• Stanford Doctors Invent Device That Appears to Be Able to Save Tons of Stroke Patients Before They Die

    Image by Andrew BrodheadResearchers have developed a novel device that literally spins away the clots that block blood flow to the brain and cause strokes.As Stanford explains in a blurb, the novel milli-spinner device may be able to save the lives of patients who experience "ischemic stroke" from brain stem clotting.Traditional clot removal, a process known as thrombectomy, generally uses a catheter that either vacuums up the blood blockage or uses a wire mesh to ensnare it — a procedure that's as rough and imprecise as it sounds. Conventional thrombectomy has a very low efficacy rate because of this imprecision, and the procedure can result in pieces of the clot breaking off and moving to more difficult-to-reach regions.Thrombectomy via milli-spinner also enters the brain with a catheter, but instead of using a normal vacuum device, it employs a spinning tube outfitted with fins and slits that can suck up the clot much more meticulously.Stanford neuroimaging expert Jeremy Heit, who also coauthored a new paper about the device in the journal Nature, explained in the school's press release that the efficacy of the milli-spinner is "unbelievable.""For most cases, we’re more than doubling the efficacy of current technology, and for the toughest clots — which we’re only removing about 11 percent of the time with current devices — we’re getting the artery open on the first try 90 percent of the time," Heit said. "This is a sea-change technology that will drastically improve our ability to help people."Renee Zhao, the senior author of the Nature paper who teaches mechanical engineering at Stanford and creates what she calls "millirobots," said that conventional thrombectomies just aren't cutting it."With existing technology, there’s no way to reduce the size of the clot," Zhao said. "They rely on deforming and rupturing the clot to remove it.""What’s unique about the milli-spinner is that it applies compression and shear forces to shrink the entire clot," she continued, "dramatically reducing the volume without causing rupture."Indeed, as the team discovered, the device can cut and vacuum up to five percent of its original size."It works so well, for a wide range of clot compositions and sizes," Zhao said. "Even for tough... clots, which are impossible to treat with current technologies, our milli-spinner can treat them using this simple yet powerful mechanics concept to densify the fibrin network and shrink the clot."Though its main experimental use case is brain clot removal, Zhao is excited about its other uses, too."We’re exploring other biomedical applications for the milli-spinner design, and even possibilities beyond medicine," the engineer said. "There are some very exciting opportunities ahead."More on brains: The Microplastics in Your Brain May Be Causing Mental Health IssuesShare This Article
    #stanford #doctors #invent #device #that
    Stanford Doctors Invent Device That Appears to Be Able to Save Tons of Stroke Patients Before They Die
    Image by Andrew BrodheadResearchers have developed a novel device that literally spins away the clots that block blood flow to the brain and cause strokes.As Stanford explains in a blurb, the novel milli-spinner device may be able to save the lives of patients who experience "ischemic stroke" from brain stem clotting.Traditional clot removal, a process known as thrombectomy, generally uses a catheter that either vacuums up the blood blockage or uses a wire mesh to ensnare it — a procedure that's as rough and imprecise as it sounds. Conventional thrombectomy has a very low efficacy rate because of this imprecision, and the procedure can result in pieces of the clot breaking off and moving to more difficult-to-reach regions.Thrombectomy via milli-spinner also enters the brain with a catheter, but instead of using a normal vacuum device, it employs a spinning tube outfitted with fins and slits that can suck up the clot much more meticulously.Stanford neuroimaging expert Jeremy Heit, who also coauthored a new paper about the device in the journal Nature, explained in the school's press release that the efficacy of the milli-spinner is "unbelievable.""For most cases, we’re more than doubling the efficacy of current technology, and for the toughest clots — which we’re only removing about 11 percent of the time with current devices — we’re getting the artery open on the first try 90 percent of the time," Heit said. "This is a sea-change technology that will drastically improve our ability to help people."Renee Zhao, the senior author of the Nature paper who teaches mechanical engineering at Stanford and creates what she calls "millirobots," said that conventional thrombectomies just aren't cutting it."With existing technology, there’s no way to reduce the size of the clot," Zhao said. "They rely on deforming and rupturing the clot to remove it.""What’s unique about the milli-spinner is that it applies compression and shear forces to shrink the entire clot," she continued, "dramatically reducing the volume without causing rupture."Indeed, as the team discovered, the device can cut and vacuum up to five percent of its original size."It works so well, for a wide range of clot compositions and sizes," Zhao said. "Even for tough... clots, which are impossible to treat with current technologies, our milli-spinner can treat them using this simple yet powerful mechanics concept to densify the fibrin network and shrink the clot."Though its main experimental use case is brain clot removal, Zhao is excited about its other uses, too."We’re exploring other biomedical applications for the milli-spinner design, and even possibilities beyond medicine," the engineer said. "There are some very exciting opportunities ahead."More on brains: The Microplastics in Your Brain May Be Causing Mental Health IssuesShare This Article #stanford #doctors #invent #device #that
    FUTURISM.COM
    Stanford Doctors Invent Device That Appears to Be Able to Save Tons of Stroke Patients Before They Die
    Image by Andrew BrodheadResearchers have developed a novel device that literally spins away the clots that block blood flow to the brain and cause strokes.As Stanford explains in a blurb, the novel milli-spinner device may be able to save the lives of patients who experience "ischemic stroke" from brain stem clotting.Traditional clot removal, a process known as thrombectomy, generally uses a catheter that either vacuums up the blood blockage or uses a wire mesh to ensnare it — a procedure that's as rough and imprecise as it sounds. Conventional thrombectomy has a very low efficacy rate because of this imprecision, and the procedure can result in pieces of the clot breaking off and moving to more difficult-to-reach regions.Thrombectomy via milli-spinner also enters the brain with a catheter, but instead of using a normal vacuum device, it employs a spinning tube outfitted with fins and slits that can suck up the clot much more meticulously.Stanford neuroimaging expert Jeremy Heit, who also coauthored a new paper about the device in the journal Nature, explained in the school's press release that the efficacy of the milli-spinner is "unbelievable.""For most cases, we’re more than doubling the efficacy of current technology, and for the toughest clots — which we’re only removing about 11 percent of the time with current devices — we’re getting the artery open on the first try 90 percent of the time," Heit said. "This is a sea-change technology that will drastically improve our ability to help people."Renee Zhao, the senior author of the Nature paper who teaches mechanical engineering at Stanford and creates what she calls "millirobots," said that conventional thrombectomies just aren't cutting it."With existing technology, there’s no way to reduce the size of the clot," Zhao said. "They rely on deforming and rupturing the clot to remove it.""What’s unique about the milli-spinner is that it applies compression and shear forces to shrink the entire clot," she continued, "dramatically reducing the volume without causing rupture."Indeed, as the team discovered, the device can cut and vacuum up to five percent of its original size."It works so well, for a wide range of clot compositions and sizes," Zhao said. "Even for tough... clots, which are impossible to treat with current technologies, our milli-spinner can treat them using this simple yet powerful mechanics concept to densify the fibrin network and shrink the clot."Though its main experimental use case is brain clot removal, Zhao is excited about its other uses, too."We’re exploring other biomedical applications for the milli-spinner design, and even possibilities beyond medicine," the engineer said. "There are some very exciting opportunities ahead."More on brains: The Microplastics in Your Brain May Be Causing Mental Health IssuesShare This Article
    Like
    Love
    Wow
    Sad
    Angry
    478
    2 Yorumlar 0 hisse senetleri
  • Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects

    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada.
    Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption.
    Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits.
    Figure 1: Preheating air for industrial buildings: 2,750 m2of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies
    Quebec’s solar air heating boom: the Trigo Energies story
    Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies.
    Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.”
    One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.
     
    Blue or black, but always efficient: the advanced absorber coating
    In October 2024, the majority of the new 2,750 m²solar façade at FAB3R began operation. According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system.
    The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating.
    Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon.
    Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy
    Matrix Energy: collaborating with architects and engineers in new builds
    The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy.
    Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers.
    “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added.
    Finding the right flow: the importance of unitary airflow rates
    One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance.
    For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170, or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m²offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained.
    It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² are necessary.
    Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering
    Solar air heating systems support LEED-certified building designs
    Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto, where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m².
    “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick.
    The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances.
    The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future.
    Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif

    Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication.
    The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect.
    #oped #canadas #leadership #solar #air
    Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects
    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada. Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption. Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits. Figure 1: Preheating air for industrial buildings: 2,750 m2of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies Quebec’s solar air heating boom: the Trigo Energies story Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies. Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.” One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.   Blue or black, but always efficient: the advanced absorber coating In October 2024, the majority of the new 2,750 m²solar façade at FAB3R began operation. According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system. The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating. Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon. Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy Matrix Energy: collaborating with architects and engineers in new builds The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy. Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers. “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added. Finding the right flow: the importance of unitary airflow rates One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance. For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170, or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m²offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained. It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² are necessary. Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering Solar air heating systems support LEED-certified building designs Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto, where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m². “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick. The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances. The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future. Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication. The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect. #oped #canadas #leadership #solar #air
    WWW.CANADIANARCHITECT.COM
    Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects
    Solar air heating is among the most cost-effective applications of solar thermal energy. These systems are used for space heating and preheating fresh air for ventilation, typically using glazed or unglazed perforated solar collectors. The collectors draw in outside air, heat it using solar energy, and then distribute it through ductwork to meet building heating and fresh air needs. In 2024, Canada led again the world for the at least seventh year in a row in solar air heating adoption. The four key suppliers – Trigo Energies, Conserval Engineering, Matrix Energy, and Aéronergie – reported a combined 26,203 m2 (282,046 ft2) of collector area sold last year. Several of these providers are optimistic about the growing demand. These findings come from the newly released Canadian Solar Thermal Market Survey 2024, commissioned by Natural Resources Canada. Canada is the global leader in solar air heating. The market is driven by a strong network of experienced system suppliers, optimized technologies, and a few small favorable funding programs – especially in the province of Quebec. Architects and developers are increasingly turning to these cost-effective, façade-integrated systems as a practical solution for reducing onsite natural gas consumption. Despite its cold climate, Canada benefits from strong solar potential with solar irradiance in many areas rivaling or even exceeding that of parts of Europe. This makes solar air heating not only viable, but especially valuable in buildings with high fresh air requirements including schools, hospitals, and offices. The projects highlighted in this article showcase the versatility and relevance of solar air heating across a range of building types, from new constructions to retrofits. Figure 1: Preheating air for industrial buildings: 2,750 m2 (29,600 ft2) of Calento SL solar air collectors cover all south-west and south-east facing facades of the FAB3R factory in Trois-Rivières, Quebec. The hourly unitary flow rate is set at 41 m3/m2 or 2.23 cfm/ft2 of collector area, at the lower range because only a limited number of intake fans was close enough to the solar façade to avoid long ventilation ductwork. Photo: Trigo Energies Quebec’s solar air heating boom: the Trigo Energies story Trigo Energies makes almost 90 per cent of its sales in Quebec. “We profit from great subsidies, as solar air systems are supported by several organizations in our province – the electricity utility Hydro Quebec, the gas utility Energir and the Ministry of Natural Resources,” explained Christian Vachon, Vice President Technologies and R&D at Trigo Energies. Trigo Energies currently has nine employees directly involved in planning, engineering and installing solar air heating systems and teams up with several partner contractors to install mostly retrofit projects. “A high degree of engineering is required to fit a solar heating system into an existing factory,” emphasized Vachon. “Knowledge about HVAC engineering is as important as experience with solar thermal and architecture.” One recent Trigo installation is at the FAB3R factory in Trois-Rivières. FAB3R specializes in manufacturing, repairing, and refurbishing large industrial equipment. Its air heating and ventilation system needed urgent renovation because of leakages and discomfort for the workers. “Due to many positive references he had from industries in the area, the owner of FAB3R contacted us,” explained Vachon. “The existence of subsidies helped the client to go for a retrofitting project including solar façade at once instead of fixing the problems one bit at a time.” Approximately 50 per cent of the investment costs for both the solar air heating and the renovation of the indoor ventilation system were covered by grants and subsidies. FAB3R profited from an Energir grant targeted at solar preheating, plus an investment subsidy from the Government of Quebec’s EcoPerformance Programme.   Blue or black, but always efficient: the advanced absorber coating In October 2024, the majority of the new 2,750 m² (29,600 ft2) solar façade at FAB3R began operation (see figure 1). According to Vachon, the system is expected to cover approximately 13 per cent of the factory’s annual heating demand, which is otherwise met by natural gas. Trigo Energies equipped the façade with its high-performance Calento SL collectors, featuring a notable innovation: a selective, low-emissivity coating that withstands outdoor conditions. Introduced by Trigo in 2019 and manufactured by Almeco Group from Italy, this advanced coating is engineered to maximize solar absorption while minimizing heat loss via infrared emission, enhancing the overall efficiency of the system. The high efficiency coating is now standard in Trigo’s air heating systems. According to the manufacturer, the improved collector design shows a 25 to 35 per cent increase in yield over the former generation of solar air collectors with black paint. Testing conducted at Queen’s University confirms this performance advantage. Researchers measured the performance of transpired solar air collectors both with and without a selective coating, mounted side-by-side on a south-facing vertical wall. The results showed that the collectors with the selective coating produced 1.3 to 1.5 times more energy than those without it. In 2024, the monitoring results were jointly published by Queen’s University and Canmat Energy in a paper titled Performance Comparison of a Transpired Air Solar Collector with Low-E Surface Coating. Selective coating, also used on other solar thermal technologies including glazed flat plate or vacuum tube collectors, has a distinctive blue color. Trigo customers can, however, choose between blue and black finishes. “By going from the normal blue selective coating to black selective coating, which Almeco is specially producing for Trigo, we lose about 1 per cent in solar efficiency,” explained Vachon. Figure 2: Building-integrated solar air heating façade with MatrixAir collectors at the firehall building in Mont Saint Hilaire, south of Montreal. The 190 m2 (2,045 ft2) south-facing wall preheats the fresh air, reducing natural gas consumption by 18 per cent compared to the conventional make-up system. Architect: Leclerc Architecture. Photo: Matrix Energy Matrix Energy: collaborating with architects and engineers in new builds The key target customer group of Matrix Energy are public buildings – mainly new construction. “Since the pandemic, schools are more conscious about fresh air, and solar preheating of the incoming fresh air has a positive impact over the entire school year,” noted Brian Wilkinson, President of Matrix Energy. Matrix Energy supplies systems across Canada, working with local partners to source and process the metal sheets used in their MatrixAir collectors. These metal sheets are perforated and then formed into architectural cladding profiles. The company exclusively offers unglazed, single-stage collectors, citing fire safety concerns associated with polymeric covers. “We have strong relationships with many architects and engineers who appreciate the simplicity and cost-effectiveness of transpired solar air heating systems,” said President Brian Wilkinson, describing the company’s sales approach. “Matrix handles system design and supplies the necessary materials, while installation is carried out by specialized cladding and HVAC contractors overseen by on-site architects and engineers,” Wilkinson added. Finding the right flow: the importance of unitary airflow rates One of the key design factors in solar air heating systems is the amount of air that passes through each square meter of the perforated metal absorber,  known as the unitary airflow rate. The principle is straightforward: higher airflow rates deliver more total heat to the building, while lower flow rates result in higher outlet air temperatures. Striking the right balance between air volume and temperature gain is essential for efficient system performance. For unglazed collectors mounted on building façades, typical hourly flow rates should range between 120 and 170 (m3/h/m2), or 6.6 to 9.4 cfm/ft2. However, Wilkinson suggests that an hourly airflow rate of around 130 m³/h/m² (7.2 cfm/ft2) offers the best cost-benefit balance for building owners. If the airflow is lower, the system will deliver higher air temperatures, but it would then need a much larger collector area to achieve the same air volume and optimum performance, he explained. It’s also crucial for the flow rate to overcome external wind pressure. As wind passes over the absorber, air flow through the collector’s perforations is reduced, resulting in heat losses to the environment. This effect becomes even more pronounced in taller buildings, where wind exposure is greater. To ensure the system performs well even in these conditions, higher hourly airflow rates typically between 150 and 170 m³/m² (8.3 to 9.4 cfm/ft2)  are necessary. Figure 3: One of three apartment blocks of the Maple House in Toronto’s Canary District. Around 160 m2 (1,722 ft2) of SolarWall collectors clad the two-storey mechanical penthouse on the roof. The rental flats have been occupied since the beginning of 2024. Collaborators: architects-Alliance, Claude Cormier et Associés, Thornton Tomasetti, RWDI, Cole Engineering, DesignAgency, MVShore, BA Group, EllisDon. Photo: Conserval Engineering Solar air heating systems support LEED-certified building designs Solar air collectors are also well-suited for use in multi-unit residential buildings. A prime example is the Canary District in Toronto (see Figure 3), where single-stage SolarWall collectors from Conserval Engineering have been installed on several MURBs to clad the mechanical penthouses. “These penthouses are an ideal location for our air heating collectors, as they contain the make-up air units that supply corridor ventilation throughout the building,” explained Victoria Hollick, Vice President of Conserval Engineering. “The walls are typically finished with metal façades, which can be seamlessly replaced with a SolarWall system – maintaining the architectural language without disruption.” To date, nine solar air heating systems have been commissioned in the Canary District, covering a total collector area of over 1,000 m² (10,764 ft2). “Our customers have many motivations to integrate SolarWall technology into their new construction or retrofit projects, either carbon reduction, ESG, or green building certification targets,” explained Hollick. The use of solar air collectors in the Canary District was proposed by architects from the Danish firm Cobe. The black-colored SolarWall system preheats incoming air before it is distributed to the building’s corridors and common areas, reducing reliance on natural gas heating and supporting the pursuit of LEED Gold certification. Hollick estimates the amount of gas saved between 10 to 20 per cent of the total heating load for the corridor ventilation of the multi-unit residential buildings. Additional energy-saving strategies include a 50/50 window-to-wall ratio with high-performance glazing, green roofs, high-efficiency mechanical systems, LED lighting, and Energy Star-certified appliances. The ideal orientation for a SolarWall system is due south. However, the systems can be built at any orientation up to 90° east and west, explained Hollick. A SolarWall at 90° would have approximately 60 per cent of the energy production of the same area facing south.Canada’s expertise in solar air heating continues to set a global benchmark, driven by supporting R&D, by innovative technologies, strategic partnerships, and a growing portfolio of high-impact projects. With strong policy support and proven performance, solar air heating is poised to play a key role in the country’s energy-efficient building future. Figure 4: Claude-Bechard Building in Quebec is a showcase project for sustainable architecture with a 72 m2 (775 ft2) Lubi solar air heating wall from Aéronergie. It serves as a regional administrative center. Architectural firm: Goulet et Lebel Architectes. Photo: Art Massif Bärbel Epp is the general manager of the German Agency solrico, whose focus is on solar market research and international communication. The post Op-ed: Canada’s leadership in solar air heating—Innovation and flagship projects appeared first on Canadian Architect.
    0 Yorumlar 0 hisse senetleri
  • Too big, fail too

    Inside Apple’s high-gloss standoff with AI ambition and the uncanny choreography of WWDC 2025There was a time when watching an Apple keynote — like Steve Jobs introducing the iPhone in 2007, the masterclass of all masterclasses in product launching — felt like watching a tightrope act. There was suspense. Live demos happened — sometimes they failed, and when they didn’t, the applause was real, not piped through a Dolby mix.These days, that tension is gone. Since 2020, in the wake of the pandemic, Apple events have become pre-recorded masterworks: drone shots sweeping over Apple Park, transitions smoother than a Pixar short, and executives delivering their lines like odd, IRL spatial personas. They move like human renderings: poised, confident, and just robotic enough to raise a brow. The kind of people who, if encountered in real life, would probably light up half a dozen red flags before a handshake is even offered. A case in point: the official “Liquid Glass” UI demo — it’s visually stunning, yes, but also uncanny, like a concept reel that forgot it needed to ship. that’s the paradox. Not only has Apple trimmed down the content of WWDC, it’s also polished the delivery into something almost inhumanly controlled. Every keynote beat feels engineered to avoid risk, reduce friction, and glide past doubt. But in doing so, something vital slips away: the tension, the spontaneity, the sense that the future is being made, not just performed.Just one year earlier, WWDC 2024 opened with a cinematic cold open “somewhere over California”: Schiller piloting an Apple-branded plane, iPod in hand, muttering “I’m getting too old for this stuff.” A perfect mix of Lethal Weapon camp and a winking message that yes, Classic-Apple was still at the controls — literally — flying its senior leadership straight toward Cupertino. Out the hatch, like high-altitude paratroopers of optimism, leapt the entire exec team, with Craig Federighi, always the go-to for Apple’s auto-ironic set pieces, leading the charge, donning a helmet literally resembling his own legendary mane. It was peak-bold, bizarre, and unmistakably Apple. That intro now reads like the final act of full-throttle confidence.This year’s WWDC offered a particularly crisp contrast. Aside from the new intro — which features Craig Federighi drifting an F1-style race car across the inner rooftop ring of Apple Park as a “therapy session”, a not-so-subtle nod to the upcoming Formula 1 blockbuster but also to the accountability for the failure to deliver the system-wide AI on time — WWDC 2025 pulled back dramatically. The new “Apple Intelligence” was introduced in a keynote with zero stumbles, zero awkward transitions, and visuals so pristine they could have been rendered on a Vision Pro. Not only had the scope of WWDC been trimmed down to safer talking points, but even the tone had shifted — less like a tech summit, more like a handsomely lit containment-mode seminar. And that, perhaps, was the problem. The presentation wasn’t a reveal — it was a performance. And performances can be edited in post. Demos can’t.So when Apple in march 2025 quietly admitted, for the first time, in a formal press release addressed to reporters like John Gruber, that the personalized Siri and system-wide AI features would be delayed — the reaction wasn’t outrage. It was something subtler: disillusionment. Gruber’s response cracked the façade wide open. His post opened a slow but persistent wave of unease, rippling through developer Slack channels and private comment threads alike. John Gruber’s reaction, published under the headline “Something is rotten in the State of Cupertino”, was devastating. His critique opened the floodgates to a wave of murmurs and public unease among developers and insiders, many of whom had begun to question what was really happening at the helm of key divisions central to Apple’s future.Many still believe Apple is the only company truly capable of pulling off hardware-software integrated AI at scale. But there’s a sense that the company is now operating in damage-control mode. The delay didn’t just push back a feature — it disrupted the entire strategic arc of WWDC 2025. What could have been a milestone in system-level AI became a cautious sidestep, repackaged through visual polish and feature tweaks. The result: a presentation focused on UI refinements and safe bets, far removed from the sweeping revolution that had been teased as the main selling point for promoting the iPhone 16 launch, “Built for Apple Intelligence”.That tension surfaced during Joanna Stern’s recent live interview with Craig Federighi and Greg Joswiak. These are two of Apple’s most media-savvy execs, and yet, in a setting where questions weren’t scripted, you could see the seams. Their usual fluency gave way to something stiffer. More careful. Less certain. And even the absences speak volumes: for the first time in a decade, no one from Apple’s top team joined John Gruber’s Talk Show at WWDC. It wasn’t a scheduling fluke — nor a petty retaliation for Gruber’s damning March article. It was a retreat — one that Stratechery’s Ben Thompson described as exactly that: a strategic fallback, not a brave reset.Meanwhile, the keynote narrative quietly shifted from AI ambition to UI innovation: new visual effects, tighter integration, call screening. Credit here goes to Alan Dye — Apple VP of Human Interface Design and one of the last remaining members of Jony Ive’s inner circle not yet absorbed into LoveFrom — whose long-arc work on interface aesthetics, from the early stages of the Dynamic Island onward, is finally starting to click into place. This is classic Apple: refinement as substance, design as coherence. But it was meant to be the cherry on top of a much deeper AI-system transformation — not the whole sundae. All useful. All safe. And yet, the thing that Apple could uniquely deliver — a seamless, deeply integrated, user-controlled and privacy-safe Apple Intelligence — is now the thing it seems most reluctant to show.There is no doubt the groundwork has been laid. And to Apple’s credit, Jason Snell notes that the company is shifting gears, scaling ambitions to something that feels more tangible. But in scaling back the risk, something else has been scaled back too: the willingness to look your audience of stakeholders, developers and users live, in the eye, and show the future for how you have carefully crafted it and how you can put it in the market immediately, or in mere weeks. Showing things as they are, or as they will be very soon. Rehearsed, yes, but never faked.Even James Dyson’s live demo of a new vacuum showed more courage. No camera cuts. No soft lighting. Just a human being, showing a thing. It might have sucked, literally or figuratively. But it didn’t. And it stuck. That’s what feels missing in Cupertino.Some have started using the term glasslighting — a coined pun blending Apple’s signature glassy aesthetics with the soft manipulations of marketing, like a gentle fog of polished perfection that leaves expectations quietly disoriented. It’s not deception. It’s damage control. But that instinct, understandable as it is, doesn’t build momentum. It builds inertia. And inertia doesn’t sell intelligence. It only delays the reckoning.Before the curtain falls, it’s hard not to revisit the uncanny polish of Apple’s speakers presence. One might start to wonder whether Apple is really late on AI — or whether it’s simply developed such a hyper-advanced internal model that its leadership team has been replaced by real-time human avatars, flawlessly animated, fed directly by the Neural Engine. Not the constrained humanity of two floating eyes behind an Apple Vision headset, but full-on flawless embodiment — if this is Apple’s augmented AI at work, it may be the only undisclosed and underpromised demo actually shipping.OS30 live demoMeanwhile, just as Apple was soft-pedaling its A.I. story with maximum visual polish, a very different tone landed from across the bay: Sam Altman and Jony Ive, sitting in a bar, talking about the future. stage. No teleprompter. No uncanny valley. Just two “old friends”, with one hell of a budget, quietly sketching the next era of computing. A vision Apple once claimed effortlessly.There’s still the question of whether Apple, as many hope, can reclaim — and lock down — that leadership for itself. A healthy dose of competition, at the very least, can only help.Too big, fail too was originally published in UX Collective on Medium, where people are continuing the conversation by highlighting and responding to this story.
    #too #big #fail
    Too big, fail too
    Inside Apple’s high-gloss standoff with AI ambition and the uncanny choreography of WWDC 2025There was a time when watching an Apple keynote — like Steve Jobs introducing the iPhone in 2007, the masterclass of all masterclasses in product launching — felt like watching a tightrope act. There was suspense. Live demos happened — sometimes they failed, and when they didn’t, the applause was real, not piped through a Dolby mix.These days, that tension is gone. Since 2020, in the wake of the pandemic, Apple events have become pre-recorded masterworks: drone shots sweeping over Apple Park, transitions smoother than a Pixar short, and executives delivering their lines like odd, IRL spatial personas. They move like human renderings: poised, confident, and just robotic enough to raise a brow. The kind of people who, if encountered in real life, would probably light up half a dozen red flags before a handshake is even offered. A case in point: the official “Liquid Glass” UI demo — it’s visually stunning, yes, but also uncanny, like a concept reel that forgot it needed to ship. that’s the paradox. Not only has Apple trimmed down the content of WWDC, it’s also polished the delivery into something almost inhumanly controlled. Every keynote beat feels engineered to avoid risk, reduce friction, and glide past doubt. But in doing so, something vital slips away: the tension, the spontaneity, the sense that the future is being made, not just performed.Just one year earlier, WWDC 2024 opened with a cinematic cold open “somewhere over California”: Schiller piloting an Apple-branded plane, iPod in hand, muttering “I’m getting too old for this stuff.” A perfect mix of Lethal Weapon camp and a winking message that yes, Classic-Apple was still at the controls — literally — flying its senior leadership straight toward Cupertino. Out the hatch, like high-altitude paratroopers of optimism, leapt the entire exec team, with Craig Federighi, always the go-to for Apple’s auto-ironic set pieces, leading the charge, donning a helmet literally resembling his own legendary mane. It was peak-bold, bizarre, and unmistakably Apple. That intro now reads like the final act of full-throttle confidence.This year’s WWDC offered a particularly crisp contrast. Aside from the new intro — which features Craig Federighi drifting an F1-style race car across the inner rooftop ring of Apple Park as a “therapy session”, a not-so-subtle nod to the upcoming Formula 1 blockbuster but also to the accountability for the failure to deliver the system-wide AI on time — WWDC 2025 pulled back dramatically. The new “Apple Intelligence” was introduced in a keynote with zero stumbles, zero awkward transitions, and visuals so pristine they could have been rendered on a Vision Pro. Not only had the scope of WWDC been trimmed down to safer talking points, but even the tone had shifted — less like a tech summit, more like a handsomely lit containment-mode seminar. And that, perhaps, was the problem. The presentation wasn’t a reveal — it was a performance. And performances can be edited in post. Demos can’t.So when Apple in march 2025 quietly admitted, for the first time, in a formal press release addressed to reporters like John Gruber, that the personalized Siri and system-wide AI features would be delayed — the reaction wasn’t outrage. It was something subtler: disillusionment. Gruber’s response cracked the façade wide open. His post opened a slow but persistent wave of unease, rippling through developer Slack channels and private comment threads alike. John Gruber’s reaction, published under the headline “Something is rotten in the State of Cupertino”, was devastating. His critique opened the floodgates to a wave of murmurs and public unease among developers and insiders, many of whom had begun to question what was really happening at the helm of key divisions central to Apple’s future.Many still believe Apple is the only company truly capable of pulling off hardware-software integrated AI at scale. But there’s a sense that the company is now operating in damage-control mode. The delay didn’t just push back a feature — it disrupted the entire strategic arc of WWDC 2025. What could have been a milestone in system-level AI became a cautious sidestep, repackaged through visual polish and feature tweaks. The result: a presentation focused on UI refinements and safe bets, far removed from the sweeping revolution that had been teased as the main selling point for promoting the iPhone 16 launch, “Built for Apple Intelligence”.That tension surfaced during Joanna Stern’s recent live interview with Craig Federighi and Greg Joswiak. These are two of Apple’s most media-savvy execs, and yet, in a setting where questions weren’t scripted, you could see the seams. Their usual fluency gave way to something stiffer. More careful. Less certain. And even the absences speak volumes: for the first time in a decade, no one from Apple’s top team joined John Gruber’s Talk Show at WWDC. It wasn’t a scheduling fluke — nor a petty retaliation for Gruber’s damning March article. It was a retreat — one that Stratechery’s Ben Thompson described as exactly that: a strategic fallback, not a brave reset.Meanwhile, the keynote narrative quietly shifted from AI ambition to UI innovation: new visual effects, tighter integration, call screening. Credit here goes to Alan Dye — Apple VP of Human Interface Design and one of the last remaining members of Jony Ive’s inner circle not yet absorbed into LoveFrom — whose long-arc work on interface aesthetics, from the early stages of the Dynamic Island onward, is finally starting to click into place. This is classic Apple: refinement as substance, design as coherence. But it was meant to be the cherry on top of a much deeper AI-system transformation — not the whole sundae. All useful. All safe. And yet, the thing that Apple could uniquely deliver — a seamless, deeply integrated, user-controlled and privacy-safe Apple Intelligence — is now the thing it seems most reluctant to show.There is no doubt the groundwork has been laid. And to Apple’s credit, Jason Snell notes that the company is shifting gears, scaling ambitions to something that feels more tangible. But in scaling back the risk, something else has been scaled back too: the willingness to look your audience of stakeholders, developers and users live, in the eye, and show the future for how you have carefully crafted it and how you can put it in the market immediately, or in mere weeks. Showing things as they are, or as they will be very soon. Rehearsed, yes, but never faked.Even James Dyson’s live demo of a new vacuum showed more courage. No camera cuts. No soft lighting. Just a human being, showing a thing. It might have sucked, literally or figuratively. But it didn’t. And it stuck. That’s what feels missing in Cupertino.Some have started using the term glasslighting — a coined pun blending Apple’s signature glassy aesthetics with the soft manipulations of marketing, like a gentle fog of polished perfection that leaves expectations quietly disoriented. It’s not deception. It’s damage control. But that instinct, understandable as it is, doesn’t build momentum. It builds inertia. And inertia doesn’t sell intelligence. It only delays the reckoning.Before the curtain falls, it’s hard not to revisit the uncanny polish of Apple’s speakers presence. One might start to wonder whether Apple is really late on AI — or whether it’s simply developed such a hyper-advanced internal model that its leadership team has been replaced by real-time human avatars, flawlessly animated, fed directly by the Neural Engine. Not the constrained humanity of two floating eyes behind an Apple Vision headset, but full-on flawless embodiment — if this is Apple’s augmented AI at work, it may be the only undisclosed and underpromised demo actually shipping.OS30 live demoMeanwhile, just as Apple was soft-pedaling its A.I. story with maximum visual polish, a very different tone landed from across the bay: Sam Altman and Jony Ive, sitting in a bar, talking about the future. stage. No teleprompter. No uncanny valley. Just two “old friends”, with one hell of a budget, quietly sketching the next era of computing. A vision Apple once claimed effortlessly.There’s still the question of whether Apple, as many hope, can reclaim — and lock down — that leadership for itself. A healthy dose of competition, at the very least, can only help.Too big, fail too was originally published in UX Collective on Medium, where people are continuing the conversation by highlighting and responding to this story. #too #big #fail
    UXDESIGN.CC
    Too big, fail too
    Inside Apple’s high-gloss standoff with AI ambition and the uncanny choreography of WWDC 2025There was a time when watching an Apple keynote — like Steve Jobs introducing the iPhone in 2007, the masterclass of all masterclasses in product launching — felt like watching a tightrope act. There was suspense. Live demos happened — sometimes they failed, and when they didn’t, the applause was real, not piped through a Dolby mix.These days, that tension is gone. Since 2020, in the wake of the pandemic, Apple events have become pre-recorded masterworks: drone shots sweeping over Apple Park, transitions smoother than a Pixar short, and executives delivering their lines like odd, IRL spatial personas. They move like human renderings: poised, confident, and just robotic enough to raise a brow. The kind of people who, if encountered in real life, would probably light up half a dozen red flags before a handshake is even offered. A case in point: the official “Liquid Glass” UI demo — it’s visually stunning, yes, but also uncanny, like a concept reel that forgot it needed to ship.https://medium.com/media/fcb3b16cc42621ba32153aff80ea1805/hrefAnd that’s the paradox. Not only has Apple trimmed down the content of WWDC, it’s also polished the delivery into something almost inhumanly controlled. Every keynote beat feels engineered to avoid risk, reduce friction, and glide past doubt. But in doing so, something vital slips away: the tension, the spontaneity, the sense that the future is being made, not just performed.Just one year earlier, WWDC 2024 opened with a cinematic cold open “somewhere over California”:https://medium.com/media/f97f45387353363264d99c341d4571b0/hrefPhil Schiller piloting an Apple-branded plane, iPod in hand, muttering “I’m getting too old for this stuff.” A perfect mix of Lethal Weapon camp and a winking message that yes, Classic-Apple was still at the controls — literally — flying its senior leadership straight toward Cupertino. Out the hatch, like high-altitude paratroopers of optimism, leapt the entire exec team, with Craig Federighi, always the go-to for Apple’s auto-ironic set pieces, leading the charge, donning a helmet literally resembling his own legendary mane. It was peak-bold, bizarre, and unmistakably Apple. That intro now reads like the final act of full-throttle confidence.This year’s WWDC offered a particularly crisp contrast. Aside from the new intro — which features Craig Federighi drifting an F1-style race car across the inner rooftop ring of Apple Park as a “therapy session”, a not-so-subtle nod to the upcoming Formula 1 blockbuster but also to the accountability for the failure to deliver the system-wide AI on time — WWDC 2025 pulled back dramatically. The new “Apple Intelligence” was introduced in a keynote with zero stumbles, zero awkward transitions, and visuals so pristine they could have been rendered on a Vision Pro. Not only had the scope of WWDC been trimmed down to safer talking points, but even the tone had shifted — less like a tech summit, more like a handsomely lit containment-mode seminar. And that, perhaps, was the problem. The presentation wasn’t a reveal — it was a performance. And performances can be edited in post. Demos can’t.So when Apple in march 2025 quietly admitted, for the first time, in a formal press release addressed to reporters like John Gruber, that the personalized Siri and system-wide AI features would be delayed — the reaction wasn’t outrage. It was something subtler: disillusionment. Gruber’s response cracked the façade wide open. His post opened a slow but persistent wave of unease, rippling through developer Slack channels and private comment threads alike. John Gruber’s reaction, published under the headline “Something is rotten in the State of Cupertino”, was devastating. His critique opened the floodgates to a wave of murmurs and public unease among developers and insiders, many of whom had begun to question what was really happening at the helm of key divisions central to Apple’s future.Many still believe Apple is the only company truly capable of pulling off hardware-software integrated AI at scale. But there’s a sense that the company is now operating in damage-control mode. The delay didn’t just push back a feature — it disrupted the entire strategic arc of WWDC 2025. What could have been a milestone in system-level AI became a cautious sidestep, repackaged through visual polish and feature tweaks. The result: a presentation focused on UI refinements and safe bets, far removed from the sweeping revolution that had been teased as the main selling point for promoting the iPhone 16 launch, “Built for Apple Intelligence”.That tension surfaced during Joanna Stern’s recent live interview with Craig Federighi and Greg Joswiak. These are two of Apple’s most media-savvy execs, and yet, in a setting where questions weren’t scripted, you could see the seams. Their usual fluency gave way to something stiffer. More careful. Less certain. And even the absences speak volumes: for the first time in a decade, no one from Apple’s top team joined John Gruber’s Talk Show at WWDC. It wasn’t a scheduling fluke — nor a petty retaliation for Gruber’s damning March article. It was a retreat — one that Stratechery’s Ben Thompson described as exactly that: a strategic fallback, not a brave reset.Meanwhile, the keynote narrative quietly shifted from AI ambition to UI innovation: new visual effects, tighter integration, call screening. Credit here goes to Alan Dye — Apple VP of Human Interface Design and one of the last remaining members of Jony Ive’s inner circle not yet absorbed into LoveFrom — whose long-arc work on interface aesthetics, from the early stages of the Dynamic Island onward, is finally starting to click into place. This is classic Apple: refinement as substance, design as coherence. But it was meant to be the cherry on top of a much deeper AI-system transformation — not the whole sundae. All useful. All safe. And yet, the thing that Apple could uniquely deliver — a seamless, deeply integrated, user-controlled and privacy-safe Apple Intelligence — is now the thing it seems most reluctant to show.There is no doubt the groundwork has been laid. And to Apple’s credit, Jason Snell notes that the company is shifting gears, scaling ambitions to something that feels more tangible. But in scaling back the risk, something else has been scaled back too: the willingness to look your audience of stakeholders, developers and users live, in the eye, and show the future for how you have carefully crafted it and how you can put it in the market immediately, or in mere weeks. Showing things as they are, or as they will be very soon. Rehearsed, yes, but never faked.Even James Dyson’s live demo of a new vacuum showed more courage. No camera cuts. No soft lighting. Just a human being, showing a thing. It might have sucked, literally or figuratively. But it didn’t. And it stuck. That’s what feels missing in Cupertino.Some have started using the term glasslighting — a coined pun blending Apple’s signature glassy aesthetics with the soft manipulations of marketing, like a gentle fog of polished perfection that leaves expectations quietly disoriented. It’s not deception. It’s damage control. But that instinct, understandable as it is, doesn’t build momentum. It builds inertia. And inertia doesn’t sell intelligence. It only delays the reckoning.Before the curtain falls, it’s hard not to revisit the uncanny polish of Apple’s speakers presence. One might start to wonder whether Apple is really late on AI — or whether it’s simply developed such a hyper-advanced internal model that its leadership team has been replaced by real-time human avatars, flawlessly animated, fed directly by the Neural Engine. Not the constrained humanity of two floating eyes behind an Apple Vision headset, but full-on flawless embodiment — if this is Apple’s augmented AI at work, it may be the only undisclosed and underpromised demo actually shipping.OS30 live demoMeanwhile, just as Apple was soft-pedaling its A.I. story with maximum visual polish, a very different tone landed from across the bay: Sam Altman and Jony Ive, sitting in a bar, talking about the future.https://medium.com/media/5cdea73d7fde0b538e038af1990afa44/hrefNo stage. No teleprompter. No uncanny valley. Just two “old friends”, with one hell of a budget, quietly sketching the next era of computing. A vision Apple once claimed effortlessly.There’s still the question of whether Apple, as many hope, can reclaim — and lock down — that leadership for itself. A healthy dose of competition, at the very least, can only help.Too big, fail too was originally published in UX Collective on Medium, where people are continuing the conversation by highlighting and responding to this story.
    0 Yorumlar 0 hisse senetleri