• How To Find And Use Minecraft Slimeballs, Defeat Slimes, And Farm Slime Blocks

    The Slime is one of the Minecraft mobs that initially appears hostile, but upon killing it you will find useful items for many sought-after crafting recipes in the survival game. We've got all you need to know on how to find and kill Slimes in Minecraft, as well as the items they drop, Slimeball crafting recipes, and more.Table of ContentsHow to find Slimes in MinecraftHow to find Slimes in MinecraftSlimes spawn in the overworld only, in specific slime chunks. These are all below layer 40, and you can show your Minecraft coordinates to see how close you are. Unlike most mobs, it doesn't matter what light level the environment is at for them to spawn. They can also spawn in swamp biomes between layers 51 and 69 if the light level is seven or less. Slimes spawn regardless of weather conditions. In swamps and mangrove swamps, slimes spawn most often on a full moon, but never on a new moon. Slimes will never spawn in mushroom fields or deep dark biomes.The Slime is a green cube in Minecraft, and is a hostile mob.Slimes do not spawn within 24 blocks of any player, and they despawn over time if no player is within 32 blocks. They despawn instantly if no player is within 128 blocks in Java edition, or 44 to 128 blocks in Bedrock depending on the simulation distance setting.Continue Reading at GameSpot
    #how #find #use #minecraft #slimeballs
    How To Find And Use Minecraft Slimeballs, Defeat Slimes, And Farm Slime Blocks
    The Slime is one of the Minecraft mobs that initially appears hostile, but upon killing it you will find useful items for many sought-after crafting recipes in the survival game. We've got all you need to know on how to find and kill Slimes in Minecraft, as well as the items they drop, Slimeball crafting recipes, and more.Table of ContentsHow to find Slimes in MinecraftHow to find Slimes in MinecraftSlimes spawn in the overworld only, in specific slime chunks. These are all below layer 40, and you can show your Minecraft coordinates to see how close you are. Unlike most mobs, it doesn't matter what light level the environment is at for them to spawn. They can also spawn in swamp biomes between layers 51 and 69 if the light level is seven or less. Slimes spawn regardless of weather conditions. In swamps and mangrove swamps, slimes spawn most often on a full moon, but never on a new moon. Slimes will never spawn in mushroom fields or deep dark biomes.The Slime is a green cube in Minecraft, and is a hostile mob.Slimes do not spawn within 24 blocks of any player, and they despawn over time if no player is within 32 blocks. They despawn instantly if no player is within 128 blocks in Java edition, or 44 to 128 blocks in Bedrock depending on the simulation distance setting.Continue Reading at GameSpot #how #find #use #minecraft #slimeballs
    WWW.GAMESPOT.COM
    How To Find And Use Minecraft Slimeballs, Defeat Slimes, And Farm Slime Blocks
    The Slime is one of the Minecraft mobs that initially appears hostile, but upon killing it you will find useful items for many sought-after crafting recipes in the survival game. We've got all you need to know on how to find and kill Slimes in Minecraft, as well as the items they drop, Slimeball crafting recipes, and more.Table of Contents [hide]How to find Slimes in MinecraftHow to find Slimes in MinecraftSlimes spawn in the overworld only, in specific slime chunks. These are all below layer 40, and you can show your Minecraft coordinates to see how close you are. Unlike most mobs, it doesn't matter what light level the environment is at for them to spawn. They can also spawn in swamp biomes between layers 51 and 69 if the light level is seven or less. Slimes spawn regardless of weather conditions. In swamps and mangrove swamps, slimes spawn most often on a full moon, but never on a new moon. Slimes will never spawn in mushroom fields or deep dark biomes.The Slime is a green cube in Minecraft, and is a hostile mob.Slimes do not spawn within 24 blocks of any player, and they despawn over time if no player is within 32 blocks. They despawn instantly if no player is within 128 blocks in Java edition, or 44 to 128 blocks in Bedrock depending on the simulation distance setting.Continue Reading at GameSpot
    0 Σχόλια 0 Μοιράστηκε
  • So, there's this thing where someone made a Minecraft clone using just HTML and CSS. No JavaScript at all. Seems a bit limited, but hey, it's possible. You can check it out if you want, but honestly, it doesn't seem like it offers much. Just another example of what you can do with web tech, I guess. Not super exciting, but it's there.

    #MinecraftClone
    #HTML
    #CSS
    #WebDevelopment
    So, there's this thing where someone made a Minecraft clone using just HTML and CSS. No JavaScript at all. Seems a bit limited, but hey, it's possible. You can check it out if you want, but honestly, it doesn't seem like it offers much. Just another example of what you can do with web tech, I guess. Not super exciting, but it's there. #MinecraftClone #HTML #CSS #WebDevelopment
    HACKADAY.COM
    Minecraft Clone Manages With Nothing But HTML + CSS
    Can a 3D Minecraft implementation be done entirely in CSS and HTML, without a single line of JavaScript in sight? The answer is yes! True, this small clone is limited …read more
    1 Σχόλια 0 Μοιράστηκε
  • liens, JavaScript, CSS, SEO, ergonomie, développement web, optimisation, interface utilisateur

    ## Introduction

    Dans un monde où chaque pixel compte, où chaque détail peut faire la différence entre une expérience utilisateur réussie et une déception amère, la question de l'optimisation des liens en JavaScript et en CSS prend un sens profond. C'est une danse entre la beauté et la fonctionnalité, une quête sans fin pour atteindre l'harmonie parfaite. Mais que se passe-t-il lorsque l'on réalise qu...
    liens, JavaScript, CSS, SEO, ergonomie, développement web, optimisation, interface utilisateur ## Introduction Dans un monde où chaque pixel compte, où chaque détail peut faire la différence entre une expérience utilisateur réussie et une déception amère, la question de l'optimisation des liens en JavaScript et en CSS prend un sens profond. C'est une danse entre la beauté et la fonctionnalité, une quête sans fin pour atteindre l'harmonie parfaite. Mais que se passe-t-il lorsque l'on réalise qu...
    Étendre les liens en JavaScript (ou en CSS) : Une danse avec l'ombre
    liens, JavaScript, CSS, SEO, ergonomie, développement web, optimisation, interface utilisateur ## Introduction Dans un monde où chaque pixel compte, où chaque détail peut faire la différence entre une expérience utilisateur réussie et une déception amère, la question de l'optimisation des liens en JavaScript et en CSS prend un sens profond. C'est une danse entre la beauté et la...
    Like
    Love
    Wow
    Sad
    Angry
    615
    1 Σχόλια 0 Μοιράστηκε
  • So, there’s this thing about how Discord was ported to Windows 95 and NT 3.1. Honestly, it’s kind of interesting, but also a bit dull. Like, who even thinks about running Discord on those old systems? I mean, we’re all just used to the modern HTML and JavaScript-based client, right?

    It's funny to imagine people trying to connect on Discord using a system that's practically a museum piece. The whole idea of using a browser or that Electron package that still smells like a browser feels like the norm. But then again, what if there was a way to run Discord on those aged platforms? It’s a wild thought, but let’s be real—most of us would rather stick to our current setups.

    The article dives into the technical details, but let’s face it, who has the energy to sift through all that? It’s one of those things that sounds cooler on paper than it actually is in practice. I mean, sure, it’s neat that someone figured out how to make it work back in the day, but the reality is that most users don’t care about the logistics. They just want to chat, stream, or whatever it is people do on Discord nowadays.

    And it’s not like anyone is lining up to use Discord on Windows 95 or NT 3.1. I can’t even imagine the lag. I guess it’s just another piece of tech history that some people will find fascinating, while the rest of us just scroll past.

    So, yeah, that’s pretty much it. Discord on ancient systems is a thing. It happened. People did it. But let’s not pretend that it’s something we’re all eager to dive into. Honestly, I’d rather just scroll through memes or something.

    #Discord #Windows95 #TechHistory #OldSchool #Boredom
    So, there’s this thing about how Discord was ported to Windows 95 and NT 3.1. Honestly, it’s kind of interesting, but also a bit dull. Like, who even thinks about running Discord on those old systems? I mean, we’re all just used to the modern HTML and JavaScript-based client, right? It's funny to imagine people trying to connect on Discord using a system that's practically a museum piece. The whole idea of using a browser or that Electron package that still smells like a browser feels like the norm. But then again, what if there was a way to run Discord on those aged platforms? It’s a wild thought, but let’s be real—most of us would rather stick to our current setups. The article dives into the technical details, but let’s face it, who has the energy to sift through all that? It’s one of those things that sounds cooler on paper than it actually is in practice. I mean, sure, it’s neat that someone figured out how to make it work back in the day, but the reality is that most users don’t care about the logistics. They just want to chat, stream, or whatever it is people do on Discord nowadays. And it’s not like anyone is lining up to use Discord on Windows 95 or NT 3.1. I can’t even imagine the lag. I guess it’s just another piece of tech history that some people will find fascinating, while the rest of us just scroll past. So, yeah, that’s pretty much it. Discord on ancient systems is a thing. It happened. People did it. But let’s not pretend that it’s something we’re all eager to dive into. Honestly, I’d rather just scroll through memes or something. #Discord #Windows95 #TechHistory #OldSchool #Boredom
    How Discord Was Ported to Windows 95 and NT 3.1
    On the desktop, most people use the official HTML and JavaScript-based client for Discord in either a browser or a still-smells-like-a-browser Electron package. Yet what if there was a way …read more
    Like
    Love
    Wow
    Sad
    Angry
    602
    1 Σχόλια 0 Μοιράστηκε
  • Time Complexity of Sorting Algorithms in Python, Java, and C++

    Posted on : June 13, 2025

    By

    Tech World Times

    Development and Testing 

    Rate this post

    Sorting helps organize data in a specific order. It is used in search, reports, and efficient storage. Different sorting algorithms offer different performance. In this article, we will explain the Time Complexity of Sorting Algorithms in simple words. We will cover Python, Java, and C++ examples.
    1. What Is Time Complexity?
    Time complexity tells how fast an algorithm runs. It measures the number of steps as input grows. It is written in Big-O notation. For example, Omeans steps grow with the square of inputs.
    2. Types of Time Complexity
    Here are common types:

    O: Constant time
    O: Linear time
    O: Log-linear time
    O: Quadratic time

    We will now apply these to sorting.
    3. Bubble Sort
    Bubble Sort compares two numbers and swaps them if needed. It repeats until the list is sorted.
    Time Complexity:

    Best Case: OAverage Case: OWorst Case: OPython Example:
    pythonCopyEditdef bubble_sort:
    n = lenfor i in range:
    for j in range:
    if arr> arr:
    arr, arr= arr, arrJava Example:
    javaCopyEditvoid bubbleSort{
    int n = arr.length;
    forforif{
    int temp = arr;
    arr= arr;
    arr= temp;
    }
    }

    C++ Example:
    cppCopyEditvoid bubbleSort{
    forforifswap;
    }

    4. Selection Sort
    This sort picks the smallest number and places it at the front.
    Time Complexity:

    Best Case: OAverage Case: OWorst Case: OPython Example:
    pythonCopyEditdef selection_sort:
    for i in range):
    min_idx = i
    for j in range):
    if arr< arr:
    min_idx = j
    arr, arr= arr, arr5. Insertion Sort
    This algorithm builds the final list one item at a time.
    Time Complexity:

    Best Case: OAverage Case: OWorst Case: OJava Example:
    javaCopyEditvoid insertionSort{
    for{
    int key = arr;
    int j = i - 1;
    while{
    arr= arr;
    j = j - 1;
    }
    arr= key;
    }
    }

    6. Merge Sort
    Merge Sort splits the array into halves and merges them back in order.
    Time Complexity of Sorting Algorithms like Merge Sort is usually better.

    Best Case: OAverage Case: OWorst Case: OPython Example:
    pythonCopyEditdef merge_sort:
    if len> 1:
    mid = len// 2
    left = arrright = arrmerge_sortmerge_sorti = j = k = 0
    while i < lenand j < len:
    if left< right:
    arr= lefti += 1
    else:
    arr= rightj += 1
    k += 1

    arr= left+ right7. Quick Sort
    Quick Sort picks a pivot and places smaller numbers before it.
    Time Complexity:

    Best Case: OAverage Case: OWorst Case: OC++ Example:
    cppCopyEditint partition{
    int pivot = arr;
    int i = low - 1;
    for{
    if{
    i++;
    swap;
    }
    }
    swap;
    return i + 1;
    }

    void quickSort{
    if{
    int pi = partition;
    quickSort;
    quickSort;
    }
    }

    8. Built-in Sort Methods
    Languages have built-in sort functions. These are well-optimized.

    Python: sortedor list.sortuses TimSort

    Time Complexity: OJava: Arrays.sortuses Dual-Pivot QuickSort

    Time Complexity: OC++: std::sortuses IntroSort

    Time Complexity: OThese are better for most real-world tasks.
    9. Time Complexity Comparison Table
    AlgorithmBestAverageWorstStableBubble SortOOOYesSelection SortOOONoInsertion SortOOOYesMerge SortOOOYesQuick SortOOONoTimSortOOOYesIntroSortOOONo
    10. How to Choose the Right Algorithm?

    Use Merge Sort for large stable data.
    Use Quick Sort for faster average speed.
    Use Insertion Sort for small or nearly sorted lists.
    Use built-in sort functions unless you need control.

    Conclusion
    The Time Complexity of Sorting Algorithms helps us pick the right tool. Bubble, Selection, and Insertion Sort are simple but slow. Merge and Quick Sort are faster and used often. Built-in functions are highly optimized. Python, Java, and C++ each have their strengths.
    Understand your problem and input size. Then pick the sorting method. This ensures better speed and performance in your code.
    Tech World TimesTech World Times, a global collective focusing on the latest tech news and trends in blockchain, Fintech, Development & Testing, AI and Startups. If you are looking for the guest post then contact at techworldtimes@gmail.com
    #time #complexity #sorting #algorithms #python
    Time Complexity of Sorting Algorithms in Python, Java, and C++
    Posted on : June 13, 2025 By Tech World Times Development and Testing  Rate this post Sorting helps organize data in a specific order. It is used in search, reports, and efficient storage. Different sorting algorithms offer different performance. In this article, we will explain the Time Complexity of Sorting Algorithms in simple words. We will cover Python, Java, and C++ examples. 1. What Is Time Complexity? Time complexity tells how fast an algorithm runs. It measures the number of steps as input grows. It is written in Big-O notation. For example, Omeans steps grow with the square of inputs. 2. Types of Time Complexity Here are common types: O: Constant time O: Linear time O: Log-linear time O: Quadratic time We will now apply these to sorting. 3. Bubble Sort Bubble Sort compares two numbers and swaps them if needed. It repeats until the list is sorted. Time Complexity: Best Case: OAverage Case: OWorst Case: OPython Example: pythonCopyEditdef bubble_sort: n = lenfor i in range: for j in range: if arr> arr: arr, arr= arr, arrJava Example: javaCopyEditvoid bubbleSort{ int n = arr.length; forforif{ int temp = arr; arr= arr; arr= temp; } } C++ Example: cppCopyEditvoid bubbleSort{ forforifswap; } 4. Selection Sort This sort picks the smallest number and places it at the front. Time Complexity: Best Case: OAverage Case: OWorst Case: OPython Example: pythonCopyEditdef selection_sort: for i in range): min_idx = i for j in range): if arr< arr: min_idx = j arr, arr= arr, arr5. Insertion Sort This algorithm builds the final list one item at a time. Time Complexity: Best Case: OAverage Case: OWorst Case: OJava Example: javaCopyEditvoid insertionSort{ for{ int key = arr; int j = i - 1; while{ arr= arr; j = j - 1; } arr= key; } } 6. Merge Sort Merge Sort splits the array into halves and merges them back in order. Time Complexity of Sorting Algorithms like Merge Sort is usually better. Best Case: OAverage Case: OWorst Case: OPython Example: pythonCopyEditdef merge_sort: if len> 1: mid = len// 2 left = arrright = arrmerge_sortmerge_sorti = j = k = 0 while i < lenand j < len: if left< right: arr= lefti += 1 else: arr= rightj += 1 k += 1 arr= left+ right7. Quick Sort Quick Sort picks a pivot and places smaller numbers before it. Time Complexity: Best Case: OAverage Case: OWorst Case: OC++ Example: cppCopyEditint partition{ int pivot = arr; int i = low - 1; for{ if{ i++; swap; } } swap; return i + 1; } void quickSort{ if{ int pi = partition; quickSort; quickSort; } } 8. Built-in Sort Methods Languages have built-in sort functions. These are well-optimized. Python: sortedor list.sortuses TimSort Time Complexity: OJava: Arrays.sortuses Dual-Pivot QuickSort Time Complexity: OC++: std::sortuses IntroSort Time Complexity: OThese are better for most real-world tasks. 9. Time Complexity Comparison Table AlgorithmBestAverageWorstStableBubble SortOOOYesSelection SortOOONoInsertion SortOOOYesMerge SortOOOYesQuick SortOOONoTimSortOOOYesIntroSortOOONo 10. How to Choose the Right Algorithm? Use Merge Sort for large stable data. Use Quick Sort for faster average speed. Use Insertion Sort for small or nearly sorted lists. Use built-in sort functions unless you need control. Conclusion The Time Complexity of Sorting Algorithms helps us pick the right tool. Bubble, Selection, and Insertion Sort are simple but slow. Merge and Quick Sort are faster and used often. Built-in functions are highly optimized. Python, Java, and C++ each have their strengths. Understand your problem and input size. Then pick the sorting method. This ensures better speed and performance in your code. Tech World TimesTech World Times, a global collective focusing on the latest tech news and trends in blockchain, Fintech, Development & Testing, AI and Startups. If you are looking for the guest post then contact at techworldtimes@gmail.com #time #complexity #sorting #algorithms #python
    TECHWORLDTIMES.COM
    Time Complexity of Sorting Algorithms in Python, Java, and C++
    Posted on : June 13, 2025 By Tech World Times Development and Testing  Rate this post Sorting helps organize data in a specific order. It is used in search, reports, and efficient storage. Different sorting algorithms offer different performance. In this article, we will explain the Time Complexity of Sorting Algorithms in simple words. We will cover Python, Java, and C++ examples. 1. What Is Time Complexity? Time complexity tells how fast an algorithm runs. It measures the number of steps as input grows. It is written in Big-O notation. For example, O(n²) means steps grow with the square of inputs. 2. Types of Time Complexity Here are common types: O(1): Constant time O(n): Linear time O(n log n): Log-linear time O(n²): Quadratic time We will now apply these to sorting. 3. Bubble Sort Bubble Sort compares two numbers and swaps them if needed. It repeats until the list is sorted. Time Complexity: Best Case: O(n) (if already sorted) Average Case: O(n²) Worst Case: O(n²) Python Example: pythonCopyEditdef bubble_sort(arr): n = len(arr) for i in range(n): for j in range(n - i - 1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] Java Example: javaCopyEditvoid bubbleSort(int arr[]) { int n = arr.length; for (int i = 0; i < n-1; i++) for (int j = 0; j < n-i-1; j++) if (arr[j] > arr[j+1]) { int temp = arr[j]; arr[j] = arr[j+1]; arr[j+1] = temp; } } C++ Example: cppCopyEditvoid bubbleSort(int arr[], int n) { for (int i = 0; i < n-1; i++) for (int j = 0; j < n-i-1; j++) if (arr[j] > arr[j+1]) swap(arr[j], arr[j+1]); } 4. Selection Sort This sort picks the smallest number and places it at the front. Time Complexity: Best Case: O(n²) Average Case: O(n²) Worst Case: O(n²) Python Example: pythonCopyEditdef selection_sort(arr): for i in range(len(arr)): min_idx = i for j in range(i+1, len(arr)): if arr[j] < arr[min_idx]: min_idx = j arr[i], arr[min_idx] = arr[min_idx], arr[i] 5. Insertion Sort This algorithm builds the final list one item at a time. Time Complexity: Best Case: O(n) Average Case: O(n²) Worst Case: O(n²) Java Example: javaCopyEditvoid insertionSort(int arr[]) { for (int i = 1; i < arr.length; i++) { int key = arr[i]; int j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } 6. Merge Sort Merge Sort splits the array into halves and merges them back in order. Time Complexity of Sorting Algorithms like Merge Sort is usually better. Best Case: O(n log n) Average Case: O(n log n) Worst Case: O(n log n) Python Example: pythonCopyEditdef merge_sort(arr): if len(arr) > 1: mid = len(arr) // 2 left = arr[:mid] right = arr[mid:] merge_sort(left) merge_sort(right) i = j = k = 0 while i < len(left) and j < len(right): if left[i] < right[j]: arr[k] = left[i] i += 1 else: arr[k] = right[j] j += 1 k += 1 arr[k:] = left[i:] + right[j:] 7. Quick Sort Quick Sort picks a pivot and places smaller numbers before it. Time Complexity: Best Case: O(n log n) Average Case: O(n log n) Worst Case: O(n²) C++ Example: cppCopyEditint partition(int arr[], int low, int high) { int pivot = arr[high]; int i = low - 1; for (int j = low; j < high; j++) { if (arr[j] < pivot) { i++; swap(arr[i], arr[j]); } } swap(arr[i+1], arr[high]); return i + 1; } void quickSort(int arr[], int low, int high) { if (low < high) { int pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } 8. Built-in Sort Methods Languages have built-in sort functions. These are well-optimized. Python: sorted() or list.sort() uses TimSort Time Complexity: O(n log n) Java: Arrays.sort() uses Dual-Pivot QuickSort Time Complexity: O(n log n) C++: std::sort() uses IntroSort Time Complexity: O(n log n) These are better for most real-world tasks. 9. Time Complexity Comparison Table AlgorithmBestAverageWorstStableBubble SortO(n)O(n²)O(n²)YesSelection SortO(n²)O(n²)O(n²)NoInsertion SortO(n)O(n²)O(n²)YesMerge SortO(n log n)O(n log n)O(n log n)YesQuick SortO(n log n)O(n log n)O(n²)NoTimSort (Python)O(n)O(n log n)O(n log n)YesIntroSort (C++)O(n log n)O(n log n)O(n log n)No 10. How to Choose the Right Algorithm? Use Merge Sort for large stable data. Use Quick Sort for faster average speed. Use Insertion Sort for small or nearly sorted lists. Use built-in sort functions unless you need control. Conclusion The Time Complexity of Sorting Algorithms helps us pick the right tool. Bubble, Selection, and Insertion Sort are simple but slow. Merge and Quick Sort are faster and used often. Built-in functions are highly optimized. Python, Java, and C++ each have their strengths. Understand your problem and input size. Then pick the sorting method. This ensures better speed and performance in your code. Tech World TimesTech World Times (TWT), a global collective focusing on the latest tech news and trends in blockchain, Fintech, Development & Testing, AI and Startups. If you are looking for the guest post then contact at techworldtimes@gmail.com
    Like
    Love
    Wow
    Sad
    Angry
    570
    2 Σχόλια 0 Μοιράστηκε
  • Ansys: R&D Engineer II (Remote - East Coast, US)

    Requisition #: 16890 Our Mission: Powering Innovation That Drives Human Advancement When visionary companies need to know how their world-changing ideas will perform, they close the gap between design and reality with Ansys simulation. For more than 50 years, Ansys software has enabled innovators across industries to push boundaries by using the predictive power of simulation. From sustainable transportation to advanced semiconductors, from satellite systems to life-saving medical devices, the next great leaps in human advancement will be powered by Ansys. Innovate With Ansys, Power Your Career. Summary / Role Purpose The R&D Engineer II contributes to the development of software products and supporting systems. In this role, the R&D Engineer II will collaborate with a team of expert professionals to understand customer requirements and accomplish development objectives. Key Duties and Responsibilities Performs moderately complex development activities, including the design, implementation, maintenance, testing and documentation of software modules and sub-systems Understands and employs best practices Performs moderately complex bug verification, release testing and beta support for assigned products. Researches problems discovered by QA or product support and develops solutions Understands the marketing requirements for a product, including target environment, performance criteria and competitive issues Works under the general supervision of a development manager Minimum Education/Certification Requirements and Experience BS in Computer Science, Applied Mathematics, Engineering, or other natural science disciplines with 3-5 years' experience or MS with minimum 2 years experience Working experience within technical software development proven by academic, research, or industry projects. Good understanding and skills in object-oriented programming Experience with Java and C# / .NET Role can be remote, must be based on the East Coast due to timezone Preferred Qualifications and Skills Experience with C++, Python, in addition to Java and C# / .NET Knowledge of Task-Based Asynchronous design patternExposure to model-based systems engineering concepts Working knowledge of SysML Know-how on cloud computing technologies like micro-service architectures, RPC frameworks, REST APIs, etc. Knowledge of software security best practices Experience working on an Agile software development team Technical knowledge and experience with various engineering tools and methodologies, such as Finite Element simulation, CAD modeling, and Systems Architecture modelling is a plus Ability to assist more junior developers on an as-needed basis Ability to learn quickly and to collaborate with others in a geographically distributed team Excellent communication and interpersonal skills At Ansys, we know that changing the world takes vision, skill, and each other. We fuel new ideas, build relationships, and help each other realize our greatest potential. We are ONE Ansys. We operate on three key components: our commitments to stakeholders, our values that guide how we work together, and our actions to deliver results. As ONE Ansys, we are powering innovation that drives human advancement Our Commitments:Amaze with innovative products and solutionsMake our customers incredibly successfulAct with integrityEnsure employees thrive and shareholders prosper Our Values:Adaptability: Be open, welcome what's nextCourage: Be courageous, move forward passionatelyGenerosity: Be generous, share, listen, serveAuthenticity: Be you, make us stronger Our Actions:We commit to audacious goalsWe work seamlessly as a teamWe demonstrate masteryWe deliver outstanding resultsVALUES IN ACTION Ansys is committed to powering the people who power human advancement. We believe in creating and nurturing a workplace that supports and welcomes people of all backgrounds; encouraging them to bring their talents and experience to a workplace where they are valued and can thrive. Our culture is grounded in our four core values of adaptability, courage, generosity, and authenticity. Through our behaviors and actions, these values foster higher team performance and greater innovation for our customers. We're proud to offer programs, available to all employees, to further impact innovation and business outcomes, such as employee networks and learning communities that inform solutions for our globally minded customer base. WELCOME WHAT'S NEXT IN YOUR CAREER AT ANSYS At Ansys, you will find yourself among the sharpest minds and most visionary leaders across the globe. Collectively, we strive to change the world with innovative technology and transformational solutions. With a prestigious reputation in working with well-known, world-class companies, standards at Ansys are high - met by those willing to rise to the occasion and meet those challenges head on. Our team is passionate about pushing the limits of world-class simulation technology, empowering our customers to turn their design concepts into successful, innovative products faster and at a lower cost. Ready to feel inspired? Check out some of our recent customer stories, here and here . At Ansys, it's about the learning, the discovery, and the collaboration. It's about the "what's next" as much as the "mission accomplished." And it's about the melding of disciplined intellect with strategic direction and results that have, can, and do impact real people in real ways. All this is forged within a working environment built on respect, autonomy, and ethics.CREATING A PLACE WE'RE PROUD TO BEAnsys is an S&P 500 company and a member of the NASDAQ-100. We are proud to have been recognized for the following more recent awards, although our list goes on: Newsweek's Most Loved Workplace globally and in the U.S., Gold Stevie Award Winner, America's Most Responsible Companies, Fast Company World Changing Ideas, Great Place to Work Certified.For more information, please visit us at Ansys is an Equal Opportunity Employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, veteran status, and other protected characteristics.Ansys does not accept unsolicited referrals for vacancies, and any unsolicited referral will become the property of Ansys. Upon hire, no fee will be owed to the agency, person, or entity.Apply NowLet's start your dream job Apply now Meet JobCopilot: Your Personal AI Job HunterAutomatically Apply to Remote Full-Stack Programming JobsJust set your preferences and Job Copilot will do the rest-finding, filtering, and applying while you focus on what matters. Activate JobCopilot
    #ansys #rampampd #engineer #remote #east
    Ansys: R&D Engineer II (Remote - East Coast, US)
    Requisition #: 16890 Our Mission: Powering Innovation That Drives Human Advancement When visionary companies need to know how their world-changing ideas will perform, they close the gap between design and reality with Ansys simulation. For more than 50 years, Ansys software has enabled innovators across industries to push boundaries by using the predictive power of simulation. From sustainable transportation to advanced semiconductors, from satellite systems to life-saving medical devices, the next great leaps in human advancement will be powered by Ansys. Innovate With Ansys, Power Your Career. Summary / Role Purpose The R&D Engineer II contributes to the development of software products and supporting systems. In this role, the R&D Engineer II will collaborate with a team of expert professionals to understand customer requirements and accomplish development objectives. Key Duties and Responsibilities Performs moderately complex development activities, including the design, implementation, maintenance, testing and documentation of software modules and sub-systems Understands and employs best practices Performs moderately complex bug verification, release testing and beta support for assigned products. Researches problems discovered by QA or product support and develops solutions Understands the marketing requirements for a product, including target environment, performance criteria and competitive issues Works under the general supervision of a development manager Minimum Education/Certification Requirements and Experience BS in Computer Science, Applied Mathematics, Engineering, or other natural science disciplines with 3-5 years' experience or MS with minimum 2 years experience Working experience within technical software development proven by academic, research, or industry projects. Good understanding and skills in object-oriented programming Experience with Java and C# / .NET Role can be remote, must be based on the East Coast due to timezone Preferred Qualifications and Skills Experience with C++, Python, in addition to Java and C# / .NET Knowledge of Task-Based Asynchronous design patternExposure to model-based systems engineering concepts Working knowledge of SysML Know-how on cloud computing technologies like micro-service architectures, RPC frameworks, REST APIs, etc. Knowledge of software security best practices Experience working on an Agile software development team Technical knowledge and experience with various engineering tools and methodologies, such as Finite Element simulation, CAD modeling, and Systems Architecture modelling is a plus Ability to assist more junior developers on an as-needed basis Ability to learn quickly and to collaborate with others in a geographically distributed team Excellent communication and interpersonal skills At Ansys, we know that changing the world takes vision, skill, and each other. We fuel new ideas, build relationships, and help each other realize our greatest potential. We are ONE Ansys. We operate on three key components: our commitments to stakeholders, our values that guide how we work together, and our actions to deliver results. As ONE Ansys, we are powering innovation that drives human advancement Our Commitments:Amaze with innovative products and solutionsMake our customers incredibly successfulAct with integrityEnsure employees thrive and shareholders prosper Our Values:Adaptability: Be open, welcome what's nextCourage: Be courageous, move forward passionatelyGenerosity: Be generous, share, listen, serveAuthenticity: Be you, make us stronger Our Actions:We commit to audacious goalsWe work seamlessly as a teamWe demonstrate masteryWe deliver outstanding resultsVALUES IN ACTION Ansys is committed to powering the people who power human advancement. We believe in creating and nurturing a workplace that supports and welcomes people of all backgrounds; encouraging them to bring their talents and experience to a workplace where they are valued and can thrive. Our culture is grounded in our four core values of adaptability, courage, generosity, and authenticity. Through our behaviors and actions, these values foster higher team performance and greater innovation for our customers. We're proud to offer programs, available to all employees, to further impact innovation and business outcomes, such as employee networks and learning communities that inform solutions for our globally minded customer base. WELCOME WHAT'S NEXT IN YOUR CAREER AT ANSYS At Ansys, you will find yourself among the sharpest minds and most visionary leaders across the globe. Collectively, we strive to change the world with innovative technology and transformational solutions. With a prestigious reputation in working with well-known, world-class companies, standards at Ansys are high - met by those willing to rise to the occasion and meet those challenges head on. Our team is passionate about pushing the limits of world-class simulation technology, empowering our customers to turn their design concepts into successful, innovative products faster and at a lower cost. Ready to feel inspired? Check out some of our recent customer stories, here and here . At Ansys, it's about the learning, the discovery, and the collaboration. It's about the "what's next" as much as the "mission accomplished." And it's about the melding of disciplined intellect with strategic direction and results that have, can, and do impact real people in real ways. All this is forged within a working environment built on respect, autonomy, and ethics.CREATING A PLACE WE'RE PROUD TO BEAnsys is an S&P 500 company and a member of the NASDAQ-100. We are proud to have been recognized for the following more recent awards, although our list goes on: Newsweek's Most Loved Workplace globally and in the U.S., Gold Stevie Award Winner, America's Most Responsible Companies, Fast Company World Changing Ideas, Great Place to Work Certified.For more information, please visit us at Ansys is an Equal Opportunity Employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, veteran status, and other protected characteristics.Ansys does not accept unsolicited referrals for vacancies, and any unsolicited referral will become the property of Ansys. Upon hire, no fee will be owed to the agency, person, or entity.Apply NowLet's start your dream job Apply now Meet JobCopilot: Your Personal AI Job HunterAutomatically Apply to Remote Full-Stack Programming JobsJust set your preferences and Job Copilot will do the rest-finding, filtering, and applying while you focus on what matters. Activate JobCopilot #ansys #rampampd #engineer #remote #east
    WEWORKREMOTELY.COM
    Ansys: R&D Engineer II (Remote - East Coast, US)
    Requisition #: 16890 Our Mission: Powering Innovation That Drives Human Advancement When visionary companies need to know how their world-changing ideas will perform, they close the gap between design and reality with Ansys simulation. For more than 50 years, Ansys software has enabled innovators across industries to push boundaries by using the predictive power of simulation. From sustainable transportation to advanced semiconductors, from satellite systems to life-saving medical devices, the next great leaps in human advancement will be powered by Ansys. Innovate With Ansys, Power Your Career. Summary / Role Purpose The R&D Engineer II contributes to the development of software products and supporting systems. In this role, the R&D Engineer II will collaborate with a team of expert professionals to understand customer requirements and accomplish development objectives. Key Duties and Responsibilities Performs moderately complex development activities, including the design, implementation, maintenance, testing and documentation of software modules and sub-systems Understands and employs best practices Performs moderately complex bug verification, release testing and beta support for assigned products. Researches problems discovered by QA or product support and develops solutions Understands the marketing requirements for a product, including target environment, performance criteria and competitive issues Works under the general supervision of a development manager Minimum Education/Certification Requirements and Experience BS in Computer Science, Applied Mathematics, Engineering, or other natural science disciplines with 3-5 years' experience or MS with minimum 2 years experience Working experience within technical software development proven by academic, research, or industry projects. Good understanding and skills in object-oriented programming Experience with Java and C# / .NET Role can be remote, must be based on the East Coast due to timezone Preferred Qualifications and Skills Experience with C++, Python, in addition to Java and C# / .NET Knowledge of Task-Based Asynchronous design pattern (TAP) Exposure to model-based systems engineering concepts Working knowledge of SysML Know-how on cloud computing technologies like micro-service architectures, RPC frameworks (e.g., gRPC), REST APIs, etc. Knowledge of software security best practices Experience working on an Agile software development team Technical knowledge and experience with various engineering tools and methodologies, such as Finite Element simulation, CAD modeling, and Systems Architecture modelling is a plus Ability to assist more junior developers on an as-needed basis Ability to learn quickly and to collaborate with others in a geographically distributed team Excellent communication and interpersonal skills At Ansys, we know that changing the world takes vision, skill, and each other. We fuel new ideas, build relationships, and help each other realize our greatest potential. We are ONE Ansys. We operate on three key components: our commitments to stakeholders, our values that guide how we work together, and our actions to deliver results. As ONE Ansys, we are powering innovation that drives human advancement Our Commitments:Amaze with innovative products and solutionsMake our customers incredibly successfulAct with integrityEnsure employees thrive and shareholders prosper Our Values:Adaptability: Be open, welcome what's nextCourage: Be courageous, move forward passionatelyGenerosity: Be generous, share, listen, serveAuthenticity: Be you, make us stronger Our Actions:We commit to audacious goalsWe work seamlessly as a teamWe demonstrate masteryWe deliver outstanding resultsVALUES IN ACTION Ansys is committed to powering the people who power human advancement. We believe in creating and nurturing a workplace that supports and welcomes people of all backgrounds; encouraging them to bring their talents and experience to a workplace where they are valued and can thrive. Our culture is grounded in our four core values of adaptability, courage, generosity, and authenticity. Through our behaviors and actions, these values foster higher team performance and greater innovation for our customers. We're proud to offer programs, available to all employees, to further impact innovation and business outcomes, such as employee networks and learning communities that inform solutions for our globally minded customer base. WELCOME WHAT'S NEXT IN YOUR CAREER AT ANSYS At Ansys, you will find yourself among the sharpest minds and most visionary leaders across the globe. Collectively, we strive to change the world with innovative technology and transformational solutions. With a prestigious reputation in working with well-known, world-class companies, standards at Ansys are high - met by those willing to rise to the occasion and meet those challenges head on. Our team is passionate about pushing the limits of world-class simulation technology, empowering our customers to turn their design concepts into successful, innovative products faster and at a lower cost. Ready to feel inspired? Check out some of our recent customer stories, here and here . At Ansys, it's about the learning, the discovery, and the collaboration. It's about the "what's next" as much as the "mission accomplished." And it's about the melding of disciplined intellect with strategic direction and results that have, can, and do impact real people in real ways. All this is forged within a working environment built on respect, autonomy, and ethics.CREATING A PLACE WE'RE PROUD TO BEAnsys is an S&P 500 company and a member of the NASDAQ-100. We are proud to have been recognized for the following more recent awards, although our list goes on: Newsweek's Most Loved Workplace globally and in the U.S., Gold Stevie Award Winner, America's Most Responsible Companies, Fast Company World Changing Ideas, Great Place to Work Certified (China, Greece, France, India, Japan, Korea, Spain, Sweden, Taiwan, and U.K.).For more information, please visit us at Ansys is an Equal Opportunity Employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, veteran status, and other protected characteristics.Ansys does not accept unsolicited referrals for vacancies, and any unsolicited referral will become the property of Ansys. Upon hire, no fee will be owed to the agency, person, or entity.Apply NowLet's start your dream job Apply now Meet JobCopilot: Your Personal AI Job HunterAutomatically Apply to Remote Full-Stack Programming JobsJust set your preferences and Job Copilot will do the rest-finding, filtering, and applying while you focus on what matters. Activate JobCopilot
    Like
    Love
    Wow
    Sad
    Angry
    468
    2 Σχόλια 0 Μοιράστηκε
  • Malicious PyPI Package Masquerades as Chimera Module to Steal AWS, CI/CD, and macOS Data

    Jun 16, 2025Ravie LakshmananMalware / DevOps

    Cybersecurity researchers have discovered a malicious package on the Python Package Indexrepository that's capable of harvesting sensitive developer-related information, such as credentials, configuration data, and environment variables, among others.
    The package, named chimera-sandbox-extensions, attracted 143 downloads and likely targets users of a service called Chimera Sandbox, which was released by Singaporean tech company Grab last August to facilitate "experimentation and development ofsolutions."
    The package masquerades as a helper module for Chimera Sandbox, but "aims to steal credentials and other sensitive information such as Jamf configuration, CI/CD environment variables, AWS tokens, and more," JFrog security researcher Guy Korolevski said in a report published last week.
    Once installed, it attempts to connect to an external domain whose domain name is generated using a domain generation algorithmin order to download and execute a next-stage payload.
    Specifically, the malware acquires from the domain an authentication token, which is then used to send a request to the same domain and retrieve the Python-based information stealer.

    The stealer malware is equipped to siphon a wide range of data from infected machines. This includes -

    JAMF receipts, which are records of software packages installed by Jamf Pro on managed computers
    Pod sandbox environment authentication tokens and git information
    CI/CD information from environment variables
    Zscaler host configuration
    Amazon Web Services account information and tokens
    Public IP address
    General platform, user, and host information

    The kind of data gathered by the malware shows that it's mainly geared towards corporate and cloud infrastructure. In addition, the extraction of JAMF receipts indicates that it's also capable of targeting Apple macOS systems.
    The collected information is sent via a POST request back to the same domain, after which the server assesses if the machine is a worthy target for further exploitation. However, JFrog said it was unable to obtain the payload at the time of analysis.
    "The targeted approach employed by this malware, along with the complexity of its multi-stage targeted payload, distinguishes it from the more generic open-source malware threats we have encountered thus far, highlighting the advancements that malicious packages have made recently," Jonathan Sar Shalom, director of threat research at JFrog Security Research team, said.

    "This new sophistication of malware underscores why development teams remain vigilant with updates—alongside proactive security research – to defend against emerging threats and maintain software integrity."
    The disclosure comes as SafeDep and Veracode detailed a number of malware-laced npm packages that are designed to execute remote code and download additional payloads. The packages in question are listed below -

    eslint-config-airbnb-compatts-runtime-compat-checksolders@mediawave/libAll the identified npm packages have since been taken down from npm, but not before they were downloaded hundreds of times from the package registry.
    SafeDep's analysis of eslint-config-airbnb-compat found that the JavaScript library has ts-runtime-compat-check listed as a dependency, which, in turn, contacts an external server defined in the former packageto retrieve and execute a Base64-encoded string. The exact nature of the payload is unknown.
    "It implements a multi-stage remote code execution attack using a transitive dependency to hide the malicious code," SafeDep researcher Kunal Singh said.
    Solders, on the other hand, has been found to incorporate a post-install script in its package.json, causing the malicious code to be automatically executed as soon as the package is installed.
    "At first glance, it's hard to believe that this is actually valid JavaScript," the Veracode Threat Research team said. "It looks like a seemingly random collection of Japanese symbols. It turns out that this particular obfuscation scheme uses the Unicode characters as variable names and a sophisticated chain of dynamic code generation to work."
    Decoding the script reveals an extra layer of obfuscation, unpacking which reveals its main function: Check if the compromised machine is Windows, and if so, run a PowerShell command to retrieve a next-stage payload from a remote server.
    This second-stage PowerShell script, also obscured, is designed to fetch a Windows batch script from another domainand configures a Windows Defender Antivirus exclusion list to avoid detection. The batch script then paves the way for the execution of a .NET DLL that reaches out to a PNG image hosted on ImgBB.
    "is grabbing the last two pixels from this image and then looping through some data contained elsewhere in it," Veracode said. "It ultimately builds up in memory YET ANOTHER .NET DLL."

    Furthermore, the DLL is equipped to create task scheduler entries and features the ability to bypass user account controlusing a combination of FodHelper.exe and programmatic identifiersto evade defenses and avoid triggering any security alerts to the user.
    The newly-downloaded DLL is Pulsar RAT, a "free, open-source Remote Administration Tool for Windows" and a variant of the Quasar RAT.
    "From a wall of Japanese characters to a RAT hidden within the pixels of a PNG file, the attacker went to extraordinary lengths to conceal their payload, nesting it a dozen layers deep to evade detection," Veracode said. "While the attacker's ultimate objective for deploying the Pulsar RAT remains unclear, the sheer complexity of this delivery mechanism is a powerful indicator of malicious intent."
    Crypto Malware in the Open-Source Supply Chain
    The findings also coincide with a report from Socket that identified credential stealers, cryptocurrency drainers, cryptojackers, and clippers as the main types of threats targeting the cryptocurrency and blockchain development ecosystem.

    Some of the examples of these packages include -

    express-dompurify and pumptoolforvolumeandcomment, which are capable of harvesting browser credentials and cryptocurrency wallet keys
    bs58js, which drains a victim's wallet and uses multi-hop transfers to obscure theft and frustrate forensic tracing.
    lsjglsjdv, asyncaiosignal, and raydium-sdk-liquidity-init, which functions as a clipper to monitor the system clipboard for cryptocurrency wallet strings and replace them with threat actor‑controlled addresses to reroute transactions to the attackers

    "As Web3 development converges with mainstream software engineering, the attack surface for blockchain-focused projects is expanding in both scale and complexity," Socket security researcher Kirill Boychenko said.
    "Financially motivated threat actors and state-sponsored groups are rapidly evolving their tactics to exploit systemic weaknesses in the software supply chain. These campaigns are iterative, persistent, and increasingly tailored to high-value targets."
    AI and Slopsquatting
    The rise of artificial intelligence-assisted coding, also called vibe coding, has unleashed another novel threat in the form of slopsquatting, where large language modelscan hallucinate non-existent but plausible package names that bad actors can weaponize to conduct supply chain attacks.
    Trend Micro, in a report last week, said it observed an unnamed advanced agent "confidently" cooking up a phantom Python package named starlette-reverse-proxy, only for the build process to crash with the error "module not found." However, should an adversary upload a package with the same name on the repository, it can have serious security consequences.

    Furthermore, the cybersecurity company noted that advanced coding agents and workflows such as Claude Code CLI, OpenAI Codex CLI, and Cursor AI with Model Context Protocol-backed validation can help reduce, but not completely eliminate, the risk of slopsquatting.
    "When agents hallucinate dependencies or install unverified packages, they create an opportunity for slopsquatting attacks, in which malicious actors pre-register those same hallucinated names on public registries," security researcher Sean Park said.
    "While reasoning-enhanced agents can reduce the rate of phantom suggestions by approximately half, they do not eliminate them entirely. Even the vibe-coding workflow augmented with live MCP validations achieves the lowest rates of slip-through, but still misses edge cases."

    Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post.

    SHARE




    #malicious #pypi #package #masquerades #chimera
    Malicious PyPI Package Masquerades as Chimera Module to Steal AWS, CI/CD, and macOS Data
    Jun 16, 2025Ravie LakshmananMalware / DevOps Cybersecurity researchers have discovered a malicious package on the Python Package Indexrepository that's capable of harvesting sensitive developer-related information, such as credentials, configuration data, and environment variables, among others. The package, named chimera-sandbox-extensions, attracted 143 downloads and likely targets users of a service called Chimera Sandbox, which was released by Singaporean tech company Grab last August to facilitate "experimentation and development ofsolutions." The package masquerades as a helper module for Chimera Sandbox, but "aims to steal credentials and other sensitive information such as Jamf configuration, CI/CD environment variables, AWS tokens, and more," JFrog security researcher Guy Korolevski said in a report published last week. Once installed, it attempts to connect to an external domain whose domain name is generated using a domain generation algorithmin order to download and execute a next-stage payload. Specifically, the malware acquires from the domain an authentication token, which is then used to send a request to the same domain and retrieve the Python-based information stealer. The stealer malware is equipped to siphon a wide range of data from infected machines. This includes - JAMF receipts, which are records of software packages installed by Jamf Pro on managed computers Pod sandbox environment authentication tokens and git information CI/CD information from environment variables Zscaler host configuration Amazon Web Services account information and tokens Public IP address General platform, user, and host information The kind of data gathered by the malware shows that it's mainly geared towards corporate and cloud infrastructure. In addition, the extraction of JAMF receipts indicates that it's also capable of targeting Apple macOS systems. The collected information is sent via a POST request back to the same domain, after which the server assesses if the machine is a worthy target for further exploitation. However, JFrog said it was unable to obtain the payload at the time of analysis. "The targeted approach employed by this malware, along with the complexity of its multi-stage targeted payload, distinguishes it from the more generic open-source malware threats we have encountered thus far, highlighting the advancements that malicious packages have made recently," Jonathan Sar Shalom, director of threat research at JFrog Security Research team, said. "This new sophistication of malware underscores why development teams remain vigilant with updates—alongside proactive security research – to defend against emerging threats and maintain software integrity." The disclosure comes as SafeDep and Veracode detailed a number of malware-laced npm packages that are designed to execute remote code and download additional payloads. The packages in question are listed below - eslint-config-airbnb-compatts-runtime-compat-checksolders@mediawave/libAll the identified npm packages have since been taken down from npm, but not before they were downloaded hundreds of times from the package registry. SafeDep's analysis of eslint-config-airbnb-compat found that the JavaScript library has ts-runtime-compat-check listed as a dependency, which, in turn, contacts an external server defined in the former packageto retrieve and execute a Base64-encoded string. The exact nature of the payload is unknown. "It implements a multi-stage remote code execution attack using a transitive dependency to hide the malicious code," SafeDep researcher Kunal Singh said. Solders, on the other hand, has been found to incorporate a post-install script in its package.json, causing the malicious code to be automatically executed as soon as the package is installed. "At first glance, it's hard to believe that this is actually valid JavaScript," the Veracode Threat Research team said. "It looks like a seemingly random collection of Japanese symbols. It turns out that this particular obfuscation scheme uses the Unicode characters as variable names and a sophisticated chain of dynamic code generation to work." Decoding the script reveals an extra layer of obfuscation, unpacking which reveals its main function: Check if the compromised machine is Windows, and if so, run a PowerShell command to retrieve a next-stage payload from a remote server. This second-stage PowerShell script, also obscured, is designed to fetch a Windows batch script from another domainand configures a Windows Defender Antivirus exclusion list to avoid detection. The batch script then paves the way for the execution of a .NET DLL that reaches out to a PNG image hosted on ImgBB. "is grabbing the last two pixels from this image and then looping through some data contained elsewhere in it," Veracode said. "It ultimately builds up in memory YET ANOTHER .NET DLL." Furthermore, the DLL is equipped to create task scheduler entries and features the ability to bypass user account controlusing a combination of FodHelper.exe and programmatic identifiersto evade defenses and avoid triggering any security alerts to the user. The newly-downloaded DLL is Pulsar RAT, a "free, open-source Remote Administration Tool for Windows" and a variant of the Quasar RAT. "From a wall of Japanese characters to a RAT hidden within the pixels of a PNG file, the attacker went to extraordinary lengths to conceal their payload, nesting it a dozen layers deep to evade detection," Veracode said. "While the attacker's ultimate objective for deploying the Pulsar RAT remains unclear, the sheer complexity of this delivery mechanism is a powerful indicator of malicious intent." Crypto Malware in the Open-Source Supply Chain The findings also coincide with a report from Socket that identified credential stealers, cryptocurrency drainers, cryptojackers, and clippers as the main types of threats targeting the cryptocurrency and blockchain development ecosystem. Some of the examples of these packages include - express-dompurify and pumptoolforvolumeandcomment, which are capable of harvesting browser credentials and cryptocurrency wallet keys bs58js, which drains a victim's wallet and uses multi-hop transfers to obscure theft and frustrate forensic tracing. lsjglsjdv, asyncaiosignal, and raydium-sdk-liquidity-init, which functions as a clipper to monitor the system clipboard for cryptocurrency wallet strings and replace them with threat actor‑controlled addresses to reroute transactions to the attackers "As Web3 development converges with mainstream software engineering, the attack surface for blockchain-focused projects is expanding in both scale and complexity," Socket security researcher Kirill Boychenko said. "Financially motivated threat actors and state-sponsored groups are rapidly evolving their tactics to exploit systemic weaknesses in the software supply chain. These campaigns are iterative, persistent, and increasingly tailored to high-value targets." AI and Slopsquatting The rise of artificial intelligence-assisted coding, also called vibe coding, has unleashed another novel threat in the form of slopsquatting, where large language modelscan hallucinate non-existent but plausible package names that bad actors can weaponize to conduct supply chain attacks. Trend Micro, in a report last week, said it observed an unnamed advanced agent "confidently" cooking up a phantom Python package named starlette-reverse-proxy, only for the build process to crash with the error "module not found." However, should an adversary upload a package with the same name on the repository, it can have serious security consequences. Furthermore, the cybersecurity company noted that advanced coding agents and workflows such as Claude Code CLI, OpenAI Codex CLI, and Cursor AI with Model Context Protocol-backed validation can help reduce, but not completely eliminate, the risk of slopsquatting. "When agents hallucinate dependencies or install unverified packages, they create an opportunity for slopsquatting attacks, in which malicious actors pre-register those same hallucinated names on public registries," security researcher Sean Park said. "While reasoning-enhanced agents can reduce the rate of phantom suggestions by approximately half, they do not eliminate them entirely. Even the vibe-coding workflow augmented with live MCP validations achieves the lowest rates of slip-through, but still misses edge cases." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE     #malicious #pypi #package #masquerades #chimera
    THEHACKERNEWS.COM
    Malicious PyPI Package Masquerades as Chimera Module to Steal AWS, CI/CD, and macOS Data
    Jun 16, 2025Ravie LakshmananMalware / DevOps Cybersecurity researchers have discovered a malicious package on the Python Package Index (PyPI) repository that's capable of harvesting sensitive developer-related information, such as credentials, configuration data, and environment variables, among others. The package, named chimera-sandbox-extensions, attracted 143 downloads and likely targets users of a service called Chimera Sandbox, which was released by Singaporean tech company Grab last August to facilitate "experimentation and development of [machine learning] solutions." The package masquerades as a helper module for Chimera Sandbox, but "aims to steal credentials and other sensitive information such as Jamf configuration, CI/CD environment variables, AWS tokens, and more," JFrog security researcher Guy Korolevski said in a report published last week. Once installed, it attempts to connect to an external domain whose domain name is generated using a domain generation algorithm (DGA) in order to download and execute a next-stage payload. Specifically, the malware acquires from the domain an authentication token, which is then used to send a request to the same domain and retrieve the Python-based information stealer. The stealer malware is equipped to siphon a wide range of data from infected machines. This includes - JAMF receipts, which are records of software packages installed by Jamf Pro on managed computers Pod sandbox environment authentication tokens and git information CI/CD information from environment variables Zscaler host configuration Amazon Web Services account information and tokens Public IP address General platform, user, and host information The kind of data gathered by the malware shows that it's mainly geared towards corporate and cloud infrastructure. In addition, the extraction of JAMF receipts indicates that it's also capable of targeting Apple macOS systems. The collected information is sent via a POST request back to the same domain, after which the server assesses if the machine is a worthy target for further exploitation. However, JFrog said it was unable to obtain the payload at the time of analysis. "The targeted approach employed by this malware, along with the complexity of its multi-stage targeted payload, distinguishes it from the more generic open-source malware threats we have encountered thus far, highlighting the advancements that malicious packages have made recently," Jonathan Sar Shalom, director of threat research at JFrog Security Research team, said. "This new sophistication of malware underscores why development teams remain vigilant with updates—alongside proactive security research – to defend against emerging threats and maintain software integrity." The disclosure comes as SafeDep and Veracode detailed a number of malware-laced npm packages that are designed to execute remote code and download additional payloads. The packages in question are listed below - eslint-config-airbnb-compat (676 Downloads) ts-runtime-compat-check (1,588 Downloads) solders (983 Downloads) @mediawave/lib (386 Downloads) All the identified npm packages have since been taken down from npm, but not before they were downloaded hundreds of times from the package registry. SafeDep's analysis of eslint-config-airbnb-compat found that the JavaScript library has ts-runtime-compat-check listed as a dependency, which, in turn, contacts an external server defined in the former package ("proxy.eslint-proxy[.]site") to retrieve and execute a Base64-encoded string. The exact nature of the payload is unknown. "It implements a multi-stage remote code execution attack using a transitive dependency to hide the malicious code," SafeDep researcher Kunal Singh said. Solders, on the other hand, has been found to incorporate a post-install script in its package.json, causing the malicious code to be automatically executed as soon as the package is installed. "At first glance, it's hard to believe that this is actually valid JavaScript," the Veracode Threat Research team said. "It looks like a seemingly random collection of Japanese symbols. It turns out that this particular obfuscation scheme uses the Unicode characters as variable names and a sophisticated chain of dynamic code generation to work." Decoding the script reveals an extra layer of obfuscation, unpacking which reveals its main function: Check if the compromised machine is Windows, and if so, run a PowerShell command to retrieve a next-stage payload from a remote server ("firewall[.]tel"). This second-stage PowerShell script, also obscured, is designed to fetch a Windows batch script from another domain ("cdn.audiowave[.]org") and configures a Windows Defender Antivirus exclusion list to avoid detection. The batch script then paves the way for the execution of a .NET DLL that reaches out to a PNG image hosted on ImgBB ("i.ibb[.]co"). "[The DLL] is grabbing the last two pixels from this image and then looping through some data contained elsewhere in it," Veracode said. "It ultimately builds up in memory YET ANOTHER .NET DLL." Furthermore, the DLL is equipped to create task scheduler entries and features the ability to bypass user account control (UAC) using a combination of FodHelper.exe and programmatic identifiers (ProgIDs) to evade defenses and avoid triggering any security alerts to the user. The newly-downloaded DLL is Pulsar RAT, a "free, open-source Remote Administration Tool for Windows" and a variant of the Quasar RAT. "From a wall of Japanese characters to a RAT hidden within the pixels of a PNG file, the attacker went to extraordinary lengths to conceal their payload, nesting it a dozen layers deep to evade detection," Veracode said. "While the attacker's ultimate objective for deploying the Pulsar RAT remains unclear, the sheer complexity of this delivery mechanism is a powerful indicator of malicious intent." Crypto Malware in the Open-Source Supply Chain The findings also coincide with a report from Socket that identified credential stealers, cryptocurrency drainers, cryptojackers, and clippers as the main types of threats targeting the cryptocurrency and blockchain development ecosystem. Some of the examples of these packages include - express-dompurify and pumptoolforvolumeandcomment, which are capable of harvesting browser credentials and cryptocurrency wallet keys bs58js, which drains a victim's wallet and uses multi-hop transfers to obscure theft and frustrate forensic tracing. lsjglsjdv, asyncaiosignal, and raydium-sdk-liquidity-init, which functions as a clipper to monitor the system clipboard for cryptocurrency wallet strings and replace them with threat actor‑controlled addresses to reroute transactions to the attackers "As Web3 development converges with mainstream software engineering, the attack surface for blockchain-focused projects is expanding in both scale and complexity," Socket security researcher Kirill Boychenko said. "Financially motivated threat actors and state-sponsored groups are rapidly evolving their tactics to exploit systemic weaknesses in the software supply chain. These campaigns are iterative, persistent, and increasingly tailored to high-value targets." AI and Slopsquatting The rise of artificial intelligence (AI)-assisted coding, also called vibe coding, has unleashed another novel threat in the form of slopsquatting, where large language models (LLMs) can hallucinate non-existent but plausible package names that bad actors can weaponize to conduct supply chain attacks. Trend Micro, in a report last week, said it observed an unnamed advanced agent "confidently" cooking up a phantom Python package named starlette-reverse-proxy, only for the build process to crash with the error "module not found." However, should an adversary upload a package with the same name on the repository, it can have serious security consequences. Furthermore, the cybersecurity company noted that advanced coding agents and workflows such as Claude Code CLI, OpenAI Codex CLI, and Cursor AI with Model Context Protocol (MCP)-backed validation can help reduce, but not completely eliminate, the risk of slopsquatting. "When agents hallucinate dependencies or install unverified packages, they create an opportunity for slopsquatting attacks, in which malicious actors pre-register those same hallucinated names on public registries," security researcher Sean Park said. "While reasoning-enhanced agents can reduce the rate of phantom suggestions by approximately half, they do not eliminate them entirely. Even the vibe-coding workflow augmented with live MCP validations achieves the lowest rates of slip-through, but still misses edge cases." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE    
    Like
    Love
    Wow
    Sad
    Angry
    514
    2 Σχόλια 0 Μοιράστηκε
  • How to Implement Insertion Sort in Java: Step-by-Step Guide

    Posted on : June 13, 2025

    By

    Tech World Times

    Uncategorized 

    Rate this post

    Sorting is important in programming. It helps organize data. Sorting improves performance in searching, analysis, and reporting. There are many sorting algorithms. One of the simplest is Insertion Sort.
    In this article, we will learn how to implement Insertion Sort in Java. We will explain each step in simple words. You will see examples and understand how it works.
    What Is Insertion Sort?
    Insertion Sort is a simple sorting algorithm. It works like how you sort playing cards. You take one card at a time and place it in the right position. It compares the current element with those before it. If needed, it shifts elements to the right. Then, it inserts the current element at the correct place.
    How Insertion Sort Works
    Let’s understand with a small list:
    Example List:Steps:

    First elementis already sorted.
    Compare 3 with 8. Move 8 right. Insert 3 before it →Compare 5 with 8. Move 8 right. Insert 5 after 3 →Compare 1 with 8, 5, 3. Move them right. Insert 1 at start →Now the list is sorted!
    Why Use Insertion Sort?
    Insertion Sort is simple and easy to code. It works well for:

    Small datasets
    Nearly sorted lists
    Educational purposes and practice

    However, it is not good for large datasets. It has a time complexity of O.
    Time Complexity of Insertion Sort

    Best Case: OAverage Case: OWorst Case: OIt performs fewer steps in nearly sorted data.
    How to Implement Insertion Sort in Java
    Now let’s write the code for Insertion Sort in Java. We will explain each part.
    Step 1: Define a Class
    javaCopyEditpublic class InsertionSortExample {
    // Code goes here
    }

    We create a class named InsertionSortExample.
    Step 2: Create the Sorting Method
    javaCopyEditpublic static void insertionSort{
    int n = arr.length;
    for{
    int key = arr;
    int j = i - 1;

    while{
    arr= arr;
    j = j - 1;
    }
    arr= key;
    }
    }

    Let’s break it down:

    arris the current value.
    j starts from the previous index.
    While arr> key, shift arrto the right.
    Insert the key at the correct position.

    This logic sorts the array step by step.
    Step 3: Create the Main Method
    Now we test the code.
    javaCopyEditpublic static void main{
    intnumbers = {9, 5, 1, 4, 3};

    System.out.println;
    printArray;

    insertionSort;

    System.out.println;
    printArray;
    }

    This method:

    Creates an array of numbers
    Prints the array before sorting
    Calls the sort method
    Prints the array after sorting

    Step 4: Print the Array
    Let’s add a helper method to print the array.
    javaCopyEditpublic static void printArray{
    for{
    System.out.print;
    }
    System.out.println;
    }

    Now you can see how the array changes before and after sorting.
    Full Code Example
    javaCopyEditpublic class InsertionSortExample {

    public static void insertionSort{
    int n = arr.length;
    for{
    int key = arr;
    int j = i - 1;

    while{
    arr= arr;
    j = j - 1;
    }
    arr= key;
    }
    }

    public static void printArray{
    for{
    System.out.print;
    }
    System.out.println;
    }

    public static void main{
    intnumbers = {9, 5, 1, 4, 3};

    System.out.println;
    printArray;

    insertionSort;

    System.out.println;
    printArray;
    }
    }

    Sample Output
    yamlCopyEditBefore sorting:
    9 5 1 4 3
    After sorting:
    1 3 4 5 9

    This confirms that the sorting works correctly.
    Advantages of Insertion Sort in Java

    Easy to implement
    Works well with small inputs
    Stable sortGood for educational use

    When Not to Use Insertion Sort
    Avoid Insertion Sort when:

    The dataset is large
    Performance is critical
    Better algorithms like Merge Sort or Quick Sort are available

    Real-World Uses

    Sorting small records in a database
    Teaching algorithm basics
    Handling partially sorted arrays

    Even though it is not the fastest, it is useful in many simple tasks.
    Final Tips

    Practice with different inputs
    Add print statements to see how it works
    Try sorting strings or objects
    Use Java’s built-in sort methods for large arrays

    Conclusion
    Insertion Sort in Java is a great way to learn sorting. It is simple and easy to understand. In this guide, we showed how to implement it step-by-step. We covered the logic, code, and output. We also explained when to use it. Now you can try it yourself. Understanding sorting helps in coding interviews and software development. Keep practicing and exploring other sorting methods too. The more you practice, the better you understand algorithms.
    Tech World TimesTech World Times, a global collective focusing on the latest tech news and trends in blockchain, Fintech, Development & Testing, AI and Startups. If you are looking for the guest post then contact at techworldtimes@gmail.com
    #how #implement #insertion #sort #java
    How to Implement Insertion Sort in Java: Step-by-Step Guide
    Posted on : June 13, 2025 By Tech World Times Uncategorized  Rate this post Sorting is important in programming. It helps organize data. Sorting improves performance in searching, analysis, and reporting. There are many sorting algorithms. One of the simplest is Insertion Sort. In this article, we will learn how to implement Insertion Sort in Java. We will explain each step in simple words. You will see examples and understand how it works. What Is Insertion Sort? Insertion Sort is a simple sorting algorithm. It works like how you sort playing cards. You take one card at a time and place it in the right position. It compares the current element with those before it. If needed, it shifts elements to the right. Then, it inserts the current element at the correct place. How Insertion Sort Works Let’s understand with a small list: Example List:Steps: First elementis already sorted. Compare 3 with 8. Move 8 right. Insert 3 before it →Compare 5 with 8. Move 8 right. Insert 5 after 3 →Compare 1 with 8, 5, 3. Move them right. Insert 1 at start →Now the list is sorted! Why Use Insertion Sort? Insertion Sort is simple and easy to code. It works well for: Small datasets Nearly sorted lists Educational purposes and practice However, it is not good for large datasets. It has a time complexity of O. Time Complexity of Insertion Sort Best Case: OAverage Case: OWorst Case: OIt performs fewer steps in nearly sorted data. How to Implement Insertion Sort in Java Now let’s write the code for Insertion Sort in Java. We will explain each part. Step 1: Define a Class javaCopyEditpublic class InsertionSortExample { // Code goes here } We create a class named InsertionSortExample. Step 2: Create the Sorting Method javaCopyEditpublic static void insertionSort{ int n = arr.length; for{ int key = arr; int j = i - 1; while{ arr= arr; j = j - 1; } arr= key; } } Let’s break it down: arris the current value. j starts from the previous index. While arr> key, shift arrto the right. Insert the key at the correct position. This logic sorts the array step by step. Step 3: Create the Main Method Now we test the code. javaCopyEditpublic static void main{ intnumbers = {9, 5, 1, 4, 3}; System.out.println; printArray; insertionSort; System.out.println; printArray; } This method: Creates an array of numbers Prints the array before sorting Calls the sort method Prints the array after sorting Step 4: Print the Array Let’s add a helper method to print the array. javaCopyEditpublic static void printArray{ for{ System.out.print; } System.out.println; } Now you can see how the array changes before and after sorting. Full Code Example javaCopyEditpublic class InsertionSortExample { public static void insertionSort{ int n = arr.length; for{ int key = arr; int j = i - 1; while{ arr= arr; j = j - 1; } arr= key; } } public static void printArray{ for{ System.out.print; } System.out.println; } public static void main{ intnumbers = {9, 5, 1, 4, 3}; System.out.println; printArray; insertionSort; System.out.println; printArray; } } Sample Output yamlCopyEditBefore sorting: 9 5 1 4 3 After sorting: 1 3 4 5 9 This confirms that the sorting works correctly. Advantages of Insertion Sort in Java Easy to implement Works well with small inputs Stable sortGood for educational use When Not to Use Insertion Sort Avoid Insertion Sort when: The dataset is large Performance is critical Better algorithms like Merge Sort or Quick Sort are available Real-World Uses Sorting small records in a database Teaching algorithm basics Handling partially sorted arrays Even though it is not the fastest, it is useful in many simple tasks. Final Tips Practice with different inputs Add print statements to see how it works Try sorting strings or objects Use Java’s built-in sort methods for large arrays Conclusion Insertion Sort in Java is a great way to learn sorting. It is simple and easy to understand. In this guide, we showed how to implement it step-by-step. We covered the logic, code, and output. We also explained when to use it. Now you can try it yourself. Understanding sorting helps in coding interviews and software development. Keep practicing and exploring other sorting methods too. The more you practice, the better you understand algorithms. Tech World TimesTech World Times, a global collective focusing on the latest tech news and trends in blockchain, Fintech, Development & Testing, AI and Startups. If you are looking for the guest post then contact at techworldtimes@gmail.com #how #implement #insertion #sort #java
    TECHWORLDTIMES.COM
    How to Implement Insertion Sort in Java: Step-by-Step Guide
    Posted on : June 13, 2025 By Tech World Times Uncategorized  Rate this post Sorting is important in programming. It helps organize data. Sorting improves performance in searching, analysis, and reporting. There are many sorting algorithms. One of the simplest is Insertion Sort. In this article, we will learn how to implement Insertion Sort in Java. We will explain each step in simple words. You will see examples and understand how it works. What Is Insertion Sort? Insertion Sort is a simple sorting algorithm. It works like how you sort playing cards. You take one card at a time and place it in the right position. It compares the current element with those before it. If needed, it shifts elements to the right. Then, it inserts the current element at the correct place. How Insertion Sort Works Let’s understand with a small list: Example List: [8, 3, 5, 1] Steps: First element (8) is already sorted. Compare 3 with 8. Move 8 right. Insert 3 before it → [3, 8, 5, 1] Compare 5 with 8. Move 8 right. Insert 5 after 3 → [3, 5, 8, 1] Compare 1 with 8, 5, 3. Move them right. Insert 1 at start → [1, 3, 5, 8] Now the list is sorted! Why Use Insertion Sort? Insertion Sort is simple and easy to code. It works well for: Small datasets Nearly sorted lists Educational purposes and practice However, it is not good for large datasets. It has a time complexity of O(n²). Time Complexity of Insertion Sort Best Case (already sorted): O(n) Average Case: O(n²) Worst Case (reversed list): O(n²) It performs fewer steps in nearly sorted data. How to Implement Insertion Sort in Java Now let’s write the code for Insertion Sort in Java. We will explain each part. Step 1: Define a Class javaCopyEditpublic class InsertionSortExample { // Code goes here } We create a class named InsertionSortExample. Step 2: Create the Sorting Method javaCopyEditpublic static void insertionSort(int[] arr) { int n = arr.length; for (int i = 1; i < n; i++) { int key = arr[i]; int j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } Let’s break it down: arr[i] is the current value (called key). j starts from the previous index. While arr[j] > key, shift arr[j] to the right. Insert the key at the correct position. This logic sorts the array step by step. Step 3: Create the Main Method Now we test the code. javaCopyEditpublic static void main(String[] args) { int[] numbers = {9, 5, 1, 4, 3}; System.out.println("Before sorting:"); printArray(numbers); insertionSort(numbers); System.out.println("After sorting:"); printArray(numbers); } This method: Creates an array of numbers Prints the array before sorting Calls the sort method Prints the array after sorting Step 4: Print the Array Let’s add a helper method to print the array. javaCopyEditpublic static void printArray(int[] arr) { for (int number : arr) { System.out.print(number + " "); } System.out.println(); } Now you can see how the array changes before and after sorting. Full Code Example javaCopyEditpublic class InsertionSortExample { public static void insertionSort(int[] arr) { int n = arr.length; for (int i = 1; i < n; i++) { int key = arr[i]; int j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } public static void printArray(int[] arr) { for (int number : arr) { System.out.print(number + " "); } System.out.println(); } public static void main(String[] args) { int[] numbers = {9, 5, 1, 4, 3}; System.out.println("Before sorting:"); printArray(numbers); insertionSort(numbers); System.out.println("After sorting:"); printArray(numbers); } } Sample Output yamlCopyEditBefore sorting: 9 5 1 4 3 After sorting: 1 3 4 5 9 This confirms that the sorting works correctly. Advantages of Insertion Sort in Java Easy to implement Works well with small inputs Stable sort (keeps equal items in order) Good for educational use When Not to Use Insertion Sort Avoid Insertion Sort when: The dataset is large Performance is critical Better algorithms like Merge Sort or Quick Sort are available Real-World Uses Sorting small records in a database Teaching algorithm basics Handling partially sorted arrays Even though it is not the fastest, it is useful in many simple tasks. Final Tips Practice with different inputs Add print statements to see how it works Try sorting strings or objects Use Java’s built-in sort methods for large arrays Conclusion Insertion Sort in Java is a great way to learn sorting. It is simple and easy to understand. In this guide, we showed how to implement it step-by-step. We covered the logic, code, and output. We also explained when to use it. Now you can try it yourself. Understanding sorting helps in coding interviews and software development. Keep practicing and exploring other sorting methods too. The more you practice, the better you understand algorithms. Tech World TimesTech World Times (TWT), a global collective focusing on the latest tech news and trends in blockchain, Fintech, Development & Testing, AI and Startups. If you are looking for the guest post then contact at techworldtimes@gmail.com
    0 Σχόλια 0 Μοιράστηκε
  • Selection Sort Time Complexity: Best, Worst, and Average Cases

    Development and Testing 

    Rate this post

    Sorting is a basic task in programming. It arranges data in order. There are many sorting algorithms. Selection Sort is one of the simplest sorting methods. It is easy to understand and code. But it is not the fastest. In this guide, we will explain the Selection Sort Time Complexity. We will cover best, worst, and average cases.
    What Is Selection Sort?
    Selection Sort works by selecting the smallest element from the list. It places it in the correct position. It repeats this process for all elements. One by one, it moves the smallest values to the front.
    Let’s see an example:
    Input:Step 1: Smallest is 2 → swap with 5 →Step 2: Smallest in remaining is 3 → already correctStep 3: Smallest in remaining is 5 → swap with 8 →Now the list is sorted.How Selection Sort Works
    Selection Sort uses two loops. The outer loop moves one index at a time. The inner loop finds the smallest element. After each pass, the smallest value is moved to the front. The position is fixed. Selection Sort does not care if the list is sorted or not. It always does the same steps.
    Selection Sort Algorithm
    Here is the basic algorithm:

    Start from the first element
    Find the smallest in the rest of the list
    Swap it with the current element
    Repeat for each element

    This repeats until all elements are sorted.
    Selection Sort CodejavaCopyEditpublic class SelectionSort {
    public static void sort{
    int n = arr.length;
    for{
    int min = i;
    for{
    if{
    min = j;
    }
    }
    int temp = arr;
    arr= arr;
    arr= temp;
    }
    }
    }

    This code uses two loops. The outer loop runs n-1 times. The inner loop finds the minimum.
    Selection Sort Time Complexity
    Now let’s understand the main topic. Let’s analyze Selection Sort Time Complexity in three cases.
    1. Best Case
    Even if the array is already sorted, Selection Sort checks all elements. It keeps comparing and swapping.

    Time Complexity: OReason: Inner loop runs fully, regardless of the order
    Example Input:Even here, every comparison still happens. Only fewer swaps occur, but comparisons remain the same.
    2. Worst Case
    This happens when the array is in reverse order. But Selection Sort does not optimize for this.

    Time Complexity: OReason: Still needs full comparisons
    Example Input:Even in reverse, the steps are the same. It compares and finds the smallest element every time.
    3. Average Case
    This is when elements are randomly placed. It is the most common scenario in real-world problems.

    Time Complexity: OReason: Still compares each element in the inner loop
    Example Input:Selection Sort does not change behavior based on input order. So the complexity remains the same.
    Why Is It Always O?
    Selection Sort compares all pairs of elements. The number of comparisons does not change.
    Total comparisons = n ×/ 2
    That’s why the time complexity is always O.It does not reduce steps in any case. It does not take advantage of sorted elements.
    Space Complexity
    Selection Sort does not need extra space. It sorts in place.

    Space Complexity: OOnly a few variables are used
    No extra arrays or memory needed

    This is one good point of the Selection Sort.
    Comparison with Other Algorithms
    Let’s compare Selection Sort with other basic sorts:
    AlgorithmBest CaseAverage CaseWorst CaseSpaceSelection SortOOOOBubble SortOOOOInsertion SortOOOOMerge SortOOOOQuick SortOOOOAs you see, Selection Sort is slower than Merge Sort and Quick Sort.
    Advantages of Selection Sort

    Very simple and easy to understand
    Works well with small datasets
    Needs very little memory
    Good for learning purposes

    Disadvantages of Selection Sort

    Slow on large datasets
    Always takes the same time, even if sorted
    Not efficient for real-world use

    When to Use Selection Sort
    Use Selection Sort when:

    You are working with a very small dataset
    You want to teach or learn sorting logic
    You want stable, low-memory sorting

    Avoid it for:

    Large datasets
    Performance-sensitive programs

    Conclusion
    Selection Sort Time Complexity is simple to understand. But it is not efficient for big problems. It always takes Otime, no matter the case. That is the same for best, worst, and average inputs. Still, it is useful in some cases. It’s great for learning sorting basics. It uses very little memory. If you’re working with small arrays, Selection Sort is fine. For large data, use better algorithms. Understanding its time complexity helps you choose the right algorithm. Always pick the tool that fits your task.
    Tech World TimesTech World Times, a global collective focusing on the latest tech news and trends in blockchain, Fintech, Development & Testing, AI and Startups. If you are looking for the guest post then contact at techworldtimes@gmail.com
    #selection #sort #time #complexity #best
    Selection Sort Time Complexity: Best, Worst, and Average Cases
    Development and Testing  Rate this post Sorting is a basic task in programming. It arranges data in order. There are many sorting algorithms. Selection Sort is one of the simplest sorting methods. It is easy to understand and code. But it is not the fastest. In this guide, we will explain the Selection Sort Time Complexity. We will cover best, worst, and average cases. What Is Selection Sort? Selection Sort works by selecting the smallest element from the list. It places it in the correct position. It repeats this process for all elements. One by one, it moves the smallest values to the front. Let’s see an example: Input:Step 1: Smallest is 2 → swap with 5 →Step 2: Smallest in remaining is 3 → already correctStep 3: Smallest in remaining is 5 → swap with 8 →Now the list is sorted.How Selection Sort Works Selection Sort uses two loops. The outer loop moves one index at a time. The inner loop finds the smallest element. After each pass, the smallest value is moved to the front. The position is fixed. Selection Sort does not care if the list is sorted or not. It always does the same steps. Selection Sort Algorithm Here is the basic algorithm: Start from the first element Find the smallest in the rest of the list Swap it with the current element Repeat for each element This repeats until all elements are sorted. Selection Sort CodejavaCopyEditpublic class SelectionSort { public static void sort{ int n = arr.length; for{ int min = i; for{ if{ min = j; } } int temp = arr; arr= arr; arr= temp; } } } This code uses two loops. The outer loop runs n-1 times. The inner loop finds the minimum. Selection Sort Time Complexity Now let’s understand the main topic. Let’s analyze Selection Sort Time Complexity in three cases. 1. Best Case Even if the array is already sorted, Selection Sort checks all elements. It keeps comparing and swapping. Time Complexity: OReason: Inner loop runs fully, regardless of the order Example Input:Even here, every comparison still happens. Only fewer swaps occur, but comparisons remain the same. 2. Worst Case This happens when the array is in reverse order. But Selection Sort does not optimize for this. Time Complexity: OReason: Still needs full comparisons Example Input:Even in reverse, the steps are the same. It compares and finds the smallest element every time. 3. Average Case This is when elements are randomly placed. It is the most common scenario in real-world problems. Time Complexity: OReason: Still compares each element in the inner loop Example Input:Selection Sort does not change behavior based on input order. So the complexity remains the same. Why Is It Always O? Selection Sort compares all pairs of elements. The number of comparisons does not change. Total comparisons = n ×/ 2 That’s why the time complexity is always O.It does not reduce steps in any case. It does not take advantage of sorted elements. Space Complexity Selection Sort does not need extra space. It sorts in place. Space Complexity: OOnly a few variables are used No extra arrays or memory needed This is one good point of the Selection Sort. Comparison with Other Algorithms Let’s compare Selection Sort with other basic sorts: AlgorithmBest CaseAverage CaseWorst CaseSpaceSelection SortOOOOBubble SortOOOOInsertion SortOOOOMerge SortOOOOQuick SortOOOOAs you see, Selection Sort is slower than Merge Sort and Quick Sort. Advantages of Selection Sort Very simple and easy to understand Works well with small datasets Needs very little memory Good for learning purposes Disadvantages of Selection Sort Slow on large datasets Always takes the same time, even if sorted Not efficient for real-world use When to Use Selection Sort Use Selection Sort when: You are working with a very small dataset You want to teach or learn sorting logic You want stable, low-memory sorting Avoid it for: Large datasets Performance-sensitive programs Conclusion Selection Sort Time Complexity is simple to understand. But it is not efficient for big problems. It always takes Otime, no matter the case. That is the same for best, worst, and average inputs. Still, it is useful in some cases. It’s great for learning sorting basics. It uses very little memory. If you’re working with small arrays, Selection Sort is fine. For large data, use better algorithms. Understanding its time complexity helps you choose the right algorithm. Always pick the tool that fits your task. Tech World TimesTech World Times, a global collective focusing on the latest tech news and trends in blockchain, Fintech, Development & Testing, AI and Startups. If you are looking for the guest post then contact at techworldtimes@gmail.com #selection #sort #time #complexity #best
    TECHWORLDTIMES.COM
    Selection Sort Time Complexity: Best, Worst, and Average Cases
    Development and Testing  Rate this post Sorting is a basic task in programming. It arranges data in order. There are many sorting algorithms. Selection Sort is one of the simplest sorting methods. It is easy to understand and code. But it is not the fastest. In this guide, we will explain the Selection Sort Time Complexity. We will cover best, worst, and average cases. What Is Selection Sort? Selection Sort works by selecting the smallest element from the list. It places it in the correct position. It repeats this process for all elements. One by one, it moves the smallest values to the front. Let’s see an example: Input: [5, 3, 8, 2]Step 1: Smallest is 2 → swap with 5 → [2, 3, 8, 5]Step 2: Smallest in remaining is 3 → already correctStep 3: Smallest in remaining is 5 → swap with 8 → [2, 3, 5, 8] Now the list is sorted.How Selection Sort Works Selection Sort uses two loops. The outer loop moves one index at a time. The inner loop finds the smallest element. After each pass, the smallest value is moved to the front. The position is fixed. Selection Sort does not care if the list is sorted or not. It always does the same steps. Selection Sort Algorithm Here is the basic algorithm: Start from the first element Find the smallest in the rest of the list Swap it with the current element Repeat for each element This repeats until all elements are sorted. Selection Sort Code (Java Example) javaCopyEditpublic class SelectionSort { public static void sort(int[] arr) { int n = arr.length; for (int i = 0; i < n - 1; i++) { int min = i; for (int j = i + 1; j < n; j++) { if (arr[j] < arr[min]) { min = j; } } int temp = arr[min]; arr[min] = arr[i]; arr[i] = temp; } } } This code uses two loops. The outer loop runs n-1 times. The inner loop finds the minimum. Selection Sort Time Complexity Now let’s understand the main topic. Let’s analyze Selection Sort Time Complexity in three cases. 1. Best Case Even if the array is already sorted, Selection Sort checks all elements. It keeps comparing and swapping. Time Complexity: O(n²) Reason: Inner loop runs fully, regardless of the order Example Input: [1, 2, 3, 4, 5] Even here, every comparison still happens. Only fewer swaps occur, but comparisons remain the same. 2. Worst Case This happens when the array is in reverse order. But Selection Sort does not optimize for this. Time Complexity: O(n²) Reason: Still needs full comparisons Example Input: [5, 4, 3, 2, 1] Even in reverse, the steps are the same. It compares and finds the smallest element every time. 3. Average Case This is when elements are randomly placed. It is the most common scenario in real-world problems. Time Complexity: O(n²) Reason: Still compares each element in the inner loop Example Input: [3, 1, 4, 2, 5] Selection Sort does not change behavior based on input order. So the complexity remains the same. Why Is It Always O(n²)? Selection Sort compares all pairs of elements. The number of comparisons does not change. Total comparisons = n × (n – 1) / 2 That’s why the time complexity is always O(n²).It does not reduce steps in any case. It does not take advantage of sorted elements. Space Complexity Selection Sort does not need extra space. It sorts in place. Space Complexity: O(1) Only a few variables are used No extra arrays or memory needed This is one good point of the Selection Sort. Comparison with Other Algorithms Let’s compare Selection Sort with other basic sorts: AlgorithmBest CaseAverage CaseWorst CaseSpaceSelection SortO(n²)O(n²)O(n²)O(1)Bubble SortO(n)O(n²)O(n²)O(1)Insertion SortO(n)O(n²)O(n²)O(1)Merge SortO(n log n)O(n log n)O(n log n)O(n)Quick SortO(n log n)O(n log n)O(n²)O(log n) As you see, Selection Sort is slower than Merge Sort and Quick Sort. Advantages of Selection Sort Very simple and easy to understand Works well with small datasets Needs very little memory Good for learning purposes Disadvantages of Selection Sort Slow on large datasets Always takes the same time, even if sorted Not efficient for real-world use When to Use Selection Sort Use Selection Sort when: You are working with a very small dataset You want to teach or learn sorting logic You want stable, low-memory sorting Avoid it for: Large datasets Performance-sensitive programs Conclusion Selection Sort Time Complexity is simple to understand. But it is not efficient for big problems. It always takes O(n²) time, no matter the case. That is the same for best, worst, and average inputs. Still, it is useful in some cases. It’s great for learning sorting basics. It uses very little memory. If you’re working with small arrays, Selection Sort is fine. For large data, use better algorithms. Understanding its time complexity helps you choose the right algorithm. Always pick the tool that fits your task. Tech World TimesTech World Times (TWT), a global collective focusing on the latest tech news and trends in blockchain, Fintech, Development & Testing, AI and Startups. If you are looking for the guest post then contact at techworldtimes@gmail.com
    0 Σχόλια 0 Μοιράστηκε
  • Over 269,000 Websites Infected with JSFireTruck JavaScript Malware in One Month

    Jun 13, 2025Ravie LakshmananWeb Security / Network Security

    Cybersecurity researchers are calling attention to a "large-scale campaign" that has been observed compromising legitimate websites with malicious JavaScript injections.
    According to Palo Alto Networks Unit 42, these malicious injects are obfuscated using JSFuck, which refers to an "esoteric and educational programming style" that uses only a limited set of characters to write and execute code.
    The cybersecurity company has given the technique an alternate name JSFireTruck owing to the profanity involved.
    "Multiple websites have been identified with injected malicious JavaScript that uses JSFireTruck obfuscation, which is composed primarily of the symbols, +, {, and }," security researchers Hardik Shah, Brad Duncan, and Pranay Kumar Chhaparwal said. "The code's obfuscation hides its true purpose, hindering analysis."

    Further analysis has determined that the injected code is designed to check the website referrer, which identifies the address of the web page from which a request originated.
    Should the referrer be a search engine such as Google, Bing, DuckDuckGo, Yahoo!, or AOL, the JavaScript code redirects victims to malicious URLs that can deliver malware, exploits, traffic monetization, and malvertising.

    Unit 42 said its telemetry uncovered 269,552 web pages that have been infected with JavaScript code using the JSFireTruck technique between March 26 and April 25, 2025. A spike in the campaign was first recorded on April 12, when over 50,000 infected web pages were observed in a single day.
    "The campaign's scale and stealth pose a significant threat," the researchers said. "The widespread nature of these infections suggests a coordinated effort to compromise legitimate websites as attack vectors for further malicious activities."
    Say Hello to HelloTDS
    The development comes as Gen Digital took the wraps off a sophisticated Traffic Distribution Servicecalled HelloTDS that's designed to conditionally redirect site visitors to fake CAPTCHA pages, tech support scams, fake browser updates, unwanted browser extensions, and cryptocurrency scams through remotely-hosted JavaScript code injected into the sites.
    The primary objective of the TDS is to act as a gateway, determining the exact nature of content to be delivered to the victims after fingerprinting their devices. If the user is not deemed a suitable target, the victim is redirected to a benign web page.

    "The campaign entry points are infected or otherwise attacker-controlled streaming websites, file sharing services, as well as malvertising campaigns," researchers Vojtěch Krejsa and Milan Špinka said in a report published this month.
    "Victims are evaluated based on geolocation, IP address, and browser fingerprinting; for example, connections through VPNs or headless browsers are detected and rejected."
    Some of these attack chains have been found to serve bogus CAPTCHA pages that leverage the ClickFix strategy to trick users into running malicious code and infecting their machines with a malware known as PEAKLIGHT, which is known to server information stealers like Lumma.

    Central to the HelloTDS infrastructure is the use of .top, .shop, and .com top-level domains that are used to host the JavaScript code and trigger the redirections following a multi-stage fingerprinting process engineered to collect network and browser information.
    "The HelloTDS infrastructure behind fake CAPTCHA campaigns demonstrates how attackers continue to refine their methods to bypass traditional protections, evade detection, and selectively target victims," the researchers said.
    "By leveraging sophisticated fingerprinting, dynamic domain infrastructure, and deception tacticsthese campaigns achieve both stealth and scale."

    Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post.

    SHARE




    #over #websites #infected #with #jsfiretruck
    Over 269,000 Websites Infected with JSFireTruck JavaScript Malware in One Month
    Jun 13, 2025Ravie LakshmananWeb Security / Network Security Cybersecurity researchers are calling attention to a "large-scale campaign" that has been observed compromising legitimate websites with malicious JavaScript injections. According to Palo Alto Networks Unit 42, these malicious injects are obfuscated using JSFuck, which refers to an "esoteric and educational programming style" that uses only a limited set of characters to write and execute code. The cybersecurity company has given the technique an alternate name JSFireTruck owing to the profanity involved. "Multiple websites have been identified with injected malicious JavaScript that uses JSFireTruck obfuscation, which is composed primarily of the symbols, +, {, and }," security researchers Hardik Shah, Brad Duncan, and Pranay Kumar Chhaparwal said. "The code's obfuscation hides its true purpose, hindering analysis." Further analysis has determined that the injected code is designed to check the website referrer, which identifies the address of the web page from which a request originated. Should the referrer be a search engine such as Google, Bing, DuckDuckGo, Yahoo!, or AOL, the JavaScript code redirects victims to malicious URLs that can deliver malware, exploits, traffic monetization, and malvertising. Unit 42 said its telemetry uncovered 269,552 web pages that have been infected with JavaScript code using the JSFireTruck technique between March 26 and April 25, 2025. A spike in the campaign was first recorded on April 12, when over 50,000 infected web pages were observed in a single day. "The campaign's scale and stealth pose a significant threat," the researchers said. "The widespread nature of these infections suggests a coordinated effort to compromise legitimate websites as attack vectors for further malicious activities." Say Hello to HelloTDS The development comes as Gen Digital took the wraps off a sophisticated Traffic Distribution Servicecalled HelloTDS that's designed to conditionally redirect site visitors to fake CAPTCHA pages, tech support scams, fake browser updates, unwanted browser extensions, and cryptocurrency scams through remotely-hosted JavaScript code injected into the sites. The primary objective of the TDS is to act as a gateway, determining the exact nature of content to be delivered to the victims after fingerprinting their devices. If the user is not deemed a suitable target, the victim is redirected to a benign web page. "The campaign entry points are infected or otherwise attacker-controlled streaming websites, file sharing services, as well as malvertising campaigns," researchers Vojtěch Krejsa and Milan Špinka said in a report published this month. "Victims are evaluated based on geolocation, IP address, and browser fingerprinting; for example, connections through VPNs or headless browsers are detected and rejected." Some of these attack chains have been found to serve bogus CAPTCHA pages that leverage the ClickFix strategy to trick users into running malicious code and infecting their machines with a malware known as PEAKLIGHT, which is known to server information stealers like Lumma. Central to the HelloTDS infrastructure is the use of .top, .shop, and .com top-level domains that are used to host the JavaScript code and trigger the redirections following a multi-stage fingerprinting process engineered to collect network and browser information. "The HelloTDS infrastructure behind fake CAPTCHA campaigns demonstrates how attackers continue to refine their methods to bypass traditional protections, evade detection, and selectively target victims," the researchers said. "By leveraging sophisticated fingerprinting, dynamic domain infrastructure, and deception tacticsthese campaigns achieve both stealth and scale." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE     #over #websites #infected #with #jsfiretruck
    THEHACKERNEWS.COM
    Over 269,000 Websites Infected with JSFireTruck JavaScript Malware in One Month
    Jun 13, 2025Ravie LakshmananWeb Security / Network Security Cybersecurity researchers are calling attention to a "large-scale campaign" that has been observed compromising legitimate websites with malicious JavaScript injections. According to Palo Alto Networks Unit 42, these malicious injects are obfuscated using JSFuck, which refers to an "esoteric and educational programming style" that uses only a limited set of characters to write and execute code. The cybersecurity company has given the technique an alternate name JSFireTruck owing to the profanity involved. "Multiple websites have been identified with injected malicious JavaScript that uses JSFireTruck obfuscation, which is composed primarily of the symbols [, ], +, $, {, and }," security researchers Hardik Shah, Brad Duncan, and Pranay Kumar Chhaparwal said. "The code's obfuscation hides its true purpose, hindering analysis." Further analysis has determined that the injected code is designed to check the website referrer ("document.referrer"), which identifies the address of the web page from which a request originated. Should the referrer be a search engine such as Google, Bing, DuckDuckGo, Yahoo!, or AOL, the JavaScript code redirects victims to malicious URLs that can deliver malware, exploits, traffic monetization, and malvertising. Unit 42 said its telemetry uncovered 269,552 web pages that have been infected with JavaScript code using the JSFireTruck technique between March 26 and April 25, 2025. A spike in the campaign was first recorded on April 12, when over 50,000 infected web pages were observed in a single day. "The campaign's scale and stealth pose a significant threat," the researchers said. "The widespread nature of these infections suggests a coordinated effort to compromise legitimate websites as attack vectors for further malicious activities." Say Hello to HelloTDS The development comes as Gen Digital took the wraps off a sophisticated Traffic Distribution Service (TDS) called HelloTDS that's designed to conditionally redirect site visitors to fake CAPTCHA pages, tech support scams, fake browser updates, unwanted browser extensions, and cryptocurrency scams through remotely-hosted JavaScript code injected into the sites. The primary objective of the TDS is to act as a gateway, determining the exact nature of content to be delivered to the victims after fingerprinting their devices. If the user is not deemed a suitable target, the victim is redirected to a benign web page. "The campaign entry points are infected or otherwise attacker-controlled streaming websites, file sharing services, as well as malvertising campaigns," researchers Vojtěch Krejsa and Milan Špinka said in a report published this month. "Victims are evaluated based on geolocation, IP address, and browser fingerprinting; for example, connections through VPNs or headless browsers are detected and rejected." Some of these attack chains have been found to serve bogus CAPTCHA pages that leverage the ClickFix strategy to trick users into running malicious code and infecting their machines with a malware known as PEAKLIGHT (aka Emmenhtal Loader), which is known to server information stealers like Lumma. Central to the HelloTDS infrastructure is the use of .top, .shop, and .com top-level domains that are used to host the JavaScript code and trigger the redirections following a multi-stage fingerprinting process engineered to collect network and browser information. "The HelloTDS infrastructure behind fake CAPTCHA campaigns demonstrates how attackers continue to refine their methods to bypass traditional protections, evade detection, and selectively target victims," the researchers said. "By leveraging sophisticated fingerprinting, dynamic domain infrastructure, and deception tactics (such as mimicking legitimate websites and serving benign content to researchers) these campaigns achieve both stealth and scale." Found this article interesting? Follow us on Twitter  and LinkedIn to read more exclusive content we post. SHARE    
    0 Σχόλια 0 Μοιράστηκε
Αναζήτηση αποτελεσμάτων