت RX 9070 XT يفاجئنا ويتفوق على RTX 5080، لكن في اختبارات مُعينة! appeared first on عرب هاردوير.
    Like
    Love
    Wow
    Sad
    Angry
    303
    1 Commentarii 0 Distribuiri 0 previzualizare
  • benchmarking, concurrentiel, guide, importance, suivi de la concurrence, performance, analyse, stratégie, entreprises

    ## Introduction

    Le monde des affaires est un environnement en constante évolution. Pour rester compétitif, il est essentiel de surveiller non seulement ses propres performances, mais aussi celles des concurrents. C'est ici qu'intervient le benchmarking concurrentiel. Dans cet article, nous allons explorer ce qu'est le benchmarking concurrentiel et pourquoi il est important de s...
    benchmarking, concurrentiel, guide, importance, suivi de la concurrence, performance, analyse, stratégie, entreprises ## Introduction Le monde des affaires est un environnement en constante évolution. Pour rester compétitif, il est essentiel de surveiller non seulement ses propres performances, mais aussi celles des concurrents. C'est ici qu'intervient le benchmarking concurrentiel. Dans cet article, nous allons explorer ce qu'est le benchmarking concurrentiel et pourquoi il est important de s...
    Qu'est-ce que le benchmarking concurrentiel ? Un guide pour débutants
    benchmarking, concurrentiel, guide, importance, suivi de la concurrence, performance, analyse, stratégie, entreprises ## Introduction Le monde des affaires est un environnement en constante évolution. Pour rester compétitif, il est essentiel de surveiller non seulement ses propres performances, mais aussi celles des concurrents. C'est ici qu'intervient le benchmarking concurrentiel. Dans cet...
    Like
    Love
    Wow
    Sad
    Angry
    524
    1 Commentarii 0 Distribuiri 0 previzualizare
  • The AI execution gap: Why 80% of projects don’t reach production

    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle.
    #execution #gap #why #projects #dont
    The AI execution gap: Why 80% of projects don’t reach production
    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle. #execution #gap #why #projects #dont
    WWW.ARTIFICIALINTELLIGENCE-NEWS.COM
    The AI execution gap: Why 80% of projects don’t reach production
    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to $631 billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least $1 million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle.(Image source: Unsplash)
    Like
    Love
    Wow
    Angry
    Sad
    598
    0 Commentarii 0 Distribuiri 0 previzualizare
  • EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments

    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausannein Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025
    Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerialimage. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset.
    Key Takeaways:

    Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task.
    Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map.
    Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models.
    Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal.

    Challenge: Seeing the World from Two Different Angles
    The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-Viewbut are often limited to the ground plane, ignoring crucial vertical structures like buildings.

    FG2: Matching Fine-Grained Features
    The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map.

    Here’s a breakdown of their innovative pipeline:

    Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment.
    Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the verticaldimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view.
    Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoFpose.

    Unprecedented Performance and Interpretability
    The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research.

    Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems.
    “A Clearer Path” for Autonomous Navigation
    The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.
    Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models
    #epfl #researchers #unveil #fg2 #cvpr
    EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments
    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausannein Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025 Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerialimage. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset. Key Takeaways: Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task. Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map. Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models. Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal. Challenge: Seeing the World from Two Different Angles The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-Viewbut are often limited to the ground plane, ignoring crucial vertical structures like buildings. FG2: Matching Fine-Grained Features The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map. Here’s a breakdown of their innovative pipeline: Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment. Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the verticaldimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view. Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoFpose. Unprecedented Performance and Interpretability The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research. Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems. “A Clearer Path” for Autonomous Navigation The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them. Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models #epfl #researchers #unveil #fg2 #cvpr
    WWW.MARKTECHPOST.COM
    EPFL Researchers Unveil FG2 at CVPR: A New AI Model That Slashes Localization Errors by 28% for Autonomous Vehicles in GPS-Denied Environments
    Navigating the dense urban canyons of cities like San Francisco or New York can be a nightmare for GPS systems. The towering skyscrapers block and reflect satellite signals, leading to location errors of tens of meters. For you and me, that might mean a missed turn. But for an autonomous vehicle or a delivery robot, that level of imprecision is the difference between a successful mission and a costly failure. These machines require pinpoint accuracy to operate safely and efficiently. Addressing this critical challenge, researchers from the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland have introduced a groundbreaking new method for visual localization during CVPR 2025 Their new paper, “FG2: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching,” presents a novel AI model that significantly enhances the ability of a ground-level system, like an autonomous car, to determine its exact position and orientation using only a camera and a corresponding aerial (or satellite) image. The new approach has demonstrated a remarkable 28% reduction in mean localization error compared to the previous state-of-the-art on a challenging public dataset. Key Takeaways: Superior Accuracy: The FG2 model reduces the average localization error by a significant 28% on the VIGOR cross-area test set, a challenging benchmark for this task. Human-like Intuition: Instead of relying on abstract descriptors, the model mimics human reasoning by matching fine-grained, semantically consistent features—like curbs, crosswalks, and buildings—between a ground-level photo and an aerial map. Enhanced Interpretability: The method allows researchers to “see” what the AI is “thinking” by visualizing exactly which features in the ground and aerial images are being matched, a major step forward from previous “black box” models. Weakly Supervised Learning: Remarkably, the model learns these complex and consistent feature matches without any direct labels for correspondences. It achieves this using only the final camera pose as a supervisory signal. Challenge: Seeing the World from Two Different Angles The core problem of cross-view localization is the dramatic difference in perspective between a street-level camera and an overhead satellite view. A building facade seen from the ground looks completely different from its rooftop signature in an aerial image. Existing methods have struggled with this. Some create a general “descriptor” for the entire scene, but this is an abstract approach that doesn’t mirror how humans naturally localize themselves by spotting specific landmarks. Other methods transform the ground image into a Bird’s-Eye-View (BEV) but are often limited to the ground plane, ignoring crucial vertical structures like buildings. FG2: Matching Fine-Grained Features The EPFL team’s FG2 method introduces a more intuitive and effective process. It aligns two sets of points: one generated from the ground-level image and another sampled from the aerial map. Here’s a breakdown of their innovative pipeline: Mapping to 3D: The process begins by taking the features from the ground-level image and lifting them into a 3D point cloud centered around the camera. This creates a 3D representation of the immediate environment. Smart Pooling to BEV: This is where the magic happens. Instead of simply flattening the 3D data, the model learns to intelligently select the most important features along the vertical (height) dimension for each point. It essentially asks, “For this spot on the map, is the ground-level road marking more important, or is the edge of that building’s roof the better landmark?” This selection process is crucial, as it allows the model to correctly associate features like building facades with their corresponding rooftops in the aerial view. Feature Matching and Pose Estimation: Once both the ground and aerial views are represented as 2D point planes with rich feature descriptors, the model computes the similarity between them. It then samples a sparse set of the most confident matches and uses a classic geometric algorithm called Procrustes alignment to calculate the precise 3-DoF (x, y, and yaw) pose. Unprecedented Performance and Interpretability The results speak for themselves. On the challenging VIGOR dataset, which includes images from different cities in its cross-area test, FG2 reduced the mean localization error by 28% compared to the previous best method. It also demonstrated superior generalization capabilities on the KITTI dataset, a staple in autonomous driving research. Perhaps more importantly, the FG2 model offers a new level of transparency. By visualizing the matched points, the researchers showed that the model learns semantically consistent correspondences without being explicitly told to. For example, the system correctly matches zebra crossings, road markings, and even building facades in the ground view to their corresponding locations on the aerial map. This interpretability is extremenly valuable for building trust in safety-critical autonomous systems. “A Clearer Path” for Autonomous Navigation The FG2 method represents a significant leap forward in fine-grained visual localization. By developing a model that intelligently selects and matches features in a way that mirrors human intuition, the EPFL researchers have not only shattered previous accuracy records but also made the decision-making process of the AI more interpretable. This work paves the way for more robust and reliable navigation systems for autonomous vehicles, drones, and robots, bringing us one step closer to a future where machines can confidently navigate our world, even when GPS fails them. Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Jean-marc MommessinJean-marc is a successful AI business executive .He leads and accelerates growth for AI powered solutions and started a computer vision company in 2006. He is a recognized speaker at AI conferences and has an MBA from Stanford.Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/AI-Generated Ad Created with Google’s Veo3 Airs During NBA Finals, Slashing Production Costs by 95%Jean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Highlighted at CVPR 2025: Google DeepMind’s ‘Motion Prompting’ Paper Unlocks Granular Video ControlJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data AnalyticsJean-marc Mommessinhttps://www.marktechpost.com/author/jean-marc0000677/Exclusive Talk: Joey Conway of NVIDIA on Llama Nemotron Ultra and Open Source Models
    Like
    Love
    Wow
    Angry
    Sad
    601
    0 Commentarii 0 Distribuiri 0 previzualizare
  • Rewriting SymCrypt in Rust to modernize Microsoft’s cryptographic library 

    Outdated coding practices and memory-unsafe languages like C are putting software, including cryptographic libraries, at risk. Fortunately, memory-safe languages like Rust, along with formal verification tools, are now mature enough to be used at scale, helping prevent issues like crashes, data corruption, flawed implementation, and side-channel attacks.
    To address these vulnerabilities and improve memory safety, we’re rewriting SymCrypt—Microsoft’s open-source cryptographic library—in Rust. We’re also incorporating formal verification methods. SymCrypt is used in Windows, Azure Linux, Xbox, and other platforms.
    Currently, SymCrypt is primarily written in cross-platform C, with limited use of hardware-specific optimizations through intrinsicsand assembly language. It provides a wide range of algorithms, including AES-GCM, SHA, ECDSA, and the more recent post-quantum algorithms ML-KEM and ML-DSA. 
    Formal verification will confirm that implementations behave as intended and don’t deviate from algorithm specifications, critical for preventing attacks. We’ll also analyze compiled code to detect side-channel leaks caused by timing or hardware-level behavior.
    Proving Rust program properties with Aeneas
    Program verification is the process of proving that a piece of code will always satisfy a given property, no matter the input. Rust’s type system profoundly improves the prospects for program verification by providing strong ownership guarantees, by construction, using a discipline known as “aliasing xor mutability”.
    For example, reasoning about C code often requires proving that two non-const pointers are live and non-overlapping, a property that can depend on external client code. In contrast, Rust’s type system guarantees this property for any two mutably borrowed references.
    As a result, new tools have emerged specifically for verifying Rust code. We chose Aeneasbecause it helps provide a clean separation between code and proofs.
    Developed by Microsoft Azure Research in partnership with Inria, the French National Institute for Research in Digital Science and Technology, Aeneas connects to proof assistants like Lean, allowing us to draw on a large body of mathematical proofs—especially valuable given the mathematical nature of cryptographic algorithms—and benefit from Lean’s active user community.
    Compiling Rust to C supports backward compatibility  
    We recognize that switching to Rust isn’t feasible for all use cases, so we’ll continue to support, extend, and certify C-based APIs as long as users need them. Users won’t see any changes, as Rust runs underneath the existing C APIs.
    Some users compile our C code directly and may rely on specific toolchains or compiler features that complicate the adoption of Rust code. To address this, we will use Eurydice, a Rust-to-C compiler developed by Microsoft Azure Research, to replace handwritten C code with C generated from formally verified Rust. Eurydicecompiles directly from Rust’s MIR intermediate language, and the resulting C code will be checked into the SymCrypt repository alongside the original Rust source code.
    As more users adopt Rust, we’ll continue supporting this compilation path for those who build SymCrypt from source code but aren’t ready to use the Rust compiler. In the long term, we hope to transition users to either use precompiled SymCrypt binaries, or compile from source code in Rust, at which point the Rust-to-C compilation path will no longer be needed.

    Microsoft research podcast

    Ideas: AI and democracy with Madeleine Daepp and Robert Osazuwa Ness
    As the “biggest election year in history” comes to an end, researchers Madeleine Daepp and Robert Osazuwa Ness and Democracy Forward GM Ginny Badanes discuss AI’s impact on democracy, including the tech’s use in Taiwan and India.

    Listen now

    Opens in a new tab
    Timing analysis with Revizor 
    Even software that has been verified for functional correctness can remain vulnerable to low-level security threats, such as side channels caused by timing leaks or speculative execution. These threats operate at the hardware level and can leak private information, such as memory load addresses, branch targets, or division operands, even when the source code is provably correct. 
    To address this, we’re extending Revizor, a tool developed by Microsoft Azure Research, to more effectively analyze SymCrypt binaries. Revizor models microarchitectural leakage and uses fuzzing techniques to systematically uncover instructions that may expose private information through known hardware-level effects.  
    Earlier cryptographic libraries relied on constant-time programming to avoid operations on secret data. However, recent research has shown that this alone is insufficient with today’s CPUs, where every new optimization may open a new side channel. 
    By analyzing binary code for specific compilers and platforms, our extended Revizor tool enables deeper scrutiny of vulnerabilities that aren’t visible in the source code.
    Verified Rust implementations begin with ML-KEM
    This long-term effort is in alignment with the Microsoft Secure Future Initiative and brings together experts across Microsoft, building on decades of Microsoft Research investment in program verification and security tooling.
    A preliminary version of ML-KEM in Rust is now available on the preview feature/verifiedcryptobranch of the SymCrypt repository. We encourage users to try the Rust build and share feedback. Looking ahead, we plan to support direct use of the same cryptographic library in Rust without requiring C bindings. 
    Over the coming months, we plan to rewrite, verify, and ship several algorithms in Rust as part of SymCrypt. As our investment in Rust deepens, we expect to gain new insights into how to best leverage the language for high-assurance cryptographic implementations with low-level optimizations. 
    As performance is key to scalability and sustainability, we’re holding new implementations to a high bar using our benchmarking tools to match or exceed existing systems.
    Looking forward 
    This is a pivotal moment for high-assurance software. Microsoft’s investment in Rust and formal verification presents a rare opportunity to advance one of our key libraries. We’re excited to scale this work and ultimately deliver an industrial-grade, Rust-based, FIPS-certified cryptographic library.
    Opens in a new tab
    #rewriting #symcrypt #rust #modernize #microsofts
    Rewriting SymCrypt in Rust to modernize Microsoft’s cryptographic library 
    Outdated coding practices and memory-unsafe languages like C are putting software, including cryptographic libraries, at risk. Fortunately, memory-safe languages like Rust, along with formal verification tools, are now mature enough to be used at scale, helping prevent issues like crashes, data corruption, flawed implementation, and side-channel attacks. To address these vulnerabilities and improve memory safety, we’re rewriting SymCrypt—Microsoft’s open-source cryptographic library—in Rust. We’re also incorporating formal verification methods. SymCrypt is used in Windows, Azure Linux, Xbox, and other platforms. Currently, SymCrypt is primarily written in cross-platform C, with limited use of hardware-specific optimizations through intrinsicsand assembly language. It provides a wide range of algorithms, including AES-GCM, SHA, ECDSA, and the more recent post-quantum algorithms ML-KEM and ML-DSA.  Formal verification will confirm that implementations behave as intended and don’t deviate from algorithm specifications, critical for preventing attacks. We’ll also analyze compiled code to detect side-channel leaks caused by timing or hardware-level behavior. Proving Rust program properties with Aeneas Program verification is the process of proving that a piece of code will always satisfy a given property, no matter the input. Rust’s type system profoundly improves the prospects for program verification by providing strong ownership guarantees, by construction, using a discipline known as “aliasing xor mutability”. For example, reasoning about C code often requires proving that two non-const pointers are live and non-overlapping, a property that can depend on external client code. In contrast, Rust’s type system guarantees this property for any two mutably borrowed references. As a result, new tools have emerged specifically for verifying Rust code. We chose Aeneasbecause it helps provide a clean separation between code and proofs. Developed by Microsoft Azure Research in partnership with Inria, the French National Institute for Research in Digital Science and Technology, Aeneas connects to proof assistants like Lean, allowing us to draw on a large body of mathematical proofs—especially valuable given the mathematical nature of cryptographic algorithms—and benefit from Lean’s active user community. Compiling Rust to C supports backward compatibility   We recognize that switching to Rust isn’t feasible for all use cases, so we’ll continue to support, extend, and certify C-based APIs as long as users need them. Users won’t see any changes, as Rust runs underneath the existing C APIs. Some users compile our C code directly and may rely on specific toolchains or compiler features that complicate the adoption of Rust code. To address this, we will use Eurydice, a Rust-to-C compiler developed by Microsoft Azure Research, to replace handwritten C code with C generated from formally verified Rust. Eurydicecompiles directly from Rust’s MIR intermediate language, and the resulting C code will be checked into the SymCrypt repository alongside the original Rust source code. As more users adopt Rust, we’ll continue supporting this compilation path for those who build SymCrypt from source code but aren’t ready to use the Rust compiler. In the long term, we hope to transition users to either use precompiled SymCrypt binaries, or compile from source code in Rust, at which point the Rust-to-C compilation path will no longer be needed. Microsoft research podcast Ideas: AI and democracy with Madeleine Daepp and Robert Osazuwa Ness As the “biggest election year in history” comes to an end, researchers Madeleine Daepp and Robert Osazuwa Ness and Democracy Forward GM Ginny Badanes discuss AI’s impact on democracy, including the tech’s use in Taiwan and India. Listen now Opens in a new tab Timing analysis with Revizor  Even software that has been verified for functional correctness can remain vulnerable to low-level security threats, such as side channels caused by timing leaks or speculative execution. These threats operate at the hardware level and can leak private information, such as memory load addresses, branch targets, or division operands, even when the source code is provably correct.  To address this, we’re extending Revizor, a tool developed by Microsoft Azure Research, to more effectively analyze SymCrypt binaries. Revizor models microarchitectural leakage and uses fuzzing techniques to systematically uncover instructions that may expose private information through known hardware-level effects.   Earlier cryptographic libraries relied on constant-time programming to avoid operations on secret data. However, recent research has shown that this alone is insufficient with today’s CPUs, where every new optimization may open a new side channel.  By analyzing binary code for specific compilers and platforms, our extended Revizor tool enables deeper scrutiny of vulnerabilities that aren’t visible in the source code. Verified Rust implementations begin with ML-KEM This long-term effort is in alignment with the Microsoft Secure Future Initiative and brings together experts across Microsoft, building on decades of Microsoft Research investment in program verification and security tooling. A preliminary version of ML-KEM in Rust is now available on the preview feature/verifiedcryptobranch of the SymCrypt repository. We encourage users to try the Rust build and share feedback. Looking ahead, we plan to support direct use of the same cryptographic library in Rust without requiring C bindings.  Over the coming months, we plan to rewrite, verify, and ship several algorithms in Rust as part of SymCrypt. As our investment in Rust deepens, we expect to gain new insights into how to best leverage the language for high-assurance cryptographic implementations with low-level optimizations.  As performance is key to scalability and sustainability, we’re holding new implementations to a high bar using our benchmarking tools to match or exceed existing systems. Looking forward  This is a pivotal moment for high-assurance software. Microsoft’s investment in Rust and formal verification presents a rare opportunity to advance one of our key libraries. We’re excited to scale this work and ultimately deliver an industrial-grade, Rust-based, FIPS-certified cryptographic library. Opens in a new tab #rewriting #symcrypt #rust #modernize #microsofts
    WWW.MICROSOFT.COM
    Rewriting SymCrypt in Rust to modernize Microsoft’s cryptographic library 
    Outdated coding practices and memory-unsafe languages like C are putting software, including cryptographic libraries, at risk. Fortunately, memory-safe languages like Rust, along with formal verification tools, are now mature enough to be used at scale, helping prevent issues like crashes, data corruption, flawed implementation, and side-channel attacks. To address these vulnerabilities and improve memory safety, we’re rewriting SymCrypt (opens in new tab)—Microsoft’s open-source cryptographic library—in Rust. We’re also incorporating formal verification methods. SymCrypt is used in Windows, Azure Linux, Xbox, and other platforms. Currently, SymCrypt is primarily written in cross-platform C, with limited use of hardware-specific optimizations through intrinsics (compiler-provided low-level functions) and assembly language (direct processor instructions). It provides a wide range of algorithms, including AES-GCM, SHA, ECDSA, and the more recent post-quantum algorithms ML-KEM and ML-DSA.  Formal verification will confirm that implementations behave as intended and don’t deviate from algorithm specifications, critical for preventing attacks. We’ll also analyze compiled code to detect side-channel leaks caused by timing or hardware-level behavior. Proving Rust program properties with Aeneas Program verification is the process of proving that a piece of code will always satisfy a given property, no matter the input. Rust’s type system profoundly improves the prospects for program verification by providing strong ownership guarantees, by construction, using a discipline known as “aliasing xor mutability”. For example, reasoning about C code often requires proving that two non-const pointers are live and non-overlapping, a property that can depend on external client code. In contrast, Rust’s type system guarantees this property for any two mutably borrowed references. As a result, new tools have emerged specifically for verifying Rust code. We chose Aeneas (opens in new tab) because it helps provide a clean separation between code and proofs. Developed by Microsoft Azure Research in partnership with Inria, the French National Institute for Research in Digital Science and Technology, Aeneas connects to proof assistants like Lean (opens in new tab), allowing us to draw on a large body of mathematical proofs—especially valuable given the mathematical nature of cryptographic algorithms—and benefit from Lean’s active user community. Compiling Rust to C supports backward compatibility   We recognize that switching to Rust isn’t feasible for all use cases, so we’ll continue to support, extend, and certify C-based APIs as long as users need them. Users won’t see any changes, as Rust runs underneath the existing C APIs. Some users compile our C code directly and may rely on specific toolchains or compiler features that complicate the adoption of Rust code. To address this, we will use Eurydice (opens in new tab), a Rust-to-C compiler developed by Microsoft Azure Research, to replace handwritten C code with C generated from formally verified Rust. Eurydice (opens in new tab) compiles directly from Rust’s MIR intermediate language, and the resulting C code will be checked into the SymCrypt repository alongside the original Rust source code. As more users adopt Rust, we’ll continue supporting this compilation path for those who build SymCrypt from source code but aren’t ready to use the Rust compiler. In the long term, we hope to transition users to either use precompiled SymCrypt binaries (via C or Rust APIs), or compile from source code in Rust, at which point the Rust-to-C compilation path will no longer be needed. Microsoft research podcast Ideas: AI and democracy with Madeleine Daepp and Robert Osazuwa Ness As the “biggest election year in history” comes to an end, researchers Madeleine Daepp and Robert Osazuwa Ness and Democracy Forward GM Ginny Badanes discuss AI’s impact on democracy, including the tech’s use in Taiwan and India. Listen now Opens in a new tab Timing analysis with Revizor  Even software that has been verified for functional correctness can remain vulnerable to low-level security threats, such as side channels caused by timing leaks or speculative execution. These threats operate at the hardware level and can leak private information, such as memory load addresses, branch targets, or division operands, even when the source code is provably correct.  To address this, we’re extending Revizor (opens in new tab), a tool developed by Microsoft Azure Research, to more effectively analyze SymCrypt binaries. Revizor models microarchitectural leakage and uses fuzzing techniques to systematically uncover instructions that may expose private information through known hardware-level effects.   Earlier cryptographic libraries relied on constant-time programming to avoid operations on secret data. However, recent research has shown that this alone is insufficient with today’s CPUs, where every new optimization may open a new side channel.  By analyzing binary code for specific compilers and platforms, our extended Revizor tool enables deeper scrutiny of vulnerabilities that aren’t visible in the source code. Verified Rust implementations begin with ML-KEM This long-term effort is in alignment with the Microsoft Secure Future Initiative and brings together experts across Microsoft, building on decades of Microsoft Research investment in program verification and security tooling. A preliminary version of ML-KEM in Rust is now available on the preview feature/verifiedcrypto (opens in new tab) branch of the SymCrypt repository. We encourage users to try the Rust build and share feedback (opens in new tab). Looking ahead, we plan to support direct use of the same cryptographic library in Rust without requiring C bindings.  Over the coming months, we plan to rewrite, verify, and ship several algorithms in Rust as part of SymCrypt. As our investment in Rust deepens, we expect to gain new insights into how to best leverage the language for high-assurance cryptographic implementations with low-level optimizations.  As performance is key to scalability and sustainability, we’re holding new implementations to a high bar using our benchmarking tools to match or exceed existing systems. Looking forward  This is a pivotal moment for high-assurance software. Microsoft’s investment in Rust and formal verification presents a rare opportunity to advance one of our key libraries. We’re excited to scale this work and ultimately deliver an industrial-grade, Rust-based, FIPS-certified cryptographic library. Opens in a new tab
    0 Commentarii 0 Distribuiri 0 previzualizare
  • Inside Mark Zuckerberg’s AI hiring spree

    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch, Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI. “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies. Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will needto approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More:
    #inside #mark #zuckerbergs #hiring #spree
    Inside Mark Zuckerberg’s AI hiring spree
    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch, Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI. “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies. Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will needto approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More: #inside #mark #zuckerbergs #hiring #spree
    WWW.THEVERGE.COM
    Inside Mark Zuckerberg’s AI hiring spree
    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch (amazingly, not all of them do), Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI (a deal Zuckerberg passed on). “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies (although that is highly unlikely to happen). Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s $14.3 billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will need (and want) to approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent $3 billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More:
    0 Commentarii 0 Distribuiri 0 previzualizare
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Commentarii 0 Distribuiri 0 previzualizare
  • What Happened to CryEngine? 

    CryEngine, for a time, stood as one of the most exciting game engines available, consistently pushing the boundaries of what was graphically possible on PC hardware. Titles like the original Crysis were often cited as benchmarks, demanding top-tier systems to truly shine, yet delivering stunning visuals that even today hold up remarkably well. For years, CryEngine was a significant player, underpinning a number of high-profile games that helped establish Crytek’s reputation. To this day the mean “But can it run Far Cry” its still alive and well.
    However, the engine’s journey hasn’t been without its twists and turns. Ubisoft, for instance, licensed CryEngine when they acquired the Far Cry IP, which later became the basis of their in-house Dunia engine. Perhaps the most notable shift came when Amazon licensed the engine, rebranding it as Lumberyard and eventually evolving it into the open-source O3DE. At this point O3DE and CryEngine are very different engines, but based off a common core. Meanwhile, Crytek themselves continued to use CryEngine for various titles, including the Crysis series, Ryse: Son of Rome, and more recently, popular multiplayer games like Hunt: Showdown. A number of 3rd party developers have made use of CryEngine too, such as Star Citizen, Prey, a personal favourite MechWarrior Online and most recently the critically acclaimed Kingdom Come: Deliverance 2.
    Despite these recent released games, the future of CryEngine for developers is much muddier. In 2022, Crytek announced a new version of Crysis in the works, only to put it on hold, accompanied by layoffs of 15% of their workforce. While Crytek’s CEO has stated a continued commitment to developing CryEngine, particularly for Hunt: Showdown, their efforts seem focused internally. CryEngine 5.7 LTS, released in April 2022 was the last update, leading to speculation among the community. Even though Crytek announced CryEngine 5.11 for the Hunt games, it was never publicly released. Crytek have stated on their discord server that the 5.7 LTS version will be the final public release of the 5.x branch.

    Key Links
    Crytek Press Release About CryEngine 5.11
    Crytek Layoffs Announcement Tweet
    So, where does that leave CryEngine? It’s clear that Crytek is still actively developing the engine, primarily for their own titles like Hunt: Showdown. However, the public release cycle and the broader availability to third-party developers seem to be in flux. Whether CryEngine can reclaim its former prominence as a widely adopted engine beyond Crytek’s own titles remains an open question, and only time will tell what the future holds for this once-groundbreaking technology. You can learn more about the past, present and future of CryEngine in the video below.
    #what #happened #cryengine
    What Happened to CryEngine? 
    CryEngine, for a time, stood as one of the most exciting game engines available, consistently pushing the boundaries of what was graphically possible on PC hardware. Titles like the original Crysis were often cited as benchmarks, demanding top-tier systems to truly shine, yet delivering stunning visuals that even today hold up remarkably well. For years, CryEngine was a significant player, underpinning a number of high-profile games that helped establish Crytek’s reputation. To this day the mean “But can it run Far Cry” its still alive and well. However, the engine’s journey hasn’t been without its twists and turns. Ubisoft, for instance, licensed CryEngine when they acquired the Far Cry IP, which later became the basis of their in-house Dunia engine. Perhaps the most notable shift came when Amazon licensed the engine, rebranding it as Lumberyard and eventually evolving it into the open-source O3DE. At this point O3DE and CryEngine are very different engines, but based off a common core. Meanwhile, Crytek themselves continued to use CryEngine for various titles, including the Crysis series, Ryse: Son of Rome, and more recently, popular multiplayer games like Hunt: Showdown. A number of 3rd party developers have made use of CryEngine too, such as Star Citizen, Prey, a personal favourite MechWarrior Online and most recently the critically acclaimed Kingdom Come: Deliverance 2. Despite these recent released games, the future of CryEngine for developers is much muddier. In 2022, Crytek announced a new version of Crysis in the works, only to put it on hold, accompanied by layoffs of 15% of their workforce. While Crytek’s CEO has stated a continued commitment to developing CryEngine, particularly for Hunt: Showdown, their efforts seem focused internally. CryEngine 5.7 LTS, released in April 2022 was the last update, leading to speculation among the community. Even though Crytek announced CryEngine 5.11 for the Hunt games, it was never publicly released. Crytek have stated on their discord server that the 5.7 LTS version will be the final public release of the 5.x branch. Key Links Crytek Press Release About CryEngine 5.11 Crytek Layoffs Announcement Tweet So, where does that leave CryEngine? It’s clear that Crytek is still actively developing the engine, primarily for their own titles like Hunt: Showdown. However, the public release cycle and the broader availability to third-party developers seem to be in flux. Whether CryEngine can reclaim its former prominence as a widely adopted engine beyond Crytek’s own titles remains an open question, and only time will tell what the future holds for this once-groundbreaking technology. You can learn more about the past, present and future of CryEngine in the video below. #what #happened #cryengine
    GAMEFROMSCRATCH.COM
    What Happened to CryEngine? 
    CryEngine, for a time, stood as one of the most exciting game engines available, consistently pushing the boundaries of what was graphically possible on PC hardware. Titles like the original Crysis were often cited as benchmarks, demanding top-tier systems to truly shine, yet delivering stunning visuals that even today hold up remarkably well. For years, CryEngine was a significant player, underpinning a number of high-profile games that helped establish Crytek’s reputation. To this day the mean “But can it run Far Cry” its still alive and well. However, the engine’s journey hasn’t been without its twists and turns. Ubisoft, for instance, licensed CryEngine when they acquired the Far Cry IP, which later became the basis of their in-house Dunia engine. Perhaps the most notable shift came when Amazon licensed the engine, rebranding it as Lumberyard and eventually evolving it into the open-source O3DE (Open 3D Engine). At this point O3DE and CryEngine are very different engines, but based off a common core. Meanwhile, Crytek themselves continued to use CryEngine for various titles, including the Crysis series, Ryse: Son of Rome, and more recently, popular multiplayer games like Hunt: Showdown. A number of 3rd party developers have made use of CryEngine too, such as Star Citizen (now on lumberyard), Prey (2017), a personal favourite MechWarrior Online and most recently the critically acclaimed Kingdom Come: Deliverance 2. Despite these recent released games, the future of CryEngine for developers is much muddier. In 2022, Crytek announced a new version of Crysis in the works, only to put it on hold, accompanied by layoffs of 15% of their workforce. While Crytek’s CEO has stated a continued commitment to developing CryEngine, particularly for Hunt: Showdown, their efforts seem focused internally. CryEngine 5.7 LTS, released in April 2022 was the last update, leading to speculation among the community. Even though Crytek announced CryEngine 5.11 for the Hunt games, it was never publicly released. Crytek have stated on their discord server that the 5.7 LTS version will be the final public release of the 5.x branch. Key Links Crytek Press Release About CryEngine 5.11 Crytek Layoffs Announcement Tweet So, where does that leave CryEngine? It’s clear that Crytek is still actively developing the engine, primarily for their own titles like Hunt: Showdown. However, the public release cycle and the broader availability to third-party developers seem to be in flux. Whether CryEngine can reclaim its former prominence as a widely adopted engine beyond Crytek’s own titles remains an open question, and only time will tell what the future holds for this once-groundbreaking technology. You can learn more about the past, present and future of CryEngine in the video below.
    0 Commentarii 0 Distribuiri 0 previzualizare
  • Could Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment Explained

    June 13, 20253 min readCould Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment ExplainedWhen Israeli aircraft recently struck a uranium-enrichment complex in the nation, Iran could have been days away from achieving “breakout,” the ability to quickly turn “yellowcake” uranium into bomb-grade fuel, with its new high-speed centrifugesBy Deni Ellis Béchard edited by Dean VisserMen work inside of a uranium conversion facility just outside the city of Isfahan, Iran, on March 30, 2005. The facility in Isfahan made hexaflouride gas, which was then enriched by feeding it into centrifuges at a facility in Natanz, Iran. Getty ImagesIn the predawn darkness on Friday local time, Israeli military aircraft struck one of Iran’s uranium-enrichment complexes near the city of Natanz. The warheads aimed to do more than shatter concrete; they were meant to buy time, according to news reports. For months, Iran had seemed to be edging ever closer to “breakout,” the point at which its growing stockpile of partially enriched uranium could be converted into fuel for a nuclear bomb.But why did the strike occur now? One consideration could involve the way enrichment complexes work. Natural uranium is composed almost entirely of uranium 238, or U-238, an isotope that is relatively “heavy”. Only about 0.7 percent is uranium 235, a lighter isotope that is capable of sustaining a nuclear chain reaction. That means that in natural uranium, only seven atoms in 1,000 are the lighter, fission-ready U-235; “enrichment” simply means raising the percentage of U-235.U-235 can be used in warheads because its nucleus can easily be split. The International Atomic Energy Agency uses 25 kilograms of contained U-235 as the benchmark amount deemed sufficient for a first-generation implosion bomb. In such a weapon, the U-235 is surrounded by conventional explosives that, when detonated, compress the isotope. A separate device releases a neutron stream.Each time a neutron strikes a U-235 atom, the atom fissions; it divides and spits out, on average, two or three fresh neutrons—plus a burst of energy in the form of heat and gamma radiation. And the emitted neutrons in turn strike other U-235 nuclei, creating a self-sustaining chain reaction among the U-235 atoms that have been packed together into a critical mass. The result is a nuclear explosion. By contrast, the more common isotope, U-238, usually absorbs slow neutrons without splitting and cannot drive such a devastating chain reaction.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.To enrich uranium so that it contains enough U-235, the “yellowcake” uranium powder that comes out of a mine must go through a lengthy process of conversions to transform it from a solid into the gas uranium hexafluoride. First, a series of chemical processes refine the uranium and then, at high temperatures, each uranium atom is bound to six fluorine atoms. The result, uranium hexafluoride, is unusual: below 56 degrees Celsiusit is a white, waxy solid, but just above that temperature, it sublimates into a dense, invisible gas.During enrichment, this uranium hexafluoride is loaded into a centrifuge: a metal cylinder that spins at tens of thousands of revolutions per minute—faster than the blades of a jet engine. As the heavier U-238 molecules drift toward the cylinder wall, the lighter U-235 molecules remain closer to the center and are siphoned off. This new, slightly U-235-richer gas is then put into the next centrifuge. The process is repeated 10 to 20 times as ever more enriched gas is sent through a series of centrifuges.Enrichment is a slow process, but the Iranian government has been working on this for years and already holds roughly 400 kilograms of uranium enriched to 60 percent U-235. This falls short of the 90 percent required for nuclear weapons. But whereas Iran’s first-generation IR-1 centrifuges whirl at about 63,000 revolutions per minute and do relatively modest work, its newer IR-6 models, built from high-strength carbon fiber, spin faster and produce enriched uranium far more quickly.Iran has been installing thousands of these units, especially at Fordow, an underground enrichment facility built beneath 80 to 90 meters of rock. According to a report released on Monday by the Institute for Science and International Security, the new centrifuges could produce enough 90 percent U-235 uranium for a warhead “in as little as two to three days” and enough for nine nuclear weapons in three weeks—or 19 by the end of the third month.
    #could #iran #have #been #close
    Could Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment Explained
    June 13, 20253 min readCould Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment ExplainedWhen Israeli aircraft recently struck a uranium-enrichment complex in the nation, Iran could have been days away from achieving “breakout,” the ability to quickly turn “yellowcake” uranium into bomb-grade fuel, with its new high-speed centrifugesBy Deni Ellis Béchard edited by Dean VisserMen work inside of a uranium conversion facility just outside the city of Isfahan, Iran, on March 30, 2005. The facility in Isfahan made hexaflouride gas, which was then enriched by feeding it into centrifuges at a facility in Natanz, Iran. Getty ImagesIn the predawn darkness on Friday local time, Israeli military aircraft struck one of Iran’s uranium-enrichment complexes near the city of Natanz. The warheads aimed to do more than shatter concrete; they were meant to buy time, according to news reports. For months, Iran had seemed to be edging ever closer to “breakout,” the point at which its growing stockpile of partially enriched uranium could be converted into fuel for a nuclear bomb.But why did the strike occur now? One consideration could involve the way enrichment complexes work. Natural uranium is composed almost entirely of uranium 238, or U-238, an isotope that is relatively “heavy”. Only about 0.7 percent is uranium 235, a lighter isotope that is capable of sustaining a nuclear chain reaction. That means that in natural uranium, only seven atoms in 1,000 are the lighter, fission-ready U-235; “enrichment” simply means raising the percentage of U-235.U-235 can be used in warheads because its nucleus can easily be split. The International Atomic Energy Agency uses 25 kilograms of contained U-235 as the benchmark amount deemed sufficient for a first-generation implosion bomb. In such a weapon, the U-235 is surrounded by conventional explosives that, when detonated, compress the isotope. A separate device releases a neutron stream.Each time a neutron strikes a U-235 atom, the atom fissions; it divides and spits out, on average, two or three fresh neutrons—plus a burst of energy in the form of heat and gamma radiation. And the emitted neutrons in turn strike other U-235 nuclei, creating a self-sustaining chain reaction among the U-235 atoms that have been packed together into a critical mass. The result is a nuclear explosion. By contrast, the more common isotope, U-238, usually absorbs slow neutrons without splitting and cannot drive such a devastating chain reaction.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.To enrich uranium so that it contains enough U-235, the “yellowcake” uranium powder that comes out of a mine must go through a lengthy process of conversions to transform it from a solid into the gas uranium hexafluoride. First, a series of chemical processes refine the uranium and then, at high temperatures, each uranium atom is bound to six fluorine atoms. The result, uranium hexafluoride, is unusual: below 56 degrees Celsiusit is a white, waxy solid, but just above that temperature, it sublimates into a dense, invisible gas.During enrichment, this uranium hexafluoride is loaded into a centrifuge: a metal cylinder that spins at tens of thousands of revolutions per minute—faster than the blades of a jet engine. As the heavier U-238 molecules drift toward the cylinder wall, the lighter U-235 molecules remain closer to the center and are siphoned off. This new, slightly U-235-richer gas is then put into the next centrifuge. The process is repeated 10 to 20 times as ever more enriched gas is sent through a series of centrifuges.Enrichment is a slow process, but the Iranian government has been working on this for years and already holds roughly 400 kilograms of uranium enriched to 60 percent U-235. This falls short of the 90 percent required for nuclear weapons. But whereas Iran’s first-generation IR-1 centrifuges whirl at about 63,000 revolutions per minute and do relatively modest work, its newer IR-6 models, built from high-strength carbon fiber, spin faster and produce enriched uranium far more quickly.Iran has been installing thousands of these units, especially at Fordow, an underground enrichment facility built beneath 80 to 90 meters of rock. According to a report released on Monday by the Institute for Science and International Security, the new centrifuges could produce enough 90 percent U-235 uranium for a warhead “in as little as two to three days” and enough for nine nuclear weapons in three weeks—or 19 by the end of the third month. #could #iran #have #been #close
    WWW.SCIENTIFICAMERICAN.COM
    Could Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment Explained
    June 13, 20253 min readCould Iran Have Been Close to Making a Nuclear Weapon? Uranium Enrichment ExplainedWhen Israeli aircraft recently struck a uranium-enrichment complex in the nation, Iran could have been days away from achieving “breakout,” the ability to quickly turn “yellowcake” uranium into bomb-grade fuel, with its new high-speed centrifugesBy Deni Ellis Béchard edited by Dean VisserMen work inside of a uranium conversion facility just outside the city of Isfahan, Iran, on March 30, 2005. The facility in Isfahan made hexaflouride gas, which was then enriched by feeding it into centrifuges at a facility in Natanz, Iran. Getty ImagesIn the predawn darkness on Friday local time, Israeli military aircraft struck one of Iran’s uranium-enrichment complexes near the city of Natanz. The warheads aimed to do more than shatter concrete; they were meant to buy time, according to news reports. For months, Iran had seemed to be edging ever closer to “breakout,” the point at which its growing stockpile of partially enriched uranium could be converted into fuel for a nuclear bomb. (Iran has denied that it has been pursuing nuclear weapons development.)But why did the strike occur now? One consideration could involve the way enrichment complexes work. Natural uranium is composed almost entirely of uranium 238, or U-238, an isotope that is relatively “heavy” (meaning it has more neutrons in its nucleus). Only about 0.7 percent is uranium 235 (U-235), a lighter isotope that is capable of sustaining a nuclear chain reaction. That means that in natural uranium, only seven atoms in 1,000 are the lighter, fission-ready U-235; “enrichment” simply means raising the percentage of U-235.U-235 can be used in warheads because its nucleus can easily be split. The International Atomic Energy Agency uses 25 kilograms of contained U-235 as the benchmark amount deemed sufficient for a first-generation implosion bomb. In such a weapon, the U-235 is surrounded by conventional explosives that, when detonated, compress the isotope. A separate device releases a neutron stream. (Neutrons are the neutral subatomic particle in an atom’s nucleus that adds to their mass.) Each time a neutron strikes a U-235 atom, the atom fissions; it divides and spits out, on average, two or three fresh neutrons—plus a burst of energy in the form of heat and gamma radiation. And the emitted neutrons in turn strike other U-235 nuclei, creating a self-sustaining chain reaction among the U-235 atoms that have been packed together into a critical mass. The result is a nuclear explosion. By contrast, the more common isotope, U-238, usually absorbs slow neutrons without splitting and cannot drive such a devastating chain reaction.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.To enrich uranium so that it contains enough U-235, the “yellowcake” uranium powder that comes out of a mine must go through a lengthy process of conversions to transform it from a solid into the gas uranium hexafluoride. First, a series of chemical processes refine the uranium and then, at high temperatures, each uranium atom is bound to six fluorine atoms. The result, uranium hexafluoride, is unusual: below 56 degrees Celsius (132.8 degrees Fahrenheit) it is a white, waxy solid, but just above that temperature, it sublimates into a dense, invisible gas.During enrichment, this uranium hexafluoride is loaded into a centrifuge: a metal cylinder that spins at tens of thousands of revolutions per minute—faster than the blades of a jet engine. As the heavier U-238 molecules drift toward the cylinder wall, the lighter U-235 molecules remain closer to the center and are siphoned off. This new, slightly U-235-richer gas is then put into the next centrifuge. The process is repeated 10 to 20 times as ever more enriched gas is sent through a series of centrifuges.Enrichment is a slow process, but the Iranian government has been working on this for years and already holds roughly 400 kilograms of uranium enriched to 60 percent U-235. This falls short of the 90 percent required for nuclear weapons. But whereas Iran’s first-generation IR-1 centrifuges whirl at about 63,000 revolutions per minute and do relatively modest work, its newer IR-6 models, built from high-strength carbon fiber, spin faster and produce enriched uranium far more quickly.Iran has been installing thousands of these units, especially at Fordow, an underground enrichment facility built beneath 80 to 90 meters of rock. According to a report released on Monday by the Institute for Science and International Security, the new centrifuges could produce enough 90 percent U-235 uranium for a warhead “in as little as two to three days” and enough for nine nuclear weapons in three weeks—or 19 by the end of the third month.
    0 Commentarii 0 Distribuiri 0 previzualizare
  • Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects

    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada.
    Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption.
    Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits.
    Figure 1: Preheating air for industrial buildings: 2,750 m2of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies
    Quebec’s solar air heating boom: the Trigo Energies story
    Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies.
    Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.”
    One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.
     
    Blue or black, but always efficient: the advanced absorber coating
    In October 2024, the majority of the new 2,750 m²solar façade at FAB3R began operation. According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system.
    The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating.
    Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon.
    Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy
    Matrix Energy: collaborating with architects and engineers in new builds
    The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy.
    Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers.
    “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added.
    Finding the right flow: the importance of unitary airflow rates
    One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance.
    For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170, or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m²offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained.
    It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² are necessary.
    Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering
    Solar air heating systems support LEED-certified building designs
    Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto, where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m².
    “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick.
    The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances.
    The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future.
    Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif

    Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication.
    The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect.
    #oped #canadas #leadership #solar #air
    Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects
    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada. Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption. Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits. Figure 1: Preheating air for industrial buildings: 2,750 m2of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies Quebec’s solar air heating boom: the Trigo Energies story Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies. Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.” One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.   Blue or black, but always efficient: the advanced absorber coating In October 2024, the majority of the new 2,750 m²solar façade at FAB3R began operation. According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system. The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating. Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon. Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy Matrix Energy: collaborating with architects and engineers in new builds The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy. Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers. “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added. Finding the right flow: the importance of unitary airflow rates One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance. For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170, or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m²offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained. It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² are necessary. Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering Solar air heating systems support LEED-certified building designs Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto, where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m². “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick. The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances. The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future. Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication. The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect. #oped #canadas #leadership #solar #air
    WWW.CANADIANARCHITECT.COM
    Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects
    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2 (282,046 ft2) of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada. Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption. Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits. Figure 1: Preheating air for industrial buildings: 2,750 m2 (29,600 ft2) of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies Quebec’s solar air heating boom: the Trigo Energies story Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies. Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.” One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.   Blue or black, but always efficient: the advanced absorber coating In October 2024, the majority of the new 2,750 m² (29,600 ft2) solar façade at FAB3R began operation (see figure 1). According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system. The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating. Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon. Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2 (2,045 ft2) south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy Matrix Energy: collaborating with architects and engineers in new builds The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy. Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers. “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added. Finding the right flow: the importance of unitary airflow rates One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance. For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170 (m3/h/m2), or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m² (7.2 cfm/ft2) offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained. It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² (8.3 to 9.4 cfm/ft2)  are necessary. Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2 (1,722 ft2) of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering Solar air heating systems support LEED-certified building designs Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto (see Figure 3), where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m² (10,764 ft2). “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick. The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances. The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future. Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2 (775 ft2) Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication. The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect.
    0 Commentarii 0 Distribuiri 0 previzualizare
Sponsorizeaza Paginile
CGShares https://cgshares.com