• The stunning reversal of humanity’s oldest bias

    Perhaps the oldest, most pernicious form of human bias is that of men toward women. It often started at the moment of birth. In ancient Athens, at a public ceremony called the amphidromia, fathers would inspect a newborn and decide whether it would be part of the family, or be cast away. One often socially acceptable reason for abandoning the baby: It was a girl. Female infanticide has been distressingly common in many societies — and its practice is not just ancient history. In 1990, the Nobel Prize-winning economist Amartya Sen looked at birth ratios in Asia, North Africa, and China and calculated that more than 100 million women were essentially “missing” — meaning that, based on the normal ratio of boys to girls at birth and the longevity of both genders, there was a huge missing number of girls who should have been born, but weren’t. Sen’s estimate came before the truly widespread adoption of ultrasound tests that could determine the sex of a fetus in utero — which actually made the problem worse, leading to a wave of sex-selective abortions. These were especially common in countries like India and China; the latter’s one-child policy and old biases made families desperate for their one child to be a boy. The Economist has estimated that since 1980 alone, there have been approximately 50 million fewer girls born worldwide than would naturally be expected, which almost certainly means that roughly that nearly all of those girls were aborted for no other reason than their sex. The preference for boys was a bias that killed in mass numbers.But in one of the most important social shifts of our time, that bias is changing. In a great cover story earlier this month, The Economist reported that the number of annual excess male births has fallen from a peak of 1.7 million in 2000 to around 200,000, which puts it back within the biologically standard birth ratio of 105 boys for every 100 girls. Countries that once had highly skewed sex ratios — like South Korea, which saw almost 116 boys born for every 100 girls in 1990 — now have normal or near-normal ratios. Altogether, The Economist estimated that the decline in sex preference at birth in the past 25 years has saved the equivalent of 7 million girls. That’s comparable to the number of lives saved by anti-smoking efforts in the US. So how, exactly, have we overcome a prejudice that seemed so embedded in human society?Success in school and the workplaceFor one, we have relaxed discrimination against girls and women in other ways — in school and in the workplace. With fewer limits, girls are outperforming boys in the classroom. In the most recent international PISA tests, considered the gold standard for evaluating student performance around the world, 15-year-old girls beat their male counterparts in reading in 79 out of 81 participating countries or economies, while the historic male advantage in math scores has fallen to single digits. Girls are also dominating in higher education, with 113 female students at that level for every 100 male students. While women continue to earn less than men, the gender pay gap has been shrinking, and in a number of urban areas in the US, young women have actually been outearning young men. Government policies have helped accelerate that shift, in part because they have come to recognize the serious social problems that eventually result from decades of anti-girl discrimination. In countries like South Korea and China, which have long had some of the most skewed gender ratios at birth, governments have cracked down on technologies that enable sex-selective abortion. In India, where female infanticide and neglect have been particularly horrific, slogans like “the Daughter, Educate the Daughter” have helped change opinions. A changing preferenceThe shift is being seen not just in birth sex ratios, but in opinion polls — and in the actions of would-be parents.Between 1983 and 2003, The Economist reported, the proportion of South Korean women who said it was “necessary” to have a son fell from 48 percent to 6 percent, while nearly half of women now say they want daughters. In Japan, the shift has gone even further — as far back as 2002, 75 percent of couples who wanted only one child said they hoped for a daughter.In the US, which allows sex selection for couples doing in-vitro fertilization, there is growing evidence that would-be parents prefer girls, as do potential adoptive parents. While in the past, parents who had a girl first were more likely to keep trying to have children in an effort to have a boy, the opposite is now true — couples who have a girl first are less likely to keep trying. A more equal futureThere’s still more progress to be made. In northwest of India, for instance, birth ratios that overly skew toward boys are still the norm. In regions of sub-Saharan Africa, birth sex ratios may be relatively normal, but post-birth discrimination in the form of poorer nutrition and worse medical care still lingers. And course, women around the world are still subject to unacceptable levels of violence and discrimination from men.And some of the reasons for this shift may not be as high-minded as we’d like to think. Boys around the world are struggling in the modern era. They increasingly underperform in education, are more likely to be involved in violent crime, and in general, are failing to launch into adulthood. In the US, 20 percent of American men between 25 and 34 still live with their parents, compared to 15 percent of similarly aged women. It also seems to be the case that at least some of the increasing preference for girls is rooted in sexist stereotypes. Parents around the world may now prefer girls partly because they see them as more likely to take care of them in their old age — meaning a different kind of bias against women, that they are more natural caretakers, may be paradoxically driving the decline in prejudice against girls at birth.But make no mistake — the decline of boy preference is a clear mark of social progress, one measured in millions of girls’ lives saved. And maybe one Father’s Day, not too long from now, we’ll reach the point where daughters and sons are simply children: equally loved and equally welcomed.A version of this story originally appeared in the Good News newsletter. Sign up here!See More:
    #stunning #reversal #humanitys #oldest #bias
    The stunning reversal of humanity’s oldest bias
    Perhaps the oldest, most pernicious form of human bias is that of men toward women. It often started at the moment of birth. In ancient Athens, at a public ceremony called the amphidromia, fathers would inspect a newborn and decide whether it would be part of the family, or be cast away. One often socially acceptable reason for abandoning the baby: It was a girl. Female infanticide has been distressingly common in many societies — and its practice is not just ancient history. In 1990, the Nobel Prize-winning economist Amartya Sen looked at birth ratios in Asia, North Africa, and China and calculated that more than 100 million women were essentially “missing” — meaning that, based on the normal ratio of boys to girls at birth and the longevity of both genders, there was a huge missing number of girls who should have been born, but weren’t. Sen’s estimate came before the truly widespread adoption of ultrasound tests that could determine the sex of a fetus in utero — which actually made the problem worse, leading to a wave of sex-selective abortions. These were especially common in countries like India and China; the latter’s one-child policy and old biases made families desperate for their one child to be a boy. The Economist has estimated that since 1980 alone, there have been approximately 50 million fewer girls born worldwide than would naturally be expected, which almost certainly means that roughly that nearly all of those girls were aborted for no other reason than their sex. The preference for boys was a bias that killed in mass numbers.But in one of the most important social shifts of our time, that bias is changing. In a great cover story earlier this month, The Economist reported that the number of annual excess male births has fallen from a peak of 1.7 million in 2000 to around 200,000, which puts it back within the biologically standard birth ratio of 105 boys for every 100 girls. Countries that once had highly skewed sex ratios — like South Korea, which saw almost 116 boys born for every 100 girls in 1990 — now have normal or near-normal ratios. Altogether, The Economist estimated that the decline in sex preference at birth in the past 25 years has saved the equivalent of 7 million girls. That’s comparable to the number of lives saved by anti-smoking efforts in the US. So how, exactly, have we overcome a prejudice that seemed so embedded in human society?Success in school and the workplaceFor one, we have relaxed discrimination against girls and women in other ways — in school and in the workplace. With fewer limits, girls are outperforming boys in the classroom. In the most recent international PISA tests, considered the gold standard for evaluating student performance around the world, 15-year-old girls beat their male counterparts in reading in 79 out of 81 participating countries or economies, while the historic male advantage in math scores has fallen to single digits. Girls are also dominating in higher education, with 113 female students at that level for every 100 male students. While women continue to earn less than men, the gender pay gap has been shrinking, and in a number of urban areas in the US, young women have actually been outearning young men. Government policies have helped accelerate that shift, in part because they have come to recognize the serious social problems that eventually result from decades of anti-girl discrimination. In countries like South Korea and China, which have long had some of the most skewed gender ratios at birth, governments have cracked down on technologies that enable sex-selective abortion. In India, where female infanticide and neglect have been particularly horrific, slogans like “the Daughter, Educate the Daughter” have helped change opinions. A changing preferenceThe shift is being seen not just in birth sex ratios, but in opinion polls — and in the actions of would-be parents.Between 1983 and 2003, The Economist reported, the proportion of South Korean women who said it was “necessary” to have a son fell from 48 percent to 6 percent, while nearly half of women now say they want daughters. In Japan, the shift has gone even further — as far back as 2002, 75 percent of couples who wanted only one child said they hoped for a daughter.In the US, which allows sex selection for couples doing in-vitro fertilization, there is growing evidence that would-be parents prefer girls, as do potential adoptive parents. While in the past, parents who had a girl first were more likely to keep trying to have children in an effort to have a boy, the opposite is now true — couples who have a girl first are less likely to keep trying. A more equal futureThere’s still more progress to be made. In northwest of India, for instance, birth ratios that overly skew toward boys are still the norm. In regions of sub-Saharan Africa, birth sex ratios may be relatively normal, but post-birth discrimination in the form of poorer nutrition and worse medical care still lingers. And course, women around the world are still subject to unacceptable levels of violence and discrimination from men.And some of the reasons for this shift may not be as high-minded as we’d like to think. Boys around the world are struggling in the modern era. They increasingly underperform in education, are more likely to be involved in violent crime, and in general, are failing to launch into adulthood. In the US, 20 percent of American men between 25 and 34 still live with their parents, compared to 15 percent of similarly aged women. It also seems to be the case that at least some of the increasing preference for girls is rooted in sexist stereotypes. Parents around the world may now prefer girls partly because they see them as more likely to take care of them in their old age — meaning a different kind of bias against women, that they are more natural caretakers, may be paradoxically driving the decline in prejudice against girls at birth.But make no mistake — the decline of boy preference is a clear mark of social progress, one measured in millions of girls’ lives saved. And maybe one Father’s Day, not too long from now, we’ll reach the point where daughters and sons are simply children: equally loved and equally welcomed.A version of this story originally appeared in the Good News newsletter. Sign up here!See More: #stunning #reversal #humanitys #oldest #bias
    WWW.VOX.COM
    The stunning reversal of humanity’s oldest bias
    Perhaps the oldest, most pernicious form of human bias is that of men toward women. It often started at the moment of birth. In ancient Athens, at a public ceremony called the amphidromia, fathers would inspect a newborn and decide whether it would be part of the family, or be cast away. One often socially acceptable reason for abandoning the baby: It was a girl. Female infanticide has been distressingly common in many societies — and its practice is not just ancient history. In 1990, the Nobel Prize-winning economist Amartya Sen looked at birth ratios in Asia, North Africa, and China and calculated that more than 100 million women were essentially “missing” — meaning that, based on the normal ratio of boys to girls at birth and the longevity of both genders, there was a huge missing number of girls who should have been born, but weren’t. Sen’s estimate came before the truly widespread adoption of ultrasound tests that could determine the sex of a fetus in utero — which actually made the problem worse, leading to a wave of sex-selective abortions. These were especially common in countries like India and China; the latter’s one-child policy and old biases made families desperate for their one child to be a boy. The Economist has estimated that since 1980 alone, there have been approximately 50 million fewer girls born worldwide than would naturally be expected, which almost certainly means that roughly that nearly all of those girls were aborted for no other reason than their sex. The preference for boys was a bias that killed in mass numbers.But in one of the most important social shifts of our time, that bias is changing. In a great cover story earlier this month, The Economist reported that the number of annual excess male births has fallen from a peak of 1.7 million in 2000 to around 200,000, which puts it back within the biologically standard birth ratio of 105 boys for every 100 girls. Countries that once had highly skewed sex ratios — like South Korea, which saw almost 116 boys born for every 100 girls in 1990 — now have normal or near-normal ratios. Altogether, The Economist estimated that the decline in sex preference at birth in the past 25 years has saved the equivalent of 7 million girls. That’s comparable to the number of lives saved by anti-smoking efforts in the US. So how, exactly, have we overcome a prejudice that seemed so embedded in human society?Success in school and the workplaceFor one, we have relaxed discrimination against girls and women in other ways — in school and in the workplace. With fewer limits, girls are outperforming boys in the classroom. In the most recent international PISA tests, considered the gold standard for evaluating student performance around the world, 15-year-old girls beat their male counterparts in reading in 79 out of 81 participating countries or economies, while the historic male advantage in math scores has fallen to single digits. Girls are also dominating in higher education, with 113 female students at that level for every 100 male students. While women continue to earn less than men, the gender pay gap has been shrinking, and in a number of urban areas in the US, young women have actually been outearning young men. Government policies have helped accelerate that shift, in part because they have come to recognize the serious social problems that eventually result from decades of anti-girl discrimination. In countries like South Korea and China, which have long had some of the most skewed gender ratios at birth, governments have cracked down on technologies that enable sex-selective abortion. In India, where female infanticide and neglect have been particularly horrific, slogans like “Save the Daughter, Educate the Daughter” have helped change opinions. A changing preferenceThe shift is being seen not just in birth sex ratios, but in opinion polls — and in the actions of would-be parents.Between 1983 and 2003, The Economist reported, the proportion of South Korean women who said it was “necessary” to have a son fell from 48 percent to 6 percent, while nearly half of women now say they want daughters. In Japan, the shift has gone even further — as far back as 2002, 75 percent of couples who wanted only one child said they hoped for a daughter.In the US, which allows sex selection for couples doing in-vitro fertilization, there is growing evidence that would-be parents prefer girls, as do potential adoptive parents. While in the past, parents who had a girl first were more likely to keep trying to have children in an effort to have a boy, the opposite is now true — couples who have a girl first are less likely to keep trying. A more equal futureThere’s still more progress to be made. In northwest of India, for instance, birth ratios that overly skew toward boys are still the norm. In regions of sub-Saharan Africa, birth sex ratios may be relatively normal, but post-birth discrimination in the form of poorer nutrition and worse medical care still lingers. And course, women around the world are still subject to unacceptable levels of violence and discrimination from men.And some of the reasons for this shift may not be as high-minded as we’d like to think. Boys around the world are struggling in the modern era. They increasingly underperform in education, are more likely to be involved in violent crime, and in general, are failing to launch into adulthood. In the US, 20 percent of American men between 25 and 34 still live with their parents, compared to 15 percent of similarly aged women. It also seems to be the case that at least some of the increasing preference for girls is rooted in sexist stereotypes. Parents around the world may now prefer girls partly because they see them as more likely to take care of them in their old age — meaning a different kind of bias against women, that they are more natural caretakers, may be paradoxically driving the decline in prejudice against girls at birth.But make no mistake — the decline of boy preference is a clear mark of social progress, one measured in millions of girls’ lives saved. And maybe one Father’s Day, not too long from now, we’ll reach the point where daughters and sons are simply children: equally loved and equally welcomed.A version of this story originally appeared in the Good News newsletter. Sign up here!See More:
    Like
    Love
    Wow
    Sad
    Angry
    525
    0 Commentarii 0 Distribuiri
  • The Role of the 3-2-1 Backup Rule in Cybersecurity

    Daniel Pearson , CEO, KnownHostJune 12, 20253 Min ReadBusiness success concept. Cubes with arrows and target on the top.Cyber incidents are expected to cost the US billion in 2025. According to the latest estimates, this dynamic will continue to rise, reaching approximately 1.82 trillion US dollars in cybercrime costs by 2028. These figures highlight the crucial importance of strong cybersecurity strategies, which businesses must build to reduce the likelihood of risks. As technology evolves at a dramatic pace, businesses are increasingly dependent on utilizing digital infrastructure, exposing themselves to threats such as ransomware, accidental data loss, and corruption.  Despite the 3-2-1 backup rule being invented in 2009, this strategy has stayed relevant for businesses over the years, ensuring that the loss of data is minimized under threat, and will be a crucial method in the upcoming years to prevent major data loss.   What Is the 3-2-1 Backup Rule? The 3-2-1 backup rule is a popular backup strategy that ensures resilience against data loss. The setup consists of keeping your original data and two backups.  The data also needs to be stored in two different locations, such as the cloud or a local drive.  The one in the 3-2-1 backup rule represents storing a copy of your data off site, and this completes the setup.  This setup has been considered a gold standard in IT security, as it minimizes points of failure and increases the chance of successful data recovery in the event of a cyber-attack.  Related:Why Is This Rule Relevant in the Modern Cyber Threat Landscape? Statistics show that in 2024, 80% of companies have seen an increase in the frequency of cloud attacks.  Although many businesses assume that storing data in the cloud is enough, it is certainly not failsafe, and businesses are in bigger danger than ever due to the vast development of technology and AI capabilities attackers can manipulate and use.  As the cloud infrastructure has seen a similar speed of growth, cyber criminals are actively targeting these, leaving businesses with no clear recovery option. Therefore, more than ever, businesses need to invest in immutable backup solutions.  Common Backup Mistakes Businesses Make A common misstep is keeping all backups on the same physical network. If malware gets in, it can quickly spread and encrypt both the primary data and the backups, wiping out everything in one go. Another issue is the lack of offline or air-gapped backups. Many businesses rely entirely on cloud-based or on-premises storage that's always connected, which means their recovery options could be compromised during an attack. Related:Finally, one of the most overlooked yet crucial steps is testing backup restoration. A backup is only useful if it can actually be restored. Too often, companies skip regular testing. This can lead to a harsh reality check when they discover, too late, that their backup data is either corrupted or completely inaccessible after a breach. How to Implement the 3-2-1 Backup Rule? To successfully implement the 3-2-1 backup strategy as part of a robust cybersecurity framework, organizations should start by diversifying their storage methods. A resilient approach typically includes a mix of local storage, cloud-based solutions, and physical media such as external hard drives.  From there, it's essential to incorporate technologies that support write-once, read-many functionalities. This means backups cannot be modified or deleted, even by administrators, providing an extra layer of protection against threats. To further enhance resilience, organizations should make use of automation and AI-driven tools. These technologies can offer real-time monitoring, detect anomalies, and apply predictive analytics to maintain the integrity of backup data and flag any unusual activity or failures in the process. Lastly, it's crucial to ensure your backup strategy aligns with relevant regulatory requirements, such as GDPR in the UK or CCPA in the US. Compliance not only mitigates legal risk but also reinforces your commitment to data protection and operational continuity. Related:By blending the time-tested 3-2-1 rule with modern advances like immutable storage and intelligent monitoring, organizations can build a highly resilient backup architecture that strengthens their overall cybersecurity posture. About the AuthorDaniel Pearson CEO, KnownHostDaniel Pearson is the CEO of KnownHost, a managed web hosting service provider. Pearson also serves as a dedicated board member and supporter of the AlmaLinux OS Foundation, a non-profit organization focused on advancing the AlmaLinux OS -- an open-source operating system derived from RHEL. His passion for technology extends beyond his professional endeavors, as he actively promotes digital literacy and empowerment. Pearson's entrepreneurial drive and extensive industry knowledge have solidified his reputation as a respected figure in the tech community. See more from Daniel Pearson ReportsMore ReportsNever Miss a Beat: Get a snapshot of the issues affecting the IT industry straight to your inbox.SIGN-UPYou May Also Like
    #role #backup #rule #cybersecurity
    The Role of the 3-2-1 Backup Rule in Cybersecurity
    Daniel Pearson , CEO, KnownHostJune 12, 20253 Min ReadBusiness success concept. Cubes with arrows and target on the top.Cyber incidents are expected to cost the US billion in 2025. According to the latest estimates, this dynamic will continue to rise, reaching approximately 1.82 trillion US dollars in cybercrime costs by 2028. These figures highlight the crucial importance of strong cybersecurity strategies, which businesses must build to reduce the likelihood of risks. As technology evolves at a dramatic pace, businesses are increasingly dependent on utilizing digital infrastructure, exposing themselves to threats such as ransomware, accidental data loss, and corruption.  Despite the 3-2-1 backup rule being invented in 2009, this strategy has stayed relevant for businesses over the years, ensuring that the loss of data is minimized under threat, and will be a crucial method in the upcoming years to prevent major data loss.   What Is the 3-2-1 Backup Rule? The 3-2-1 backup rule is a popular backup strategy that ensures resilience against data loss. The setup consists of keeping your original data and two backups.  The data also needs to be stored in two different locations, such as the cloud or a local drive.  The one in the 3-2-1 backup rule represents storing a copy of your data off site, and this completes the setup.  This setup has been considered a gold standard in IT security, as it minimizes points of failure and increases the chance of successful data recovery in the event of a cyber-attack.  Related:Why Is This Rule Relevant in the Modern Cyber Threat Landscape? Statistics show that in 2024, 80% of companies have seen an increase in the frequency of cloud attacks.  Although many businesses assume that storing data in the cloud is enough, it is certainly not failsafe, and businesses are in bigger danger than ever due to the vast development of technology and AI capabilities attackers can manipulate and use.  As the cloud infrastructure has seen a similar speed of growth, cyber criminals are actively targeting these, leaving businesses with no clear recovery option. Therefore, more than ever, businesses need to invest in immutable backup solutions.  Common Backup Mistakes Businesses Make A common misstep is keeping all backups on the same physical network. If malware gets in, it can quickly spread and encrypt both the primary data and the backups, wiping out everything in one go. Another issue is the lack of offline or air-gapped backups. Many businesses rely entirely on cloud-based or on-premises storage that's always connected, which means their recovery options could be compromised during an attack. Related:Finally, one of the most overlooked yet crucial steps is testing backup restoration. A backup is only useful if it can actually be restored. Too often, companies skip regular testing. This can lead to a harsh reality check when they discover, too late, that their backup data is either corrupted or completely inaccessible after a breach. How to Implement the 3-2-1 Backup Rule? To successfully implement the 3-2-1 backup strategy as part of a robust cybersecurity framework, organizations should start by diversifying their storage methods. A resilient approach typically includes a mix of local storage, cloud-based solutions, and physical media such as external hard drives.  From there, it's essential to incorporate technologies that support write-once, read-many functionalities. This means backups cannot be modified or deleted, even by administrators, providing an extra layer of protection against threats. To further enhance resilience, organizations should make use of automation and AI-driven tools. These technologies can offer real-time monitoring, detect anomalies, and apply predictive analytics to maintain the integrity of backup data and flag any unusual activity or failures in the process. Lastly, it's crucial to ensure your backup strategy aligns with relevant regulatory requirements, such as GDPR in the UK or CCPA in the US. Compliance not only mitigates legal risk but also reinforces your commitment to data protection and operational continuity. Related:By blending the time-tested 3-2-1 rule with modern advances like immutable storage and intelligent monitoring, organizations can build a highly resilient backup architecture that strengthens their overall cybersecurity posture. About the AuthorDaniel Pearson CEO, KnownHostDaniel Pearson is the CEO of KnownHost, a managed web hosting service provider. Pearson also serves as a dedicated board member and supporter of the AlmaLinux OS Foundation, a non-profit organization focused on advancing the AlmaLinux OS -- an open-source operating system derived from RHEL. His passion for technology extends beyond his professional endeavors, as he actively promotes digital literacy and empowerment. Pearson's entrepreneurial drive and extensive industry knowledge have solidified his reputation as a respected figure in the tech community. See more from Daniel Pearson ReportsMore ReportsNever Miss a Beat: Get a snapshot of the issues affecting the IT industry straight to your inbox.SIGN-UPYou May Also Like #role #backup #rule #cybersecurity
    WWW.INFORMATIONWEEK.COM
    The Role of the 3-2-1 Backup Rule in Cybersecurity
    Daniel Pearson , CEO, KnownHostJune 12, 20253 Min ReadBusiness success concept. Cubes with arrows and target on the top.Cyber incidents are expected to cost the US $639 billion in 2025. According to the latest estimates, this dynamic will continue to rise, reaching approximately 1.82 trillion US dollars in cybercrime costs by 2028. These figures highlight the crucial importance of strong cybersecurity strategies, which businesses must build to reduce the likelihood of risks. As technology evolves at a dramatic pace, businesses are increasingly dependent on utilizing digital infrastructure, exposing themselves to threats such as ransomware, accidental data loss, and corruption.  Despite the 3-2-1 backup rule being invented in 2009, this strategy has stayed relevant for businesses over the years, ensuring that the loss of data is minimized under threat, and will be a crucial method in the upcoming years to prevent major data loss.   What Is the 3-2-1 Backup Rule? The 3-2-1 backup rule is a popular backup strategy that ensures resilience against data loss. The setup consists of keeping your original data and two backups.  The data also needs to be stored in two different locations, such as the cloud or a local drive.  The one in the 3-2-1 backup rule represents storing a copy of your data off site, and this completes the setup.  This setup has been considered a gold standard in IT security, as it minimizes points of failure and increases the chance of successful data recovery in the event of a cyber-attack.  Related:Why Is This Rule Relevant in the Modern Cyber Threat Landscape? Statistics show that in 2024, 80% of companies have seen an increase in the frequency of cloud attacks.  Although many businesses assume that storing data in the cloud is enough, it is certainly not failsafe, and businesses are in bigger danger than ever due to the vast development of technology and AI capabilities attackers can manipulate and use.  As the cloud infrastructure has seen a similar speed of growth, cyber criminals are actively targeting these, leaving businesses with no clear recovery option. Therefore, more than ever, businesses need to invest in immutable backup solutions.  Common Backup Mistakes Businesses Make A common misstep is keeping all backups on the same physical network. If malware gets in, it can quickly spread and encrypt both the primary data and the backups, wiping out everything in one go. Another issue is the lack of offline or air-gapped backups. Many businesses rely entirely on cloud-based or on-premises storage that's always connected, which means their recovery options could be compromised during an attack. Related:Finally, one of the most overlooked yet crucial steps is testing backup restoration. A backup is only useful if it can actually be restored. Too often, companies skip regular testing. This can lead to a harsh reality check when they discover, too late, that their backup data is either corrupted or completely inaccessible after a breach. How to Implement the 3-2-1 Backup Rule? To successfully implement the 3-2-1 backup strategy as part of a robust cybersecurity framework, organizations should start by diversifying their storage methods. A resilient approach typically includes a mix of local storage, cloud-based solutions, and physical media such as external hard drives.  From there, it's essential to incorporate technologies that support write-once, read-many functionalities. This means backups cannot be modified or deleted, even by administrators, providing an extra layer of protection against threats. To further enhance resilience, organizations should make use of automation and AI-driven tools. These technologies can offer real-time monitoring, detect anomalies, and apply predictive analytics to maintain the integrity of backup data and flag any unusual activity or failures in the process. Lastly, it's crucial to ensure your backup strategy aligns with relevant regulatory requirements, such as GDPR in the UK or CCPA in the US. Compliance not only mitigates legal risk but also reinforces your commitment to data protection and operational continuity. Related:By blending the time-tested 3-2-1 rule with modern advances like immutable storage and intelligent monitoring, organizations can build a highly resilient backup architecture that strengthens their overall cybersecurity posture. About the AuthorDaniel Pearson CEO, KnownHostDaniel Pearson is the CEO of KnownHost, a managed web hosting service provider. Pearson also serves as a dedicated board member and supporter of the AlmaLinux OS Foundation, a non-profit organization focused on advancing the AlmaLinux OS -- an open-source operating system derived from RHEL. His passion for technology extends beyond his professional endeavors, as he actively promotes digital literacy and empowerment. Pearson's entrepreneurial drive and extensive industry knowledge have solidified his reputation as a respected figure in the tech community. See more from Daniel Pearson ReportsMore ReportsNever Miss a Beat: Get a snapshot of the issues affecting the IT industry straight to your inbox.SIGN-UPYou May Also Like
    Like
    Love
    Wow
    Sad
    Angry
    519
    2 Commentarii 0 Distribuiri
  • iPad Air vs reMarkable Paper Pro: Which tablet is best for note taking? [Updated]

    Over the past few months, I’ve had the pleasure of testing out the reMarkable Paper Pro. You can read my full review here, but in short, it gets everything right about the note taking experience.
    Despite being an e-ink tablet, it does get quite pricey. However, there are certainly some fantastic parts of the experience that make it worth comparing to an iPad Air, depending on what you’re looking for in a note taking device for school, work, or whatever else.

    Updated June 15th to reflect reMarkable’s new post-tariff pricing.
    Overview
    Since the reMarkable Paper Pro comes in at with the reMarkable Marker Plus included, it likely makes most sense to compare this against Apple’s iPad Air 11-inch. That comes in at without an Apple Pencil, and adding in the Apple Pencil Pro will run you an additional The equivalent iPad setup will run you more than the reMarkable Paper Pro.
    Given the fact that iPad Air‘s regularly go on sale, it’d be fair to say they’re roughly on the same playing field. So, for a reMarkable Paper Pro setup, versus for a comparable iPad Air setup. Which is better for you?
    Obviously, the iPad Air has one key advantage: It runs iOS, has millions of apps available, can browse the web, play games, stream TV shows/movies, and much more. To some, that might end the comparison and make the iPad a clear winner, but I disagree.
    Yes, if you want your tablet to do all of those things for you, the iPad Air is a no brainer. At the end of the day, the iPad Air is a general purpose tablet that’ll do a lot more for you.
    However, if you also have a laptop to accompany your tablet, I’d argue that the iPad Air may fall into a category of slight redundance. Most things you’d want to do on the iPad can be done on a laptop, excluding any sort of touchscreen/stylus reliant features.
    iPads are great, and if you want that – you should pick that. However, I have an alternative argument to offer…
    The reMarkable Paper Pro does one thing really well: note taking. At first thought, you might think: why would I pay so much for a device that only does one thing?
    Well, that’s because it does that one thing really well. There’s also a second side to this argument: focus.
    It’s much easier to focus on what you’re doing when the device isn’t capable of anything else. If you’re taking notes while studying, you could easily see a notification or have the temptation to check notification center. Or, if you’re reading an e-book, you could easily choose to swipe up and get into another app.
    The best thing about the reMarkable Paper Pro is that you can’t easily get lost in the world of modern technology, while still having important technological features like cloud backup of your notes. Plus, you don’t have to worry about carrying around physical paper.
    One last thing – the reMarkable Paper Pro also has rubber feet on the back, so if you place it down flat on a table caseless, you don’t have to worry about scratching it up.
    Spec comparison
    Here’s a quick rundown of all of the key specs between the two devices. reMarkable Paper Pro‘s strengths definitely lie in battery, form factor, and stylus. iPad has some rather neat features with the Apple Pencil Pro, and also clears in the display category. Both devices also offer keyboards for typed notes, though only the iPad offers a trackpad.
    Display– 10.9-inch LCD display– Glossy glass– 2360 × 1640 at 264 ppi– 11.8-inch Color e-ink display– Paper-feeling textured glass– 2160 × 1620 at 229 ppiHardware– 6.1mm thin– Anodized aluminum coating– Weighs 461g w/o Pencil Pro– 5.1mm thin– Textured aluminum edges– Weighs 360g w/ Marker attachedStylus– Magnetically charges from device– Supports tilt/pressure sensitivity– Low latency– Matte plastic build– Squeeze features, double tap gestures– Magnetically charges from device– Supports tilt/pressure sensitivity– Ultra-low latency– Premium textured aluminum build– Built in eraser on the bottomBattery life– Up to 10 hours of web browsing– Recharges to 100% in 2-3 hrs– Up to 14 days of typical usage– Fast charges to 90% in 90 minsPrice–for iPad Air–for Pencil Pro– bundled with Marker Plus
    Wrap up
    All in all, I’m not going to try to convince anyone that wanted to buy an iPad that they should buy a reMarkable Paper Pro. You can’t beat the fact that the iPad Air will do a lot more, for roughly the same cost.
    But, if you’re not buying this to be a primary computing device, I’d argue that the reMarkable Paper Pro is a worthy alternative, especially if you really just want something you can zone in on. The reMarkable Paper Pro feels a lot nicer to write on, has substantially longer battery life, and really masters a minimalist form of digital note taking.
    Buy M3 iPad Air on Amazon:
    Buy reMarkable Paper Pro on Amazon:
    What do you think of these two tablets? Let us know in the comments.

    My favorite Apple accessory recommendations:
    Follow Michael: X/Twitter, Bluesky, Instagram

    Add 9to5Mac to your Google News feed. 

    FTC: We use income earning auto affiliate links. More.You’re reading 9to5Mac — experts who break news about Apple and its surrounding ecosystem, day after day. Be sure to check out our homepage for all the latest news, and follow 9to5Mac on Twitter, Facebook, and LinkedIn to stay in the loop. Don’t know where to start? Check out our exclusive stories, reviews, how-tos, and subscribe to our YouTube channel
    #ipad #air #remarkable #paper #pro
    iPad Air vs reMarkable Paper Pro: Which tablet is best for note taking? [Updated]
    Over the past few months, I’ve had the pleasure of testing out the reMarkable Paper Pro. You can read my full review here, but in short, it gets everything right about the note taking experience. Despite being an e-ink tablet, it does get quite pricey. However, there are certainly some fantastic parts of the experience that make it worth comparing to an iPad Air, depending on what you’re looking for in a note taking device for school, work, or whatever else. Updated June 15th to reflect reMarkable’s new post-tariff pricing. Overview Since the reMarkable Paper Pro comes in at with the reMarkable Marker Plus included, it likely makes most sense to compare this against Apple’s iPad Air 11-inch. That comes in at without an Apple Pencil, and adding in the Apple Pencil Pro will run you an additional The equivalent iPad setup will run you more than the reMarkable Paper Pro. Given the fact that iPad Air‘s regularly go on sale, it’d be fair to say they’re roughly on the same playing field. So, for a reMarkable Paper Pro setup, versus for a comparable iPad Air setup. Which is better for you? Obviously, the iPad Air has one key advantage: It runs iOS, has millions of apps available, can browse the web, play games, stream TV shows/movies, and much more. To some, that might end the comparison and make the iPad a clear winner, but I disagree. Yes, if you want your tablet to do all of those things for you, the iPad Air is a no brainer. At the end of the day, the iPad Air is a general purpose tablet that’ll do a lot more for you. However, if you also have a laptop to accompany your tablet, I’d argue that the iPad Air may fall into a category of slight redundance. Most things you’d want to do on the iPad can be done on a laptop, excluding any sort of touchscreen/stylus reliant features. iPads are great, and if you want that – you should pick that. However, I have an alternative argument to offer… The reMarkable Paper Pro does one thing really well: note taking. At first thought, you might think: why would I pay so much for a device that only does one thing? Well, that’s because it does that one thing really well. There’s also a second side to this argument: focus. It’s much easier to focus on what you’re doing when the device isn’t capable of anything else. If you’re taking notes while studying, you could easily see a notification or have the temptation to check notification center. Or, if you’re reading an e-book, you could easily choose to swipe up and get into another app. The best thing about the reMarkable Paper Pro is that you can’t easily get lost in the world of modern technology, while still having important technological features like cloud backup of your notes. Plus, you don’t have to worry about carrying around physical paper. One last thing – the reMarkable Paper Pro also has rubber feet on the back, so if you place it down flat on a table caseless, you don’t have to worry about scratching it up. Spec comparison Here’s a quick rundown of all of the key specs between the two devices. reMarkable Paper Pro‘s strengths definitely lie in battery, form factor, and stylus. iPad has some rather neat features with the Apple Pencil Pro, and also clears in the display category. Both devices also offer keyboards for typed notes, though only the iPad offers a trackpad. Display– 10.9-inch LCD display– Glossy glass– 2360 × 1640 at 264 ppi– 11.8-inch Color e-ink display– Paper-feeling textured glass– 2160 × 1620 at 229 ppiHardware– 6.1mm thin– Anodized aluminum coating– Weighs 461g w/o Pencil Pro– 5.1mm thin– Textured aluminum edges– Weighs 360g w/ Marker attachedStylus– Magnetically charges from device– Supports tilt/pressure sensitivity– Low latency– Matte plastic build– Squeeze features, double tap gestures– Magnetically charges from device– Supports tilt/pressure sensitivity– Ultra-low latency– Premium textured aluminum build– Built in eraser on the bottomBattery life– Up to 10 hours of web browsing– Recharges to 100% in 2-3 hrs– Up to 14 days of typical usage– Fast charges to 90% in 90 minsPrice–for iPad Air–for Pencil Pro– bundled with Marker Plus Wrap up All in all, I’m not going to try to convince anyone that wanted to buy an iPad that they should buy a reMarkable Paper Pro. You can’t beat the fact that the iPad Air will do a lot more, for roughly the same cost. But, if you’re not buying this to be a primary computing device, I’d argue that the reMarkable Paper Pro is a worthy alternative, especially if you really just want something you can zone in on. The reMarkable Paper Pro feels a lot nicer to write on, has substantially longer battery life, and really masters a minimalist form of digital note taking. Buy M3 iPad Air on Amazon: Buy reMarkable Paper Pro on Amazon: What do you think of these two tablets? Let us know in the comments. My favorite Apple accessory recommendations: Follow Michael: X/Twitter, Bluesky, Instagram Add 9to5Mac to your Google News feed.  FTC: We use income earning auto affiliate links. More.You’re reading 9to5Mac — experts who break news about Apple and its surrounding ecosystem, day after day. Be sure to check out our homepage for all the latest news, and follow 9to5Mac on Twitter, Facebook, and LinkedIn to stay in the loop. Don’t know where to start? Check out our exclusive stories, reviews, how-tos, and subscribe to our YouTube channel #ipad #air #remarkable #paper #pro
    9TO5MAC.COM
    iPad Air vs reMarkable Paper Pro: Which tablet is best for note taking? [Updated]
    Over the past few months, I’ve had the pleasure of testing out the reMarkable Paper Pro. You can read my full review here, but in short, it gets everything right about the note taking experience. Despite being an e-ink tablet, it does get quite pricey. However, there are certainly some fantastic parts of the experience that make it worth comparing to an iPad Air, depending on what you’re looking for in a note taking device for school, work, or whatever else. Updated June 15th to reflect reMarkable’s new post-tariff pricing. Overview Since the reMarkable Paper Pro comes in at $679 with the reMarkable Marker Plus included, it likely makes most sense to compare this against Apple’s iPad Air 11-inch. That comes in at $599 without an Apple Pencil, and adding in the Apple Pencil Pro will run you an additional $129. The equivalent iPad setup will run you $50 more than the reMarkable Paper Pro. Given the fact that iPad Air‘s regularly go on sale, it’d be fair to say they’re roughly on the same playing field. So, $679 for a reMarkable Paper Pro setup, versus $728 for a comparable iPad Air setup. Which is better for you? Obviously, the iPad Air has one key advantage: It runs iOS, has millions of apps available, can browse the web, play games, stream TV shows/movies, and much more. To some, that might end the comparison and make the iPad a clear winner, but I disagree. Yes, if you want your tablet to do all of those things for you, the iPad Air is a no brainer. At the end of the day, the iPad Air is a general purpose tablet that’ll do a lot more for you. However, if you also have a laptop to accompany your tablet, I’d argue that the iPad Air may fall into a category of slight redundance. Most things you’d want to do on the iPad can be done on a laptop, excluding any sort of touchscreen/stylus reliant features. iPads are great, and if you want that – you should pick that. However, I have an alternative argument to offer… The reMarkable Paper Pro does one thing really well: note taking. At first thought, you might think: why would I pay so much for a device that only does one thing? Well, that’s because it does that one thing really well. There’s also a second side to this argument: focus. It’s much easier to focus on what you’re doing when the device isn’t capable of anything else. If you’re taking notes while studying, you could easily see a notification or have the temptation to check notification center. Or, if you’re reading an e-book, you could easily choose to swipe up and get into another app. The best thing about the reMarkable Paper Pro is that you can’t easily get lost in the world of modern technology, while still having important technological features like cloud backup of your notes. Plus, you don’t have to worry about carrying around physical paper. One last thing – the reMarkable Paper Pro also has rubber feet on the back, so if you place it down flat on a table caseless, you don’t have to worry about scratching it up. Spec comparison Here’s a quick rundown of all of the key specs between the two devices. reMarkable Paper Pro‘s strengths definitely lie in battery, form factor, and stylus. iPad has some rather neat features with the Apple Pencil Pro, and also clears in the display category. Both devices also offer keyboards for typed notes, though only the iPad offers a trackpad. Display– 10.9-inch LCD display– Glossy glass– 2360 × 1640 at 264 ppi– 11.8-inch Color e-ink display– Paper-feeling textured glass– 2160 × 1620 at 229 ppiHardware– 6.1mm thin– Anodized aluminum coating– Weighs 461g w/o Pencil Pro– 5.1mm thin– Textured aluminum edges– Weighs 360g w/ Marker attachedStylus– Magnetically charges from device– Supports tilt/pressure sensitivity– Low latency (number unspecified)– Matte plastic build– Squeeze features, double tap gestures– Magnetically charges from device– Supports tilt/pressure sensitivity– Ultra-low latency (12ms)– Premium textured aluminum build– Built in eraser on the bottomBattery life– Up to 10 hours of web browsing– Recharges to 100% in 2-3 hrs– Up to 14 days of typical usage– Fast charges to 90% in 90 minsPrice– $599 ($529 on sale) for iPad Air– $129 ($99 on sale) for Pencil Pro– $679 bundled with Marker Plus Wrap up All in all, I’m not going to try to convince anyone that wanted to buy an iPad that they should buy a reMarkable Paper Pro. You can’t beat the fact that the iPad Air will do a lot more, for roughly the same cost. But, if you’re not buying this to be a primary computing device, I’d argue that the reMarkable Paper Pro is a worthy alternative, especially if you really just want something you can zone in on. The reMarkable Paper Pro feels a lot nicer to write on, has substantially longer battery life, and really masters a minimalist form of digital note taking. Buy M3 iPad Air on Amazon: Buy reMarkable Paper Pro on Amazon: What do you think of these two tablets? Let us know in the comments. My favorite Apple accessory recommendations: Follow Michael: X/Twitter, Bluesky, Instagram Add 9to5Mac to your Google News feed.  FTC: We use income earning auto affiliate links. More.You’re reading 9to5Mac — experts who break news about Apple and its surrounding ecosystem, day after day. Be sure to check out our homepage for all the latest news, and follow 9to5Mac on Twitter, Facebook, and LinkedIn to stay in the loop. Don’t know where to start? Check out our exclusive stories, reviews, how-tos, and subscribe to our YouTube channel
    Like
    Love
    Wow
    Sad
    Angry
    407
    2 Commentarii 0 Distribuiri
  • Hitman: IO Interactive Has Big Plans For World of Assassination

    While IO Interactive may be heavily focused on its inaugural James Bond game, 2026’s 007 First Light, it’s still providing ambitious new levels and updates for Hitman: World of Assassination and its new science fiction action game MindsEye. To continue to build hype for First Light and IOI’s growing partnership with the James Bond brand, the latest World of Assassination level is a Bond crossover, as Hitman protagonist Agent 47 targets Le Chiffre, the main villain of the 2006 movie Casino Royale. Available through July 6, 2025, the Le Chiffre event in World of Assassination features actor Mads Mikkelsen reprising his fan-favorite Bond villain role, not only providing his likeness but voicing the character as he confronts the contract killer in France.
    Den of Geek attended the first-ever in-person IO Interactive Showcase, a partner event with Summer Game Fest held at The Roosevelt Hotel in Hollywood. Mikkelsen and the developers shared insight on the surprise new World of Assassination level, with the level itself playable in its entirety to attendees on the Nintendo Switch 2 and PlayStation Portal. The developers also included an extended gameplay preview for MindsEye, ahead of its June 10 launch, while sharing some details about the techno-thriller.

    Matching his background from Casino Royale, Le Chiffre is a terrorist financier who manipulates the stock market by any means necessary to benefit himself and his clients. After an investment deal goes wrong, Le Chiffre tries to recoup a brutal client’s losses through a high-stakes poker game in France, with Agent 47 hired to assassinate the criminal mastermind on behalf of an unidentified backer. The level opens with 47 infiltrating a high society gala linked to the poker game, with the contract killer entering under his oft-used assumed name of Tobias Rieper, a facade that Le Chiffre immediately sees through.
    At the IO Interactive Showcase panel, Mikkelsen observed that the character of Le Chiffre is always one that he enjoyed and held a special place for him and his career. Reprising his villainous role also gave Mikkelsen the chance to reunite with longtime Agent 47 voice actor David Bateson since their ‘90s short film Tom Merritt, though both actors recorded their respective lines separately. Mikkelsen enjoyed that Le Chiffre’s appearance in World of Assassination gave him a more physical role than he had in Casino Royale, rather than largely placing him at a poker table.

    Of course, like most Hitman levels, there are multiple different ways that players can accomplish their main objective of killing Le Chiffre and escaping the premises. The game certainly gives players multiple avenues to confront the evil financier over a game of poker before closing in for the kill, but it’s by no means the only way to successfully assassinate him. We won’t give away how we ultimately pulled off the assassination, but rest assured that it took multiple tries, careful plotting, and with all the usual trial-and-error that comes from playing one of Hitman’s more difficult and immersively involved levels.
    Moving away from its more grounded action titles, IO Interactive also provided a deeper look at its new sci-fi game MindsEye, developed by Build a Rocket Boy. Set in the fictional Redrock City, the extended gameplay sneak peek at the showcase featured protagonist Adam Diaz fighting shadowy enemies in the futuristic city’s largely abandoned streets. While there were no hands-on demos at the showcase itself, the preview demonstrated Diaz using his abilities and equipment, including an accompanying drone, to navigate the city from a third-person perspective and use an array of weapons to dispatch those trying to hunt him down.
    MindsEye marks the first game published through IOI Partners, an initiative that has IOI publish games from smaller, external developers. The game did not have a hands-on demo at the showcase and, given its bug-heavy and poorly-received launch, this distinction is not particularly surprising. Build a Robot Boy has since pledged to support the game through June to fix its technical issues but, given the game’s hands-on access at the IOI Showcase, there were already red flags surrounding the game’s performance. With that in mind, most of the buzz at the showcase was unsurprisingly centered around 007 First Light and updates to Hitman: World of Assassination, and IO Interactive did not disappoint in that regard.
    Even with Hitman: World of Assassination over four years old now, the game continues to receive impressive post-release support from IO Interactive, both in bringing the title to the Nintendo Switch 2 and with additional DLC. At the showcase, IOI hinted at additional special levels for World of Assassintation with high-profile guest targets like Le Chiffre, without identifying who or if they’re also explicitly tied to the James Bond franchise. But with 007 First Light slated for its eagerly anticipated launch next year, it’s a safe bet that IOI has further plans to hype its own role in building out the James Bond legacy for the foreseeable future.
    The Hitman: World of Assassination special Le Chiffre level is available now through July 6, 2025 on all the game’s major platforms, including the Nintendo Switch 2.
    MindsEye is now on sale for PlayStation 5, Xbox Series X|S, and PC.
    #hitman #interactive #has #big #plans
    Hitman: IO Interactive Has Big Plans For World of Assassination
    While IO Interactive may be heavily focused on its inaugural James Bond game, 2026’s 007 First Light, it’s still providing ambitious new levels and updates for Hitman: World of Assassination and its new science fiction action game MindsEye. To continue to build hype for First Light and IOI’s growing partnership with the James Bond brand, the latest World of Assassination level is a Bond crossover, as Hitman protagonist Agent 47 targets Le Chiffre, the main villain of the 2006 movie Casino Royale. Available through July 6, 2025, the Le Chiffre event in World of Assassination features actor Mads Mikkelsen reprising his fan-favorite Bond villain role, not only providing his likeness but voicing the character as he confronts the contract killer in France. Den of Geek attended the first-ever in-person IO Interactive Showcase, a partner event with Summer Game Fest held at The Roosevelt Hotel in Hollywood. Mikkelsen and the developers shared insight on the surprise new World of Assassination level, with the level itself playable in its entirety to attendees on the Nintendo Switch 2 and PlayStation Portal. The developers also included an extended gameplay preview for MindsEye, ahead of its June 10 launch, while sharing some details about the techno-thriller. Matching his background from Casino Royale, Le Chiffre is a terrorist financier who manipulates the stock market by any means necessary to benefit himself and his clients. After an investment deal goes wrong, Le Chiffre tries to recoup a brutal client’s losses through a high-stakes poker game in France, with Agent 47 hired to assassinate the criminal mastermind on behalf of an unidentified backer. The level opens with 47 infiltrating a high society gala linked to the poker game, with the contract killer entering under his oft-used assumed name of Tobias Rieper, a facade that Le Chiffre immediately sees through. At the IO Interactive Showcase panel, Mikkelsen observed that the character of Le Chiffre is always one that he enjoyed and held a special place for him and his career. Reprising his villainous role also gave Mikkelsen the chance to reunite with longtime Agent 47 voice actor David Bateson since their ‘90s short film Tom Merritt, though both actors recorded their respective lines separately. Mikkelsen enjoyed that Le Chiffre’s appearance in World of Assassination gave him a more physical role than he had in Casino Royale, rather than largely placing him at a poker table. Of course, like most Hitman levels, there are multiple different ways that players can accomplish their main objective of killing Le Chiffre and escaping the premises. The game certainly gives players multiple avenues to confront the evil financier over a game of poker before closing in for the kill, but it’s by no means the only way to successfully assassinate him. We won’t give away how we ultimately pulled off the assassination, but rest assured that it took multiple tries, careful plotting, and with all the usual trial-and-error that comes from playing one of Hitman’s more difficult and immersively involved levels. Moving away from its more grounded action titles, IO Interactive also provided a deeper look at its new sci-fi game MindsEye, developed by Build a Rocket Boy. Set in the fictional Redrock City, the extended gameplay sneak peek at the showcase featured protagonist Adam Diaz fighting shadowy enemies in the futuristic city’s largely abandoned streets. While there were no hands-on demos at the showcase itself, the preview demonstrated Diaz using his abilities and equipment, including an accompanying drone, to navigate the city from a third-person perspective and use an array of weapons to dispatch those trying to hunt him down. MindsEye marks the first game published through IOI Partners, an initiative that has IOI publish games from smaller, external developers. The game did not have a hands-on demo at the showcase and, given its bug-heavy and poorly-received launch, this distinction is not particularly surprising. Build a Robot Boy has since pledged to support the game through June to fix its technical issues but, given the game’s hands-on access at the IOI Showcase, there were already red flags surrounding the game’s performance. With that in mind, most of the buzz at the showcase was unsurprisingly centered around 007 First Light and updates to Hitman: World of Assassination, and IO Interactive did not disappoint in that regard. Even with Hitman: World of Assassination over four years old now, the game continues to receive impressive post-release support from IO Interactive, both in bringing the title to the Nintendo Switch 2 and with additional DLC. At the showcase, IOI hinted at additional special levels for World of Assassintation with high-profile guest targets like Le Chiffre, without identifying who or if they’re also explicitly tied to the James Bond franchise. But with 007 First Light slated for its eagerly anticipated launch next year, it’s a safe bet that IOI has further plans to hype its own role in building out the James Bond legacy for the foreseeable future. The Hitman: World of Assassination special Le Chiffre level is available now through July 6, 2025 on all the game’s major platforms, including the Nintendo Switch 2. MindsEye is now on sale for PlayStation 5, Xbox Series X|S, and PC. #hitman #interactive #has #big #plans
    WWW.DENOFGEEK.COM
    Hitman: IO Interactive Has Big Plans For World of Assassination
    While IO Interactive may be heavily focused on its inaugural James Bond game, 2026’s 007 First Light, it’s still providing ambitious new levels and updates for Hitman: World of Assassination and its new science fiction action game MindsEye. To continue to build hype for First Light and IOI’s growing partnership with the James Bond brand, the latest World of Assassination level is a Bond crossover, as Hitman protagonist Agent 47 targets Le Chiffre, the main villain of the 2006 movie Casino Royale. Available through July 6, 2025, the Le Chiffre event in World of Assassination features actor Mads Mikkelsen reprising his fan-favorite Bond villain role, not only providing his likeness but voicing the character as he confronts the contract killer in France. Den of Geek attended the first-ever in-person IO Interactive Showcase, a partner event with Summer Game Fest held at The Roosevelt Hotel in Hollywood. Mikkelsen and the developers shared insight on the surprise new World of Assassination level, with the level itself playable in its entirety to attendees on the Nintendo Switch 2 and PlayStation Portal. The developers also included an extended gameplay preview for MindsEye, ahead of its June 10 launch, while sharing some details about the techno-thriller. Matching his background from Casino Royale, Le Chiffre is a terrorist financier who manipulates the stock market by any means necessary to benefit himself and his clients. After an investment deal goes wrong, Le Chiffre tries to recoup a brutal client’s losses through a high-stakes poker game in France, with Agent 47 hired to assassinate the criminal mastermind on behalf of an unidentified backer. The level opens with 47 infiltrating a high society gala linked to the poker game, with the contract killer entering under his oft-used assumed name of Tobias Rieper, a facade that Le Chiffre immediately sees through. At the IO Interactive Showcase panel, Mikkelsen observed that the character of Le Chiffre is always one that he enjoyed and held a special place for him and his career. Reprising his villainous role also gave Mikkelsen the chance to reunite with longtime Agent 47 voice actor David Bateson since their ‘90s short film Tom Merritt, though both actors recorded their respective lines separately. Mikkelsen enjoyed that Le Chiffre’s appearance in World of Assassination gave him a more physical role than he had in Casino Royale, rather than largely placing him at a poker table. Of course, like most Hitman levels, there are multiple different ways that players can accomplish their main objective of killing Le Chiffre and escaping the premises. The game certainly gives players multiple avenues to confront the evil financier over a game of poker before closing in for the kill, but it’s by no means the only way to successfully assassinate him. We won’t give away how we ultimately pulled off the assassination, but rest assured that it took multiple tries, careful plotting, and with all the usual trial-and-error that comes from playing one of Hitman’s more difficult and immersively involved levels. Moving away from its more grounded action titles, IO Interactive also provided a deeper look at its new sci-fi game MindsEye, developed by Build a Rocket Boy. Set in the fictional Redrock City, the extended gameplay sneak peek at the showcase featured protagonist Adam Diaz fighting shadowy enemies in the futuristic city’s largely abandoned streets. While there were no hands-on demos at the showcase itself, the preview demonstrated Diaz using his abilities and equipment, including an accompanying drone, to navigate the city from a third-person perspective and use an array of weapons to dispatch those trying to hunt him down. MindsEye marks the first game published through IOI Partners, an initiative that has IOI publish games from smaller, external developers. The game did not have a hands-on demo at the showcase and, given its bug-heavy and poorly-received launch, this distinction is not particularly surprising. Build a Robot Boy has since pledged to support the game through June to fix its technical issues but, given the game’s hands-on access at the IOI Showcase, there were already red flags surrounding the game’s performance. With that in mind, most of the buzz at the showcase was unsurprisingly centered around 007 First Light and updates to Hitman: World of Assassination, and IO Interactive did not disappoint in that regard. Even with Hitman: World of Assassination over four years old now, the game continues to receive impressive post-release support from IO Interactive, both in bringing the title to the Nintendo Switch 2 and with additional DLC. At the showcase, IOI hinted at additional special levels for World of Assassintation with high-profile guest targets like Le Chiffre, without identifying who or if they’re also explicitly tied to the James Bond franchise. But with 007 First Light slated for its eagerly anticipated launch next year, it’s a safe bet that IOI has further plans to hype its own role in building out the James Bond legacy for the foreseeable future. The Hitman: World of Assassination special Le Chiffre level is available now through July 6, 2025 on all the game’s major platforms, including the Nintendo Switch 2. MindsEye is now on sale for PlayStation 5, Xbox Series X|S, and PC.
    Like
    Love
    Wow
    Angry
    Sad
    498
    0 Commentarii 0 Distribuiri
  • AU Deals: Today's Hottest AAA Discounts to Heat Up Your Game Cave Winter Hibernation

    Winter is well and truly biting, but this fresh crop of game deals is bringing the heat. From mythological mayhem to pocket-sized platformers, there’s something here for every taste and timeframe. If your digital shelf could use a mid-year injection of chaos, charm, or challenge, this week’s offerings are primed to please.This Day in Gaming In retro news, I’m lighting a 26‑candle cake for Silent Hill, the fog‑laden survival horror fest that kept '99-era me perched on a seat with barely 2% of the surface area of one butt cheek. I still remember tentatively sweeping my flashlight across those grainy, polygonal streets, only to have the beam half illuminate some scurrying something in the dark.
    Though the OG Resident Evil certainly vexed me first, the unique magic of Silent Hill lay in how its graphical limitations—thick fog and encroaching darkness—became tools of terror rather than platform limitations. Every ring of static from your radio or *that* air raid siren heralding the "other plane" of this madhouse could ratchet up the dread in an instant. Lastly, I recall working game retail at launch and having to help absolutely bloody everybody with a solution to the piano puzzle.Tank controls andbugger all visibility. OG Silent Hill was terrifying.Aussie bdays for notable games- Silent Hill1999. Redux- Marvel vs. Capcom 22000. Redux- The Conduit2009. eBay- Monster Hunter Generations2016. eBayContentsNice Savings for Nintendo SwitchAvailable now!Nintendo Switch 2 ConsoleNintendo Switch 2 + Mario Kart WorldNintendo kicks things off with Persona 5 Royal for Aa lavishly expanded edition of the genre-defining RPG whose original director Katsura Hashino was inspired by Carl Jung’s theories of the psyche. Also worth nabbing is Bravely Default II at Aa spiritual twinner to the Final Fantasy titles that’s cheekily packed with nostalgic mechanics like turning off random encounters to power-level in peace.Persona 5 Royal- ABravely Default II- ASonic Frontiers- ASonic x Shadow Generations- ANBA 2K25- AMetal Gear Col.- AExpiring Recent DealsOr gift a Nintendo eShop Card.Switch Console PricesHow much to Switch it up?Switch OLED + Mario Wonder: $̶5̶3̶9̶ |
    Switch Original: $̶4̶9̶9̶ |
    Switch OLED Black: $̶5̶3̶9̶ |
    Switch OLED White: $̶5̶3̶9̶ ♥ |
    Switch Lite: $̶3̶2̶9̶ |
    Switch Lite Hyrule: $̶3̶3̶9̶ See itBack to topExciting Bargains for Xbox Over on Xbox Series X, Warhammer 40,000: Space Marine 2 is slashing skulls and prices at Afinally giving fans the long-awaited sequel to one of gaming’s most satisfyingly weighty shooters. Suicide Squad: Kill the Justice League is an outrageous Aand despite its rocky reception, it’s a fascinating look at how Batman: Arkham devs tried to blend looter-shooter DNA into their universe.40K Space Marine 2- ASuicide Squad: KTJL- AWild Hearts- AAvatar: Pandora Gold Ed.- AHogwarts Legacy- AXbox OneTopSpin 2K25- ASunset Overdrive- AAlan Wake Rem.- AExpiring Recent DealsThe Witcher 3 Comp.- ATekken 8- ANBA 2K25- AFarming Simulator 25- AFC 25- ARed Dead Redemption 2- ALies of P- ALego Jurassic World- AOr just invest in an Xbox Card.Xbox Console PricesHow many bucks for a 'Box? Series X: $̶7̶9̶9̶ |
    Series S Black: $̶5̶4̶9̶ |
    Series S White:$̶4̶9̶9̶ |
    Series S Starter: N/ASee itBack to topPure Scores for PlayStationFor PS5 players, Marvel’s Spider-Man: Miles Morales swings down to Aletting you sling through Harlem while wearing everything from a Bodega Cat suit to a Spider-Verse frame-rate filter. Meanwhile, Ratchet & Clank: Rift Apart for Ais a tech marvel that started life as a PS4 title, before being fully rebuilt to show off the PS5’s SSD.PS4God of War Ragnarök- AGran Turismo 7- AWatch Dogs: Legion- AExpiring Recent DealsPS+ Monthly FreebiesYours to keep from May 1 with this subscriptionArk: Survival AscendedBalatroWarhammer 40,000: BoltgunOr purchase a PS Store Card.What you'll pay to 'Station.PS5 + Astro Bot:$̶7̶2̶4̶.9̶5̶ |
    PS5 Slim Disc:$̶7̶9̶9̶ |
    PS5 Slim Digital:6̶7̶9̶ |
    PS5 Pro $̶1̶,1̶9̶9̶ |
    PS VR2: |
    PS VR2 + Horizon: |
    PS Portal: See itBack to topPurchase Cheap for PCOn PC, Resident Evil 4 is a steal at Aa stunning remake where the developers added extra charm to Leon’s famous “Where’s everyone going, bingo?” line by letting players unlock vintage filters that emulate 2005-era graphics. Also notable is Lies of P at Athe Pinocchio-meets-Bloodborne mash-up that lets you lie in dialogue choices for combat perks.Lies of P- AThe Alters- AClair Obscur: Expedition 33- ASilent Hill 2- AForza Horizon 5- AResident Evil 4- AExpiring Recent DealsOr just get a Steam Wallet CardPC Hardware PricesSlay your pile of shame.Official launch in NovSteam Deck 256GB LCD: |
    Steam Deck 512GB OLED: |
    Steam Deck 1TB OLED: See it at SteamLaptop DealsDesktop DealsLenovo neo 50a G5 27" AIO– ALenovo neo 50q G4 Tiny– ALenovo neo 50t G5 Tower– ALegion Tower 5i G8– AMonitor DealsSamsung QE50T 50"– AARZOPA 16.1" 144Hz– AZ-Edge 27" 240Hz– AGawfolk 34" WQHD– ALG 27" Ultragear– AComponent DealsStorage DealsBack to topLegit LEGO DealsExpiring Recent DealsBack to topHot Headphones DealsAudiophilia for lessBose QuietComfort Ultra Wireless– ASoundcore by Anker Q20i– ASony MDR7506 Professional– ATechnics Premium– ABose SoundLink Flex– AJBL Charge 5 - Portable Speaker– AJBL Flip Essential 2 Waterproof Speaker– ASony SRS-XB100 Travel Speaker– AUltimate Ears Boom 3 Portable Speaker– ASamsung Galaxy Buds2 Pro– ASennheiser Momentum 4 Wireless– ABack to topTerrific TV DealsDo right by your console, upgrade your tellyLG 43" UT80 4K– AKogan 65" QLED 4K– AKogan 55" QLED 4K– ALG 55" UT80 4K– APrism+ Q75 Ultra 75" 4K QLED– AGaimoo Mini Projector 1080p w/ 4K– AGooDee 4K Projector– AVOPLLS Mini Projector 4K– AXuanPad Mini Projector– ALG S70TY Q Series Sound Barn*-22%) – ASony HTG700 Atmos Soundbar– AYamaha NS-SW050 Subwoofer– ASmart Home DealsBack to top Adam Mathew is our Aussie deals wrangler. He plays practically everything, often on YouTube.
    #deals #today039s #hottest #aaa #discounts
    AU Deals: Today's Hottest AAA Discounts to Heat Up Your Game Cave Winter Hibernation
    Winter is well and truly biting, but this fresh crop of game deals is bringing the heat. From mythological mayhem to pocket-sized platformers, there’s something here for every taste and timeframe. If your digital shelf could use a mid-year injection of chaos, charm, or challenge, this week’s offerings are primed to please.This Day in Gaming 🎂In retro news, I’m lighting a 26‑candle cake for Silent Hill, the fog‑laden survival horror fest that kept '99-era me perched on a seat with barely 2% of the surface area of one butt cheek. I still remember tentatively sweeping my flashlight across those grainy, polygonal streets, only to have the beam half illuminate some scurrying something in the dark. Though the OG Resident Evil certainly vexed me first, the unique magic of Silent Hill lay in how its graphical limitations—thick fog and encroaching darkness—became tools of terror rather than platform limitations. Every ring of static from your radio or *that* air raid siren heralding the "other plane" of this madhouse could ratchet up the dread in an instant. Lastly, I recall working game retail at launch and having to help absolutely bloody everybody with a solution to the piano puzzle.Tank controls andbugger all visibility. OG Silent Hill was terrifying.Aussie bdays for notable games- Silent Hill1999. Redux- Marvel vs. Capcom 22000. Redux- The Conduit2009. eBay- Monster Hunter Generations2016. eBayContentsNice Savings for Nintendo SwitchAvailable now!Nintendo Switch 2 ConsoleNintendo Switch 2 + Mario Kart WorldNintendo kicks things off with Persona 5 Royal for Aa lavishly expanded edition of the genre-defining RPG whose original director Katsura Hashino was inspired by Carl Jung’s theories of the psyche. Also worth nabbing is Bravely Default II at Aa spiritual twinner to the Final Fantasy titles that’s cheekily packed with nostalgic mechanics like turning off random encounters to power-level in peace.Persona 5 Royal- ABravely Default II- ASonic Frontiers- ASonic x Shadow Generations- ANBA 2K25- AMetal Gear Col.- AExpiring Recent DealsOr gift a Nintendo eShop Card.Switch Console PricesHow much to Switch it up?Switch OLED + Mario Wonder: $̶5̶3̶9̶ | Switch Original: $̶4̶9̶9̶ | Switch OLED Black: $̶5̶3̶9̶ | Switch OLED White: $̶5̶3̶9̶ ♥ | Switch Lite: $̶3̶2̶9̶ | Switch Lite Hyrule: $̶3̶3̶9̶ See itBack to topExciting Bargains for Xbox Over on Xbox Series X, Warhammer 40,000: Space Marine 2 is slashing skulls and prices at Afinally giving fans the long-awaited sequel to one of gaming’s most satisfyingly weighty shooters. Suicide Squad: Kill the Justice League is an outrageous Aand despite its rocky reception, it’s a fascinating look at how Batman: Arkham devs tried to blend looter-shooter DNA into their universe.40K Space Marine 2- ASuicide Squad: KTJL- AWild Hearts- AAvatar: Pandora Gold Ed.- AHogwarts Legacy- AXbox OneTopSpin 2K25- ASunset Overdrive- AAlan Wake Rem.- AExpiring Recent DealsThe Witcher 3 Comp.- ATekken 8- ANBA 2K25- AFarming Simulator 25- AFC 25- ARed Dead Redemption 2- ALies of P- ALego Jurassic World- AOr just invest in an Xbox Card.Xbox Console PricesHow many bucks for a 'Box? Series X: $̶7̶9̶9̶ 👑| Series S Black: $̶5̶4̶9̶ | Series S White:$̶4̶9̶9̶ | Series S Starter: N/ASee itBack to topPure Scores for PlayStationFor PS5 players, Marvel’s Spider-Man: Miles Morales swings down to Aletting you sling through Harlem while wearing everything from a Bodega Cat suit to a Spider-Verse frame-rate filter. Meanwhile, Ratchet & Clank: Rift Apart for Ais a tech marvel that started life as a PS4 title, before being fully rebuilt to show off the PS5’s SSD.PS4God of War Ragnarök- AGran Turismo 7- AWatch Dogs: Legion- AExpiring Recent DealsPS+ Monthly FreebiesYours to keep from May 1 with this subscriptionArk: Survival AscendedBalatroWarhammer 40,000: BoltgunOr purchase a PS Store Card.What you'll pay to 'Station.PS5 + Astro Bot:$̶7̶2̶4̶.9̶5̶ 👑 | PS5 Slim Disc:$̶7̶9̶9̶ | PS5 Slim Digital:6̶7̶9̶ | PS5 Pro $̶1̶,1̶9̶9̶ | PS VR2: | PS VR2 + Horizon: | PS Portal: See itBack to topPurchase Cheap for PCOn PC, Resident Evil 4 is a steal at Aa stunning remake where the developers added extra charm to Leon’s famous “Where’s everyone going, bingo?” line by letting players unlock vintage filters that emulate 2005-era graphics. Also notable is Lies of P at Athe Pinocchio-meets-Bloodborne mash-up that lets you lie in dialogue choices for combat perks.Lies of P- AThe Alters- AClair Obscur: Expedition 33- ASilent Hill 2- AForza Horizon 5- AResident Evil 4- AExpiring Recent DealsOr just get a Steam Wallet CardPC Hardware PricesSlay your pile of shame.Official launch in NovSteam Deck 256GB LCD: | Steam Deck 512GB OLED: | Steam Deck 1TB OLED: See it at SteamLaptop DealsDesktop DealsLenovo neo 50a G5 27" AIO– ALenovo neo 50q G4 Tiny– ALenovo neo 50t G5 Tower– ALegion Tower 5i G8– AMonitor DealsSamsung QE50T 50"– AARZOPA 16.1" 144Hz– AZ-Edge 27" 240Hz– AGawfolk 34" WQHD– ALG 27" Ultragear– AComponent DealsStorage DealsBack to topLegit LEGO DealsExpiring Recent DealsBack to topHot Headphones DealsAudiophilia for lessBose QuietComfort Ultra Wireless– ASoundcore by Anker Q20i– ASony MDR7506 Professional– ATechnics Premium– ABose SoundLink Flex– AJBL Charge 5 - Portable Speaker– AJBL Flip Essential 2 Waterproof Speaker– ASony SRS-XB100 Travel Speaker– AUltimate Ears Boom 3 Portable Speaker– ASamsung Galaxy Buds2 Pro– ASennheiser Momentum 4 Wireless– ABack to topTerrific TV DealsDo right by your console, upgrade your tellyLG 43" UT80 4K– AKogan 65" QLED 4K– AKogan 55" QLED 4K– ALG 55" UT80 4K– APrism+ Q75 Ultra 75" 4K QLED– AGaimoo Mini Projector 1080p w/ 4K– AGooDee 4K Projector– AVOPLLS Mini Projector 4K– AXuanPad Mini Projector– ALG S70TY Q Series Sound Barn*-22%) – ASony HTG700 Atmos Soundbar– AYamaha NS-SW050 Subwoofer– ASmart Home DealsBack to top Adam Mathew is our Aussie deals wrangler. He plays practically everything, often on YouTube. #deals #today039s #hottest #aaa #discounts
    WWW.IGN.COM
    AU Deals: Today's Hottest AAA Discounts to Heat Up Your Game Cave Winter Hibernation
    Winter is well and truly biting, but this fresh crop of game deals is bringing the heat. From mythological mayhem to pocket-sized platformers, there’s something here for every taste and timeframe. If your digital shelf could use a mid-year injection of chaos, charm, or challenge, this week’s offerings are primed to please.This Day in Gaming 🎂In retro news, I’m lighting a 26‑candle cake for Silent Hill, the fog‑laden survival horror fest that kept '99-era me perched on a seat with barely 2% of the surface area of one butt cheek. I still remember tentatively sweeping my flashlight across those grainy, polygonal streets, only to have the beam half illuminate some scurrying something in the dark. Though the OG Resident Evil certainly vexed me first, the unique magic of Silent Hill lay in how its graphical limitations—thick fog and encroaching darkness—became tools of terror rather than platform limitations. Every ring of static from your radio or *that* air raid siren heralding the "other plane" of this madhouse could ratchet up the dread in an instant. Lastly, I recall working game retail at launch and having to help absolutely bloody everybody with a solution to the piano puzzle.Tank controls and (hardware induced) bugger all visibility. OG Silent Hill was terrifying.Aussie bdays for notable games- Silent Hill (PS) 1999. Redux- Marvel vs. Capcom 2 (DC) 2000. Redux- The Conduit (Wii) 2009. eBay- Monster Hunter Generations (3DS) 2016. eBayContentsNice Savings for Nintendo SwitchAvailable now!Nintendo Switch 2 ConsoleNintendo Switch 2 + Mario Kart WorldNintendo kicks things off with Persona 5 Royal for A$66.60, a lavishly expanded edition of the genre-defining RPG whose original director Katsura Hashino was inspired by Carl Jung’s theories of the psyche. Also worth nabbing is Bravely Default II at A$63.10, a spiritual twinner to the Final Fantasy titles that’s cheekily packed with nostalgic mechanics like turning off random encounters to power-level in peace.Persona 5 Royal (-33%) - A$66.60Bravely Default II (-21%) - A$63.10Sonic Frontiers (-53%) - A$47Sonic x Shadow Generations (-35%) - A$49NBA 2K25 (-79%) - A$19Metal Gear Col. (-50%) - A$45Expiring Recent DealsOr gift a Nintendo eShop Card.Switch Console PricesHow much to Switch it up?Switch OLED + Mario Wonder: $̶5̶3̶9̶ $538 | Switch Original: $̶4̶9̶9̶ $448 | Switch OLED Black: $̶5̶3̶9̶ $469 | Switch OLED White: $̶5̶3̶9̶ $449 ♥ | Switch Lite: $̶3̶2̶9̶ $328 | Switch Lite Hyrule: $̶3̶3̶9̶ $335See itBack to topExciting Bargains for Xbox Over on Xbox Series X, Warhammer 40,000: Space Marine 2 is slashing skulls and prices at A$49.90, finally giving fans the long-awaited sequel to one of gaming’s most satisfyingly weighty shooters. Suicide Squad: Kill the Justice League is an outrageous A$9.90, and despite its rocky reception, it’s a fascinating look at how Batman: Arkham devs tried to blend looter-shooter DNA into their universe.40K Space Marine 2 (-54%) - A$49.90Suicide Squad: KTJL (-91%) - A$9.90Wild Hearts (-83%) - A$19Avatar: Pandora Gold Ed. (-69%) - A$49.90Hogwarts Legacy (-75%) - A$27.40Xbox OneTopSpin 2K25 (-88%) - A$14.90Sunset Overdrive (-36%) - A$19.20Alan Wake Rem. (-85%) - A$6.70Expiring Recent DealsThe Witcher 3 Comp. (-56%) - A$34.80Tekken 8 (-53%) - A$39.90NBA 2K25 (-80%) - A$24Farming Simulator 25 (-32%) - A$68FC 25 (-57%) - A$34Red Dead Redemption 2 (-78%) - A$20Lies of P (-19%) - A$73Lego Jurassic World (-65%) - A$22.50Or just invest in an Xbox Card.Xbox Console PricesHow many bucks for a 'Box? Series X: $̶7̶9̶9̶ $724 👑| Series S Black: $̶5̶4̶9̶ $545 | Series S White:$̶4̶9̶9̶ $498 | Series S Starter: N/ASee itBack to topPure Scores for PlayStationFor PS5 players, Marvel’s Spider-Man: Miles Morales swings down to A$39, letting you sling through Harlem while wearing everything from a Bodega Cat suit to a Spider-Verse frame-rate filter. Meanwhile, Ratchet & Clank: Rift Apart for A$54 is a tech marvel that started life as a PS4 title, before being fully rebuilt to show off the PS5’s SSD.PS4God of War Ragnarök (-60%) - A$44Gran Turismo 7 (-60%) - A$44Watch Dogs: Legion (-86%) - A$13.60Expiring Recent DealsPS+ Monthly FreebiesYours to keep from May 1 with this subscriptionArk: Survival Ascended (PS5)Balatro (PS5/PS4)Warhammer 40,000: Boltgun (PS5/PS4)Or purchase a PS Store Card.What you'll pay to 'Station.PS5 + Astro Bot:$̶7̶2̶4̶.9̶5̶ $699👑 | PS5 Slim Disc:$̶7̶9̶9̶ $625 | PS5 Slim Digital:6̶7̶9̶ $549 | PS5 Pro $̶1̶,1̶9̶9̶ $1,049 | PS VR2: $649.95 | PS VR2 + Horizon: $1,099 | PS Portal: $329See itBack to topPurchase Cheap for PCOn PC, Resident Evil 4 is a steal at A$29.90, a stunning remake where the developers added extra charm to Leon’s famous “Where’s everyone going, bingo?” line by letting players unlock vintage filters that emulate 2005-era graphics. Also notable is Lies of P at A$76.40, the Pinocchio-meets-Bloodborne mash-up that lets you lie in dialogue choices for combat perks.Lies of P (-15%) - A$76.40The Alters (-30%) - A$35.60Clair Obscur: Expedition 33 (-18%) - A$57.30Silent Hill 2 (-40%) - A$61.50Forza Horizon 5 (-65%) - A$31.40Resident Evil 4 (-50%) - A$29.90Expiring Recent DealsOr just get a Steam Wallet CardPC Hardware PricesSlay your pile of shame.Official launch in NovSteam Deck 256GB LCD: $649 | Steam Deck 512GB OLED: $899 | Steam Deck 1TB OLED: $1,049See it at SteamLaptop DealsDesktop DealsLenovo neo 50a G5 27" AIO (-47%) – A$1,379Lenovo neo 50q G4 Tiny (-35%) – A$639Lenovo neo 50t G5 Tower (-20%) – A$871.20Legion Tower 5i G8 (-29%) – A$1,899Monitor DealsSamsung QE50T 50" (-31%) – A$596ARZOPA 16.1" 144Hz (-55%) – A$159.99Z-Edge 27" 240Hz (-15%) – A$237.99Gawfolk 34" WQHD (-28%) – A$359LG 27" Ultragear (-42%) – A$349Component DealsStorage DealsBack to topLegit LEGO DealsExpiring Recent DealsBack to topHot Headphones DealsAudiophilia for lessBose QuietComfort Ultra Wireless (-38%) – A$399.95Soundcore by Anker Q20i (-43%) – A$68.79Sony MDR7506 Professional (-30%) – A$169Technics Premium (-46%) – A$299Bose SoundLink Flex (-31%) – A$171JBL Charge 5 - Portable Speaker (-28%) – A$144JBL Flip Essential 2 Waterproof Speaker (-26%) – A$96Sony SRS-XB100 Travel Speaker (-41%) – A$84.15Ultimate Ears Boom 3 Portable Speaker (-41%) – A$134.95Samsung Galaxy Buds2 Pro (-26%) – A$259.29Sennheiser Momentum 4 Wireless (-46%) – A$275Back to topTerrific TV DealsDo right by your console, upgrade your tellyLG 43" UT80 4K (-24%) – A$635Kogan 65" QLED 4K (-50%) – A$699Kogan 55" QLED 4K (-45%) – A$549LG 55" UT80 4K (-28%) – A$866Prism+ Q75 Ultra 75" 4K QLED (-47%) – A$1,229Gaimoo Mini Projector 1080p w/ 4K (-33%) – A$119.99GooDee 4K Projector (-58%) – A$169.99VOPLLS Mini Projector 4K (-19%) – A$168.99XuanPad Mini Projector (-36%) – A$128.99LG S70TY Q Series Sound Barn*-22%) – A$546Sony HTG700 Atmos Soundbar (-15%) – A$594Yamaha NS-SW050 Subwoofer (-13%) – A$270Smart Home DealsBack to top Adam Mathew is our Aussie deals wrangler. He plays practically everything, often on YouTube.
    Like
    Love
    Wow
    Sad
    Angry
    564
    0 Commentarii 0 Distribuiri
  • Keep an eye on Planet of Lana 2 — the first one was a secret gem of 2023

    May 2023 was kind of a big deal. A little ol’ game called The Legend of Zelda: Tears of the Kingdomwas released, and everyone was playing it; Tears sold almost 20 million copies in under two months. However, it wasn’t the only game that came out that month. While it may not have generated as much buzz at the time, Planet of Lana is one of 2023’s best indies — and it’s getting a sequel next year.Planet of Lana is a cinematic puzzle-platformer. You play as Lana as she tries to rescue her best friend and fellow villagers after they were taken by mechanical alien beings. She’s accompanied by a little cat-like creature named Mui. Together, they outwit the alien robots in various puzzles on their way to rescuing the villagers.The puzzles aren’t too difficult, but they still provide a welcome challenge; some require precise execution lest the alien robots grab Lana too. Danger lurks everywhere as there are also native predators vying to get a bite out of Lana and her void of a cat companion. Mui is often at the center of solving environmental puzzles, which rely on a dash of stealth, to get around those dangerous creatures.Planet of Lana’s art style is immediately eye-catching; its palette of soft, inviting colors contrasts with the comparatively dark storyline. Lana and Mui travel through the grassy plains surrounding her village, an underground cave, and through a desert. The visuals are bested only by Planet of Lana’s music, which is both chill and powerful in parts.Of course, all ends well — this is a game starring a child and an alien cat, after all. Nothing bad was really going to happen to them. Or at least, that was certainly the case in the first game, but the trailer for Planet of Lana 2: Children of the Leaf ends with a shot of poor Mui lying in some sort of hospital bed or perhaps at a research station. Lana looks on, and her worry is palpable in the frame.But, Planet of Lana 2 won’t come out until 2026, so I don’t want to spend too much time worrying about the little dude. The cat’s fine. What’s not fine, however, is Lana’s village and her people. In the trailer for the second game, we see more alien robots trying to zap her and her friend, and a young villager falls into a faint.Children of the Leaf is certainly upping the stakes and widening its scope. Ships from outer space zoom through a lush forest, and we get exciting shots of Lana hopping from ship to ship. Lana also travels across various environments, including a gorgeous underwater level, and rides on the back of one of the alien robots from the first game.I’m very excited to see how the lore of Planet of Lana expands with its sequel, and I can’t wait to tag along for another journey with Lana and Mui when Planet of Lana 2: Children of the Leaf launches in 2026. You can check out the first game on Nintendo Switch, PS4, PS5, Xbox One, Xbox Series X, and Windows PC.See More:
    #keep #eye #planet #lana #first
    Keep an eye on Planet of Lana 2 — the first one was a secret gem of 2023
    May 2023 was kind of a big deal. A little ol’ game called The Legend of Zelda: Tears of the Kingdomwas released, and everyone was playing it; Tears sold almost 20 million copies in under two months. However, it wasn’t the only game that came out that month. While it may not have generated as much buzz at the time, Planet of Lana is one of 2023’s best indies — and it’s getting a sequel next year.Planet of Lana is a cinematic puzzle-platformer. You play as Lana as she tries to rescue her best friend and fellow villagers after they were taken by mechanical alien beings. She’s accompanied by a little cat-like creature named Mui. Together, they outwit the alien robots in various puzzles on their way to rescuing the villagers.The puzzles aren’t too difficult, but they still provide a welcome challenge; some require precise execution lest the alien robots grab Lana too. Danger lurks everywhere as there are also native predators vying to get a bite out of Lana and her void of a cat companion. Mui is often at the center of solving environmental puzzles, which rely on a dash of stealth, to get around those dangerous creatures.Planet of Lana’s art style is immediately eye-catching; its palette of soft, inviting colors contrasts with the comparatively dark storyline. Lana and Mui travel through the grassy plains surrounding her village, an underground cave, and through a desert. The visuals are bested only by Planet of Lana’s music, which is both chill and powerful in parts.Of course, all ends well — this is a game starring a child and an alien cat, after all. Nothing bad was really going to happen to them. Or at least, that was certainly the case in the first game, but the trailer for Planet of Lana 2: Children of the Leaf ends with a shot of poor Mui lying in some sort of hospital bed or perhaps at a research station. Lana looks on, and her worry is palpable in the frame.But, Planet of Lana 2 won’t come out until 2026, so I don’t want to spend too much time worrying about the little dude. The cat’s fine. What’s not fine, however, is Lana’s village and her people. In the trailer for the second game, we see more alien robots trying to zap her and her friend, and a young villager falls into a faint.Children of the Leaf is certainly upping the stakes and widening its scope. Ships from outer space zoom through a lush forest, and we get exciting shots of Lana hopping from ship to ship. Lana also travels across various environments, including a gorgeous underwater level, and rides on the back of one of the alien robots from the first game.I’m very excited to see how the lore of Planet of Lana expands with its sequel, and I can’t wait to tag along for another journey with Lana and Mui when Planet of Lana 2: Children of the Leaf launches in 2026. You can check out the first game on Nintendo Switch, PS4, PS5, Xbox One, Xbox Series X, and Windows PC.See More: #keep #eye #planet #lana #first
    WWW.POLYGON.COM
    Keep an eye on Planet of Lana 2 — the first one was a secret gem of 2023
    May 2023 was kind of a big deal. A little ol’ game called The Legend of Zelda: Tears of the Kingdom (ring any bells?) was released, and everyone was playing it; Tears sold almost 20 million copies in under two months. However, it wasn’t the only game that came out that month. While it may not have generated as much buzz at the time, Planet of Lana is one of 2023’s best indies — and it’s getting a sequel next year.Planet of Lana is a cinematic puzzle-platformer. You play as Lana as she tries to rescue her best friend and fellow villagers after they were taken by mechanical alien beings. She’s accompanied by a little cat-like creature named Mui (because any game is made better by having a cat in it). Together, they outwit the alien robots in various puzzles on their way to rescuing the villagers.The puzzles aren’t too difficult, but they still provide a welcome challenge; some require precise execution lest the alien robots grab Lana too. Danger lurks everywhere as there are also native predators vying to get a bite out of Lana and her void of a cat companion. Mui is often at the center of solving environmental puzzles, which rely on a dash of stealth, to get around those dangerous creatures.Planet of Lana’s art style is immediately eye-catching; its palette of soft, inviting colors contrasts with the comparatively dark storyline. Lana and Mui travel through the grassy plains surrounding her village, an underground cave, and through a desert. The visuals are bested only by Planet of Lana’s music, which is both chill and powerful in parts.Of course, all ends well — this is a game starring a child and an alien cat, after all. Nothing bad was really going to happen to them. Or at least, that was certainly the case in the first game, but the trailer for Planet of Lana 2: Children of the Leaf ends with a shot of poor Mui lying in some sort of hospital bed or perhaps at a research station. Lana looks on, and her worry is palpable in the frame.But, Planet of Lana 2 won’t come out until 2026, so I don’t want to spend too much time worrying about the little dude. The cat’s fine (Right? Right?). What’s not fine, however, is Lana’s village and her people. In the trailer for the second game, we see more alien robots trying to zap her and her friend, and a young villager falls into a faint.Children of the Leaf is certainly upping the stakes and widening its scope. Ships from outer space zoom through a lush forest, and we get exciting shots of Lana hopping from ship to ship. Lana also travels across various environments, including a gorgeous underwater level, and rides on the back of one of the alien robots from the first game.I’m very excited to see how the lore of Planet of Lana expands with its sequel, and I can’t wait to tag along for another journey with Lana and Mui when Planet of Lana 2: Children of the Leaf launches in 2026. You can check out the first game on Nintendo Switch, PS4, PS5, Xbox One, Xbox Series X, and Windows PC.See More:
    0 Commentarii 0 Distribuiri
  • Inside Mark Zuckerberg’s AI hiring spree

    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch, Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI. “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies. Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will needto approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More:
    #inside #mark #zuckerbergs #hiring #spree
    Inside Mark Zuckerberg’s AI hiring spree
    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch, Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI. “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies. Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will needto approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More: #inside #mark #zuckerbergs #hiring #spree
    WWW.THEVERGE.COM
    Inside Mark Zuckerberg’s AI hiring spree
    AI researchers have recently been asking themselves a version of the question, “Is that really Zuck?”As first reported by Bloomberg, the Meta CEO has been personally asking top AI talent to join his new “superintelligence” AI lab and reboot Llama. His recruiting process typically goes like this: a cold outreach via email or WhatsApp that cites the recruit’s work history and requests a 15-minute chat. Dozens of researchers have gotten these kinds of messages at Google alone. For those who do agree to hear his pitch (amazingly, not all of them do), Zuckerberg highlights the latitude they’ll have to make risky bets, the scale of Meta’s products, and the money he’s prepared to invest in the infrastructure to support them. He makes clear that this new team will be empowered and sit with him at Meta’s headquarters, where I’m told the desks have already been rearranged for the incoming team.Most of the headlines so far have focused on the eye-popping compensation packages Zuckerberg is offering, some of which are well into the eight-figure range. As I’ve covered before, hiring the best AI researcher is like hiring a star basketball player: there are very few of them, and you have to pay up. Case in point: Zuckerberg basically just paid 14 Instagrams to hire away Scale AI CEO Alexandr Wang. It’s easily the most expensive hire of all time, dwarfing the billions that Google spent to rehire Noam Shazeer and his core team from Character.AI (a deal Zuckerberg passed on). “Opportunities of this magnitude often come at a cost,” Wang wrote in his note to employees this week. “In this instance, that cost is my departure.”Zuckerberg’s recruiting spree is already starting to rattle his competitors. The day before his offer deadline for some senior OpenAI employees, Sam Altman dropped an essay proclaiming that “before anything else, we are a superintelligence research company.” And after Zuckerberg tried to hire DeepMind CTO Koray Kavukcuoglu, he was given a larger SVP title and now reports directly to Google CEO Sundar Pichai. I expect Wang to have the title of “chief AI officer” at Meta when the new lab is announced. Jack Rae, a principal researcher from DeepMind who has signed on, will lead pre-training. Meta certainly needs a reset. According to my sources, Llama has fallen so far behind that Meta’s product teams have recently discussed using AI models from other companies (although that is highly unlikely to happen). Meta’s internal coding tool for engineers, however, is already using Claude. While Meta’s existing AI researchers have good reason to be looking over their shoulders, Zuckerberg’s $14.3 billion investment in Scale is making many longtime employees, or Scaliens, quite wealthy. They were popping champagne in the office this morning. Then, Wang held his last all-hands meeting to say goodbye and cried. He didn’t mention what he would be doing at Meta. I expect his new team will be unveiled within the next few weeks after Zuckerberg gets a critical number of members to officially sign on. Tim Cook. Getty Images / The VergeApple’s AI problemApple is accustomed to being on top of the tech industry, and for good reason: the company has enjoyed a nearly unrivaled run of dominance. After spending time at Apple HQ this week for WWDC, I’m not sure that its leaders appreciate the meteorite that is heading their way. The hubris they display suggests they don’t understand how AI is fundamentally changing how people use and build software.Heading into the keynote on Monday, everyone knew not to expect the revamped Siri that had been promised the previous year. Apple, to its credit, acknowledged that it dropped the ball there, and it sounds like a large language model rebuild of Siri is very much underway and coming in 2026.The AI industry moves much faster than Apple’s release schedule, though. By the time Siri is perhaps good enough to keep pace, it will have to contend with the lock-in that OpenAI and others are building through their memory features. Apple and OpenAI are currently partners, but both companies want to ultimately control the interface for interacting with AI, which puts them on a collision course. Apple’s decision to let developers use its own, on-device foundational models for free in their apps sounds strategically smart, but unfortunately, the models look far from leading. Apple ran its own benchmarks, which aren’t impressive, and has confirmed a measly context window of 4,096 tokens. It’s also saying that the models will be updated alongside its operating systems — a snail’s pace compared to how quickly AI companies move. I’d be surprised if any serious developers use these Apple models, although I can see them being helpful to indie devs who are just getting started and don’t want to spend on the leading cloud models. I don’t think most people care about the privacy angle that Apple is claiming as a differentiator; they are already sharing their darkest secrets with ChatGPT and other assistants. Some of the new Apple Intelligence features I demoed this week were impressive, such as live language translation for calls. Mostly, I came away with the impression that the company is heavily leaning on its ChatGPT partnership as a stopgap until Apple Intelligence and Siri are both where they need to be. AI probably isn’t a near-term risk to Apple’s business. No one has shipped anything close to the contextually aware Siri that was demoed at last year’s WWDC. People will continue to buy Apple hardware for a long time, even after Sam Altman and Jony Ive announce their first AI device for ChatGPT next year. AR glasses aren’t going mainstream anytime soon either, although we can expect to see more eyewear from Meta, Google, and Snap over the coming year. In aggregate, these AI-powered devices could begin to siphon away engagement from the iPhone, but I don’t see people fully replacing their smartphones for a long time. The bigger question after this week is whether Apple has what it takes to rise to the occasion and culturally reset itself for the AI era. I would have loved to hear Tim Cook address this issue directly, but the only interview he did for WWDC was a cover story in Variety about the company’s new F1 movie.ElsewhereAI agents are coming. I recently caught up with Databricks CEO Ali Ghodsi ahead of his company’s annual developer conference this week in San Francisco. Given Databricks’ position, he has a unique, bird’s-eye view of where things are headed for AI. He doesn’t envision a near-term future where AI agents completely automate real-world tasks, but he does predict a wave of startups over the next year that will come close to completing actions in areas such as travel booking. He thinks humans will need (and want) to approve what an agent does before it goes off and completes a task. “We have most of the airplanes flying automated, and we still want pilots in there.”Buyouts are the new normal at Google. That much is clear after this week’s rollout of the “voluntary exit program” in core engineering, the Search organization, and some other divisions. In his internal memo, Search SVP Nick Fox was clear that management thinks buyouts have been successful in other parts of the company that have tried them. In a separate memo I saw, engineering exec Jen Fitzpatrick called the buyouts an “opportunity to create internal mobility and fresh growth opportunities.” Google appears to be attempting a cultural reset, which will be a challenging task for a company of its size. We’ll see if it can pull it off. Evan Spiegel wants help with AR glasses. I doubt that his announcement that consumer glasses are coming next year was solely aimed at AR developers. Telegraphing the plan and announcing that Snap has spent $3 billion on hardware to date feels more aimed at potential partners that want to make a bigger glasses play, such as Google. A strategic investment could help insulate Snap from the pain of the stock market. A full acquisition may not be off the table, either. When he was recently asked if he’d be open to a sale, Spiegel didn’t shut it down like he always has, but instead said he’d “consider anything” that helps the company “create the next computing platform.”Link listMore to click on:If you haven’t already, don’t forget to subscribe to The Verge, which includes unlimited access to Command Line and all of our reporting.As always, I welcome your feedback, especially if you’re an AI researcher fielding a juicy job offer. You can respond here or ping me securely on Signal.Thanks for subscribing.See More:
    0 Commentarii 0 Distribuiri
  • How AI is reshaping the future of healthcare and medical research

    Transcript       
    PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”          
    This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.   
    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?    
    In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.” 
    In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.   
    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open. 
    As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.  
    Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home. 
    Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.     
    Here’s my conversation with Bill Gates and Sébastien Bubeck. 
    LEE: Bill, welcome. 
    BILL GATES: Thank you. 
    LEE: Seb … 
    SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here. 
    LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening? 
    And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?  
    GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines. 
    And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.  
    And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning. 
    LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that? 
    GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, … 
    LEE: Right.  
    GATES: … that is a bit weird.  
    LEE: Yeah. 
    GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training. 
    LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. 
    BUBECK: Yes.  
    LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you. 
    BUBECK: Yeah. 
    LEE: And so what were your first encounters? Because I actually don’t remember what happened then. 
    BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3. 
    I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1. 
    So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts. 
    So this was really, to me, the first moment where I saw some understanding in those models.  
    LEE: So this was, just to get the timing right, that was before I pulled you into the tent. 
    BUBECK: That was before. That was like a year before. 
    LEE: Right.  
    BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4. 
    So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.  
    So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x. 
    And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?  
    LEE: Yeah.
    BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.  
    LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine. 
    And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.  
    And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.  
    I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book. 
    But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements. 
    But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today? 
    You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.  
    Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork? 
    GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.  
    It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision. 
    But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view. 
    LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you? 
    BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong? 
    Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.  
    Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them. 
    And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.  
    Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way. 
    It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine. 
    LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all? 
    GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that. 
    The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa,
    So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.  
    LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking? 
    GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.  
    The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.  
    LEE: Right.  
    GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.  
    LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication. 
    BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI. 
    It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for. 
    LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes. 
    I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?  
    That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that? 
    BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there. 
    Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad. 
    But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model. 
    So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model. 
    LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and … 
    BUBECK: It’s a very difficult, very difficult balance. 
    LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models? 
    GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there. 
    Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?  
    Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there.
    LEE: Yeah.
    GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake. 
    LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on. 
    BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything. 
    That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind. 
    LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two? 
    BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it. 
    LEE: So we have about three hours of stuff to talk about, but our time is actually running low.
    BUBECK: Yes, yes, yes.  
    LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now? 
    GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.  
    The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities. 
    And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period. 
    LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers? 
    GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them. 
    LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.  
    I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why. 
    BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.  
    And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.  
    LEE: Yeah. 
    BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.  
    Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not. 
    Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision. 
    LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist … 
    BUBECK: Yeah.
    LEE: … or an endocrinologist might not.
    BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know.
    LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today? 
    BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later. 
    And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …  
    LEE: Will AI prescribe your medicines? Write your prescriptions? 
    BUBECK: I think yes. I think yes. 
    LEE: OK. Bill? 
    GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate?
    And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries. 
    You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that. 
    LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.  
    I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  
    GATES: Yeah. Thanks, you guys. 
    BUBECK: Thank you, Peter. Thanks, Bill. 
    LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.   
    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.  
    And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.  
    One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.  
    HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings. 
    You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.  
    If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  
    I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.  
    Until next time.  
    #how #reshaping #future #healthcare #medical
    How AI is reshaping the future of healthcare and medical research
    Transcript        PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”           This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.  The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.      Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weaknessthat, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent.  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSRto join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well.My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair.And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE:One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce aboutor indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients.Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT. And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE, for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential.What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back thatversion of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF, where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGIthat kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects.So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and seeproduced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini. So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelectedjust on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.   GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.   I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   #how #reshaping #future #healthcare #medical
    WWW.MICROSOFT.COM
    How AI is reshaping the future of healthcare and medical research
    Transcript [MUSIC]      [BOOK PASSAGE]   PETER LEE: “In ‘The Little Black Bag,’ a classic science fiction story, a high-tech doctor’s kit of the future is accidentally transported back to the 1950s, into the shaky hands of a washed-up, alcoholic doctor. The ultimate medical tool, it redeems the doctor wielding it, allowing him to practice gratifyingly heroic medicine. … The tale ends badly for the doctor and his treacherous assistant, but it offered a picture of how advanced technology could transform medicine—powerful when it was written nearly 75 years ago and still so today. What would be the Al equivalent of that little black bag? At this moment when new capabilities are emerging, how do we imagine them into medicine?”   [END OF BOOK PASSAGE]     [THEME MUSIC]     This is The AI Revolution in Medicine, Revisited. I’m your host, Peter Lee.    Shortly after OpenAI’s GPT-4 was publicly released, Carey Goldberg, Dr. Zak Kohane, and I published The AI Revolution in Medicine to help educate the world of healthcare and medical research about the transformative impact this new generative AI technology could have. But because we wrote the book when GPT-4 was still a secret, we had to speculate. Now, two years later, what did we get right, and what did we get wrong?     In this series, we’ll talk to clinicians, patients, hospital administrators, and others to understand the reality of AI in the field and where we go from here.   [THEME MUSIC FADES] The book passage I read at the top is from “Chapter 10: The Big Black Bag.”  In imagining AI in medicine, Carey, Zak, and I included in our book two fictional accounts. In the first, a medical resident consults GPT-4 on her personal phone as the patient in front of her crashes. Within seconds, it offers an alternate response based on recent literature. In the second account, a 90-year-old woman with several chronic conditions is living independently and receiving near-constant medical support from an AI aide.    In our conversations with the guests we’ve spoken to so far, we’ve caught a glimpse of these predicted futures, seeing how clinicians and patients are actually using AI today and how developers are leveraging the technology in the healthcare products and services they’re creating. In fact, that first fictional account isn’t so fictional after all, as most of the doctors in the real world actually appear to be using AI at least occasionally—and sometimes much more than occasionally—to help in their daily clinical work. And as for the second fictional account, which is more of a science fiction account, it seems we are indeed on the verge of a new way of delivering and receiving healthcare, though the future is still very much open.  As we continue to examine the current state of AI in healthcare and its potential to transform the field, I’m pleased to welcome Bill Gates and Sébastien Bubeck.   Bill may be best known as the co-founder of Microsoft, having created the company with his childhood friend Paul Allen in 1975. He’s now the founder of Breakthrough Energy, which aims to advance clean energy innovation, and TerraPower, a company developing groundbreaking nuclear energy and science technologies. He also chairs the world’s largest philanthropic organization, the Gates Foundation, and focuses on solving a variety of health challenges around the globe and here at home.  Sébastien is a research lead at OpenAI. He was previously a distinguished scientist, vice president of AI, and a colleague of mine here at Microsoft, where his work included spearheading the development of the family of small language models known as Phi. While at Microsoft, he also coauthored the discussion-provoking 2023 paper “Sparks of Artificial General Intelligence,” which presented the results of early experiments with GPT-4 conducted by a small team from Microsoft Research.    [TRANSITION MUSIC]   Here’s my conversation with Bill Gates and Sébastien Bubeck.  LEE: Bill, welcome.  BILL GATES: Thank you.  LEE: Seb …  SÉBASTIEN BUBECK: Yeah. Hi, hi, Peter. Nice to be here.  LEE: You know, one of the things that I’ve been doing just to get the conversation warmed up is to talk about origin stories, and what I mean about origin stories is, you know, what was the first contact that you had with large language models or the concept of generative AI that convinced you or made you think that something really important was happening?  And so, Bill, I think I’ve heard the story about, you know, the time when the OpenAI folks—Sam Altman, Greg Brockman, and others—showed you something, but could we hear from you what those early encounters were like and what was going through your mind?   GATES: Well, I’d been visiting OpenAI soon after it was created to see things like GPT-2 and to see the little arm they had that was trying to match human manipulation and, you know, looking at their games like Dota that they were trying to get as good as human play. And honestly, I didn’t think the language model stuff they were doing, even when they got to GPT-3, would show the ability to learn, you know, in the same sense that a human reads a biology book and is able to take that knowledge and access it not only to pass a test but also to create new medicines.  And so my challenge to them was that if their LLM could get a five on the advanced placement biology test, then I would say, OK, it took biologic knowledge and encoded it in an accessible way and that I didn’t expect them to do that very quickly but it would be profound.   And it was only about six months after I challenged them to do that, that an early version of GPT-4 they brought up to a dinner at my house, and in fact, it answered most of the questions that night very well. The one it got totally wrong, we were … because it was so good, we kept thinking, Oh, we must be wrong. It turned out it was a math weakness [LAUGHTER] that, you know, we later understood that that was an area of, weirdly, of incredible weakness of those early models. But, you know, that was when I realized, OK, the age of cheap intelligence was at its beginning.  LEE: Yeah. So I guess it seems like you had something similar to me in that my first encounters, I actually harbored some skepticism. Is it fair to say you were skeptical before that?  GATES: Well, the idea that we’ve figured out how to encode and access knowledge in this very deep sense without even understanding the nature of the encoding, …  LEE: Right.   GATES: … that is a bit weird.   LEE: Yeah.  GATES: We have an algorithm that creates the computation, but even say, OK, where is the president’s birthday stored in there? Where is this fact stored in there? The fact that even now when we’re playing around, getting a little bit more sense of it, it’s opaque to us what the semantic encoding is, it’s, kind of, amazing to me. I thought the invention of knowledge storage would be an explicit way of encoding knowledge, not an implicit statistical training.  LEE: Yeah, yeah. All right. So, Seb, you know, on this same topic, you know, I got—as we say at Microsoft—I got pulled into the tent. [LAUGHS]  BUBECK: Yes.   LEE: Because this was a very secret project. And then, um, I had the opportunity to select a small number of researchers in MSR [Microsoft Research] to join and start investigating this thing seriously. And the first person I pulled in was you.  BUBECK: Yeah.  LEE: And so what were your first encounters? Because I actually don’t remember what happened then.  BUBECK: Oh, I remember it very well. [LAUGHS] My first encounter with GPT-4 was in a meeting with the two of you, actually. But my kind of first contact, the first moment where I realized that something was happening with generative AI, was before that. And I agree with Bill that I also wasn’t too impressed by GPT-3.  I though that it was kind of, you know, very naturally mimicking the web, sort of parroting what was written there in a nice way. Still in a way which seemed very impressive. But it wasn’t really intelligent in any way. But shortly after GPT-3, there was a model before GPT-4 that really shocked me, and this was the first image generation model, DALL-E 1.  So that was in 2021. And I will forever remember the press release of OpenAI where they had this prompt of an avocado chair and then you had this image of the avocado chair. [LAUGHTER] And what really shocked me is that clearly the model kind of “understood” what is a chair, what is an avocado, and was able to merge those concepts.  So this was really, to me, the first moment where I saw some understanding in those models.   LEE: So this was, just to get the timing right, that was before I pulled you into the tent.  BUBECK: That was before. That was like a year before.  LEE: Right.   BUBECK: And now I will tell you how, you know, we went from that moment to the meeting with the two of you and GPT-4.  So once I saw this kind of understanding, I thought, OK, fine. It understands concept, but it’s still not able to reason. It cannot—as, you know, Bill was saying—it cannot learn from your document. It cannot reason.   So I set out to try to prove that. You know, this is what I was in the business of at the time, trying to prove things in mathematics. So I was trying to prove that basically autoregressive transformers could never reason. So I was trying to prove this. And after a year of work, I had something reasonable to show. And so I had the meeting with the two of you, and I had this example where I wanted to say, there is no way that an LLM is going to be able to do x.  And then as soon as I … I don’t know if you remember, Bill. But as soon as I said that, you said, oh, but wait a second. I had, you know, the OpenAI crew at my house recently, and they showed me a new model. Why don’t we ask this new model this question?   LEE: Yeah. BUBECK: And we did, and it solved it on the spot. And that really, honestly, just changed my life. Like, you know, I had been working for a year trying to say that this was impossible. And just right there, it was shown to be possible.   LEE: [LAUGHS] One of the very first things I got interested in—because I was really thinking a lot about healthcare—was healthcare and medicine.  And I don’t know if the two of you remember, but I ended up doing a lot of tests. I ran through, you know, step one and step two of the US Medical Licensing Exam. Did a whole bunch of other things. I wrote this big report. It was, you know, I can’t remember … a couple hundred pages.   And I needed to share this with someone. I didn’t … there weren’t too many people I could share it with. So I sent, I think, a copy to you, Bill. Sent a copy to you, Seb.   I hardly slept for about a week putting that report together. And, yeah, and I kept working on it. But I was far from alone. I think everyone who was in the tent, so to speak, in those early days was going through something pretty similar. All right. So I think … of course, a lot of what I put in the report also ended up being examples that made it into the book.  But the main purpose of this conversation isn’t to reminisce about [LAUGHS] or indulge in those reminiscences but to talk about what’s happening in healthcare and medicine. And, you know, as I said, we wrote this book. We did it very, very quickly. Seb, you helped. Bill, you know, you provided a review and some endorsements.  But, you know, honestly, we didn’t know what we were talking about because no one had access to this thing. And so we just made a bunch of guesses. So really, the whole thing I wanted to probe with the two of you is, now with two years of experience out in the world, what, you know, what do we think is happening today?  You know, is AI actually having an impact, positive or negative, on healthcare and medicine? And what do we now think is going to happen in the next two years, five years, or 10 years? And so I realize it’s a little bit too abstract to just ask it that way. So let me just try to narrow the discussion and guide us a little bit.   Um, the kind of administrative and clerical work, paperwork, around healthcare—and we made a lot of guesses about that—that appears to be going well, but, you know, Bill, I know we’ve discussed that sometimes that you think there ought to be a lot more going on. Do you have a viewpoint on how AI is actually finding its way into reducing paperwork?  GATES: Well, I’m stunned … I don’t think there should be a patient-doctor meeting where the AI is not sitting in and both transcribing, offering to help with the paperwork, and even making suggestions, although the doctor will be the one, you know, who makes the final decision about the diagnosis and whatever prescription gets done.   It’s so helpful. You know, when that patient goes home and their, you know, son who wants to understand what happened has some questions, that AI should be available to continue that conversation. And the way you can improve that experience and streamline things and, you know, involve the people who advise you. I don’t understand why that’s not more adopted, because there you still have the human in the loop making that final decision.  But even for, like, follow-up calls to make sure the patient did things, to understand if they have concerns and knowing when to escalate back to the doctor, the benefit is incredible. And, you know, that thing is ready for prime time. That paradigm is ready for prime time, in my view.  LEE: Yeah, there are some good products, but it seems like the number one use right now—and we kind of got this from some of the previous guests in previous episodes—is the use of AI just to respond to emails from patients. [LAUGHTER] Does that make sense to you?  BUBECK: Yeah. So maybe I want to second what Bill was saying but maybe take a step back first. You know, two years ago, like, the concept of clinical scribes, which is one of the things that we’re talking about right now, it would have sounded, in fact, it sounded two years ago, borderline dangerous. Because everybody was worried about hallucinations. What happened if you have this AI listening in and then it transcribes, you know, something wrong?  Now, two years later, I think it’s mostly working. And in fact, it is not yet, you know, fully adopted. You’re right. But it is in production. It is used, you know, in many, many places. So this rate of progress is astounding because it wasn’t obvious that we would be able to overcome those obstacles of hallucination. It’s not to say that hallucinations are fully solved. In the case of the closed system, they are.   Now, I think more generally what’s going on in the background is that there is something that we, that certainly I, underestimated, which is this management overhead. So I think the reason why this is not adopted everywhere is really a training and teaching aspect. People need to be taught, like, those systems, how to interact with them.  And one example that I really like, a study that recently appeared where they tried to use ChatGPT for diagnosis and they were comparing doctors without and with ChatGPT (opens in new tab). And the amazing thing … so this was a set of cases where the accuracy of the doctors alone was around 75%. ChatGPT alone was 90%. So that’s already kind of mind blowing. But then the kicker is that doctors with ChatGPT was 80%.   Intelligence alone is not enough. It’s also how it’s presented, how you interact with it. And ChatGPT, it’s an amazing tool. Obviously, I absolutely love it. But it’s not … you don’t want a doctor to have to type in, you know, prompts and use it that way.  It should be, as Bill was saying, kind of running continuously in the background, sending you notifications. And you have to be really careful of the rate at which those notifications are being sent. Because if they are too frequent, then the doctor will learn to ignore them. So you have to … all of those things matter, in fact, at least as much as the level of intelligence of the machine.  LEE: One of the things I think about, Bill, in that scenario that you described, doctors do some thinking about the patient when they write the note. So, you know, I’m always a little uncertain whether it’s actually … you know, you wouldn’t necessarily want to fully automate this, I don’t think. Or at least there needs to be some prompt to the doctor to make sure that the doctor puts some thought into what happened in the encounter with the patient. Does that make sense to you at all?  GATES: At this stage, you know, I’d still put the onus on the doctor to write the conclusions and the summary and not delegate that.  The tradeoffs you make a little bit are somewhat dependent on the situation you’re in. If you’re in Africa, So, yes, the doctor’s still going to have to do a lot of work, but just the quality of letting the patient and the people around them interact and ask questions and have things explained, that alone is such a quality improvement. It’s mind blowing.   LEE: So since you mentioned, you know, Africa—and, of course, this touches on the mission and some of the priorities of the Gates Foundation and this idea of democratization of access to expert medical care—what’s the most interesting stuff going on right now? Are there people and organizations or technologies that are impressing you or that you’re tracking?  GATES: Yeah. So the Gates Foundation has given out a lot of grants to people in Africa doing education, agriculture but more healthcare examples than anything. And the way these things start off, they often start out either being patient-centric in a narrow situation, like, OK, I’m a pregnant woman; talk to me. Or, I have infectious disease symptoms; talk to me. Or they’re connected to a health worker where they’re helping that worker get their job done. And we have lots of pilots out, you know, in both of those cases.   The dream would be eventually to have the thing the patient consults be so broad that it’s like having a doctor available who understands the local things.   LEE: Right.   GATES: We’re not there yet. But over the next two or three years, you know, particularly given the worsening financial constraints against African health systems, where the withdrawal of money has been dramatic, you know, figuring out how to take this—what I sometimes call “free intelligence”—and build a quality health system around that, we will have to be more radical in low-income countries than any rich country is ever going to be.   LEE: Also, there’s maybe a different regulatory environment, so some of those things maybe are easier? Because right now, I think the world hasn’t figured out how to and whether to regulate, let’s say, an AI that might give a medical diagnosis or write a prescription for a medication.  BUBECK: Yeah. I think one issue with this, and it’s also slowing down the deployment of AI in healthcare more generally, is a lack of proper benchmark. Because, you know, you were mentioning the USMLE [United States Medical Licensing Examination], for example. That’s a great test to test human beings and their knowledge of healthcare and medicine. But it’s not a great test to give to an AI.  It’s not asking the right questions. So finding what are the right questions to test whether an AI system is ready to give diagnosis in a constrained setting, that’s a very, very important direction, which to my surprise, is not yet accelerating at the rate that I was hoping for.  LEE: OK, so that gives me an excuse to get more now into the core AI tech because something I’ve discussed with both of you is this issue of what are the right tests. And you both know the very first test I give to any new spin of an LLM is I present a patient, the results—a mythical patient—the results of my physical exam, my mythical physical exam. Maybe some results of some initial labs. And then I present or propose a differential diagnosis. And if you’re not in medicine, a differential diagnosis you can just think of as a prioritized list of the possible diagnoses that fit with all that data. And in that proposed differential, I always intentionally make two mistakes.  I make a textbook technical error in one of the possible elements of the differential diagnosis, and I have an error of omission. And, you know, I just want to know, does the LLM understand what I’m talking about? And all the good ones out there do now. But then I want to know, can it spot the errors? And then most importantly, is it willing to tell me I’m wrong, that I’ve made a mistake?   That last piece seems really hard for AI today. And so let me ask you first, Seb, because at the time of this taping, of course, there was a new spin of GPT-4o last week that became overly sycophantic. In other words, it was actually prone in that test of mine not only to not tell me I’m wrong, but it actually praised me for the creativity of my differential. [LAUGHTER] What’s up with that?  BUBECK: Yeah, I guess it’s a testament to the fact that training those models is still more of an art than a science. So it’s a difficult job. Just to be clear with the audience, we have rolled back that [LAUGHS] version of GPT-4o, so now we don’t have the sycophant version out there.  Yeah, no, it’s a really difficult question. It has to do … as you said, it’s very technical. It has to do with the post-training and how, like, where do you nudge the model? So, you know, there is this very classical by now technique called RLHF [reinforcement learning from human feedback], where you push the model in the direction of a certain reward model. So the reward model is just telling the model, you know, what behavior is good, what behavior is bad.  But this reward model is itself an LLM, and, you know, Bill was saying at the very beginning of the conversation that we don’t really understand how those LLMs deal with concepts like, you know, where is the capital of France located? Things like that. It is the same thing for this reward model. We don’t know why it says that it prefers one output to another, and whether this is correlated with some sycophancy is, you know, something that we discovered basically just now. That if you push too hard in optimization on this reward model, you will get a sycophant model.  So it’s kind of … what I’m trying to say is we became too good at what we were doing, and we ended up, in fact, in a trap of the reward model.  LEE: I mean, you do want … it’s a difficult balance because you do want models to follow your desires and …  BUBECK: It’s a very difficult, very difficult balance.  LEE: So this brings up then the following question for me, which is the extent to which we think we’ll need to have specially trained models for things. So let me start with you, Bill. Do you have a point of view on whether we will need to, you know, quote-unquote take AI models to med school? Have them specially trained? Like, if you were going to deploy something to give medical care in underserved parts of the world, do we need to do something special to create those models?  GATES: We certainly need to teach them the African languages and the unique dialects so that the multimedia interactions are very high quality. We certainly need to teach them the disease prevalence and unique disease patterns like, you know, neglected tropical diseases and malaria. So we need to gather a set of facts that somebody trying to go for a US customer base, you know, wouldn’t necessarily have that in there.  Those two things are actually very straightforward because the additional training time is small. I’d say for the next few years, we’ll also need to do reinforcement learning about the context of being a doctor and how important certain behaviors are. Humans learn over the course of their life to some degree that, I’m in a different context and the way I behave in terms of being willing to criticize or be nice, you know, how important is it? Who’s here? What’s my relationship to them?   Right now, these machines don’t have that broad social experience. And so if you know it’s going to be used for health things, a lot of reinforcement learning of the very best humans in that context would still be valuable. Eventually, the models will, having read all the literature of the world about good doctors, bad doctors, it’ll understand as soon as you say, “I want you to be a doctor diagnosing somebody.” All of the implicit reinforcement that fits that situation, you know, will be there. LEE: Yeah. GATES: And so I hope three years from now, we don’t have to do that reinforcement learning. But today, for any medical context, you would want a lot of data to reinforce tone, willingness to say things when, you know, there might be something significant at stake.  LEE: Yeah. So, you know, something Bill said, kind of, reminds me of another thing that I think we missed, which is, the context also … and the specialization also pertains to different, I guess, what we still call “modes,” although I don’t know if the idea of multimodal is the same as it was two years ago. But, you know, what do you make of all of the hubbub around—in fact, within Microsoft Research, this is a big deal, but I think we’re far from alone—you know, medical images and vision, video, proteins and molecules, cell, you know, cellular data and so on.  BUBECK: Yeah. OK. So there is a lot to say to everything … to the last, you know, couple of minutes. Maybe on the specialization aspect, you know, I think there is, hiding behind this, a really fundamental scientific question of whether eventually we have a singular AGI [artificial general intelligence] that kind of knows everything and you can just put, you know, explain your own context and it will just get it and understand everything.  That’s one vision. I have to say, I don’t particularly believe in this vision. In fact, we humans are not like that at all. I think, hopefully, we are general intelligences, yet we have to specialize a lot. And, you know, I did myself a lot of RL, reinforcement learning, on mathematics. Like, that’s what I did, you know, spent a lot of time doing that. And I didn’t improve on other aspects. You know, in fact, I probably degraded in other aspects. [LAUGHTER] So it’s … I think it’s an important example to have in mind.  LEE: I think I might disagree with you on that, though, because, like, doesn’t a model have to see both good science and bad science in order to be able to gain the ability to discern between the two?  BUBECK: Yeah, no, that absolutely. I think there is value in seeing the generality, in having a very broad base. But then you, kind of, specialize on verticals. And this is where also, you know, open-weights model, which we haven’t talked about yet, are really important because they allow you to provide this broad base to everyone. And then you can specialize on top of it.  LEE: So we have about three hours of stuff to talk about, but our time is actually running low. BUBECK: Yes, yes, yes.   LEE: So I think I want … there’s a more provocative question. It’s almost a silly question, but I need to ask it of the two of you, which is, is there a future, you know, where AI replaces doctors or replaces, you know, medical specialties that we have today? So what does the world look like, say, five years from now?  GATES: Well, it’s important to distinguish healthcare discovery activity from healthcare delivery activity. We focused mostly on delivery. I think it’s very much within the realm of possibility that the AI is not only accelerating healthcare discovery but substituting for a lot of the roles of, you know, I’m an organic chemist, or I run various types of assays. I can see those, which are, you know, testable-output-type jobs but with still very high value, I can see, you know, some replacement in those areas before the doctor.   The doctor, still understanding the human condition and long-term dialogues, you know, they’ve had a lifetime of reinforcement of that, particularly when you get into areas like mental health. So I wouldn’t say in five years, either people will choose to adopt it, but it will be profound that there’ll be this nearly free intelligence that can do follow-up, that can help you, you know, make sure you went through different possibilities.  And so I’d say, yes, we’ll have doctors, but I’d say healthcare will be massively transformed in its quality and in efficiency by AI in that time period.  LEE: Is there a comparison, useful comparison, say, between doctors and, say, programmers, computer programmers, or doctors and, I don’t know, lawyers?  GATES: Programming is another one that has, kind of, a mathematical correctness to it, you know, and so the objective function that you’re trying to reinforce to, as soon as you can understand the state machines, you can have something that’s “checkable”; that’s correct. So I think programming, you know, which is weird to say, that the machine will beat us at most programming tasks before we let it take over roles that have deep empathy, you know, physical presence and social understanding in them.  LEE: Yeah. By the way, you know, I fully expect in five years that AI will produce mathematical proofs that are checkable for validity, easily checkable, because they’ll be written in a proof-checking language like Lean or something but will be so complex that no human mathematician can understand them. I expect that to happen.   I can imagine in some fields, like cellular biology, we could have the same situation in the future because the molecular pathways, the chemistry, biochemistry of human cells or living cells is as complex as any mathematics, and so it seems possible that we may be in a state where in wet lab, we see, Oh yeah, this actually works, but no one can understand why.  BUBECK: Yeah, absolutely. I mean, I think I really agree with Bill’s distinction of the discovery and the delivery, and indeed, the discovery’s when you can check things, and at the end, there is an artifact that you can verify. You know, you can run the protocol in the wet lab and see [if you have] produced what you wanted. So I absolutely agree with that.   And in fact, you know, we don’t have to talk five years from now. I don’t know if you know, but just recently, there was a paper that was published on a scientific discovery using o3- mini (opens in new tab). So this is really amazing. And, you know, just very quickly, just so people know, it was about this statistical physics model, the frustrated Potts model, which has to do with coloring, and basically, the case of three colors, like, more than two colors was open for a long time, and o3 was able to reduce the case of three colors to two colors.   LEE: Yeah.  BUBECK: Which is just, like, astounding. And this is not … this is now. This is happening right now. So this is something that I personally didn’t expect it would happen so quickly, and it’s due to those reasoning models.   Now, on the delivery side, I would add something more to it for the reason why doctors and, in fact, lawyers and coders will remain for a long time, and it’s because we still don’t understand how those models generalize. Like, at the end of the day, we are not able to tell you when they are confronted with a really new, novel situation, whether they will work or not.  Nobody is able to give you that guarantee. And I think until we understand this generalization better, we’re not going to be willing to just let the system in the wild without human supervision.  LEE: But don’t human doctors, human specialists … so, for example, a cardiologist sees a patient in a certain way that a nephrologist …  BUBECK: Yeah. LEE: … or an endocrinologist might not. BUBECK: That’s right. But another cardiologist will understand and, kind of, expect a certain level of generalization from their peer. And this, we just don’t have it with AI models. Now, of course, you’re exactly right. That generalization is also hard for humans. Like, if you have a human trained for one task and you put them into another task, then you don’t … you often don’t know. LEE: OK. You know, the podcast is focused on what’s happened over the last two years. But now, I’d like one provocative prediction about what you think the world of AI and medicine is going to be at some point in the future. You pick your timeframe. I don’t care if it’s two years or 20 years from now, but, you know, what do you think will be different about AI in medicine in that future than today?  BUBECK: Yeah, I think the deployment is going to accelerate soon. Like, we’re really not missing very much. There is this enormous capability overhang. Like, even if progress completely stopped, with current systems, we can do a lot more than what we’re doing right now. So I think this will … this has to be realized, you know, sooner rather than later.  And I think it’s probably dependent on these benchmarks and proper evaluation and tying this with regulation. So these are things that take time in human society and for good reason. But now we already are at two years; you know, give it another two years and it should be really …   LEE: Will AI prescribe your medicines? Write your prescriptions?  BUBECK: I think yes. I think yes.  LEE: OK. Bill?  GATES: Well, I think the next two years, we’ll have massive pilots, and so the amount of use of the AI, still in a copilot-type mode, you know, we should get millions of patient visits, you know, both in general medicine and in the mental health side, as well. And I think that’s going to build up both the data and the confidence to give the AI some additional autonomy. You know, are you going to let it talk to you at night when you’re panicked about your mental health with some ability to escalate? And, you know, I’ve gone so far as to tell politicians with national health systems that if they deploy AI appropriately, that the quality of care, the overload of the doctors, the improvement in the economics will be enough that their voters will be stunned because they just don’t expect this, and, you know, they could be reelected [LAUGHTER] just on this one thing of fixing what is a very overloaded and economically challenged health system in these rich countries.  You know, my personal role is going to be to make sure that in the poorer countries, there isn’t some lag; in fact, in many cases, that we’ll be more aggressive because, you know, we’re comparing to having no access to doctors at all. And, you know, so I think whether it’s India or Africa, there’ll be lessons that are globally valuable because we need medical intelligence. And, you know, thank god AI is going to provide a lot of that.  LEE: Well, on that optimistic note, I think that’s a good way to end. Bill, Seb, really appreciate all of this.   I think the most fundamental prediction we made in the book is that AI would actually find its way into the practice of medicine, and I think that that at least has come true, maybe in different ways than we expected, but it’s come true, and I think it’ll only accelerate from here. So thanks again, both of you.  [TRANSITION MUSIC]  GATES: Yeah. Thanks, you guys.  BUBECK: Thank you, Peter. Thanks, Bill.  LEE: I just always feel such a sense of privilege to have a chance to interact and actually work with people like Bill and Sébastien.    With Bill, I’m always amazed at how practically minded he is. He’s really thinking about the nuts and bolts of what AI might be able to do for people, and his thoughts about underserved parts of the world, the idea that we might actually be able to empower people with access to expert medical knowledge, I think is both inspiring and amazing.   And then, Seb, Sébastien Bubeck, he’s just absolutely a brilliant mind. He has a really firm grip on the deep mathematics of artificial intelligence and brings that to bear in his research and development work. And where that mathematics takes him isn’t just into the nuts and bolts of algorithms but into philosophical questions about the nature of intelligence.   One of the things that Sébastien brought up was the state of evaluation of AI systems. And indeed, he was fairly critical in our conversation. But of course, the world of AI research and development is just moving so fast, and indeed, since we recorded our conversation, OpenAI, in fact, released a new evaluation metric that is directly relevant to medical applications, and that is something called HealthBench. And Microsoft Research also released a new evaluation approach or process called ADeLe.   HealthBench and ADeLe are examples of new approaches to evaluating AI models that are less about testing their knowledge and ability to pass multiple-choice exams and instead are evaluation approaches designed to assess how well AI models are able to complete tasks that actually arise every day in typical healthcare or biomedical research settings. These are examples of really important good work that speak to how well AI models work in the real world of healthcare and biomedical research and how well they can collaborate with human beings in those settings.  You know, I asked Bill and Seb to make some predictions about the future. You know, my own answer, I expect that we’re going to be able to use AI to change how we diagnose patients, change how we decide treatment options.   If you’re a doctor or a nurse and you encounter a patient, you’ll ask questions, do a physical exam, you know, call out for labs just like you do today, but then you’ll be able to engage with AI based on all of that data and just ask, you know, based on all the other people who have gone through the same experience, who have similar data, how were they diagnosed? How were they treated? What were their outcomes? And what does that mean for the patient I have right now? Some people call it the “patients like me” paradigm. And I think that’s going to become real because of AI within our lifetimes. That idea of really grounding the delivery in healthcare and medical practice through data and intelligence, I actually now don’t see any barriers to that future becoming real.  [THEME MUSIC]  I’d like to extend another big thank you to Bill and Sébastien for their time. And to our listeners, as always, it’s a pleasure to have you along for the ride. I hope you’ll join us for our remaining conversations, as well as a second coauthor roundtable with Carey and Zak.   Until next time.   [MUSIC FADES]
    0 Commentarii 0 Distribuiri
  • IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029

    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029

    By John P. Mello Jr.
    June 11, 2025 5:00 AM PT

    IBM unveiled its plan to build IBM Quantum Starling, shown in this rendering. Starling is expected to be the first large-scale, fault-tolerant quantum system.ADVERTISEMENT
    Enterprise IT Lead Generation Services
    Fuel Your Pipeline. Close More Deals. Our full-service marketing programs deliver sales-ready leads. 100% Satisfaction Guarantee! Learn more.

    IBM revealed Tuesday its roadmap for bringing a large-scale, fault-tolerant quantum computer, IBM Quantum Starling, online by 2029, which is significantly earlier than many technologists thought possible.
    The company predicts that when its new Starling computer is up and running, it will be capable of performing 20,000 times more operations than today’s quantum computers — a computational state so vast it would require the memory of more than a quindecillionof the world’s most powerful supercomputers to represent.
    “IBM is charting the next frontier in quantum computing,” Big Blue CEO Arvind Krishna said in a statement. “Our expertise across mathematics, physics, and engineering is paving the way for a large-scale, fault-tolerant quantum computer — one that will solve real-world challenges and unlock immense possibilities for business.”
    IBM’s plan to deliver a fault-tolerant quantum system by 2029 is ambitious but not implausible, especially given the rapid pace of its quantum roadmap and past milestones, observed Ensar Seker, CISO at SOCRadar, a threat intelligence company in Newark, Del.
    “They’ve consistently met or exceeded their qubit scaling goals, and their emphasis on modularity and error correction indicates they’re tackling the right challenges,” he told TechNewsWorld. “However, moving from thousands to millions of physical qubits with sufficient fidelity remains a steep climb.”
    A qubit is the fundamental unit of information in quantum computing, capable of representing a zero, a one, or both simultaneously due to quantum superposition. In practice, fault-tolerant quantum computers use clusters of physical qubits working together to form a logical qubit — a more stable unit designed to store quantum information and correct errors in real time.
    Realistic Roadmap
    Luke Yang, an equity analyst with Morningstar Research Services in Chicago, believes IBM’s roadmap is realistic. “The exact scale and error correction performance might still change between now and 2029, but overall, the goal is reasonable,” he told TechNewsWorld.
    “Given its reliability and professionalism, IBM’s bold claim should be taken seriously,” said Enrique Solano, co-CEO and co-founder of Kipu Quantum, a quantum algorithm company with offices in Berlin and Karlsruhe, Germany.
    “Of course, it may also fail, especially when considering the unpredictability of hardware complexities involved,” he told TechNewsWorld, “but companies like IBM exist for such challenges, and we should all be positively impressed by its current achievements and promised technological roadmap.”
    Tim Hollebeek, vice president of industry standards at DigiCert, a global digital security company, added: “IBM is a leader in this area, and not normally a company that hypes their news. This is a fast-moving industry, and success is certainly possible.”
    “IBM is attempting to do something that no one has ever done before and will almost certainly run into challenges,” he told TechNewsWorld, “but at this point, it is largely an engineering scaling exercise, not a research project.”
    “IBM has demonstrated consistent progress, has committed billion over five years to quantum computing, and the timeline is within the realm of technical feasibility,” noted John Young, COO of Quantum eMotion, a developer of quantum random number generator technology, in Saint-Laurent, Quebec, Canada.
    “That said,” he told TechNewsWorld, “fault-tolerant in a practical, industrial sense is a very high bar.”
    Solving the Quantum Error Correction Puzzle
    To make a quantum computer fault-tolerant, errors need to be corrected so large workloads can be run without faults. In a quantum computer, errors are reduced by clustering physical qubits to form logical qubits, which have lower error rates than the underlying physical qubits.
    “Error correction is a challenge,” Young said. “Logical qubits require thousands of physical qubits to function reliably. That’s a massive scaling issue.”
    IBM explained in its announcement that creating increasing numbers of logical qubits capable of executing quantum circuits with as few physical qubits as possible is critical to quantum computing at scale. Until today, a clear path to building such a fault-tolerant system without unrealistic engineering overhead has not been published.

    Alternative and previous gold-standard, error-correcting codes present fundamental engineering challenges, IBM continued. To scale, they would require an unfeasible number of physical qubits to create enough logical qubits to perform complex operations — necessitating impractical amounts of infrastructure and control electronics. This renders them unlikely to be implemented beyond small-scale experiments and devices.
    In two research papers released with its roadmap, IBM detailed how it will overcome the challenges of building the large-scale, fault-tolerant architecture needed for a quantum computer.
    One paper outlines the use of quantum low-density parity checkcodes to reduce physical qubit overhead. The other describes methods for decoding errors in real time using conventional computing.
    According to IBM, a practical fault-tolerant quantum architecture must:

    Suppress enough errors for useful algorithms to succeed
    Prepare and measure logical qubits during computation
    Apply universal instructions to logical qubits
    Decode measurements from logical qubits in real time and guide subsequent operations
    Scale modularly across hundreds or thousands of logical qubits
    Be efficient enough to run meaningful algorithms using realistic energy and infrastructure resources

    Aside from the technological challenges that quantum computer makers are facing, there may also be some market challenges. “Locating suitable use cases for quantum computers could be the biggest challenge,” Morningstar’s Yang maintained.
    “Only certain computing workloads, such as random circuit sampling, can fully unleash the computing power of quantum computers and show their advantage over the traditional supercomputers we have now,” he said. “However, workloads like RCS are not very commercially useful, and we believe commercial relevance is one of the key factors that determine the total market size for quantum computers.”
    Q-Day Approaching Faster Than Expected
    For years now, organizations have been told they need to prepare for “Q-Day” — the day a quantum computer will be able to crack all the encryption they use to keep their data secure. This IBM announcement suggests the window for action to protect data may be closing faster than many anticipated.
    “This absolutely adds urgency and credibility to the security expert guidance on post-quantum encryption being factored into their planning now,” said Dave Krauthamer, field CTO of QuSecure, maker of quantum-safe security solutions, in San Mateo, Calif.
    “IBM’s move to create a large-scale fault-tolerant quantum computer by 2029 is indicative of the timeline collapsing,” he told TechNewsWorld. “A fault-tolerant quantum computer of this magnitude could be well on the path to crack asymmetric ciphers sooner than anyone thinks.”

    “Security leaders need to take everything connected to post-quantum encryption as a serious measure and work it into their security plans now — not later,” he said.
    Roger Grimes, a defense evangelist with KnowBe4, a security awareness training provider in Clearwater, Fla., pointed out that IBM is just the latest in a surge of quantum companies announcing quickly forthcoming computational breakthroughs within a few years.
    “It leads to the question of whether the U.S. government’s original PQCpreparation date of 2030 is still a safe date,” he told TechNewsWorld.
    “It’s starting to feel a lot more risky for any company to wait until 2030 to be prepared against quantum attacks. It also flies in the face of the latest cybersecurity EOthat relaxed PQC preparation rules as compared to Biden’s last EO PQC standard order, which told U.S. agencies to transition to PQC ASAP.”
    “Most US companies are doing zero to prepare for Q-Day attacks,” he declared. “The latest executive order seems to tell U.S. agencies — and indirectly, all U.S. businesses — that they have more time to prepare. It’s going to cause even more agencies and businesses to be less prepared during a time when it seems multiple quantum computing companies are making significant progress.”
    “It definitely feels that something is going to give soon,” he said, “and if I were a betting man, and I am, I would bet that most U.S. companies are going to be unprepared for Q-Day on the day Q-Day becomes a reality.”

    John P. Mello Jr. has been an ECT News Network reporter since 2003. His areas of focus include cybersecurity, IT issues, privacy, e-commerce, social media, artificial intelligence, big data and consumer electronics. He has written and edited for numerous publications, including the Boston Business Journal, the Boston Phoenix, Megapixel.Net and Government Security News. Email John.

    Leave a Comment

    Click here to cancel reply.
    Please sign in to post or reply to a comment. New users create a free account.

    Related Stories

    More by John P. Mello Jr.

    view all

    More in Emerging Tech
    #ibm #plans #largescale #faulttolerant #quantum
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029 By John P. Mello Jr. June 11, 2025 5:00 AM PT IBM unveiled its plan to build IBM Quantum Starling, shown in this rendering. Starling is expected to be the first large-scale, fault-tolerant quantum system.ADVERTISEMENT Enterprise IT Lead Generation Services Fuel Your Pipeline. Close More Deals. Our full-service marketing programs deliver sales-ready leads. 100% Satisfaction Guarantee! Learn more. IBM revealed Tuesday its roadmap for bringing a large-scale, fault-tolerant quantum computer, IBM Quantum Starling, online by 2029, which is significantly earlier than many technologists thought possible. The company predicts that when its new Starling computer is up and running, it will be capable of performing 20,000 times more operations than today’s quantum computers — a computational state so vast it would require the memory of more than a quindecillionof the world’s most powerful supercomputers to represent. “IBM is charting the next frontier in quantum computing,” Big Blue CEO Arvind Krishna said in a statement. “Our expertise across mathematics, physics, and engineering is paving the way for a large-scale, fault-tolerant quantum computer — one that will solve real-world challenges and unlock immense possibilities for business.” IBM’s plan to deliver a fault-tolerant quantum system by 2029 is ambitious but not implausible, especially given the rapid pace of its quantum roadmap and past milestones, observed Ensar Seker, CISO at SOCRadar, a threat intelligence company in Newark, Del. “They’ve consistently met or exceeded their qubit scaling goals, and their emphasis on modularity and error correction indicates they’re tackling the right challenges,” he told TechNewsWorld. “However, moving from thousands to millions of physical qubits with sufficient fidelity remains a steep climb.” A qubit is the fundamental unit of information in quantum computing, capable of representing a zero, a one, or both simultaneously due to quantum superposition. In practice, fault-tolerant quantum computers use clusters of physical qubits working together to form a logical qubit — a more stable unit designed to store quantum information and correct errors in real time. Realistic Roadmap Luke Yang, an equity analyst with Morningstar Research Services in Chicago, believes IBM’s roadmap is realistic. “The exact scale and error correction performance might still change between now and 2029, but overall, the goal is reasonable,” he told TechNewsWorld. “Given its reliability and professionalism, IBM’s bold claim should be taken seriously,” said Enrique Solano, co-CEO and co-founder of Kipu Quantum, a quantum algorithm company with offices in Berlin and Karlsruhe, Germany. “Of course, it may also fail, especially when considering the unpredictability of hardware complexities involved,” he told TechNewsWorld, “but companies like IBM exist for such challenges, and we should all be positively impressed by its current achievements and promised technological roadmap.” Tim Hollebeek, vice president of industry standards at DigiCert, a global digital security company, added: “IBM is a leader in this area, and not normally a company that hypes their news. This is a fast-moving industry, and success is certainly possible.” “IBM is attempting to do something that no one has ever done before and will almost certainly run into challenges,” he told TechNewsWorld, “but at this point, it is largely an engineering scaling exercise, not a research project.” “IBM has demonstrated consistent progress, has committed billion over five years to quantum computing, and the timeline is within the realm of technical feasibility,” noted John Young, COO of Quantum eMotion, a developer of quantum random number generator technology, in Saint-Laurent, Quebec, Canada. “That said,” he told TechNewsWorld, “fault-tolerant in a practical, industrial sense is a very high bar.” Solving the Quantum Error Correction Puzzle To make a quantum computer fault-tolerant, errors need to be corrected so large workloads can be run without faults. In a quantum computer, errors are reduced by clustering physical qubits to form logical qubits, which have lower error rates than the underlying physical qubits. “Error correction is a challenge,” Young said. “Logical qubits require thousands of physical qubits to function reliably. That’s a massive scaling issue.” IBM explained in its announcement that creating increasing numbers of logical qubits capable of executing quantum circuits with as few physical qubits as possible is critical to quantum computing at scale. Until today, a clear path to building such a fault-tolerant system without unrealistic engineering overhead has not been published. Alternative and previous gold-standard, error-correcting codes present fundamental engineering challenges, IBM continued. To scale, they would require an unfeasible number of physical qubits to create enough logical qubits to perform complex operations — necessitating impractical amounts of infrastructure and control electronics. This renders them unlikely to be implemented beyond small-scale experiments and devices. In two research papers released with its roadmap, IBM detailed how it will overcome the challenges of building the large-scale, fault-tolerant architecture needed for a quantum computer. One paper outlines the use of quantum low-density parity checkcodes to reduce physical qubit overhead. The other describes methods for decoding errors in real time using conventional computing. According to IBM, a practical fault-tolerant quantum architecture must: Suppress enough errors for useful algorithms to succeed Prepare and measure logical qubits during computation Apply universal instructions to logical qubits Decode measurements from logical qubits in real time and guide subsequent operations Scale modularly across hundreds or thousands of logical qubits Be efficient enough to run meaningful algorithms using realistic energy and infrastructure resources Aside from the technological challenges that quantum computer makers are facing, there may also be some market challenges. “Locating suitable use cases for quantum computers could be the biggest challenge,” Morningstar’s Yang maintained. “Only certain computing workloads, such as random circuit sampling, can fully unleash the computing power of quantum computers and show their advantage over the traditional supercomputers we have now,” he said. “However, workloads like RCS are not very commercially useful, and we believe commercial relevance is one of the key factors that determine the total market size for quantum computers.” Q-Day Approaching Faster Than Expected For years now, organizations have been told they need to prepare for “Q-Day” — the day a quantum computer will be able to crack all the encryption they use to keep their data secure. This IBM announcement suggests the window for action to protect data may be closing faster than many anticipated. “This absolutely adds urgency and credibility to the security expert guidance on post-quantum encryption being factored into their planning now,” said Dave Krauthamer, field CTO of QuSecure, maker of quantum-safe security solutions, in San Mateo, Calif. “IBM’s move to create a large-scale fault-tolerant quantum computer by 2029 is indicative of the timeline collapsing,” he told TechNewsWorld. “A fault-tolerant quantum computer of this magnitude could be well on the path to crack asymmetric ciphers sooner than anyone thinks.” “Security leaders need to take everything connected to post-quantum encryption as a serious measure and work it into their security plans now — not later,” he said. Roger Grimes, a defense evangelist with KnowBe4, a security awareness training provider in Clearwater, Fla., pointed out that IBM is just the latest in a surge of quantum companies announcing quickly forthcoming computational breakthroughs within a few years. “It leads to the question of whether the U.S. government’s original PQCpreparation date of 2030 is still a safe date,” he told TechNewsWorld. “It’s starting to feel a lot more risky for any company to wait until 2030 to be prepared against quantum attacks. It also flies in the face of the latest cybersecurity EOthat relaxed PQC preparation rules as compared to Biden’s last EO PQC standard order, which told U.S. agencies to transition to PQC ASAP.” “Most US companies are doing zero to prepare for Q-Day attacks,” he declared. “The latest executive order seems to tell U.S. agencies — and indirectly, all U.S. businesses — that they have more time to prepare. It’s going to cause even more agencies and businesses to be less prepared during a time when it seems multiple quantum computing companies are making significant progress.” “It definitely feels that something is going to give soon,” he said, “and if I were a betting man, and I am, I would bet that most U.S. companies are going to be unprepared for Q-Day on the day Q-Day becomes a reality.” John P. Mello Jr. has been an ECT News Network reporter since 2003. His areas of focus include cybersecurity, IT issues, privacy, e-commerce, social media, artificial intelligence, big data and consumer electronics. He has written and edited for numerous publications, including the Boston Business Journal, the Boston Phoenix, Megapixel.Net and Government Security News. Email John. Leave a Comment Click here to cancel reply. Please sign in to post or reply to a comment. New users create a free account. Related Stories More by John P. Mello Jr. view all More in Emerging Tech #ibm #plans #largescale #faulttolerant #quantum
    WWW.TECHNEWSWORLD.COM
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029
    IBM Plans Large-Scale Fault-Tolerant Quantum Computer by 2029 By John P. Mello Jr. June 11, 2025 5:00 AM PT IBM unveiled its plan to build IBM Quantum Starling, shown in this rendering. Starling is expected to be the first large-scale, fault-tolerant quantum system. (Image Credit: IBM) ADVERTISEMENT Enterprise IT Lead Generation Services Fuel Your Pipeline. Close More Deals. Our full-service marketing programs deliver sales-ready leads. 100% Satisfaction Guarantee! Learn more. IBM revealed Tuesday its roadmap for bringing a large-scale, fault-tolerant quantum computer, IBM Quantum Starling, online by 2029, which is significantly earlier than many technologists thought possible. The company predicts that when its new Starling computer is up and running, it will be capable of performing 20,000 times more operations than today’s quantum computers — a computational state so vast it would require the memory of more than a quindecillion (10⁴⁸) of the world’s most powerful supercomputers to represent. “IBM is charting the next frontier in quantum computing,” Big Blue CEO Arvind Krishna said in a statement. “Our expertise across mathematics, physics, and engineering is paving the way for a large-scale, fault-tolerant quantum computer — one that will solve real-world challenges and unlock immense possibilities for business.” IBM’s plan to deliver a fault-tolerant quantum system by 2029 is ambitious but not implausible, especially given the rapid pace of its quantum roadmap and past milestones, observed Ensar Seker, CISO at SOCRadar, a threat intelligence company in Newark, Del. “They’ve consistently met or exceeded their qubit scaling goals, and their emphasis on modularity and error correction indicates they’re tackling the right challenges,” he told TechNewsWorld. “However, moving from thousands to millions of physical qubits with sufficient fidelity remains a steep climb.” A qubit is the fundamental unit of information in quantum computing, capable of representing a zero, a one, or both simultaneously due to quantum superposition. In practice, fault-tolerant quantum computers use clusters of physical qubits working together to form a logical qubit — a more stable unit designed to store quantum information and correct errors in real time. Realistic Roadmap Luke Yang, an equity analyst with Morningstar Research Services in Chicago, believes IBM’s roadmap is realistic. “The exact scale and error correction performance might still change between now and 2029, but overall, the goal is reasonable,” he told TechNewsWorld. “Given its reliability and professionalism, IBM’s bold claim should be taken seriously,” said Enrique Solano, co-CEO and co-founder of Kipu Quantum, a quantum algorithm company with offices in Berlin and Karlsruhe, Germany. “Of course, it may also fail, especially when considering the unpredictability of hardware complexities involved,” he told TechNewsWorld, “but companies like IBM exist for such challenges, and we should all be positively impressed by its current achievements and promised technological roadmap.” Tim Hollebeek, vice president of industry standards at DigiCert, a global digital security company, added: “IBM is a leader in this area, and not normally a company that hypes their news. This is a fast-moving industry, and success is certainly possible.” “IBM is attempting to do something that no one has ever done before and will almost certainly run into challenges,” he told TechNewsWorld, “but at this point, it is largely an engineering scaling exercise, not a research project.” “IBM has demonstrated consistent progress, has committed $30 billion over five years to quantum computing, and the timeline is within the realm of technical feasibility,” noted John Young, COO of Quantum eMotion, a developer of quantum random number generator technology, in Saint-Laurent, Quebec, Canada. “That said,” he told TechNewsWorld, “fault-tolerant in a practical, industrial sense is a very high bar.” Solving the Quantum Error Correction Puzzle To make a quantum computer fault-tolerant, errors need to be corrected so large workloads can be run without faults. In a quantum computer, errors are reduced by clustering physical qubits to form logical qubits, which have lower error rates than the underlying physical qubits. “Error correction is a challenge,” Young said. “Logical qubits require thousands of physical qubits to function reliably. That’s a massive scaling issue.” IBM explained in its announcement that creating increasing numbers of logical qubits capable of executing quantum circuits with as few physical qubits as possible is critical to quantum computing at scale. Until today, a clear path to building such a fault-tolerant system without unrealistic engineering overhead has not been published. Alternative and previous gold-standard, error-correcting codes present fundamental engineering challenges, IBM continued. To scale, they would require an unfeasible number of physical qubits to create enough logical qubits to perform complex operations — necessitating impractical amounts of infrastructure and control electronics. This renders them unlikely to be implemented beyond small-scale experiments and devices. In two research papers released with its roadmap, IBM detailed how it will overcome the challenges of building the large-scale, fault-tolerant architecture needed for a quantum computer. One paper outlines the use of quantum low-density parity check (qLDPC) codes to reduce physical qubit overhead. The other describes methods for decoding errors in real time using conventional computing. According to IBM, a practical fault-tolerant quantum architecture must: Suppress enough errors for useful algorithms to succeed Prepare and measure logical qubits during computation Apply universal instructions to logical qubits Decode measurements from logical qubits in real time and guide subsequent operations Scale modularly across hundreds or thousands of logical qubits Be efficient enough to run meaningful algorithms using realistic energy and infrastructure resources Aside from the technological challenges that quantum computer makers are facing, there may also be some market challenges. “Locating suitable use cases for quantum computers could be the biggest challenge,” Morningstar’s Yang maintained. “Only certain computing workloads, such as random circuit sampling [RCS], can fully unleash the computing power of quantum computers and show their advantage over the traditional supercomputers we have now,” he said. “However, workloads like RCS are not very commercially useful, and we believe commercial relevance is one of the key factors that determine the total market size for quantum computers.” Q-Day Approaching Faster Than Expected For years now, organizations have been told they need to prepare for “Q-Day” — the day a quantum computer will be able to crack all the encryption they use to keep their data secure. This IBM announcement suggests the window for action to protect data may be closing faster than many anticipated. “This absolutely adds urgency and credibility to the security expert guidance on post-quantum encryption being factored into their planning now,” said Dave Krauthamer, field CTO of QuSecure, maker of quantum-safe security solutions, in San Mateo, Calif. “IBM’s move to create a large-scale fault-tolerant quantum computer by 2029 is indicative of the timeline collapsing,” he told TechNewsWorld. “A fault-tolerant quantum computer of this magnitude could be well on the path to crack asymmetric ciphers sooner than anyone thinks.” “Security leaders need to take everything connected to post-quantum encryption as a serious measure and work it into their security plans now — not later,” he said. Roger Grimes, a defense evangelist with KnowBe4, a security awareness training provider in Clearwater, Fla., pointed out that IBM is just the latest in a surge of quantum companies announcing quickly forthcoming computational breakthroughs within a few years. “It leads to the question of whether the U.S. government’s original PQC [post-quantum cryptography] preparation date of 2030 is still a safe date,” he told TechNewsWorld. “It’s starting to feel a lot more risky for any company to wait until 2030 to be prepared against quantum attacks. It also flies in the face of the latest cybersecurity EO [Executive Order] that relaxed PQC preparation rules as compared to Biden’s last EO PQC standard order, which told U.S. agencies to transition to PQC ASAP.” “Most US companies are doing zero to prepare for Q-Day attacks,” he declared. “The latest executive order seems to tell U.S. agencies — and indirectly, all U.S. businesses — that they have more time to prepare. It’s going to cause even more agencies and businesses to be less prepared during a time when it seems multiple quantum computing companies are making significant progress.” “It definitely feels that something is going to give soon,” he said, “and if I were a betting man, and I am, I would bet that most U.S. companies are going to be unprepared for Q-Day on the day Q-Day becomes a reality.” John P. Mello Jr. has been an ECT News Network reporter since 2003. His areas of focus include cybersecurity, IT issues, privacy, e-commerce, social media, artificial intelligence, big data and consumer electronics. He has written and edited for numerous publications, including the Boston Business Journal, the Boston Phoenix, Megapixel.Net and Government Security News. Email John. Leave a Comment Click here to cancel reply. Please sign in to post or reply to a comment. New users create a free account. Related Stories More by John P. Mello Jr. view all More in Emerging Tech
    0 Commentarii 0 Distribuiri
  • Humpback Whales Are Approaching People to Blow Rings. What Are They Trying to Say?

    A bubble ring created by a humpback whale named Thorn. Image © Dan Knaub, The Video Company
    Humpback Whales Are Approaching People to Blow Rings. What Are They Trying to Say?
    June 13, 2025
    NatureSocial Issues
    Grace Ebert

    After the “orca uprising” captivated anti-capitalists around the world in 2023, scientists are intrigued by another form of marine mammal communication.
    A study released this month by the SETI Institute and the University of California at Davis dives into a newly documented phenomenon of humpback whales blowing bubble rings while interacting with humans. In contrast to the orcas’ aggressive behavior, researchers say the humpbacks appear to be friendly, relaxed, and even curious.
    Bubbles aren’t new to these aquatic giants, which typically release various shapes when corraling prey and courting mates. This study follows 12 distinct incidents involving 11 whales producing 39 rings, most of which have approached boats near Hawaii, the Dominican Republic, Mo’orea, and the U.S. Atlantic coast on their own.
    The impact of this research reaches far beyond the oceans, though. Deciphering these non-verbal messages could aid in potential extraterrestrial communication, as they can help to “develop filters that aid in parsing cosmic signals for signs of extraterrestrial life,” a statement says.
    “Because of current limitations on technology, an important assumption of the search for extraterrestrial intelligence is that extraterrestrial intelligence and life will be interested in making contact and so target human receivers,” said Dr. Laurance Doyle, a SETI Institute scientist who co-wrote the paper. “This important assumption is certainly supported by the independent evolution of curious behavior in humpback whales.”A composite image of at least one bubble ring from each interaction
    Previous articleNext article
    #humpback #whales #are #approaching #people
    Humpback Whales Are Approaching People to Blow Rings. What Are They Trying to Say?
    A bubble ring created by a humpback whale named Thorn. Image © Dan Knaub, The Video Company Humpback Whales Are Approaching People to Blow Rings. What Are They Trying to Say? June 13, 2025 NatureSocial Issues Grace Ebert After the “orca uprising” captivated anti-capitalists around the world in 2023, scientists are intrigued by another form of marine mammal communication. A study released this month by the SETI Institute and the University of California at Davis dives into a newly documented phenomenon of humpback whales blowing bubble rings while interacting with humans. In contrast to the orcas’ aggressive behavior, researchers say the humpbacks appear to be friendly, relaxed, and even curious. Bubbles aren’t new to these aquatic giants, which typically release various shapes when corraling prey and courting mates. This study follows 12 distinct incidents involving 11 whales producing 39 rings, most of which have approached boats near Hawaii, the Dominican Republic, Mo’orea, and the U.S. Atlantic coast on their own. The impact of this research reaches far beyond the oceans, though. Deciphering these non-verbal messages could aid in potential extraterrestrial communication, as they can help to “develop filters that aid in parsing cosmic signals for signs of extraterrestrial life,” a statement says. “Because of current limitations on technology, an important assumption of the search for extraterrestrial intelligence is that extraterrestrial intelligence and life will be interested in making contact and so target human receivers,” said Dr. Laurance Doyle, a SETI Institute scientist who co-wrote the paper. “This important assumption is certainly supported by the independent evolution of curious behavior in humpback whales.”A composite image of at least one bubble ring from each interaction Previous articleNext article #humpback #whales #are #approaching #people
    WWW.THISISCOLOSSAL.COM
    Humpback Whales Are Approaching People to Blow Rings. What Are They Trying to Say?
    A bubble ring created by a humpback whale named Thorn. Image © Dan Knaub, The Video Company Humpback Whales Are Approaching People to Blow Rings. What Are They Trying to Say? June 13, 2025 NatureSocial Issues Grace Ebert After the “orca uprising” captivated anti-capitalists around the world in 2023, scientists are intrigued by another form of marine mammal communication. A study released this month by the SETI Institute and the University of California at Davis dives into a newly documented phenomenon of humpback whales blowing bubble rings while interacting with humans. In contrast to the orcas’ aggressive behavior, researchers say the humpbacks appear to be friendly, relaxed, and even curious. Bubbles aren’t new to these aquatic giants, which typically release various shapes when corraling prey and courting mates. This study follows 12 distinct incidents involving 11 whales producing 39 rings, most of which have approached boats near Hawaii, the Dominican Republic, Mo’orea, and the U.S. Atlantic coast on their own. The impact of this research reaches far beyond the oceans, though. Deciphering these non-verbal messages could aid in potential extraterrestrial communication, as they can help to “develop filters that aid in parsing cosmic signals for signs of extraterrestrial life,” a statement says. “Because of current limitations on technology, an important assumption of the search for extraterrestrial intelligence is that extraterrestrial intelligence and life will be interested in making contact and so target human receivers,” said Dr. Laurance Doyle, a SETI Institute scientist who co-wrote the paper. “This important assumption is certainly supported by the independent evolution of curious behavior in humpback whales.” (via PetaPixel) A composite image of at least one bubble ring from each interaction Previous articleNext article
    0 Commentarii 0 Distribuiri
Sponsorizeaza Paginile