• It's absolutely infuriating that players in Rainbow Six Siege X have to jump through hoops just to enable crossplay on consoles! Why is this feature not activated by default? It's 2023, and we're still dealing with these outdated limitations that separate console and PC gamers. The developers should be pushing for a unified gaming experience, not making us wrestle with menus to enjoy the game with friends! This lack of foresight is unacceptable and shows a blatant disregard for the community. If they want to keep their player base engaged, they better fix this mess ASAP!

    #RainbowSixSiege #Crossplay #GamingCommunity #ConsoleGaming #Frustration
    It's absolutely infuriating that players in Rainbow Six Siege X have to jump through hoops just to enable crossplay on consoles! Why is this feature not activated by default? It's 2023, and we're still dealing with these outdated limitations that separate console and PC gamers. The developers should be pushing for a unified gaming experience, not making us wrestle with menus to enjoy the game with friends! This lack of foresight is unacceptable and shows a blatant disregard for the community. If they want to keep their player base engaged, they better fix this mess ASAP! #RainbowSixSiege #Crossplay #GamingCommunity #ConsoleGaming #Frustration
    Rainbow Six Siege X: How To Enable Crossplay On Consoles
    kotaku.com
    Console and PC players can enjoy the fast-paced destruction in Siege, together, but it's not turned on by default The post <i>Rainbow Six Siege X:</i> How To Enable Crossplay On Consoles appeared first on Kotaku.
    Like
    Love
    Wow
    Angry
    Sad
    155
    · 1 Комментарии ·0 Поделились ·0 предпросмотр
  • Vous avez entendu parler de ce nouveau gadget ? Le power bank Anker Prime, avec Bluetooth intégré ! Oui, parce qu'apparemment, la capacité d'une batterie externe n'était pas assez excitante sans une connexion sans fil. Peut-être qu'ils pensent que la prochaine étape est de télécharger de l’énergie directement dans nos téléphones ? “Hacking the Bluetooth-Enabled Anker Prime Power Bank” pourrait devenir le sport de l'année. Qui aurait cru qu'un simple chargeur pourrait être un défi pour les hackers en herbe ? C'est comme dire que le toaster doit être connecté à Internet pour griller du pain. Bravo, Anker, vous avez réussi à rendre notre dépendance à l’énergie encore plus compliquée !

    #AnkerPrime #
    Vous avez entendu parler de ce nouveau gadget ? Le power bank Anker Prime, avec Bluetooth intégré ! Oui, parce qu'apparemment, la capacité d'une batterie externe n'était pas assez excitante sans une connexion sans fil. Peut-être qu'ils pensent que la prochaine étape est de télécharger de l’énergie directement dans nos téléphones ? “Hacking the Bluetooth-Enabled Anker Prime Power Bank” pourrait devenir le sport de l'année. Qui aurait cru qu'un simple chargeur pourrait être un défi pour les hackers en herbe ? C'est comme dire que le toaster doit être connecté à Internet pour griller du pain. Bravo, Anker, vous avez réussi à rendre notre dépendance à l’énergie encore plus compliquée ! #AnkerPrime #
    Hacking the Bluetooth-Enabled Anker Prime Power Bank
    hackaday.com
    Selling power banks these days isn’t easy, as you can only stretch the reasonable limits of capacity and output wattage so far. Fortunately there is now a new game in …read more
    1 Комментарии ·0 Поделились ·0 предпросмотр
  • C'est inacceptable de voir comment le référencement traditionnel est complètement ignoré dans ce nouvel environnement où l'IA de Google et ChatGPT dominent. Au lieu de se concentrer sur des liens bleus, le monde du SEO doit maintenant jongler avec des réponses directes qui bouleversent tout ce que nous savons. Pourquoi devrions-nous nous adapter à une technologie qui semble changer les règles du jeu chaque jour? Les agences comme Go Fish Digital nous assomment avec des conseils vagues sur comment suivre la visibilité dans ce chaos. Il est grand temps de remettre en question cette situation insoutenable où les algorithmes dictent tout sans transparence.

    #SEO #ChatGPT #GoogleAI #Référencement #Visibilité
    C'est inacceptable de voir comment le référencement traditionnel est complètement ignoré dans ce nouvel environnement où l'IA de Google et ChatGPT dominent. Au lieu de se concentrer sur des liens bleus, le monde du SEO doit maintenant jongler avec des réponses directes qui bouleversent tout ce que nous savons. Pourquoi devrions-nous nous adapter à une technologie qui semble changer les règles du jeu chaque jour? Les agences comme Go Fish Digital nous assomment avec des conseils vagues sur comment suivre la visibilité dans ce chaos. Il est grand temps de remettre en question cette situation insoutenable où les algorithmes dictent tout sans transparence. #SEO #ChatGPT #GoogleAI #Référencement #Visibilité
    gofishdigital.com
    Search isn’t just blue links anymore, and your SEO strategy needs to catch up. Platforms like ChatGPT and Google AI Overviews now surface direct answers, not just pages. Go Fish Digital’s latest blog breaks down how AI decides what shows up, why trad
    Like
    Love
    Wow
    Sad
    Angry
    175
    · 1 Комментарии ·0 Поделились ·0 предпросмотр
  • If you're looking to enable Dark Mode on your computer, it's not that exciting, but here’s what you need to do. Just go to your settings, find the display options, and switch to Dark Mode. Easy, I guess. It helps reduce the glare, especially at night, but honestly, it’s just a color change. Not much more to say.

    Anyway, if you’re into that sort of thing, give it a try. If not, keep using the regular mode. Your choice.

    #DarkMode #ComputerSettings #TechTips #Boredom #SimpleGuide
    If you're looking to enable Dark Mode on your computer, it's not that exciting, but here’s what you need to do. Just go to your settings, find the display options, and switch to Dark Mode. Easy, I guess. It helps reduce the glare, especially at night, but honestly, it’s just a color change. Not much more to say. Anyway, if you’re into that sort of thing, give it a try. If not, keep using the regular mode. Your choice. #DarkMode #ComputerSettings #TechTips #Boredom #SimpleGuide
    كيف تفعل الوضع المظلم (Dark Mode) في جهاز الكمبيوتر الخاص بك؟
    arabhardware.net
    The post كيف تفعل الوضع المظلم (Dark Mode) في جهاز الكمبيوتر الخاص بك؟ appeared first on عرب هاردوير.
    1 Комментарии ·0 Поделились ·0 предпросмотр
  • Bonjour à tous ! Aujourd’hui, je veux vous parler d’un sujet qui nous touche tous : l’énergie utilisée par l’intelligence artificielle (IA) ! ⚡️ C’est vrai, on entend souvent parler des merveilles de l’IA, mais peu de gens savent combien d’énergie elle consomme réellement. C’est un mystère qui suscite beaucoup de curiosité et, je l’espère, de motivation pour nous tous !

    D’un côté, nous avons cette technologie incroyable qui transforme notre monde, et de l’autre, cette question cruciale : combien d’énergie cela nécessite-t-il ? Des études émergent pour tenter de répondre à cette énigme, mais les entreprises qui développent ces modèles populaires gardent leurs émissions de carbone secrètes. C’est un défi, mais cela ne doit pas nous décourager ! Au contraire, cela nous pousse à en apprendre davantage et à nous interroger sur notre impact environnemental.

    Imaginez un futur où nous pouvons allier innovation technologique et durabilité ! L’IA a le potentiel d’améliorer notre quotidien, d’optimiser nos ressources et de nous aider à résoudre de nombreux problèmes, y compris ceux liés à l’environnement. Et alors que nous nous informons sur l’énergie que consomme l’IA, nous pouvons également réfléchir à des solutions pour réduire son empreinte carbone.

    Chaque pas que nous faisons vers une meilleure compréhension de l’énergie utilisée par l’IA est une victoire. En partageant des connaissances et en encourageant des pratiques durables, nous pouvons tous contribuer à un avenir plus vert. N’oublions pas que chaque action compte, même les plus petites peuvent faire une grande différence !

    Alors, n’ayez pas peur de poser des questions ! Recherchez, discutez et partagez vos idées avec votre communauté. Ensemble, nous pouvons créer un mouvement qui non seulement célèbre les avancées de l’IA, mais qui le fait de manière responsable et consciente de notre planète.

    Restons optimistes, soyons engagés et continuons à avancer vers un avenir meilleur, où la technologie et la durabilité coexistent harmonieusement !

    #IntelligenceArtificielle #ÉnergieDurable #InnovationVerte #TechnologieResponsable #AvenirSoutenable
    🌟 Bonjour à tous ! Aujourd’hui, je veux vous parler d’un sujet qui nous touche tous : l’énergie utilisée par l’intelligence artificielle (IA) ! ⚡️ C’est vrai, on entend souvent parler des merveilles de l’IA, mais peu de gens savent combien d’énergie elle consomme réellement. C’est un mystère qui suscite beaucoup de curiosité et, je l’espère, de motivation pour nous tous ! 💪 D’un côté, nous avons cette technologie incroyable qui transforme notre monde, et de l’autre, cette question cruciale : combien d’énergie cela nécessite-t-il ? 🌍 Des études émergent pour tenter de répondre à cette énigme, mais les entreprises qui développent ces modèles populaires gardent leurs émissions de carbone secrètes. 🤔 C’est un défi, mais cela ne doit pas nous décourager ! Au contraire, cela nous pousse à en apprendre davantage et à nous interroger sur notre impact environnemental. Imaginez un futur où nous pouvons allier innovation technologique et durabilité ! 🤩 L’IA a le potentiel d’améliorer notre quotidien, d’optimiser nos ressources et de nous aider à résoudre de nombreux problèmes, y compris ceux liés à l’environnement. Et alors que nous nous informons sur l’énergie que consomme l’IA, nous pouvons également réfléchir à des solutions pour réduire son empreinte carbone. 🌱 Chaque pas que nous faisons vers une meilleure compréhension de l’énergie utilisée par l’IA est une victoire. 🎉 En partageant des connaissances et en encourageant des pratiques durables, nous pouvons tous contribuer à un avenir plus vert. N’oublions pas que chaque action compte, même les plus petites peuvent faire une grande différence ! ✨ Alors, n’ayez pas peur de poser des questions ! Recherchez, discutez et partagez vos idées avec votre communauté. Ensemble, nous pouvons créer un mouvement qui non seulement célèbre les avancées de l’IA, mais qui le fait de manière responsable et consciente de notre planète. 🌈 Restons optimistes, soyons engagés et continuons à avancer vers un avenir meilleur, où la technologie et la durabilité coexistent harmonieusement ! 💚 #IntelligenceArtificielle #ÉnergieDurable #InnovationVerte #TechnologieResponsable #AvenirSoutenable
    www.wired.com
    A growing body of research attempts to put a number on energy use and AI—even as the companies behind the most popular models keep their carbon emissions a secret.
    Like
    Love
    Wow
    Angry
    Sad
    281
    · 1 Комментарии ·0 Поделились ·0 предпросмотр
  • Ah, ce fameux Capcom Spotlight, un événement que nous attendons tous comme un enfant attend Noël — mais avec un peu plus de zombies et un peu moins de cadeaux. Le 27 juin, préparez-vous à être éblouis par des nouvelles sur Resident Evil Requiem et Pragmata, deux titres qui, espérons-le, finiront par sortir avant que nous ne soyons tous trop vieux pour jouer.

    Il faut avouer que la stratégie de Capcom est aussi mystérieuse que l’énigme d’un jeu Resident Evil. Ils adorent nous garder dans le flou, lançant des teasers comme si c’étaient des bonbons à Halloween. Mais soyons honnêtes, qui n'aime pas avoir un petit frisson d'excitation en attendant de savoir si le nouveau Resident Evil nous fera encore sauter de notre canapé ? On sait tous que la véritable horreur, c’est d’attendre des nouvelles pendant des mois, voire des années.

    D’ailleurs, concernant Pragmata, je me demande si ce nom est un clin d'œil à la difficulté de comprendre ce que Capcom essaie de nous raconter. Un jeu qui semble promettre de l’innovation, mais qui pourrait facilement se transformer en une autre aventure où l’on court après des ombres, tout en se demandant si on a vraiment besoin d’un autre protagoniste torturé. Mais après tout, qui ne voudrait pas d’un peu de mystère ? Peut-être que la vraie question est : "Pragmata, est-ce un jeu ou juste une métaphore pour notre existence ?"

    Et parlons de Resident Evil Requiem. Avec un titre aussi dramatique, on s’attend à ce qu’il soit rempli de moments de tension insoutenable, de monstres qui surgissent de nulle part, et, bien sûr, de personnages qui semblent avoir oublié comment utiliser des portes. Mais tant que Capcom continue à nous servir des graphismes époustouflants et des frissons à gogo, nous sommes prêts à pardonner ces petites incohérences — après tout, qui n’aime pas un bon saut de peur ?

    En résumé, le 27 juin est une date à marquer d'une pierre blanche (ou rouge, selon l'ambiance). Soyez prêt à subir une avalanche d’informations qui pourraient à la fois ravir les fans et les frustrer au plus haut point. Alors, sortez vos agendas, préparez votre meilleur popcorn et croisez les doigts pour que cette fois, Capcom ne nous laisse pas sur notre faim.

    #CapcomSpotlight #ResidentEvil #Pragmata #GamerLife #JeuxVidéo
    Ah, ce fameux Capcom Spotlight, un événement que nous attendons tous comme un enfant attend Noël — mais avec un peu plus de zombies et un peu moins de cadeaux. Le 27 juin, préparez-vous à être éblouis par des nouvelles sur Resident Evil Requiem et Pragmata, deux titres qui, espérons-le, finiront par sortir avant que nous ne soyons tous trop vieux pour jouer. Il faut avouer que la stratégie de Capcom est aussi mystérieuse que l’énigme d’un jeu Resident Evil. Ils adorent nous garder dans le flou, lançant des teasers comme si c’étaient des bonbons à Halloween. Mais soyons honnêtes, qui n'aime pas avoir un petit frisson d'excitation en attendant de savoir si le nouveau Resident Evil nous fera encore sauter de notre canapé ? On sait tous que la véritable horreur, c’est d’attendre des nouvelles pendant des mois, voire des années. D’ailleurs, concernant Pragmata, je me demande si ce nom est un clin d'œil à la difficulté de comprendre ce que Capcom essaie de nous raconter. Un jeu qui semble promettre de l’innovation, mais qui pourrait facilement se transformer en une autre aventure où l’on court après des ombres, tout en se demandant si on a vraiment besoin d’un autre protagoniste torturé. Mais après tout, qui ne voudrait pas d’un peu de mystère ? Peut-être que la vraie question est : "Pragmata, est-ce un jeu ou juste une métaphore pour notre existence ?" Et parlons de Resident Evil Requiem. Avec un titre aussi dramatique, on s’attend à ce qu’il soit rempli de moments de tension insoutenable, de monstres qui surgissent de nulle part, et, bien sûr, de personnages qui semblent avoir oublié comment utiliser des portes. Mais tant que Capcom continue à nous servir des graphismes époustouflants et des frissons à gogo, nous sommes prêts à pardonner ces petites incohérences — après tout, qui n’aime pas un bon saut de peur ? En résumé, le 27 juin est une date à marquer d'une pierre blanche (ou rouge, selon l'ambiance). Soyez prêt à subir une avalanche d’informations qui pourraient à la fois ravir les fans et les frustrer au plus haut point. Alors, sortez vos agendas, préparez votre meilleur popcorn et croisez les doigts pour que cette fois, Capcom ne nous laisse pas sur notre faim. #CapcomSpotlight #ResidentEvil #Pragmata #GamerLife #JeuxVidéo
    www.actugaming.net
    ActuGaming.net Un Capcom Spotlight viendra nous donner des nouvelles de Resident Evil Requiem et Pragmata le 27 juin prochain Capcom a désormais pris l’habitude de se réserver des créneaux rien que pour lui à […] L'article Un Capcom Spot
    Like
    Love
    Wow
    Sad
    Angry
    342
    · 1 Комментарии ·0 Поделились ·0 предпросмотр
  • Ankur Kothari Q&amp;A: Customer Engagement Book Interview

    Reading Time: 9 minutes
    In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns.
    But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic.
    This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results.
    Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.

     
    Ankur Kothari Q&amp;A Interview
    1. What types of customer engagement data are most valuable for making strategic business decisions?
    Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns.
    Second would be demographic information: age, location, income, and other relevant personal characteristics.
    Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews.
    Fourth would be the customer journey data.

    We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data.

    2. How do you distinguish between data that is actionable versus data that is just noise?
    First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance.
    Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in.

    You also want to make sure that there is consistency across sources.
    Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory.
    Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy.

    By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions.

    3. How can customer engagement data be used to identify and prioritize new business opportunities?
    First, it helps us to uncover unmet needs.

    By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points.

    Second would be identifying emerging needs.
    Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly.
    Third would be segmentation analysis.
    Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies.
    Last is to build competitive differentiation.

    Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions.

    4. Can you share an example of where data insights directly influenced a critical decision?
    I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings.
    We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms.
    That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs.

    That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial.

    5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time?
    When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences.
    We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments.
    Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content.

    With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns.

    6. How are you doing the 1:1 personalization?
    We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer.
    So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer.
    That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience.

    We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers.

    7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service?
    Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved.
    The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments.

    Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention.

    So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization.

    8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights?
    I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights.

    Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement.

    Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant.
    As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively.
    So there’s a lack of understanding of marketing and sales as domains.
    It’s a huge effort and can take a lot of investment.

    Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing.

    9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data?
    If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge.
    Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side.

    Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important.

    10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before?
    First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do.
    And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations.
    The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it.

    Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one.

    11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations?
    We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI.
    We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals.

    We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization.

    12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data?
    I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points.
    Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us.
    We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels.
    Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms.

    Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps.

    13. How do you ensure data quality and consistency across multiple channels to make these informed decisions?
    We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies.
    While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing.
    We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats.

    On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically.

    14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years?
    The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices.
    Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities.
    We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases.
    As the world is collecting more data, privacy concerns and regulations come into play.
    I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies.
    And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture.

    So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.

     
    This interview Q&amp;A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die.
    Download the PDF or request a physical copy of the book here.
    The post Ankur Kothari Q&amp;A: Customer Engagement Book Interview appeared first on MoEngage.
    #ankur #kothari #qampampa #customer #engagement
    Ankur Kothari Q&amp;A: Customer Engagement Book Interview
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question, we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&amp;A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&amp;A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&amp;A: Customer Engagement Book Interview appeared first on MoEngage. #ankur #kothari #qampampa #customer #engagement
    Ankur Kothari Q&amp;A: Customer Engagement Book Interview
    www.moengage.com
    Reading Time: 9 minutes In marketing, data isn’t a buzzword. It’s the lifeblood of all successful campaigns. But are you truly harnessing its power, or are you drowning in a sea of information? To answer this question (and many others), we sat down with Ankur Kothari, a seasoned Martech expert, to dive deep into this crucial topic. This interview, originally conducted for Chapter 6 of “The Customer Engagement Book: Adapt or Die” explores how businesses can translate raw data into actionable insights that drive real results. Ankur shares his wealth of knowledge on identifying valuable customer engagement data, distinguishing between signal and noise, and ultimately, shaping real-time strategies that keep companies ahead of the curve.   Ankur Kothari Q&amp;A Interview 1. What types of customer engagement data are most valuable for making strategic business decisions? Primarily, there are four different buckets of customer engagement data. I would begin with behavioral data, encompassing website interaction, purchase history, and other app usage patterns. Second would be demographic information: age, location, income, and other relevant personal characteristics. Third would be sentiment analysis, where we derive information from social media interaction, customer feedback, or other customer reviews. Fourth would be the customer journey data. We track touchpoints across various channels of the customers to understand the customer journey path and conversion. Combining these four primary sources helps us understand the engagement data. 2. How do you distinguish between data that is actionable versus data that is just noise? First is keeping relevant to your business objectives, making actionable data that directly relates to your specific goals or KPIs, and then taking help from statistical significance. Actionable data shows clear patterns or trends that are statistically valid, whereas other data consists of random fluctuations or outliers, which may not be what you are interested in. You also want to make sure that there is consistency across sources. Actionable insights are typically corroborated by multiple data points or channels, while other data or noise can be more isolated and contradictory. Actionable data suggests clear opportunities for improvement or decision making, whereas noise does not lead to meaningful actions or changes in strategy. By applying these criteria, I can effectively filter out the noise and focus on data that delivers or drives valuable business decisions. 3. How can customer engagement data be used to identify and prioritize new business opportunities? First, it helps us to uncover unmet needs. By analyzing the customer feedback, touch points, support interactions, or usage patterns, we can identify the gaps in our current offerings or areas where customers are experiencing pain points. Second would be identifying emerging needs. Monitoring changes in customer behavior or preferences over time can reveal new market trends or shifts in demand, allowing my company to adapt their products or services accordingly. Third would be segmentation analysis. Detailed customer data analysis enables us to identify unserved or underserved segments or niche markets that may represent untapped opportunities for growth or expansion into newer areas and new geographies. Last is to build competitive differentiation. Engagement data can highlight where our companies outperform competitors, helping us to prioritize opportunities that leverage existing strengths and unique selling propositions. 4. Can you share an example of where data insights directly influenced a critical decision? I will share an example from my previous organization at one of the financial services where we were very data-driven, which made a major impact on our critical decision regarding our credit card offerings. We analyzed the customer engagement data, and we discovered that a large segment of our millennial customers were underutilizing our traditional credit cards but showed high engagement with mobile payment platforms. That insight led us to develop and launch our first digital credit card product with enhanced mobile features and rewards tailored to the millennial spending habits. Since we had access to a lot of transactional data as well, we were able to build a financial product which met that specific segment’s needs. That data-driven decision resulted in a 40% increase in our new credit card applications from this demographic within the first quarter of the launch. Subsequently, our market share improved in that specific segment, which was very crucial. 5. Are there any other examples of ways that you see customer engagement data being able to shape marketing strategy in real time? When it comes to using the engagement data in real-time, we do quite a few things. In the recent past two, three years, we are using that for dynamic content personalization, adjusting the website content, email messaging, or ad creative based on real-time user behavior and preferences. We automate campaign optimization using specific AI-driven tools to continuously analyze performance metrics and automatically reallocate the budget to top-performing channels or ad segments. Then we also build responsive social media engagement platforms like monitoring social media sentiments and trending topics to quickly adapt the messaging and create timely and relevant content. With one-on-one personalization, we do a lot of A/B testing as part of the overall rapid testing and market elements like subject lines, CTAs, and building various successful variants of the campaigns. 6. How are you doing the 1:1 personalization? We have advanced CDP systems, and we are tracking each customer’s behavior in real-time. So the moment they move to different channels, we know what the context is, what the relevance is, and the recent interaction points, so we can cater the right offer. So for example, if you looked at a certain offer on the website and you came from Google, and then the next day you walk into an in-person interaction, our agent will already know that you were looking at that offer. That gives our customer or potential customer more one-to-one personalization instead of just segment-based or bulk interaction kind of experience. We have a huge team of data scientists, data analysts, and AI model creators who help us to analyze big volumes of data and bring the right insights to our marketing and sales team so that they can provide the right experience to our customers. 7. What role does customer engagement data play in influencing cross-functional decisions, such as with product development, sales, and customer service? Primarily with product development — we have different products, not just the financial products or products whichever organizations sell, but also various products like mobile apps or websites they use for transactions. So that kind of product development gets improved. The engagement data helps our sales and marketing teams create more targeted campaigns, optimize channel selection, and refine messaging to resonate with specific customer segments. Customer service also gets helped by anticipating common issues, personalizing support interactions over the phone or email or chat, and proactively addressing potential problems, leading to improved customer satisfaction and retention. So in general, cross-functional application of engagement improves the customer-centric approach throughout the organization. 8. What do you think some of the main challenges marketers face when trying to translate customer engagement data into actionable business insights? I think the huge amount of data we are dealing with. As we are getting more digitally savvy and most of the customers are moving to digital channels, we are getting a lot of data, and that sheer volume of data can be overwhelming, making it very difficult to identify truly meaningful patterns and insights. Because of the huge data overload, we create data silos in this process, so information often exists in separate systems across different departments. We are not able to build a holistic view of customer engagement. Because of data silos and overload of data, data quality issues appear. There is inconsistency, and inaccurate data can lead to incorrect insights or poor decision-making. Quality issues could also be due to the wrong format of the data, or the data is stale and no longer relevant. As we are growing and adding more people to help us understand customer engagement, I’ve also noticed that technical folks, especially data scientists and data analysts, lack skills to properly interpret the data or apply data insights effectively. So there’s a lack of understanding of marketing and sales as domains. It’s a huge effort and can take a lot of investment. Not being able to calculate the ROI of your overall investment is a big challenge that many organizations are facing. 9. Why do you think the analysts don’t have the business acumen to properly do more than analyze the data? If people do not have the right idea of why we are collecting this data, we collect a lot of noise, and that brings in huge volumes of data. If you cannot stop that from step one—not bringing noise into the data system—that cannot be done by just technical folks or people who do not have business knowledge. Business people do not know everything about what data is being collected from which source and what data they need. It’s a gap between business domain knowledge, specifically marketing and sales needs, and technical folks who don’t have a lot of exposure to that side. Similarly, marketing business people do not have much exposure to the technical side — what’s possible to do with data, how much effort it takes, what’s relevant versus not relevant, and how to prioritize which data sources will be most important. 10. Do you have any suggestions for how this can be overcome, or have you seen it in action where it has been solved before? First, cross-functional training: training different roles to help them understand why we’re doing this and what the business goals are, giving technical people exposure to what marketing and sales teams do. And giving business folks exposure to the technology side through training on different tools, strategies, and the roadmap of data integrations. The second is helping teams work more collaboratively. So it’s not like the technology team works in a silo and comes back when their work is done, and then marketing and sales teams act upon it. Now we’re making it more like one team. You work together so that you can complement each other, and we have a better strategy from day one. 11. How do you address skepticism or resistance from stakeholders when presenting data-driven recommendations? We present clear business cases where we demonstrate how data-driven recommendations can directly align with business objectives and potential ROI. We build compelling visualizations, easy-to-understand charts and graphs that clearly illustrate the insights and the implications for business goals. We also do a lot of POCs and pilot projects with small-scale implementations to showcase tangible results and build confidence in the data-driven approach throughout the organization. 12. What technologies or tools have you found most effective for gathering and analyzing customer engagement data? I’ve found that Customer Data Platforms help us unify customer data from various sources, providing a comprehensive view of customer interactions across touch points. Having advanced analytics platforms — tools with AI and machine learning capabilities that can process large volumes of data and uncover complex patterns and insights — is a great value to us. We always use, or many organizations use, marketing automation systems to improve marketing team productivity, helping us track and analyze customer interactions across multiple channels. Another thing is social media listening tools, wherever your brand is mentioned or you want to measure customer sentiment over social media, or track the engagement of your campaigns across social media platforms. Last is web analytical tools, which provide detailed insights into your website visitors’ behaviors and engagement metrics, for browser apps, small browser apps, various devices, and mobile apps. 13. How do you ensure data quality and consistency across multiple channels to make these informed decisions? We established clear guidelines for data collection, storage, and usage across all channels to maintain consistency. Then we use data integration platforms — tools that consolidate data from various sources into a single unified view, reducing discrepancies and inconsistencies. While we collect data from different sources, we clean the data so it becomes cleaner with every stage of processing. We also conduct regular data audits — performing periodic checks to identify and rectify data quality issues, ensuring accuracy and reliability of information. We also deploy standardized data formats. On top of that, we have various automated data cleansing tools, specific software to detect and correct data errors, redundancies, duplicates, and inconsistencies in data sets automatically. 14. How do you see the role of customer engagement data evolving in shaping business strategies over the next five years? The first thing that’s been the biggest trend from the past two years is AI-driven decision making, which I think will become more prevalent, with advanced algorithms processing vast amounts of engagement data in real-time to inform strategic choices. Somewhat related to this is predictive analytics, which will play an even larger role, enabling businesses to anticipate customer needs and market trends with more accuracy and better predictive capabilities. We also touched upon hyper-personalization. We are all trying to strive toward more hyper-personalization at scale, which is more one-on-one personalization, as we are increasingly capturing more engagement data and have bigger systems and infrastructure to support processing those large volumes of data so we can achieve those hyper-personalization use cases. As the world is collecting more data, privacy concerns and regulations come into play. I believe in the next few years there will be more innovation toward how businesses can collect data ethically and what the usage practices are, leading to more transparent and consent-based engagement data strategies. And lastly, I think about the integration of engagement data, which is always a big challenge. I believe as we’re solving those integration challenges, we are adding more and more complex data sources to the picture. So I think there will need to be more innovation or sophistication brought into data integration strategies, which will help us take a truly customer-centric approach to strategy formulation.   This interview Q&amp;A was hosted with Ankur Kothari, a previous Martech Executive, for Chapter 6 of The Customer Engagement Book: Adapt or Die. Download the PDF or request a physical copy of the book here. The post Ankur Kothari Q&amp;A: Customer Engagement Book Interview appeared first on MoEngage.
    Like
    Love
    Wow
    Angry
    Sad
    478
    · 0 Комментарии ·0 Поделились ·0 предпросмотр
  • The AI execution gap: Why 80% of projects don’t reach production

    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle.
    #execution #gap #why #projects #dont
    The AI execution gap: Why 80% of projects don’t reach production
    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle. #execution #gap #why #projects #dont
    The AI execution gap: Why 80% of projects don’t reach production
    www.artificialintelligence-news.com
    Enterprise artificial intelligence investment is unprecedented, with IDC projecting global spending on AI and GenAI to double to $631 billion by 2028. Yet beneath the impressive budget allocations and boardroom enthusiasm lies a troubling reality: most organisations struggle to translate their AI ambitions into operational success.The sobering statistics behind AI’s promiseModelOp’s 2025 AI Governance Benchmark Report, based on input from 100 senior AI and data leaders at Fortune 500 enterprises, reveals a disconnect between aspiration and execution.While more than 80% of enterprises have 51 or more generative AI projects in proposal phases, only 18% have successfully deployed more than 20 models into production.The execution gap represents one of the most significant challenges facing enterprise AI today. Most generative AI projects still require 6 to 18 months to go live – if they reach production at all.The result is delayed returns on investment, frustrated stakeholders, and diminished confidence in AI initiatives in the enterprise.The cause: Structural, not technical barriersThe biggest obstacles preventing AI scalability aren’t technical limitations – they’re structural inefficiencies plaguing enterprise operations. The ModelOp benchmark report identifies several problems that create what experts call a “time-to-market quagmire.”Fragmented systems plague implementation. 58% of organisations cite fragmented systems as the top obstacle to adopting governance platforms. Fragmentation creates silos where different departments use incompatible tools and processes, making it nearly impossible to maintain consistent oversight in AI initiatives.Manual processes dominate despite digital transformation. 55% of enterprises still rely on manual processes – including spreadsheets and email – to manage AI use case intake. The reliance on antiquated methods creates bottlenecks, increases the likelihood of errors, and makes it difficult to scale AI operations.Lack of standardisation hampers progress. Only 23% of organisations implement standardised intake, development, and model management processes. Without these elements, each AI project becomes a unique challenge requiring custom solutions and extensive coordination by multiple teams.Enterprise-level oversight remains rare Just 14% of companies perform AI assurance at the enterprise level, increasing the risk of duplicated efforts and inconsistent oversight. The lack of centralised governance means organisations often discover they’re solving the same problems multiple times in different departments.The governance revolution: From obstacle to acceleratorA change is taking place in how enterprises view AI governance. Rather than seeing it as a compliance burden that slows innovation, forward-thinking organisations recognise governance as an important enabler of scale and speed.Leadership alignment signals strategic shift. The ModelOp benchmark data reveals a change in organisational structure: 46% of companies now assign accountability for AI governance to a Chief Innovation Officer – more than four times the number who place accountability under Legal or Compliance. This strategic repositioning reflects a new understanding that governance isn’t solely about risk management, but can enable innovation.Investment follows strategic priority. A financial commitment to AI governance underscores its importance. According to the report, 36% of enterprises have budgeted at least $1 million annually for AI governance software, while 54% have allocated resources specifically for AI Portfolio Intelligence to track value and ROI.What high-performing organisations do differentlyThe enterprises that successfully bridge the ‘execution gap’ share several characteristics in their approach to AI implementation:Standardised processes from day one. Leading organisations implement standardised intake, development, and model review processes in AI initiatives. Consistency eliminates the need to reinvent workflows for each project and ensures that all stakeholders understand their responsibilities.Centralised documentation and inventory. Rather than allowing AI assets to proliferate in disconnected systems, successful enterprises maintain centralised inventories that provide visibility into every model’s status, performance, and compliance posture.Automated governance checkpoints. High-performing organisations embed automated governance checkpoints throughout the AI lifecycle, helping ensure compliance requirements and risk assessments are addressed systematically rather than as afterthoughts.End-to-end traceability. Leading enterprises maintain complete traceability of their AI models, including data sources, training methods, validation results, and performance metrics.Measurable impact of structured governanceThe benefits of implementing comprehensive AI governance extend beyond compliance. Organisations that adopt lifecycle automation platforms reportedly see dramatic improvements in operational efficiency and business outcomes.A financial services firm profiled in the ModelOp report experienced a halving of time to production and an 80% reduction in issue resolution time after implementing automated governance processes. Such improvements translate directly into faster time-to-value and increased confidence among business stakeholders.Enterprises with robust governance frameworks report the ability to many times more models simultaneously while maintaining oversight and control. This scalability lets organisations pursue AI initiatives in multiple business units without overwhelming their operational capabilities.The path forward: From stuck to scaledThe message from industry leaders that the gap between AI ambition and execution is solvable, but it requires a shift in approach. Rather than treating governance as a necessary evil, enterprises should realise it enables AI innovation at scale.Immediate action items for AI leadersOrganisations looking to escape the ‘time-to-market quagmire’ should prioritise the following:Audit current state: Conduct an assessment of existing AI initiatives, identifying fragmented processes and manual bottlenecksStandardise workflows: Implement consistent processes for AI use case intake, development, and deployment in all business unitsInvest in integration: Deploy platforms to unify disparate tools and systems under a single governance frameworkEstablish enterprise oversight: Create centralised visibility into all AI initiatives with real-time monitoring and reporting abilitiesThe competitive advantage of getting it rightOrganisations that can solve the execution challenge will be able to bring AI solutions to market faster, scale more efficiently, and maintain the trust of stakeholders and regulators.Enterprises that continue with fragmented processes and manual workflows will find themselves disadvantaged compared to their more organised competitors. Operational excellence isn’t about efficiency but survival.The data shows enterprise AI investment will continue to grow. Therefore, the question isn’t whether organisations will invest in AI, but whether they’ll develop the operational abilities necessary to realise return on investment. The opportunity to lead in the AI-driven economy has never been greater for those willing to embrace governance as an enabler not an obstacle.(Image source: Unsplash)
    Like
    Love
    Wow
    Angry
    Sad
    598
    · 0 Комментарии ·0 Поделились ·0 предпросмотр
  • The stunning reversal of humanity’s oldest bias

    Perhaps the oldest, most pernicious form of human bias is that of men toward women. It often started at the moment of birth. In ancient Athens, at a public ceremony called the amphidromia, fathers would inspect a newborn and decide whether it would be part of the family, or be cast away. One often socially acceptable reason for abandoning the baby: It was a girl. Female infanticide has been distressingly common in many societies — and its practice is not just ancient history. In 1990, the Nobel Prize-winning economist Amartya Sen looked at birth ratios in Asia, North Africa, and China and calculated that more than 100 million women were essentially “missing” — meaning that, based on the normal ratio of boys to girls at birth and the longevity of both genders, there was a huge missing number of girls who should have been born, but weren’t. Sen’s estimate came before the truly widespread adoption of ultrasound tests that could determine the sex of a fetus in utero — which actually made the problem worse, leading to a wave of sex-selective abortions. These were especially common in countries like India and China; the latter’s one-child policy and old biases made families desperate for their one child to be a boy. The Economist has estimated that since 1980 alone, there have been approximately 50 million fewer girls born worldwide than would naturally be expected, which almost certainly means that roughly that nearly all of those girls were aborted for no other reason than their sex. The preference for boys was a bias that killed in mass numbers.But in one of the most important social shifts of our time, that bias is changing. In a great cover story earlier this month, The Economist reported that the number of annual excess male births has fallen from a peak of 1.7 million in 2000 to around 200,000, which puts it back within the biologically standard birth ratio of 105 boys for every 100 girls. Countries that once had highly skewed sex ratios — like South Korea, which saw almost 116 boys born for every 100 girls in 1990 — now have normal or near-normal ratios. Altogether, The Economist estimated that the decline in sex preference at birth in the past 25 years has saved the equivalent of 7 million girls. That’s comparable to the number of lives saved by anti-smoking efforts in the US. So how, exactly, have we overcome a prejudice that seemed so embedded in human society?Success in school and the workplaceFor one, we have relaxed discrimination against girls and women in other ways — in school and in the workplace. With fewer limits, girls are outperforming boys in the classroom. In the most recent international PISA tests, considered the gold standard for evaluating student performance around the world, 15-year-old girls beat their male counterparts in reading in 79 out of 81 participating countries or economies, while the historic male advantage in math scores has fallen to single digits. Girls are also dominating in higher education, with 113 female students at that level for every 100 male students. While women continue to earn less than men, the gender pay gap has been shrinking, and in a number of urban areas in the US, young women have actually been outearning young men. Government policies have helped accelerate that shift, in part because they have come to recognize the serious social problems that eventually result from decades of anti-girl discrimination. In countries like South Korea and China, which have long had some of the most skewed gender ratios at birth, governments have cracked down on technologies that enable sex-selective abortion. In India, where female infanticide and neglect have been particularly horrific, slogans like “the Daughter, Educate the Daughter” have helped change opinions. A changing preferenceThe shift is being seen not just in birth sex ratios, but in opinion polls — and in the actions of would-be parents.Between 1983 and 2003, The Economist reported, the proportion of South Korean women who said it was “necessary” to have a son fell from 48 percent to 6 percent, while nearly half of women now say they want daughters. In Japan, the shift has gone even further — as far back as 2002, 75 percent of couples who wanted only one child said they hoped for a daughter.In the US, which allows sex selection for couples doing in-vitro fertilization, there is growing evidence that would-be parents prefer girls, as do potential adoptive parents. While in the past, parents who had a girl first were more likely to keep trying to have children in an effort to have a boy, the opposite is now true — couples who have a girl first are less likely to keep trying. A more equal futureThere’s still more progress to be made. In northwest of India, for instance, birth ratios that overly skew toward boys are still the norm. In regions of sub-Saharan Africa, birth sex ratios may be relatively normal, but post-birth discrimination in the form of poorer nutrition and worse medical care still lingers. And course, women around the world are still subject to unacceptable levels of violence and discrimination from men.And some of the reasons for this shift may not be as high-minded as we’d like to think. Boys around the world are struggling in the modern era. They increasingly underperform in education, are more likely to be involved in violent crime, and in general, are failing to launch into adulthood. In the US, 20 percent of American men between 25 and 34 still live with their parents, compared to 15 percent of similarly aged women. It also seems to be the case that at least some of the increasing preference for girls is rooted in sexist stereotypes. Parents around the world may now prefer girls partly because they see them as more likely to take care of them in their old age — meaning a different kind of bias against women, that they are more natural caretakers, may be paradoxically driving the decline in prejudice against girls at birth.But make no mistake — the decline of boy preference is a clear mark of social progress, one measured in millions of girls’ lives saved. And maybe one Father’s Day, not too long from now, we’ll reach the point where daughters and sons are simply children: equally loved and equally welcomed.A version of this story originally appeared in the Good News newsletter. Sign up here!See More:
    #stunning #reversal #humanitys #oldest #bias
    The stunning reversal of humanity’s oldest bias
    Perhaps the oldest, most pernicious form of human bias is that of men toward women. It often started at the moment of birth. In ancient Athens, at a public ceremony called the amphidromia, fathers would inspect a newborn and decide whether it would be part of the family, or be cast away. One often socially acceptable reason for abandoning the baby: It was a girl. Female infanticide has been distressingly common in many societies — and its practice is not just ancient history. In 1990, the Nobel Prize-winning economist Amartya Sen looked at birth ratios in Asia, North Africa, and China and calculated that more than 100 million women were essentially “missing” — meaning that, based on the normal ratio of boys to girls at birth and the longevity of both genders, there was a huge missing number of girls who should have been born, but weren’t. Sen’s estimate came before the truly widespread adoption of ultrasound tests that could determine the sex of a fetus in utero — which actually made the problem worse, leading to a wave of sex-selective abortions. These were especially common in countries like India and China; the latter’s one-child policy and old biases made families desperate for their one child to be a boy. The Economist has estimated that since 1980 alone, there have been approximately 50 million fewer girls born worldwide than would naturally be expected, which almost certainly means that roughly that nearly all of those girls were aborted for no other reason than their sex. The preference for boys was a bias that killed in mass numbers.But in one of the most important social shifts of our time, that bias is changing. In a great cover story earlier this month, The Economist reported that the number of annual excess male births has fallen from a peak of 1.7 million in 2000 to around 200,000, which puts it back within the biologically standard birth ratio of 105 boys for every 100 girls. Countries that once had highly skewed sex ratios — like South Korea, which saw almost 116 boys born for every 100 girls in 1990 — now have normal or near-normal ratios. Altogether, The Economist estimated that the decline in sex preference at birth in the past 25 years has saved the equivalent of 7 million girls. That’s comparable to the number of lives saved by anti-smoking efforts in the US. So how, exactly, have we overcome a prejudice that seemed so embedded in human society?Success in school and the workplaceFor one, we have relaxed discrimination against girls and women in other ways — in school and in the workplace. With fewer limits, girls are outperforming boys in the classroom. In the most recent international PISA tests, considered the gold standard for evaluating student performance around the world, 15-year-old girls beat their male counterparts in reading in 79 out of 81 participating countries or economies, while the historic male advantage in math scores has fallen to single digits. Girls are also dominating in higher education, with 113 female students at that level for every 100 male students. While women continue to earn less than men, the gender pay gap has been shrinking, and in a number of urban areas in the US, young women have actually been outearning young men. Government policies have helped accelerate that shift, in part because they have come to recognize the serious social problems that eventually result from decades of anti-girl discrimination. In countries like South Korea and China, which have long had some of the most skewed gender ratios at birth, governments have cracked down on technologies that enable sex-selective abortion. In India, where female infanticide and neglect have been particularly horrific, slogans like “the Daughter, Educate the Daughter” have helped change opinions. A changing preferenceThe shift is being seen not just in birth sex ratios, but in opinion polls — and in the actions of would-be parents.Between 1983 and 2003, The Economist reported, the proportion of South Korean women who said it was “necessary” to have a son fell from 48 percent to 6 percent, while nearly half of women now say they want daughters. In Japan, the shift has gone even further — as far back as 2002, 75 percent of couples who wanted only one child said they hoped for a daughter.In the US, which allows sex selection for couples doing in-vitro fertilization, there is growing evidence that would-be parents prefer girls, as do potential adoptive parents. While in the past, parents who had a girl first were more likely to keep trying to have children in an effort to have a boy, the opposite is now true — couples who have a girl first are less likely to keep trying. A more equal futureThere’s still more progress to be made. In northwest of India, for instance, birth ratios that overly skew toward boys are still the norm. In regions of sub-Saharan Africa, birth sex ratios may be relatively normal, but post-birth discrimination in the form of poorer nutrition and worse medical care still lingers. And course, women around the world are still subject to unacceptable levels of violence and discrimination from men.And some of the reasons for this shift may not be as high-minded as we’d like to think. Boys around the world are struggling in the modern era. They increasingly underperform in education, are more likely to be involved in violent crime, and in general, are failing to launch into adulthood. In the US, 20 percent of American men between 25 and 34 still live with their parents, compared to 15 percent of similarly aged women. It also seems to be the case that at least some of the increasing preference for girls is rooted in sexist stereotypes. Parents around the world may now prefer girls partly because they see them as more likely to take care of them in their old age — meaning a different kind of bias against women, that they are more natural caretakers, may be paradoxically driving the decline in prejudice against girls at birth.But make no mistake — the decline of boy preference is a clear mark of social progress, one measured in millions of girls’ lives saved. And maybe one Father’s Day, not too long from now, we’ll reach the point where daughters and sons are simply children: equally loved and equally welcomed.A version of this story originally appeared in the Good News newsletter. Sign up here!See More: #stunning #reversal #humanitys #oldest #bias
    The stunning reversal of humanity’s oldest bias
    www.vox.com
    Perhaps the oldest, most pernicious form of human bias is that of men toward women. It often started at the moment of birth. In ancient Athens, at a public ceremony called the amphidromia, fathers would inspect a newborn and decide whether it would be part of the family, or be cast away. One often socially acceptable reason for abandoning the baby: It was a girl. Female infanticide has been distressingly common in many societies — and its practice is not just ancient history. In 1990, the Nobel Prize-winning economist Amartya Sen looked at birth ratios in Asia, North Africa, and China and calculated that more than 100 million women were essentially “missing” — meaning that, based on the normal ratio of boys to girls at birth and the longevity of both genders, there was a huge missing number of girls who should have been born, but weren’t. Sen’s estimate came before the truly widespread adoption of ultrasound tests that could determine the sex of a fetus in utero — which actually made the problem worse, leading to a wave of sex-selective abortions. These were especially common in countries like India and China; the latter’s one-child policy and old biases made families desperate for their one child to be a boy. The Economist has estimated that since 1980 alone, there have been approximately 50 million fewer girls born worldwide than would naturally be expected, which almost certainly means that roughly that nearly all of those girls were aborted for no other reason than their sex. The preference for boys was a bias that killed in mass numbers.But in one of the most important social shifts of our time, that bias is changing. In a great cover story earlier this month, The Economist reported that the number of annual excess male births has fallen from a peak of 1.7 million in 2000 to around 200,000, which puts it back within the biologically standard birth ratio of 105 boys for every 100 girls. Countries that once had highly skewed sex ratios — like South Korea, which saw almost 116 boys born for every 100 girls in 1990 — now have normal or near-normal ratios. Altogether, The Economist estimated that the decline in sex preference at birth in the past 25 years has saved the equivalent of 7 million girls. That’s comparable to the number of lives saved by anti-smoking efforts in the US. So how, exactly, have we overcome a prejudice that seemed so embedded in human society?Success in school and the workplaceFor one, we have relaxed discrimination against girls and women in other ways — in school and in the workplace. With fewer limits, girls are outperforming boys in the classroom. In the most recent international PISA tests, considered the gold standard for evaluating student performance around the world, 15-year-old girls beat their male counterparts in reading in 79 out of 81 participating countries or economies, while the historic male advantage in math scores has fallen to single digits. Girls are also dominating in higher education, with 113 female students at that level for every 100 male students. While women continue to earn less than men, the gender pay gap has been shrinking, and in a number of urban areas in the US, young women have actually been outearning young men. Government policies have helped accelerate that shift, in part because they have come to recognize the serious social problems that eventually result from decades of anti-girl discrimination. In countries like South Korea and China, which have long had some of the most skewed gender ratios at birth, governments have cracked down on technologies that enable sex-selective abortion. In India, where female infanticide and neglect have been particularly horrific, slogans like “Save the Daughter, Educate the Daughter” have helped change opinions. A changing preferenceThe shift is being seen not just in birth sex ratios, but in opinion polls — and in the actions of would-be parents.Between 1983 and 2003, The Economist reported, the proportion of South Korean women who said it was “necessary” to have a son fell from 48 percent to 6 percent, while nearly half of women now say they want daughters. In Japan, the shift has gone even further — as far back as 2002, 75 percent of couples who wanted only one child said they hoped for a daughter.In the US, which allows sex selection for couples doing in-vitro fertilization, there is growing evidence that would-be parents prefer girls, as do potential adoptive parents. While in the past, parents who had a girl first were more likely to keep trying to have children in an effort to have a boy, the opposite is now true — couples who have a girl first are less likely to keep trying. A more equal futureThere’s still more progress to be made. In northwest of India, for instance, birth ratios that overly skew toward boys are still the norm. In regions of sub-Saharan Africa, birth sex ratios may be relatively normal, but post-birth discrimination in the form of poorer nutrition and worse medical care still lingers. And course, women around the world are still subject to unacceptable levels of violence and discrimination from men.And some of the reasons for this shift may not be as high-minded as we’d like to think. Boys around the world are struggling in the modern era. They increasingly underperform in education, are more likely to be involved in violent crime, and in general, are failing to launch into adulthood. In the US, 20 percent of American men between 25 and 34 still live with their parents, compared to 15 percent of similarly aged women. It also seems to be the case that at least some of the increasing preference for girls is rooted in sexist stereotypes. Parents around the world may now prefer girls partly because they see them as more likely to take care of them in their old age — meaning a different kind of bias against women, that they are more natural caretakers, may be paradoxically driving the decline in prejudice against girls at birth.But make no mistake — the decline of boy preference is a clear mark of social progress, one measured in millions of girls’ lives saved. And maybe one Father’s Day, not too long from now, we’ll reach the point where daughters and sons are simply children: equally loved and equally welcomed.A version of this story originally appeared in the Good News newsletter. Sign up here!See More:
    Like
    Love
    Wow
    Sad
    Angry
    525
    · 0 Комментарии ·0 Поделились ·0 предпросмотр
  • Over 8M patient records leaked in healthcare data breach

    Published
    June 15, 2025 10:00am EDT close IPhone users instructed to take immediate action to avoid data breach: 'Urgent threat' Kurt 'The CyberGuy' Knutsson discusses Elon Musk's possible priorities as he exits his role with the White House and explains the urgent warning for iPhone users to update devices after a 'massive security gap.' NEWYou can now listen to Fox News articles!
    In the past decade, healthcare data has become one of the most sought-after targets in cybercrime. From insurers to clinics, every player in the ecosystem handles some form of sensitive information. However, breaches do not always originate from hospitals or health apps. Increasingly, patient data is managed by third-party vendors offering digital services such as scheduling, billing and marketing. One such breach at a digital marketing agency serving dental practices recently exposed approximately 2.7 million patient profiles and more than 8.8 million appointment records.Sign up for my FREE CyberGuy ReportGet my best tech tips, urgent security alerts, and exclusive deals delivered straight to your inbox. Plus, you’ll get instant access to my Ultimate Scam Survival Guide — free when you join. Illustration of a hacker at work  Massive healthcare data leak exposes millions: What you need to knowCybernews researchers have discovered a misconfigured MongoDB database exposing 2.7 million patient profiles and 8.8 million appointment records. The database was publicly accessible online, unprotected by passwords or authentication protocols. Anyone with basic knowledge of database scanning tools could have accessed it.The exposed data included names, birthdates, addresses, emails, phone numbers, gender, chart IDs, language preferences and billing classifications. Appointment records also contained metadata such as timestamps and institutional identifiers.MASSIVE DATA BREACH EXPOSES 184 MILLION PASSWORDS AND LOGINSClues within the data structure point toward Gargle, a Utah-based company that builds websites and offers marketing tools for dental practices. While not a confirmed source, several internal references and system details suggest a strong connection. Gargle provides appointment scheduling, form submission and patient communication services. These functions require access to patient information, making the firm a likely link in the exposure.After the issue was reported, the database was secured. The duration of the exposure remains unknown, and there is no public evidence indicating whether the data was downloaded by malicious actors before being locked down.We reached out to Gargle for a comment but did not hear back before our deadline. A healthcare professional viewing heath data     How healthcare data breaches lead to identity theft and insurance fraudThe exposed data presents a broad risk profile. On its own, a phone number or billing record might seem limited in scope. Combined, however, the dataset forms a complete profile that could be exploited for identity theft, insurance fraud and targeted phishing campaigns.Medical identity theft allows attackers to impersonate patients and access services under a false identity. Victims often remain unaware until significant damage is done, ranging from incorrect medical records to unpaid bills in their names. The leak also opens the door to insurance fraud, with actors using institutional references and chart data to submit false claims.This type of breach raises questions about compliance with the Health Insurance Portability and Accountability Act, which mandates strong security protections for entities handling patient data. Although Gargle is not a healthcare provider, its access to patient-facing infrastructure could place it under the scope of that regulation as a business associate. A healthcare professional working on a laptop  5 ways you can stay safe from healthcare data breachesIf your information was part of the healthcare breach or any similar one, it’s worth taking a few steps to protect yourself.1. Consider identity theft protection services: Since the healthcare data breach exposed personal and financial information, it’s crucial to stay proactive against identity theft. Identity theft protection services offer continuous monitoring of your credit reports, Social Security number and even the dark web to detect if your information is being misused. These services send you real-time alerts about suspicious activity, such as new credit inquiries or attempts to open accounts in your name, helping you act quickly before serious damage occurs. Beyond monitoring, many identity theft protection companies provide dedicated recovery specialists who assist you in resolving fraud issues, disputing unauthorized charges and restoring your identity if it’s compromised. See my tips and best picks on how to protect yourself from identity theft.2. Use personal data removal services: The healthcare data breach leaks loads of information about you, and all this could end up in the public domain, which essentially gives anyone an opportunity to scam you.  One proactive step is to consider personal data removal services, which specialize in continuously monitoring and removing your information from various online databases and websites. While no service promises to remove all your data from the internet, having a removal service is great if you want to constantly monitor and automate the process of removing your information from hundreds of sites continuously over a longer period of time. Check out my top picks for data removal services here. GET FOX BUSINESS ON THE GO BY CLICKING HEREGet a free scan to find out if your personal information is already out on the web3. Have strong antivirus software: Hackers have people’s email addresses and full names, which makes it easy for them to send you a phishing link that installs malware and steals all your data. These messages are socially engineered to catch them, and catching them is nearly impossible if you’re not careful. However, you’re not without defenses.The best way to safeguard yourself from malicious links that install malware, potentially accessing your private information, is to have strong antivirus software installed on all your devices. This protection can also alert you to phishing emails and ransomware scams, keeping your personal information and digital assets safe. Get my picks for the best 2025 antivirus protection winners for your Windows, Mac, Android and iOS devices.4. Enable two-factor authentication: While passwords weren’t part of the data breach, you still need to enable two-factor authentication. It gives you an extra layer of security on all your important accounts, including email, banking and social media. 2FA requires you to provide a second piece of information, such as a code sent to your phone, in addition to your password when logging in. This makes it significantly harder for hackers to access your accounts, even if they have your password. Enabling 2FA can greatly reduce the risk of unauthorized access and protect your sensitive data.5. Be wary of mailbox communications: Bad actors may also try to scam you through snail mail. The data leak gives them access to your address. They may impersonate people or brands you know and use themes that require urgent attention, such as missed deliveries, account suspensions and security alerts. Kurt’s key takeawayIf nothing else, this latest leak shows just how poorly patient data is being handled today. More and more, non-medical vendors are getting access to sensitive information without facing the same rules or oversight as hospitals and clinics. These third-party services are now a regular part of how patients book appointments, pay bills or fill out forms. But when something goes wrong, the fallout is just as serious. Even though the database was taken offline, the bigger problem hasn't gone away. Your data is only as safe as the least careful company that gets access to it.CLICK HERE TO GET THE FOX NEWS APPDo you think healthcare companies are investing enough in their cybersecurity infrastructure? Let us know by writing us at Cyberguy.com/ContactFor more of my tech tips and security alerts, subscribe to my free CyberGuy Report Newsletter by heading to Cyberguy.com/NewsletterAsk Kurt a question or let us know what stories you'd like us to coverFollow Kurt on his social channelsAnswers to the most asked CyberGuy questions:New from Kurt:Copyright 2025 CyberGuy.com.  All rights reserved.   Kurt "CyberGuy" Knutsson is an award-winning tech journalist who has a deep love of technology, gear and gadgets that make life better with his contributions for Fox News &amp; FOX Business beginning mornings on "FOX &amp; Friends." Got a tech question? Get Kurt’s free CyberGuy Newsletter, share your voice, a story idea or comment at CyberGuy.com.
    #over #patient #records #leaked #healthcare
    Over 8M patient records leaked in healthcare data breach
    Published June 15, 2025 10:00am EDT close IPhone users instructed to take immediate action to avoid data breach: 'Urgent threat' Kurt 'The CyberGuy' Knutsson discusses Elon Musk's possible priorities as he exits his role with the White House and explains the urgent warning for iPhone users to update devices after a 'massive security gap.' NEWYou can now listen to Fox News articles! In the past decade, healthcare data has become one of the most sought-after targets in cybercrime. From insurers to clinics, every player in the ecosystem handles some form of sensitive information. However, breaches do not always originate from hospitals or health apps. Increasingly, patient data is managed by third-party vendors offering digital services such as scheduling, billing and marketing. One such breach at a digital marketing agency serving dental practices recently exposed approximately 2.7 million patient profiles and more than 8.8 million appointment records.Sign up for my FREE CyberGuy ReportGet my best tech tips, urgent security alerts, and exclusive deals delivered straight to your inbox. Plus, you’ll get instant access to my Ultimate Scam Survival Guide — free when you join. Illustration of a hacker at work  Massive healthcare data leak exposes millions: What you need to knowCybernews researchers have discovered a misconfigured MongoDB database exposing 2.7 million patient profiles and 8.8 million appointment records. The database was publicly accessible online, unprotected by passwords or authentication protocols. Anyone with basic knowledge of database scanning tools could have accessed it.The exposed data included names, birthdates, addresses, emails, phone numbers, gender, chart IDs, language preferences and billing classifications. Appointment records also contained metadata such as timestamps and institutional identifiers.MASSIVE DATA BREACH EXPOSES 184 MILLION PASSWORDS AND LOGINSClues within the data structure point toward Gargle, a Utah-based company that builds websites and offers marketing tools for dental practices. While not a confirmed source, several internal references and system details suggest a strong connection. Gargle provides appointment scheduling, form submission and patient communication services. These functions require access to patient information, making the firm a likely link in the exposure.After the issue was reported, the database was secured. The duration of the exposure remains unknown, and there is no public evidence indicating whether the data was downloaded by malicious actors before being locked down.We reached out to Gargle for a comment but did not hear back before our deadline. A healthcare professional viewing heath data     How healthcare data breaches lead to identity theft and insurance fraudThe exposed data presents a broad risk profile. On its own, a phone number or billing record might seem limited in scope. Combined, however, the dataset forms a complete profile that could be exploited for identity theft, insurance fraud and targeted phishing campaigns.Medical identity theft allows attackers to impersonate patients and access services under a false identity. Victims often remain unaware until significant damage is done, ranging from incorrect medical records to unpaid bills in their names. The leak also opens the door to insurance fraud, with actors using institutional references and chart data to submit false claims.This type of breach raises questions about compliance with the Health Insurance Portability and Accountability Act, which mandates strong security protections for entities handling patient data. Although Gargle is not a healthcare provider, its access to patient-facing infrastructure could place it under the scope of that regulation as a business associate. A healthcare professional working on a laptop  5 ways you can stay safe from healthcare data breachesIf your information was part of the healthcare breach or any similar one, it’s worth taking a few steps to protect yourself.1. Consider identity theft protection services: Since the healthcare data breach exposed personal and financial information, it’s crucial to stay proactive against identity theft. Identity theft protection services offer continuous monitoring of your credit reports, Social Security number and even the dark web to detect if your information is being misused. These services send you real-time alerts about suspicious activity, such as new credit inquiries or attempts to open accounts in your name, helping you act quickly before serious damage occurs. Beyond monitoring, many identity theft protection companies provide dedicated recovery specialists who assist you in resolving fraud issues, disputing unauthorized charges and restoring your identity if it’s compromised. See my tips and best picks on how to protect yourself from identity theft.2. Use personal data removal services: The healthcare data breach leaks loads of information about you, and all this could end up in the public domain, which essentially gives anyone an opportunity to scam you.  One proactive step is to consider personal data removal services, which specialize in continuously monitoring and removing your information from various online databases and websites. While no service promises to remove all your data from the internet, having a removal service is great if you want to constantly monitor and automate the process of removing your information from hundreds of sites continuously over a longer period of time. Check out my top picks for data removal services here. GET FOX BUSINESS ON THE GO BY CLICKING HEREGet a free scan to find out if your personal information is already out on the web3. Have strong antivirus software: Hackers have people’s email addresses and full names, which makes it easy for them to send you a phishing link that installs malware and steals all your data. These messages are socially engineered to catch them, and catching them is nearly impossible if you’re not careful. However, you’re not without defenses.The best way to safeguard yourself from malicious links that install malware, potentially accessing your private information, is to have strong antivirus software installed on all your devices. This protection can also alert you to phishing emails and ransomware scams, keeping your personal information and digital assets safe. Get my picks for the best 2025 antivirus protection winners for your Windows, Mac, Android and iOS devices.4. Enable two-factor authentication: While passwords weren’t part of the data breach, you still need to enable two-factor authentication. It gives you an extra layer of security on all your important accounts, including email, banking and social media. 2FA requires you to provide a second piece of information, such as a code sent to your phone, in addition to your password when logging in. This makes it significantly harder for hackers to access your accounts, even if they have your password. Enabling 2FA can greatly reduce the risk of unauthorized access and protect your sensitive data.5. Be wary of mailbox communications: Bad actors may also try to scam you through snail mail. The data leak gives them access to your address. They may impersonate people or brands you know and use themes that require urgent attention, such as missed deliveries, account suspensions and security alerts. Kurt’s key takeawayIf nothing else, this latest leak shows just how poorly patient data is being handled today. More and more, non-medical vendors are getting access to sensitive information without facing the same rules or oversight as hospitals and clinics. These third-party services are now a regular part of how patients book appointments, pay bills or fill out forms. But when something goes wrong, the fallout is just as serious. Even though the database was taken offline, the bigger problem hasn't gone away. Your data is only as safe as the least careful company that gets access to it.CLICK HERE TO GET THE FOX NEWS APPDo you think healthcare companies are investing enough in their cybersecurity infrastructure? Let us know by writing us at Cyberguy.com/ContactFor more of my tech tips and security alerts, subscribe to my free CyberGuy Report Newsletter by heading to Cyberguy.com/NewsletterAsk Kurt a question or let us know what stories you'd like us to coverFollow Kurt on his social channelsAnswers to the most asked CyberGuy questions:New from Kurt:Copyright 2025 CyberGuy.com.  All rights reserved.   Kurt "CyberGuy" Knutsson is an award-winning tech journalist who has a deep love of technology, gear and gadgets that make life better with his contributions for Fox News &amp; FOX Business beginning mornings on "FOX &amp; Friends." Got a tech question? Get Kurt’s free CyberGuy Newsletter, share your voice, a story idea or comment at CyberGuy.com. #over #patient #records #leaked #healthcare
    Over 8M patient records leaked in healthcare data breach
    www.foxnews.com
    Published June 15, 2025 10:00am EDT close IPhone users instructed to take immediate action to avoid data breach: 'Urgent threat' Kurt 'The CyberGuy' Knutsson discusses Elon Musk's possible priorities as he exits his role with the White House and explains the urgent warning for iPhone users to update devices after a 'massive security gap.' NEWYou can now listen to Fox News articles! In the past decade, healthcare data has become one of the most sought-after targets in cybercrime. From insurers to clinics, every player in the ecosystem handles some form of sensitive information. However, breaches do not always originate from hospitals or health apps. Increasingly, patient data is managed by third-party vendors offering digital services such as scheduling, billing and marketing. One such breach at a digital marketing agency serving dental practices recently exposed approximately 2.7 million patient profiles and more than 8.8 million appointment records.Sign up for my FREE CyberGuy ReportGet my best tech tips, urgent security alerts, and exclusive deals delivered straight to your inbox. Plus, you’ll get instant access to my Ultimate Scam Survival Guide — free when you join. Illustration of a hacker at work   (Kurt "CyberGuy" Knutsson)Massive healthcare data leak exposes millions: What you need to knowCybernews researchers have discovered a misconfigured MongoDB database exposing 2.7 million patient profiles and 8.8 million appointment records. The database was publicly accessible online, unprotected by passwords or authentication protocols. Anyone with basic knowledge of database scanning tools could have accessed it.The exposed data included names, birthdates, addresses, emails, phone numbers, gender, chart IDs, language preferences and billing classifications. Appointment records also contained metadata such as timestamps and institutional identifiers.MASSIVE DATA BREACH EXPOSES 184 MILLION PASSWORDS AND LOGINSClues within the data structure point toward Gargle, a Utah-based company that builds websites and offers marketing tools for dental practices. While not a confirmed source, several internal references and system details suggest a strong connection. Gargle provides appointment scheduling, form submission and patient communication services. These functions require access to patient information, making the firm a likely link in the exposure.After the issue was reported, the database was secured. The duration of the exposure remains unknown, and there is no public evidence indicating whether the data was downloaded by malicious actors before being locked down.We reached out to Gargle for a comment but did not hear back before our deadline. A healthcare professional viewing heath data      (Kurt "CyberGuy" Knutsson)How healthcare data breaches lead to identity theft and insurance fraudThe exposed data presents a broad risk profile. On its own, a phone number or billing record might seem limited in scope. Combined, however, the dataset forms a complete profile that could be exploited for identity theft, insurance fraud and targeted phishing campaigns.Medical identity theft allows attackers to impersonate patients and access services under a false identity. Victims often remain unaware until significant damage is done, ranging from incorrect medical records to unpaid bills in their names. The leak also opens the door to insurance fraud, with actors using institutional references and chart data to submit false claims.This type of breach raises questions about compliance with the Health Insurance Portability and Accountability Act, which mandates strong security protections for entities handling patient data. Although Gargle is not a healthcare provider, its access to patient-facing infrastructure could place it under the scope of that regulation as a business associate. A healthcare professional working on a laptop   (Kurt "CyberGuy" Knutsson)5 ways you can stay safe from healthcare data breachesIf your information was part of the healthcare breach or any similar one, it’s worth taking a few steps to protect yourself.1. Consider identity theft protection services: Since the healthcare data breach exposed personal and financial information, it’s crucial to stay proactive against identity theft. Identity theft protection services offer continuous monitoring of your credit reports, Social Security number and even the dark web to detect if your information is being misused. These services send you real-time alerts about suspicious activity, such as new credit inquiries or attempts to open accounts in your name, helping you act quickly before serious damage occurs. Beyond monitoring, many identity theft protection companies provide dedicated recovery specialists who assist you in resolving fraud issues, disputing unauthorized charges and restoring your identity if it’s compromised. See my tips and best picks on how to protect yourself from identity theft.2. Use personal data removal services: The healthcare data breach leaks loads of information about you, and all this could end up in the public domain, which essentially gives anyone an opportunity to scam you.  One proactive step is to consider personal data removal services, which specialize in continuously monitoring and removing your information from various online databases and websites. While no service promises to remove all your data from the internet, having a removal service is great if you want to constantly monitor and automate the process of removing your information from hundreds of sites continuously over a longer period of time. Check out my top picks for data removal services here. GET FOX BUSINESS ON THE GO BY CLICKING HEREGet a free scan to find out if your personal information is already out on the web3. Have strong antivirus software: Hackers have people’s email addresses and full names, which makes it easy for them to send you a phishing link that installs malware and steals all your data. These messages are socially engineered to catch them, and catching them is nearly impossible if you’re not careful. However, you’re not without defenses.The best way to safeguard yourself from malicious links that install malware, potentially accessing your private information, is to have strong antivirus software installed on all your devices. This protection can also alert you to phishing emails and ransomware scams, keeping your personal information and digital assets safe. Get my picks for the best 2025 antivirus protection winners for your Windows, Mac, Android and iOS devices.4. Enable two-factor authentication: While passwords weren’t part of the data breach, you still need to enable two-factor authentication (2FA). It gives you an extra layer of security on all your important accounts, including email, banking and social media. 2FA requires you to provide a second piece of information, such as a code sent to your phone, in addition to your password when logging in. This makes it significantly harder for hackers to access your accounts, even if they have your password. Enabling 2FA can greatly reduce the risk of unauthorized access and protect your sensitive data.5. Be wary of mailbox communications: Bad actors may also try to scam you through snail mail. The data leak gives them access to your address. They may impersonate people or brands you know and use themes that require urgent attention, such as missed deliveries, account suspensions and security alerts. Kurt’s key takeawayIf nothing else, this latest leak shows just how poorly patient data is being handled today. More and more, non-medical vendors are getting access to sensitive information without facing the same rules or oversight as hospitals and clinics. These third-party services are now a regular part of how patients book appointments, pay bills or fill out forms. But when something goes wrong, the fallout is just as serious. Even though the database was taken offline, the bigger problem hasn't gone away. Your data is only as safe as the least careful company that gets access to it.CLICK HERE TO GET THE FOX NEWS APPDo you think healthcare companies are investing enough in their cybersecurity infrastructure? Let us know by writing us at Cyberguy.com/ContactFor more of my tech tips and security alerts, subscribe to my free CyberGuy Report Newsletter by heading to Cyberguy.com/NewsletterAsk Kurt a question or let us know what stories you'd like us to coverFollow Kurt on his social channelsAnswers to the most asked CyberGuy questions:New from Kurt:Copyright 2025 CyberGuy.com.  All rights reserved.   Kurt "CyberGuy" Knutsson is an award-winning tech journalist who has a deep love of technology, gear and gadgets that make life better with his contributions for Fox News &amp; FOX Business beginning mornings on "FOX &amp; Friends." Got a tech question? Get Kurt’s free CyberGuy Newsletter, share your voice, a story idea or comment at CyberGuy.com.
    Like
    Love
    Wow
    Sad
    Angry
    507
    · 0 Комментарии ·0 Поделились ·0 предпросмотр
Расширенные страницы
CGShares https://cgshares.com